1
|
Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. Fruit Photosynthesis: More to Know about Where, How and Why. PLANTS (BASEL, SWITZERLAND) 2023; 12:2393. [PMID: 37446953 DOI: 10.3390/plants12132393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Not only leaves but also other plant organs and structures typically considered as carbon sinks, including stems, roots, flowers, fruits and seeds, may exhibit photosynthetic activity. There is still a lack of a coherent and systematized body of knowledge and consensus on the role(s) of photosynthesis in these "sink" organs. With regard to fruits, their actual photosynthetic activity is influenced by a range of properties, including fruit anatomy, histology, physiology, development and the surrounding microclimate. At early stages of development fruits generally contain high levels of chlorophylls, a high density of functional stomata and thin cuticles. While some plant species retain functional chloroplasts in their fruits upon subsequent development or ripening, most species undergo a disintegration of the fruit chloroplast grana and reduction in stomata functionality, thus limiting gas exchange. In addition, the increase in fruit volume hinders light penetration and access to CO2, also reducing photosynthetic activity. This review aimed to compile information on aspects related to fruit photosynthesis, from fruit characteristics to ecological drivers, and to address the following challenging biological questions: why does a fruit show photosynthetic activity and what could be its functions? Overall, there is a body of evidence to support the hypothesis that photosynthesis in fruits is key to locally providing: ATP and NADPH, which are both fundamental for several demanding biosynthetic pathways (e.g., synthesis of fatty acids); O2, to prevent hypoxia in its inner tissues including seeds; and carbon skeletons, which can fuel the biosynthesis of primary and secondary metabolites important for the growth of fruits and for spreading, survival and germination of their seed (e.g., sugars, flavonoids, tannins, lipids). At the same time, both primary and secondary metabolites present in fruits and seeds are key to human life, for instance as sources for nutrition, bioactives, oils and other economically important compounds or components. Understanding the functions of photosynthesis in fruits is pivotal to crop management, providing a rationale for manipulating microenvironmental conditions and the expression of key photosynthetic genes, which may help growers or breeders to optimize development, composition, yield or other economically important fruit quality aspects.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ric C H De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research Centre (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Teixeira A, Noronha H, Frusciante S, Diretto G, Gerós H. Biosynthesis of Chlorophyll and Other Isoprenoids in the Plastid of Red Grape Berry Skins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1873-1885. [PMID: 36652329 PMCID: PMC9896546 DOI: 10.1021/acs.jafc.2c07207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Despite current knowledge showing that fruits like tomato and grape berries accumulate different components of the light reactions and Calvin cycle, the role of green tissues in fruits is not yet fully understood. In mature tomato fruits, chlorophylls are degraded and replaced by carotenoids through the conversion of chloroplasts in chromoplasts, while in red grape berries, chloroplasts persist at maturity and chlorophylls are masked by anthocyanins. To study isoprenoid and lipid metabolism in grape skin chloroplasts, metabolites of enriched organelle fractions were analyzed by high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and the expression of key genes was evaluated by real-time polymerase chain reaction (PCR) in berry skins and leaves. Overall, the results indicated that chloroplasts of the grape berry skins, as with leaf chloroplasts, share conserved mechanisms of synthesis (and degradation) of important components of the photosynthetic machinery. Some of these components, such as chlorophylls and their precursors, and catabolites, carotenoids, quinones, and lipids have important roles in grape and wine sensory characteristics.
