1
|
Kubenko VG, Pomogaev VA, Buglak AA, Kononov AI. Photophysics of 5,6,7,8-tetrahydrobiopterin on a femtosecond time-scale. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 265:113134. [PMID: 40007354 DOI: 10.1016/j.jphotobiol.2025.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Pterins are naturally occurring compounds widespread in living organisms. 5,6,7,8-Tetrahydrobiopterin (H4Bip) is a cofactor of several key enzymes, including NO-synthases and phenylalanine hydroxylase, whereas tetrahydrocyanopterin is a photoreceptor molecule in cyanobacteria. In this regard, tetrahydropterins (H4pterins) photochemistry and photophysics have been attracting our attention. H4pterins photodegrade in presence of molecular oxygen yielding dihydropterins (H2pterins) and oxidized pterins. Meanwhile, the excited states dynamics of H4pterins on a femto- and picosecond time-scale remains unclear. To shed light on this area, we perform time-resolved spectroscopy of H4Bip using fluorescence up-conversion as well as transient absorption spectroscopy techniques along with TD-DFT non-adiabatic molecular dynamics. We show that the lowest H4Bip exited state has a lifetime of ca. 200 fs. Using the BHandHLYP functional and multireference spin-flip (MRSF) method we demonstrate that starting from the S4 state, H4Bip passes to the S1 state within 50 fs, and after 200 fs a conical intersection with the ground S0 state is achieved. As a whole, the excited state behavior of H4Bip is similar to DNA nucleobases, in particular guanine. These findings allow us to make some speculations about the biochemical role of H4pterins photophysics.
Collapse
Affiliation(s)
- Varvara G Kubenko
- St. Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint-Petersburg, Russia
| | - Vladimir A Pomogaev
- St. Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint-Petersburg, Russia
| | - Andrey A Buglak
- St. Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint-Petersburg, Russia.
| | - Alexei I Kononov
- St. Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Samanta S, Mondal P. A Comprehensive Computational Study on the Thermodynamics and Kinetics of Tetrahydrobiopterin Regeneration Process. Chemphyschem 2024; 25:e202400401. [PMID: 38861155 DOI: 10.1002/cphc.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
One of the most crucial enzymatic cofactors in the human body is tetrahydrobiopterin, which is acquired through biological synthesis and self-regeneration. During this regenerative process, it undergoes oxidation, deprotonation, further oxidation, and subsequent deprotonation, resulting in the formation of quinonoid-dihydrobiopterin, which then undergoes tautomerization to yield dihydrobiopterin. This study presents the thermodynamic and kinetic properties associated with each stage of the regeneration process using theoretical calculations. The redox potentials for oxidation steps and the pKa values for deprotonation steps are determined employing the Born-Haber cycle and the direct change of free energy in implicit solvent models. The redox metabolites are characterized and confirmed from their calculated absorption spectra using the time-dependent density functional theory method. For the tautomerization steps, an IRC calculation is executed, and rate constants are computed using Eyring's Transition State Theory (TST). The tunnelling probability of the H atom during the tautomerization process is incorporated using Wigner's tunnelling correction in the calculation of the rate constant. Notably, we identify the N3 atom as the most probable deprotonation site for H3B+ and predict its geometry based on our calculations. Furthermore, we elucidate the spectral properties of intermediates involved in the regeneration process, highlighting key electronic transitions responsible for their excitations. Our results indicate that each step of tautomerization occurs along vibrational bending modes. We have observed that these tautomerization processes have high activation energies by optimising transition states. Additionally, considering tunnelling correction can significantly affect the reaction rates associated with these processes. These results provide a comprehensive understanding of the thermodynamics and kinetics of the regeneration process of tetrahydrobiopterin, which will help in the modulation of its biological activity.
Collapse
Affiliation(s)
- Suvadip Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, India
| | - Padmabati Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, India
- Center for Atomic, Molecular and Optical Sciences and Technologies, Indian Institute of Science Education and Research (IISER), Tirupati, India
| |
Collapse
|
3
|
Farías JJ, Dántola ML, Thomas AH. Photosensitized Oxidation of Free and Peptide Tryptophan to N-Formylkynurenine. Chem Res Toxicol 2024; 37:1562-1573. [PMID: 39105764 DOI: 10.1021/acs.chemrestox.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The oxidation of proteins and, in particular, of tryptophan (Trp) residues leads to chemical modifications that can affect the structure and function. The oxidative damage to proteins in photochemical processes is relevant in the skin and eyes and is related to a series of pathologies triggered by exposure to electromagnetic radiation. In this work, we studied the photosensitized formation of N-formylkynurenine (NFKyn) from Trp in different reaction systems. We used two substrates: free Trp and a peptide of nine amino acid residues, with Trp being the only oxidizable residue. Two different photosensitizers were employed: Rose Bengal (RB) and pterin (Ptr). The former is a typical type II photosensitizer [acts by producing singlet oxygen (1O2)]. Ptr is the parent compound of oxidized or aromatic pterins, natural photosensitizers that accumulate in human skin under certain pathological conditions and act mainly through type I mechanisms (generation of radicals). Experimental data were collected in steady photolysis, and the irradiated solutions were analyzed by chromatography (HPLC). Results indicate that the reaction of Trp with 1O2 initiates the process leading to NFKyn, but different competitive pathways take place depending on the photosensitizer and the substrate. In Ptr-photosensitization, a type I mechanism is involved in secondary reactions accelerating the formation of NFKyn when free Trp is the substrate.
