1
|
Wang Z, Shao J. Fungal vaccines and adjuvants: a tool to reveal the interaction between host and fungi. Arch Microbiol 2024; 206:293. [PMID: 38850421 DOI: 10.1007/s00203-024-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.
Collapse
Affiliation(s)
- Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
2
|
Chakraborty S, Mohanty D, Chowdhury A, Krishna H, Taraphdar D, Chitnis S, Sodani S, Sahu K, Majumder SK. In vitro photoinactivation effectiveness of a portable LED device aimed for intranasal photodisinfection and a photosensitizer formulation comprising methylene blue and potassium iodide against bacterial, fungal, and viral respiratory pathogens. Lasers Med Sci 2024; 39:60. [PMID: 38353734 DOI: 10.1007/s10103-024-03996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) can be a viable option for management of intranasal infections. However, there are light delivery, fluence, and photosensitizer-related challenges. We report in vitro effectiveness of an easily fabricated, low-cost, portable, LED device and a formulation comprising methylene blue (MB) and potassium iodide (KI) for photoinactivation of pathogens of the nasal cavity, namely, methicillin-resistant Staphylococcus aureus, antibiotic-resistant Klebsiella pneumoniae, multi-antibiotic-resistant Pseudomonas aeruginosa, Candida spp., and SARS-CoV-2.In a 96-well plate, microbial suspensions incubated with 0.005% MB alone or MB and KI formulation were exposed to different red light (~ 660 ± 25 nm) fluence using the LED device fitted to each well. Survival loss in bacteria and fungi was quantified using colony-forming unit assay, and SARS-CoV-2 photodamage was assessed by RT-PCR.The results suggest that KI addition to MB leads to KI concentration-dependent potentiation (up to ~ 5 log10) of photoinactivation in bacteria and fungi. aPDT in the presence of 25 or 50 mM KI shows the following photoinactivation trend; Gm + ve bacteria > Gm - ve bacteria > fungi > virus. aPDT in the presence of 100 mM KI, using 3- or 5-min red light exposure, results in complete eradication of bacteria or fungi, respectively. For SARS-CoV-2, aPDT using MB-KI leads to a ~ 6.5 increase in cycle threshold value.The results demonstrate the photoinactivation effectiveness of the device and MB-KI formulation, which may be helpful in designing of an optimized protocol for future intranasal photoinactivation studies in clinical settings.
Collapse
Affiliation(s)
- Sourabrata Chakraborty
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
| | - Deepanwita Mohanty
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
| | - Anupam Chowdhury
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
| | - Hemant Krishna
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
| | | | | | | | - Khageswar Sahu
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Shovan Kumar Majumder
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Madhya Pradesh, Indore, 452013, India
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India
| |
Collapse
|
3
|
Akasov R, Khaydukov EV, Yamada M, Zvyagin AV, Leelahavanichkul A, Leanse LG, Dai T, Prow T. Nanoparticle enhanced blue light therapy. Adv Drug Deliv Rev 2022; 184:114198. [PMID: 35301045 DOI: 10.1016/j.addr.2022.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
|
4
|
Gierlich P, Mucha SG, Robbins E, Gomes‐da‐Silva LC, Matczyszyn K, Senge MO. One‐Photon and Two‐Photon Photophysical Properties of Tetrafunctionalized 5,10,15,20‐tetrakis(
m‐
hydroxyphenyl)chlorin (
Temoporfin
) Derivatives as Potential Two‐Photon‐Induced Photodynamic Therapy Agents. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute Trinity Centre for Health Sciences Trinity College Dublin The University of Dublin St James's Hospital Dublin 8 Ireland
- CQC, Coimbra Chemistry Center Department of Chemistry University of Coimbra 3000-435 Coimbra Portugal
| | - Sebastian G. Mucha
- Laboratoire Charles Coulomb (L2C), UMR5221 University of Montpellier CNRS 34095 Montpellier France
| | - Emma Robbins
- Advanced Materials Engineering and Modelling Group Faculty of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
- Faculté des Sciences et Techniques Université de Limoges, PEIRENE, EA 7500 123 Avenue Albert Thomas, CEDEX 87060 Limoges France
| | - Lígia C. Gomes‐da‐Silva
- CQC, Coimbra Chemistry Center Department of Chemistry University of Coimbra 3000-435 Coimbra Portugal
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group Faculty of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM-IAS) Technical University of Munich Lichtenbergstrasse 2a 85748 Garching Germany
| |