Collapse
Affiliation(s)
- António Teixeira
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Noronha
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Sarah Frusciante
- Italian
National Agency for New Technologies, Energy and Sustainable Development
(ENEA), Casaccia Research Centre, 00123 Rome, Italy
| | - Gianfranco Diretto
- Italian
National Agency for New Technologies, Energy and Sustainable Development
(ENEA), Casaccia Research Centre, 00123 Rome, Italy
| | - Hernâni Gerós
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Garrido A, Conde A, De Vos RCH, Cunha A. The influence of light microclimate on the lipid profile and associated transcripts of photosynthetically active grape berry seeds. FRONTIERS IN PLANT SCIENCE 2023; 13:1022379. [PMID: 36684778 PMCID: PMC9846335 DOI: 10.3389/fpls.2022.1022379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Lipids and oils determine the quality and industrial value of grape seeds. Studies with legume seeds demonstrated the influence of light on lipid metabolism and its association with seed photosynthesis. Grape berry seeds are photosynthetically active till mature stage, but mostly during the green stage and veraison. The objective of this work was to compare the lipid profiles of seeds from white grape berries (cv. Alvarinho) growing at two contrasting light microclimates in the canopy (low and high light, LL and HL respectively), previously reported to have distinct photosynthetic competences. Berries were collected at three developmental stages (green, veraison and mature) and from both microclimates, and the seeds were analyzed for their lipid profiles in an untargeted manner using liquid chromatography coupled to high resolution mass spectrometry (LCMS). The seed lipid profiles differed greatly among berry developmental stages, and to a lesser extend between microclimates. The LL microclimate coincided with a higher relative levels of fatty acids specifically at mature stage, while the HL microclimate led to an up-regulation of ceramides at green stage and of triacylglycerols and glycerophospholipids at mature stage. The seed transcript levels of four key genes (VvACCase1, VvΔ9FAD, VvFAD6 and VvLOXO) involved in fatty acid metabolism were analyzed using real-time qPCR. The lipoxygenase gene (VvLOXO) was down- and up-regulated by HL, as compared to LL, in seeds at green and veraison stages, respectively. These results suggest that seed photosynthesis may play distinct roles during seed growth and development, possibly by fueling different lipid pathways: at green stage mainly towards the accumulation of membrane-bound lipid species that are essential for cell growth and maintenance of the photosynthetic machinery itself; and at veraison and mature stages mainly towards storage lipids that contribute to the final quality of the grape seeds.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), Wageningen, Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
4
|
Teixeira A, Noronha H, Sebastiana M, Fortes AM, Gerós H. A proteomic analysis shows the stimulation of light reactions and inhibition of the Calvin cycle in the skin chloroplasts of ripe red grape berries. FRONTIERS IN PLANT SCIENCE 2022; 13:1014532. [PMID: 36388544 PMCID: PMC9641181 DOI: 10.3389/fpls.2022.1014532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 05/10/2023]
Abstract
The role of photosynthesis in fruits still challenges scientists. This is especially true in the case of mature grape berries of red varieties lined by an anthocyanin-enriched exocarp (skin) almost impermeable to gases. Although chlorophylls are degraded and replaced by carotenoids in several fruits, available evidence suggests that they may persist in red grapes at maturity. In the present study, chloroplasts were isolated from the skin of red grape berries (cv. Vinhão) to measure chlorophyll levels and the organelle proteome. The results showed that chloroplasts (and chlorophylls) are maintained in ripe berries masked by anthocyanin accumulation and that the proteome of chloroplasts from green and mature berries is distinct. Several proteins of the light reactions significantly accumulated in chloroplasts at the mature stage including those of light-harvesting complexes of photosystems I (PSI) and II (PSII), redox chain, and ATP synthase, while chloroplasts at the green stage accumulated more proteins involved in the Calvin cycle and the biosynthesis of amino acids, including precursors of secondary metabolism. Taken together, results suggest that although chloroplasts are more involved in biosynthetic reactions in green berries, at the mature stage, they may provide ATP for cell maintenance and metabolism or even O2 to feed the respiratory demand of inner tissues.
Collapse
Affiliation(s)
- António Teixeira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira, ; Henrique Noronha,
| | - Henrique Noronha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- *Correspondence: António Teixeira, ; Henrique Noronha,
| | - Mónica Sebastiana
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Margarida Fortes
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
5
|
Garrido A, De Vos RCH, Conde A, Cunha A. Light Microclimate-Driven Changes at Transcriptional Level in Photosynthetic Grape Berry Tissues. PLANTS 2021; 10:plants10091769. [PMID: 34579302 PMCID: PMC8465639 DOI: 10.3390/plants10091769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
Viticulture practices that change the light distribution in the grapevine canopy can interfere with several physiological mechanisms, such as grape berry photosynthesis and other metabolic pathways, and consequently impact the berry biochemical composition, which is key to the final wine quality. We previously showed that the photosynthetic activity of exocarp and seed tissues from a white cultivar (Alvarinho) was in fact responsive to the light microclimate in the canopy (low and high light, LL and HL, respectively), and that these different light microclimates also led to distinct metabolite profiles, suggesting a berry tissue-specific interlink between photosynthesis and metabolism. In the present work, we analyzed the transcript levels of key genes in exocarps and seed integuments of berries from the same cultivar collected from HL and LL microclimates at three developmental stages, using real-time qPCR. In exocarp, the expression levels of genes involved in carbohydrate metabolism (VvSuSy1), phenylpropanoid (VvPAL1), stilbenoid (VvSTS1), and flavan-3-ol synthesis (VvDFR, VvLAR2, and VvANR) were highest at the green stage. In seeds, the expression of several genes associated with both phenylpropanoid (VvCHS1 and VvCHS3) and flavan-3-ol synthesis (VvDFR and VvLAR2) showed a peak at the véraison stage, whereas that of RuBisCO was maintained up to the mature stage. Overall, the HL microclimate, compared to that of LL, resulted in a higher expression of genes encoding elements associated with both photosynthesis (VvChlSyn and VvRuBisCO), carbohydrate metabolism (VvSPS1), and photoprotection (carotenoid pathways genes) in both tissues. HL also induced the expression of the VvFLS1 gene, which was translated into a higher activity of the FLS enzyme producing flavonol-type flavonoids, whereas the expression of several other flavonoid pathway genes (e.g., VvCHS3, VvSTS1, VvDFR, and VvLDOX) was reduced, suggesting a specific role of flavonols in photoprotection of berries growing in the HL microclimate. This work suggests a possible link at the transcriptional level between berry photosynthesis and pathways of primary and secondary metabolism, and provides relevant information for improving the management of the light microenvironment at canopy level of the grapes.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Correspondence: (A.G.); (A.C.)