Collapse
Affiliation(s)
- Jesuán J Farías
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata 1900, Argentina
| | - M Laura Dántola
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata 1900, Argentina
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata 1900, Argentina
| |
Collapse
|
4
|
Feng Y, Feng Y, Gu L, Mo W, Wang X, Song B, Hong M, Geng F, Huang P, Yang H, Zhu W, Jiao Y, Zhang Q, Ding WQ, Cao J, Zhang S. Tetrahydrobiopterin metabolism attenuates ROS generation and radiosensitivity through LDHA S-nitrosylation: novel insight into radiogenic lung injury. Exp Mol Med 2024; 56:1107-1122. [PMID: 38689083 PMCID: PMC11148139 DOI: 10.1038/s12276-024-01208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.
Collapse
Affiliation(s)
- Yang Feng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
- Department of Oncology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 214002, Wuxi, China
| | - Yahui Feng
- Laboratory of Radiation Medicine, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, 610051, Chengdu, China
| | - Liming Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Wei Mo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Xi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Bin Song
- West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Min Hong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Fenghao Geng
- West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Pei Huang
- Department of Oncology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, 214002, Wuxi, China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China
| | - Wei-Qun Ding
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, 215123, Suzhou, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, 610051, Chengdu, China.
- West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041, Chengdu, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), 621099, Mianyang, China.
| |
Collapse
|
5
|
Yang H, Song J, Li A, Lv L, Sun X, Mao Y, Ye D. Genetically predicted levels of folate, vitamin B12, and risk of autoimmune diseases: A Mendelian randomization study. Front Immunol 2023; 14:1139799. [PMID: 36969181 PMCID: PMC10038229 DOI: 10.3389/fimmu.2023.1139799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundEvidence from observational studies on the association of folate and vitamin B12 with autoimmune diseases are conflicting.ObjectiveWe aimed to investigate the relationship of folate and vitamin B12 with autoimmune diseases using Mendelian randomization (MR).Materials and methodsWe selected single-nucleotide polymorphisms associated with folate and vitamin B12 at the genome-wide significance level. Summary-level data for four common autoimmune diseases (vitiligo, inflammatory bowel disease, rheumatoid arthritis, and systemic lupus erythematosus) were obtained from large-scale genome-wide association studies, with a sample size of 44,266, 86,640, 58,284, and 23,210, respectively. MR analyses were conducted using the inverse variance weighted (IVW) approach, and sensitivity analyses were further performed to test the robustness.ResultsWe found that a higher genetically determined serum folate level per one standard deviation (SD) was associated with a decreased risk of vitiligo by the IVW method [odds ratios (OR) = 0.47; 95% confidence interval (CI): 0.32–0.69; P = 1.33 × 10-4]. Sensitivity analyses using alternative methods showed similar associations, and no evidence of pleiotropy was detected by MR-Egger regression (P = 0.919). In addition, we observed that vitamin B12 per one SD was positively associated with IBD (IVW: OR = 1.14, 95% CI: 1.03–1.26, P = 0.010; maximum likelihood: OR = 1.14, 95% CI: 1.01–1.29, P = 0.035; MR-PRESSO: OR = 1.14, 95% CI:1.01–1.28, P =0.037), while the association was not significant after Bonferroni correction.ConclusionThe study provides convincing evidence for an inverse association between serum folate level and risk of vitiligo. Further studies are warranted to elucidate the possible association between vitamin B12 and risk of IBD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Song
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aole Li
- The Fourth College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linshuoshuo Lv
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Ding Ye, ; Yingying Mao,
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Ding Ye, ; Yingying Mao,
| |
Collapse
|
6
|
Insights into Molecular Structure of Pterins Suitable for Biomedical Applications. Int J Mol Sci 2022; 23:ijms232315222. [PMID: 36499560 PMCID: PMC9737128 DOI: 10.3390/ijms232315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.
Collapse
|
7
|
The Double-Edged Sword of Oxidative Stress in Skin Damage and Melanoma: From Physiopathology to Therapeutical Approaches. Antioxidants (Basel) 2022; 11:antiox11040612. [PMID: 35453297 PMCID: PMC9027913 DOI: 10.3390/antiox11040612] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
The skin is constantly exposed to exogenous and endogenous sources of reactive oxygen species (ROS). An adequate balance between ROS levels and antioxidant defenses is necessary for the optimal cell and tissue functions, especially for the skin, since it must face additional ROS sources that do not affect other tissues, including UV radiation. Melanocytes are more exposed to oxidative stress than other cells, also due to the melanin production process, which itself contributes to generating ROS. There is an increasing amount of evidence that oxidative stress may play a role in many skin diseases, including melanoma, being the primary cause or being a cofactor that aggravates the primary condition. Indeed, oxidative stress is emerging as another major force involved in all the phases of melanoma development, not only in the arising of the malignancy but also in the progression toward the metastatic phenotype. Furthermore, oxidative stress seems to play a role also in chemoresistance and thus has become a target for therapy. In this review, we discuss the existing knowledge on oxidative stress in the skin, examining sources and defenses, giving particular consideration to melanocytes. Therefore, we focus on the significance of oxidative stress in melanoma, thus analyzing the possibility to exploit the induction of oxidative stress as a therapeutic strategy to improve the effectiveness of therapeutic management of melanoma.