Collapse
|
5
|
Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnol Adv 2022; 55:107914. [DOI: 10.1016/j.biotechadv.2022.107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
6
|
Mba IE, Nweze EI. Application of Nanotechnology in the Treatment of Infectious Diseases: An Overview. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:25-51. [DOI: 10.1007/978-981-16-9190-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
7
|
New Applications of Photodynamic Therapy in the Management of Candidiasis. J Fungi (Basel) 2021; 7:jof7121025. [PMID: 34947007 PMCID: PMC8705304 DOI: 10.3390/jof7121025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
The most important aetiological agent of opportunistic mycoses worldwide is Candida spp. These yeasts can cause severe infections in the host, which may be fatal. Isolates of Candida albicans occur with greater frequency and variable resistance patterns. Photodynamic therapy (PDT) has been recognised as an alternative treatment to kill pathogenic microorganisms. PDT utilises a photosensitizer, which is activated at a specific wavelength and oxygen concentration. Their reaction yields reactive oxygen species that kill the infectious microorganism. A systematic review of new applications of PDT in the management of candidiasis was performed. Of the 222 studies selected for in-depth screening, 84 were included in this study. All the studies reported the antifungal effectiveness, toxicity and dosimetry of treatment with antimicrobial PDT (aPDT) with different photosensitizers against Candida spp. The manuscripts that are discussed reveal the breadth of the new applications of aPDT against Candida spp., which are resistant to common antifungals. aPDT has superior performance compared to conventional antifungal therapies. With further studies, aPDT should prove valuable in daily clinical practice.
Collapse
|
8
|
Ziental D, Mlynarczyk DT, Czarczynska-Goslinska B, Lewandowski K, Sobotta L. Photosensitizers Mediated Photodynamic Inactivation against Fungi. NANOMATERIALS 2021; 11:nano11112883. [PMID: 34835655 PMCID: PMC8621466 DOI: 10.3390/nano11112883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023]
Abstract
Superficial and systemic fungal infections are essential problems for the modern health care system. One of the challenges is the growing resistance of fungi to classic antifungals and the constantly increasing cost of therapy. These factors force the scientific world to intensify the search for alternative and more effective methods of treatment. This paper presents an overview of new fungal inactivation methods using Photodynamic Antimicrobial Chemotherapy (PACT). The results of research on compounds from the groups of phenothiazines, xanthanes, porphyrins, chlorins, porphyrazines, and phthalocyanines are presented. An intensive search for a photosensitizer with excellent properties is currently underway. The formulation based on the existing ones is also developed by combining them with nanoparticles and common antifungal therapy. Numerous studies indicate that fungi do not form any specific defense mechanism against PACT, which deems it a promising therapeutic alternative.
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Konrad Lewandowski
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
- Correspondence:
| |
Collapse
|
9
|
Żak AM, Kaczmarczyk O, Piksa M, Grzęda J, Matczyszyn K. Fiber-optic sample illuminator design for the observation of light induced phenomena with transmission electron microscopy in situ: Antimicrobial photodynamic therapy. Ultramicroscopy 2021; 230:113388. [PMID: 34509894 DOI: 10.1016/j.ultramic.2021.113388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Antibacterial photodynamic therapy is a promising treatment for problematic infections caused by bacteria and fungi. Despite its undoubted effectiveness, the ultrastructural mechanism of microbial death remains not fully described and distinct organisms respond to the treatment with different efficacy. For this reason, it was decided to try imaging the process using the in situ transmission electron microscopy method. To conduct an observational experiment, the microscope was significantly modified. Liquid cell methods were used, electron doses and their influence on the sample were estimated, and a fiber-optic sample illuminator was designed and built. The modifications allowed for the light-induced characterization of photosensitizer-bacteria interaction. Microscope modification is a promising platform for further studies of light-induced phenomena in both life and material science.