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.G.); (A.C.)
| |
Collapse
|
6
|
Garrido A, Engel J, Mumm R, Conde A, Cunha A, De Vos RCH. Metabolomics of Photosynthetically Active Tissues in White Grapes: Effects of Light Microclimate and Stress Mitigation Strategies. Metabolites 2021; 11:metabo11040205. [PMID: 33808188 PMCID: PMC8067353 DOI: 10.3390/metabo11040205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
The effects of climate change are becoming a real concern for the viticulture sector, with impacts on both grapevine physiology and the quality of the fresh berries and wine. Short-term mitigation strategies, like foliar kaolin application and smart irrigation regimes, have been implemented to overcome these problems. We previously showed that these strategies also influence the photosynthetic activity of the berries themselves, specifically in the exocarp and seed. In the present work, we assessed the modulating effects of both canopy-light microclimate, kaolin and irrigation treatments on the metabolic profiles of the exocarp and seed, as well as the potential role of berry photosynthesis herein. Berries from the white variety Alvarinho were collected at two contrasting light microclimate positions within the vine canopy (HL—high light and LL—low light) from both irrigated and kaolin-treated plants, and their respective controls, at three fruit developmental stages (green, véraison and mature). Untargeted liquid chromatography mass spectrometry (LCMS) profiling of semi-polar extracts followed by multivariate statistical analysis indicate that both the light microclimate and irrigation influenced the level of a series of phenolic compounds, depending on the ripening stage of the berries. Moreover, untargeted gas chromatography mass spectrometry (GCMS) profiling of polar extracts show that amino acid and sugar levels were influenced mainly by the interaction of irrigation and kaolin treatments. The results reveal that both photosynthetically active berry tissues had a distinct metabolic profile in response to the local light microclimate, which suggests a specific role of photosynthesis in these tissues. A higher light intensity within the canopy mainly increased the supply of carbon precursors to the phenylpropanoid/flavonoid pathway, resulting in increased levels of phenolic compounds in the exocarp, while in seeds, light mostly influenced compounds related to carbon storage and seed development. In addition, our work provides new insights into the influence of abiotic stress mitigation strategies on the composition of exocarps and seeds, which are both important tissues for the quality of grape-derived products.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Correspondence: (A.G.); (A.C.)
| | - Jasper Engel
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
- Business Unit Biometris, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Roland Mumm
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
| | - Artur Conde
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cunha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.G.); (A.C.)
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
| |
Collapse
|
7
|
Hernández-Montes E, Escalona JM, Tomàs M, Medrano H. Plant water status and genotype affect fruit respiration in grapevines. PHYSIOLOGIA PLANTARUM 2020; 169:544-554. [PMID: 32187689 DOI: 10.1111/ppl.13093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
An understanding of fruit gas exchange is necessary to determine the carbon balance in grapevines, but little attention has been paid to the relationships among fruit respiration, plant water status and genetic variability. The effect of plant water status and genotype on cluster respiration was studied over two seasons (2013 and 2014) under field conditions using a whole cluster respiration chamber. Whole cluster CO2 fluxes were measured in growing grapevines at hard-green, veraison and ripening stages under irrigated and non-irrigated conditions, and under light and dark conditions in two grapevine varieties, Tempranillo and Grenache. A direct relationship between cluster CO2 efflux and plant water status was found at hard-green stage. Genotype influenced the fruit CO2 efflux that resulted in higher carbon losses in Tempranillo than in Grenache. Fruit respiration rates decreased from the first berry developmental stages to ripening stage. The integration of fruit respiration rates under light and dark conditions showed the magnitude of fruit carbon losses and gains as well as interesting variety and environmental conditions effects on those processes.