Collapse
|
8
|
Buglak AA, Kononov AI. Silver Cluster Interactions with Tyrosine: Towards Amino Acid Detection. Int J Mol Sci 2022; 23:634. [PMID: 35054820 PMCID: PMC8775517 DOI: 10.3390/ijms23020634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Tyrosine (Tyr) is involved in the synthesis of neurotransmitters, catecholamines, thyroid hormones, etc. Multiple pathologies are associated with impaired Tyr metabolism. Silver nanoclusters (Ag NCs) can be applied for colorimetric, fluorescent, and surface-enhanced Raman spectroscopy (SERS) detection of Tyr. However, one should understand the theoretical basics of interactions between Tyr and Ag NCs. Thereby, we calculated the binding energy (Eb) between Tyr and Agnq (n = 1-8; q = 0-2) NCs using the density functional theory (DFT) to find the most stable complexes. Since Ag NCs are synthesized on Tyr in an aqueous solution at pH 12.5, we studied Tyr-1, semiquinone (SemiQ-1), and Tyr-2. Ag32+ and Ag5+ had the highest Eb. The absorption spectrum of Tyr-2 significantly red-shifts with the attachment of Ag32+, which is prospective for colorimetric Tyr detection. Ag32+ interacts with all functional groups of SemiQ-1 (phenolate, amino group, and carboxylate), which makes detection of Tyr possible due to band emergence at 1324 cm-1 in the vibrational spectrum. The ground state charge transfer between Ag and carboxylate determines the band emergence at 1661 cm-1 in the Raman spectrum of the SemiQ-1-Ag32+ complex. Thus, the prospects of Tyr detection using silver nanoclusters were demonstrated.
Collapse
Affiliation(s)
- Andrey A. Buglak
- The Faculty of Physics, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | | |
Collapse
|
9
|
Dantola ML, Reid LO, Castaño C, Lorente C, Oliveros E, Thomas AH. Photosensitization of peptides and proteins by pterin derivatives. Pteridines 2017. [DOI: 10.1515/pterid-2017-0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abstract
Proteins are one of the preferential targets of the photosensitized damaging effects of ultraviolet (UV) radiation on biological system. Pterins belong to a family of heterocyclic compounds, which are widespread in living systems and participate in relevant biological functions. In pathological conditions, such as vitiligo, oxidized pterins accumulate in the white skin patches of patients suffering this depigmentation disorder. It is known that pterins are able to photosensitize damage in nucleotides and DNA by type I (electron transfer) and type II (singlet oxygen) mechanisms. Recently, it has been demonstrated that proteins and its components may also be damaged when solutions containing both proteins and pterin are exposed to UV-A radiation. Therefore, given the biological and medical relevance of the photosensitizing properties of these molecules, we present in this article an overview of the capability of different pterin derivatives to photoinduce damage in proteins present in the skin, focusing our attention on the chemical modifications of tyrosine and tryptophan residues.
Collapse
Affiliation(s)
- Maria Laura Dantola
- Facultad de Ciencias Exactas, Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata, CCT La Plata-CONICET , Casilla de Correo 16, Sucursal 4 , 1900 La Plata , Argentina
| | - Lara O. Reid
- Facultad de Ciencias Exactas, Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata, CCT La Plata-CONICET , Casilla de Correo 16, Sucursal 4 , 1900 La Plata , Argentina
| | - Carolina Castaño
- Facultad de Ciencias Exactas, Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata, CCT La Plata-CONICET , Casilla de Correo 16, Sucursal 4 , 1900 La Plata , Argentina
| | - Carolina Lorente
- Facultad de Ciencias Exactas, Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata, CCT La Plata-CONICET , Casilla de Correo 16, Sucursal 4 , 1900 La Plata , Argentina
| | - Esther Oliveros
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623-CNRS/UPS , Université Toulouse III (Paul Sabatier ), 118, route de Narbonne , F-31062 Toulouse Cédex 9 , France
| | - Andrés H. Thomas
- Facultad de Ciencias Exactas, Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata, CCT La Plata-CONICET , Casilla de Correo 16, Sucursal 4 , 1900 La Plata , Argentina
| |
Collapse
|
10
|
Vignoni M, Walalawela N, Bonesi SM, Greer A, Thomas AH. Lipophilic Decyl Chain–Pterin Conjugates with Sensitizer Properties. Mol Pharm 2017; 15:798-807. [DOI: 10.1021/acs.molpharmaceut.7b00136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mariana Vignoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - Niluksha Walalawela
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Sergio M. Bonesi
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Pabellón 2, 3er Piso, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Andrés H. Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
| |
Collapse
|