Collapse
Affiliation(s)
- Andrzej M Żak
- Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| | - Olga Kaczmarczyk
- Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Rudolfa Weigla 12, 53-114 Wroclaw, Poland
| | - Jakub Grzęda
- Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
10
|
An X, Erramilli S, Reinhard BM. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. NANOSCALE 2021; 13:3374-3411. [PMID: 33538743 PMCID: PMC8349509 DOI: 10.1039/d0nr08353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacterial, viral and fungal infections pose serious threats to human health and well-being. The continuous emergence of acute infectious diseases caused by pathogenic microbes and the rapid development of resistances against conventional antimicrobial drugs necessitates the development of new and effective strategies for the safe elimination of microbes in water, food or on surfaces, as well as for the inactivation of pathogenic microbes in human hosts. The need for new antimicrobials has triggered the development of plasmonic nano-antimicrobials that facilitate both light-dependent and -independent microbe inactivation mechanisms. This review introduces the relevant photophysical mechanisms underlying these plasmonic nano-antimicrobials, and provides an overview of how the photoresponses and materials properties of plasmonic nanostructures can be applied in microbial pathogen inactivation and sensing applications. Through a systematic analysis of the inactivation efficacies of different plasmonic nanostructures, this review outlines the current state-of-the-art in plasmonic nano-antimicrobials and defines the application space for different microbial inactivation strategies. The advantageous optical properties of plasmonic nano-antimicrobials also enhance microbial detection and sensing modalities and thus help to avoid exposure to microbial pathogens. Sensitive and fast plasmonic microbial sensing modalities and their theranostic and targeted therapeutic applications are discussed.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Shyamsunder Erramilli
- Department of Physics, Boston University, Boston, MA 02215, USA and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
11
|
Maliszewska I, Wanarska E, Thompson AC, Samuel IDW, Matczyszyn K. Biogenic Gold Nanoparticles Decrease Methylene Blue Photobleaching and Enhance Antimicrobial Photodynamic Therapy. Molecules 2021; 26:molecules26030623. [PMID: 33504099 PMCID: PMC7865674 DOI: 10.3390/molecules26030623] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance is a growing concern that is driving the exploration of alternative ways of killing bacteria. Here we show that gold nanoparticles synthesized by the mycelium of Mucor plumbeus are an effective medium for antimicrobial photodynamic therapy (PDT). These particles are spherical in shape, uniformly distributed without any significant agglomeration, and show a single plasmon band at 522–523 nm. The nanoparticle sizes range from 13 to 25 nm, and possess an average size of 17 ± 4 nm. In PDT, light (from a source consisting of nine LEDs with a peak wavelength of 640 nm and FWMH 20 nm arranged in a 3 × 3 array), a photosensitiser (methylene blue), and oxygen are used to kill undesired cells. We show that the biogenic nanoparticles enhance the effectiveness of the photosensitiser, methylene blue, and so can be used to kill both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The enhanced effectiveness means that we could kill these bacteria with a simple, small LED-based light source. We show that the biogenic gold nanoparticles prevent fast photobleaching, thereby enhancing the photoactivity of the methylene blue (MB) molecules and their bactericidal effect.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
- Correspondence: (I.M.); (K.M.); Tel.: +48-71-320-4008 (K.M.)
| | - Ewelina Wanarska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Alex C. Thompson
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ, UK; (A.C.T.); (I.D.W.S.)
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ, UK; (A.C.T.); (I.D.W.S.)
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (K.M.); Tel.: +48-71-320-4008 (K.M.)
| |
Collapse
|
12
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Barabadi H, Tajani B, Moradi M, Damavandi Kamali K, Meena R, Honary S, Mahjoub MA, Saravanan M. Penicillium Family as Emerging Nanofactory for Biosynthesis of Green Nanomaterials: A Journey into the World of Microorganisms. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01554-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Cortie MB, Cortie DL, Timchenko V. Heat transfer from nanoparticles for targeted destruction of infectious organisms. Int J Hyperthermia 2019; 34:157-167. [PMID: 29498311 DOI: 10.1080/02656736.2017.1410236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Whereas the application of optically or magnetically heated nanoparticles to destroy tumours is now well established, the extension of this concept to target pathogens has barely begun. Here we examine the challenge of targeting pathogens by this means and, in particular, explore the issues of power density and heat transfer. Depending on the rate of heating, either hyperthermia or thermoablation may occur. This division of the field is fundamental and implies very different sources of excitation and heat transfer for the two modes, and different strategies for their clinical application. Heating by isolated nanoparticles and by agglomerates of nanoparticles is compared: hyperthermia is much more readily achieved with agglomerates and for large target volumes, a factor which favours magnetic excitation and moderate power densities. In contrast, destruction of planktonic pathogens is best achieved by localised thermoablation and very high power density, a scenario that is best delivered by pulsed optical excitation.
Collapse
Affiliation(s)
- Michael B Cortie
- a School of Mathematical and Physical Sciences , University of Technology Sydney , Sydney , Australia
| | - David L Cortie
- b The Institute for Superconducting and Electronic Materials , University of Wollongong , Wollongong , NSW , Australia
| | - Victoria Timchenko
- c School of Mechanical and Manufacturing Engineering , University of New South Wales , Sydney , Australia
| |
Collapse
|