Collapse
Affiliation(s)
- Esther Hernández-Montes
- Research Group in Plant Biology under Mediterranean Conditions, Biology Department, Balearic Island University (UIB), 07122, Palma de Mallorca, Spain
- Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA, 99350, USA
| | - José Mariano Escalona
- Research Group in Plant Biology under Mediterranean Conditions, Biology Department, Balearic Island University (UIB), 07122, Palma de Mallorca, Spain
| | - Magdalena Tomàs
- Research Group in Plant Biology under Mediterranean Conditions, Biology Department, Balearic Island University (UIB), 07122, Palma de Mallorca, Spain
| | - Hipólito Medrano
- Research Group in Plant Biology under Mediterranean Conditions, Biology Department, Balearic Island University (UIB), 07122, Palma de Mallorca, Spain
| |
Collapse
|
8
|
Influence of Foliar Kaolin Application and Irrigation on Photosynthetic Activity of Grape Berries. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Climate changes may cause severe impacts both on grapevine and berry development. Foliar application of kaolin has been suggested as a mitigation strategy to cope with stress caused by excessive heat/radiation absorbed by leaves and grape berry clusters. However, its effect on the light micro-environment inside the canopy and clusters, as well as on the acclimation status and physiological responses of the grape berries, is unclear. The main objective of this work was to evaluate the effect of foliar kaolin application on the photosynthetic activity of the exocarp and seeds, which are the main photosynthetically active berry tissues. For this purpose, berries from high light (HL) and low light (LL) microclimates in the canopy, from kaolin-treated and non-treated, irrigated and non-irrigated plants, were collected at three developmental stages. Photochemical and non-photochemical efficiencies of both tissues were obtained by a pulse amplitude modulated chlorophyll fluorescence imaging analysis. The maximum quantum efficiency (Fv/Fm) data for green HL-grown berries suggest that kaolin application can protect the berry exocarp from light stress. At the mature stage, exocarps of LL grapes from irrigated plants treated with kaolin presented higher Fv/Fm and relative electron transport rates (rETR200) than those without kaolin. However, for the seeds, a negative interaction between kaolin and irrigation were observed especially in HL grapes. These results highlight the impact of foliar kaolin application on the photosynthetic performance of grape berries growing under different light microclimates and irrigation regimes, throughout the season. This provides insights for a more case-oriented application of this mitigation strategy on grapevines.
Collapse
|
9
|
Brazel AJ, Ó'Maoiléidigh DS. Photosynthetic activity of reproductive organs. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1737-1754. [PMID: 30824936 DOI: 10.1093/jxb/erz033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/07/2019] [Indexed: 05/06/2023]
Abstract
During seed development, carbon is reallocated from maternal tissues to support germination and subsequent growth. As this pool of resources is depleted post-germination, the plant begins autotrophic growth through leaf photosynthesis. Photoassimilates derived from the leaf are used to sustain the plant and form new organs, including other vegetative leaves, stems, bracts, flowers, fruits, and seeds. In contrast to the view that reproductive tissues act only as resource sinks, many studies demonstrate that flowers, fruits, and seeds are photosynthetically active. The photosynthetic contribution to development is variable between these reproductive organs and between species. In addition, our understanding of the developmental control of photosynthetic activity in reproductive organs is vastly incomplete. A further complication is that reproductive organ photosynthesis (ROP) appears to be particularly important under suboptimal growth conditions. Therefore, the topic of ROP presents the community with a challenge to integrate the fields of photosynthesis, development, and stress responses. Here, we attempt to summarize our understanding of the contribution of ROP to development and the molecular mechanisms underlying its control.
