1
|
Xu S, Li J, Long K, Liang X, Wang W. Light-Activated Anti-Vascular Combination Therapy against Choroidal Neovascularization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404218. [PMID: 39206706 PMCID: PMC11516295 DOI: 10.1002/advs.202404218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Choroidal neovascularization (CNV) underlies the crux of many angiogenic eye disorders. Although medications that target vascular endothelial growth factor (VEGF) are approved for treating CNV, their effectiveness in destroying new blood vessels is limited, and invasive intravitreal administration is required. Additionally, other drugs that destroy established neovessels, such as combretastatin A-4, may have systemic side effects that limit their therapeutic benefits. To overcome these shortcomings, a two-pronged anti-vascular approach is presented for CNV treatment using a photoactivatable nanoparticle system that can release a VEGF receptor inhibitor and a vascular disrupting agent when irradiated with 690 nm light. The nanoparticles can be injected intravenously to enable anti-angiogenic and vascular disrupting combination therapy for CNV through light irradiation to the eyes. This approach can potentiate therapeutic effects while maintaining a favorable biosafety profile for choroidal vascular diseases.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| | - Jia Li
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| | - Kaiqi Long
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| | - Xiaoling Liang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhou510060China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong999077China
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong999077China
- Laboratory of Molecular Engineering and NanomedicineDr. Li Dak‐Sum Research CentreThe University of Hong KongHong Kong999077China
| |
Collapse
|
2
|
Hu J, Wu P, Li Y, Li Q, Wang S, Liu Y, Qian K, Yang G. Discovering Photoswitchable Molecules for Drug Delivery with Large Language Models and Chemist Instruction Training. Pharmaceuticals (Basel) 2024; 17:1300. [PMID: 39458941 PMCID: PMC11510428 DOI: 10.3390/ph17101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background: As large language models continue to expand in size and diversity, their substantial potential and the relevance of their applications are increasingly being acknowledged. The rapid advancement of these models also holds profound implications for the long-term design of stimulus-responsive materials used in drug delivery. Methods: The large model used Hugging Face's Transformers package with BigBird, Gemma, and GPT NeoX architectures. Pre-training used the PubChem dataset, and fine-tuning used QM7b. Chemist instruction training was based on Direct Preference Optimization. Drug Likeness, Synthetic Accessibility, and PageRank Scores were used to filter molecules. All computational chemistry simulations were performed using ORCA and Time-Dependent Density-Functional Theory. Results: To optimize large models for extensive dataset processing and comprehensive learning akin to a chemist's intuition, the integration of deeper chemical insights is imperative. Our study initially compared the performance of BigBird, Gemma, GPT NeoX, and others, specifically focusing on the design of photoresponsive drug delivery molecules. We gathered excitation energy data through computational chemistry tools and further investigated light-driven isomerization reactions as a critical mechanism in drug delivery. Additionally, we explored the effectiveness of incorporating human feedback into reinforcement learning to imbue large models with chemical intuition, enhancing their understanding of relationships involving -N=N- groups in the photoisomerization transitions of photoresponsive molecules. Conclusions: We implemented an efficient design process based on structural knowledge and data, driven by large language model technology, to obtain a candidate dataset of specific photoswitchable molecules. However, the lack of specialized domain datasets remains a challenge for maximizing model performance.
Collapse
Affiliation(s)
- Junjie Hu
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK; (J.H.); (Q.L.); (S.W.)
| | - Peng Wu
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750014, China;
| | - Yulin Li
- Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong;
| | - Qi Li
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK; (J.H.); (Q.L.); (S.W.)
| | - Shiyi Wang
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK; (J.H.); (Q.L.); (S.W.)
| | - Yang Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China;
| | - Kun Qian
- Department of Information and Intelligence Development, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Guang Yang
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK; (J.H.); (Q.L.); (S.W.)
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London SW3 6NP, UK
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
3
|
Rigault D, Nizard P, Daniel J, Blanćhard-Desce M, Deprez E, Tauc P, Dhimane H, Dalko PI. Triphenylamine Sensitized 8-Dimethylaminoquinoline: An Efficient Two-Photon Caging Group for Intracellular Delivery. Chemistry 2024; 30:e202401289. [PMID: 38959014 DOI: 10.1002/chem.202401289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Triphenylamine-sensitized 8-dimethylaminoquinoline (TAQ) probes showed fair two-photon absorption and fragmentation cross sections in releasing kainate and GABA ligands. The water-soluble PEG and TEG-analogs allowed cell internalization and efficient light-gated liberation of the rhodamine reporter under UV and two-photon (NIR) irradiation conditions.