Collapse
Affiliation(s)
- Ailbhe J Brazel
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|
10
|
Rogiers SY, Coetzee ZA, Walker RR, Deloire A, Tyerman SD. Potassium in the Grape ( Vitis vinifera L.) Berry: Transport and Function. FRONTIERS IN PLANT SCIENCE 2017; 8:1629. [PMID: 29021796 PMCID: PMC5623721 DOI: 10.3389/fpls.2017.01629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
K+ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and postulate on the potential role of K+ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several different plant systems we have been able to generate new hypotheses on the integral functions of this predominant cation and to improve our understanding of how these functions contribute to grape berry growth and ripening. Valuable contributions to the study of K+ in membrane stabilization, turgor maintenance and phloem transport have allowed us to propose a mechanistic model for the role of this cation in grape berry development.
Collapse
Affiliation(s)
- Suzy Y. Rogiers
- New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
| | - Zelmari A. Coetzee
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Rob R. Walker
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Agriculture and Food (CSIRO), Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Alain Deloire
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- Department of Biology-Ecology, SupAgro, Montpellier, France
| | - Stephen D. Tyerman
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
11
|
Lourenço RERS, Linhares AAN, de Oliveira AV, da Silva MG, de Oliveira JG, Canela MC. Photodegradation of ethylene by use of TiO 2 sol-gel on polypropylene and on glass for application in the postharvest of papaya fruit. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6047-6054. [PMID: 27957690 DOI: 10.1007/s11356-016-8197-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
The papaya is a commercially important fruit commodity worldwide. Being a climacteric fruit, it is highly perishable. Thus, for the transportation of papaya fruit for long distances without loss of quality, it is necessary to avoid the autocatalytic effect of ethylene in accelerating the ripening of the fruit. This work addresses the application of heterogeneous photocatalysis to the degradation of ethylene. A TiO2 sol-gel supported on polypropylene (PP) and on glass was used as the catalytic material, and a UV-A lamp was employed as the radiation source. Initially, a concentration of 500 ppbv ethylene was exposed to the catalyst material irradiated by UV-A radiation. A sensitive photoacoustic spectrometer was used to monitor the photocatalytic activity. The TiO2 sol-gel supported on the glass substrate was more efficient than on the PP in degrading the ethylene. Under direct UV-A exposure, the skin appearance of 'Golden' papaya was damaged, depreciating the fruit quality and thus preventing its commercialization. However, the feasibility of the heterogeneous photocatalysis to preserve the fruit quality was achieved when ethylene was removed from the storage ambient using fans, and then, this plant hormone was degraded by a reactor set apart in a ventilation closed system.
Collapse
Affiliation(s)
- Ruth Evelyn R S Lourenço
- Grupo de Pesquisa em Química Ambiental, Lab. de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Amanda A N Linhares
- Lab. de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - André Vicente de Oliveira
- Lab. de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marcelo Gomes da Silva
- Lab. de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Jurandi Gonçalves de Oliveira
- Lab. de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Maria Cristina Canela
- Grupo de Pesquisa em Química Ambiental, Lab. de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
12
|
Kromdijk J, Bertin N, Heuvelink E, Molenaar J, de Visser PHB, Marcelis LFM, Struik PC. Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load×QTL interactions. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:11-22. [PMID: 24227339 DOI: 10.1093/jxb/ert365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mapping studies using populations with introgressed marker-defined genomic regions are continuously increasing knowledge about quantitative trait loci (QTL) that correlate with variation in important crop traits. This knowledge is useful for plant breeding, although combining desired traits in one genotype might be complicated by the mode of inheritance and co-localization of QTL with antagonistic effects, and by physiological trade-offs, and feed-back or feed-forward mechanisms. Therefore, integrating advances at the genetic level with insight into influences of environment and crop management on crop performance remains difficult. Whereas mapping studies can pinpoint correlations between QTL and phenotypic traits for specific conditions, ignoring or overlooking the importance of environment or crop management can jeopardize the relevance of such assessments. Here, we focus on fruit load (a measure determining competition among fruits on one plant) and its strong modulation of QTL effects on fruit size and composition. Following an integral approach, we show which fruit traits are affected by fruit load, to which underlying processes these traits can be linked, and which processes at lower and higher integration levels are affected by fruit load (and subsequently influence fruit traits). This opinion paper (i) argues that a mechanistic framework to interpret interactions between fruit load and QTL effects is needed, (ii) pleads for consideration of the context of agronomic management when detecting QTL, (iii) makes a case for incorporating interacting factors in the experimental set-up of QTL mapping studies, and (iv) provides recommendations to improve efficiency in QTL detection and use, with particular focus on model-based marker-assisted breeding.
Collapse
Affiliation(s)
- J Kromdijk
- Wageningen UR Greenhouse Horticulture, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|