Collapse
Affiliation(s)
- Delphine Rigault
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| | - Philippe Nizard
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| | - Jonathan Daniel
- Institut des Sciences Moleéculaires, Universite de Bordeaux, Bâtiment A12 351 Cours de la Libération, 33405, TALENCE cedex, France
| | - Mireille Blanćhard-Desce
- Institut des Sciences Moleéculaires, Universite de Bordeaux, Bâtiment A12 351 Cours de la Libération, 33405, TALENCE cedex, France
| | - Eric Deprez
- LBPA, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Patrick Tauc
- LBPA, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Hamid Dhimane
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| | - Peter I Dalko
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| |
Collapse
|
4
|
Liu J, Lyu Q, Wu M, Zhou Y, Wang T, Zhang Y, Fan N, Yang C, Wang W. Integrating mTOR Inhibition and Photodynamic Therapy Based on Carrier-Free Nanodrugs for Breast Cancer Immunotherapy. Adv Healthc Mater 2024:e2402357. [PMID: 39235716 DOI: 10.1002/adhm.202402357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Conventional photodynamic therapy (PDT) in cancer treatment needs to utilize oxygen to produce reactive oxygen species to eliminate malignant tissues. However, oxygen consumption in tumor microenvironment exacerbates cancer cell hypoxia and may promote vasculature angiogenesis. Since the mammalian target of rapamycin (mTOR) signaling pathway plays a vital role in endothelial cell proliferation and fibrosis, mTOR inhibitor drugs hold the potential to reverse hypoxia-evoked angiogenesis for improved PDT effect. In this study, a carrier-free nanodrug formulation composed of Torin 1 as mTORC1/C2 dual inhibitor and Verteporfin as a photosensitizer and Yes-associated protein inhibitor is developed. These two drug molecules can self-assemble into stable nanoparticles through π-π stacking and hydrophobic interactions with good long-term stability. The nanodrugs can prompt synergistic apoptosis, combinational anti-angiogenesis, and strong immunogenic cell death effects upon near-infrared light irradiation in vitro. Furthermore, the nanosystem also exhibits improved antitumor effect, anti-cancer immune response, and distant tumor inhibition through tumor microenvironment remodeling in vivo. In this way, the nanodrugs can reverse PDT-elicited angiogenesis and promote cancer immunotherapy to eliminate tumor tissues and prevent metastasis. This nanosystem provides insights into integrating mTOR inhibitors and photosensitizers for safe and effective breast cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Jinzhao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Qingyang Lyu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Meicen Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Yang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Tianyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Yichi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Ni Fan
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Chang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
5
|
Shradhanjali A, Wolfe JT, Tefft BJ. Magnetic Cell Targeting for Cardiovascular Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39078330 DOI: 10.1089/ten.teb.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
There is a critical need for novel approaches to translate cell therapy and regenerative medicine to clinical practice. Magnetic cell targeting with site specificity has started to open avenues in these fields as a potential therapeutic platform. Magnetic targeting is gaining popularity in the field of biomedicine due to its ability to concentrate and retain at a target site while minimizing deleterious effects at off-target sites. It is regarded as a relatively straightforward and safe approach for a wide range of therapeutic applications. This review discusses the latest advancements and approaches in magnetic cell targeting using endocytosed and surface-bound magnetic nanoparticles as well as in vivo tracking using magnetic resonance imaging (MRI). The most common form of magnetic nanoparticles is superparamagnetic iron oxide nanoparticles (SPION). The biodegradable and biocompatible properties of these magnetically responsive particles and capacity for rapid endocytosis into cells make them a breakthrough in targeted therapy. This review further discusses specific applications of magnetic targeting approaches in cardiovascular tissue engineering including myocardial regeneration, therapeutic angiogenesis, and endothelialization of implantable cardiovascular devices.
Collapse
Affiliation(s)
- Akankshya Shradhanjali
- Joint Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, Wisconsin, USA
| | - Jayne T Wolfe
- Joint Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, Wisconsin, USA
| | - Brandon J Tefft
- Joint Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Hu J, Wu P, Wang S, Wang B, Yang G. A Human Feedback Strategy for Photoresponsive Molecules in Drug Delivery: Utilizing GPT-2 and Time-Dependent Density Functional Theory Calculations. Pharmaceutics 2024; 16:1014. [PMID: 39204359 PMCID: PMC11359544 DOI: 10.3390/pharmaceutics16081014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Photoresponsive drug delivery stands as a pivotal frontier in smart drug administration, leveraging the non-invasive, stable, and finely tunable nature of light-triggered methodologies. The generative pre-trained transformer (GPT) has been employed to generate molecular structures. In our study, we harnessed GPT-2 on the QM7b dataset to refine a UV-GPT model with adapters, enabling the generation of molecules responsive to UV light excitation. Utilizing the Coulomb matrix as a molecular descriptor, we predicted the excitation wavelengths of these molecules. Furthermore, we validated the excited state properties through quantum chemical simulations. Based on the results of these calculations, we summarized some tips for chemical structures and integrated them into the alignment of large-scale language models within the reinforcement learning from human feedback (RLHF) framework. The synergy of these findings underscores the successful application of GPT technology in this critical domain.
Collapse
Affiliation(s)
- Junjie Hu
- Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Peng Wu
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750014, China
| | - Shiyi Wang
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK
| | - Binju Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guang Yang
- Bioengineering Department and Imperial-X, Imperial College London, London W12 7SL, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London SW3 6NP, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
7
|
Qi J, Amrutha AS, Ishida-Ishihara S, Dokainish HM, Hashim PK, Miyazaki R, Tsuda M, Tanaka S, Tamaoki N. Caging Bioactive Triarylimidazoles: An Approach to Create Visible Light-Activatable Drugs. J Am Chem Soc 2024; 146:18002-18010. [PMID: 38905195 DOI: 10.1021/jacs.4c04468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Imidazoles are crucial structural components in a variety of small-molecule inhibitors designed to target different kinases in anticancer treatment. However, the effectiveness of such inhibitors is often hampered by nonspecific effects and the development of resistance. Photopharmacology provides a compelling solution by enabling external control over drug activity with spatiotemporal precision. Herein, we introduce a novel strategy for caging bioactive triarylimidazole-based drug molecules. This approach involves introducing a dialkylamino group as a photoremovable group on the carbon atom of the imidazole ring, which intrinsically modulates the core structure from planar imidazole to tetrahedral 2H-imidazole, enabling the caged compound to be selectively uncaged upon visible light exposure. We applied this innovative caging technique to SB431542, a triarylimidazole-based small-molecule inhibitor that targets the pivotal TGF-β signaling pathway, the dysregulation of which is linked to several human diseases, including cancer. Our results demonstrated the selective inhibition of human breast cancer cell migration in vitro upon light activation, highlighting the potential of our approach to transform triarylimidazole-based drug molecules into visible light-activatable drugs, thereby facilitating spatiotemporal regulation of their pharmacological activity.
Collapse
Affiliation(s)
- Jiajun Qi
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Ammathnadu S Amrutha
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sumire Ishida-Ishihara
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Hisham M Dokainish
- Center of Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812, Japan
| | - P K Hashim
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Ryu Miyazaki
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
8
|
Liu J, Zhou Y, Lyu Q, Yao X, Wang W. Targeted protein delivery based on stimuli-triggered nanomedicine. EXPLORATION (BEIJING, CHINA) 2024; 4:20230025. [PMID: 38939867 PMCID: PMC11189579 DOI: 10.1002/exp.20230025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Protein-based drugs have shown unique advantages to treat various diseases in recent years. However, most protein therapeutics in clinical use are limited to extracellular targets with low delivery efficiency. To realize targeted protein delivery, a series of stimuli-triggered nanoparticle formulations have been developed to improve delivery efficiency and reduce off-target release. These smart nanoparticles are designed to release cargo proteins in response to either internal or external stimuli at pathological tissues. In this way, varieties of protein-based drugs including antibodies, enzymes, and pro-apoptotic proteins can be effectively delivered to desired sites for the treatment of cancer, inflammation, metabolic diseases, and so on with minimal side effects. In this review, recent advances in the design of stimuli-triggered nanomedicine for targeted protein delivery in different biomedical applications will be discussed. A deeper understanding of these emerging strategies helps develop more efficient protein delivery systems for clinical use in the future.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Yang Zhou
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Qingyang Lyu
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| | - Xiaotong Yao
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of ChemistryFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Weiping Wang
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
- Dr. Li Dak‐Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
9
|
Leung HM, Liu LS, Cai Y, Li X, Huang Y, Chu HC, Chin YR, Lo PK. Light-Activated Nanodiamond-Based Drug Delivery Systems for Spatiotemporal Release of Antisense Oligonucleotides. Bioconjug Chem 2024; 35:623-632. [PMID: 38659333 DOI: 10.1021/acs.bioconjchem.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanodiamonds (NDs) are considered promising delivery platforms, but inaccurate and uncontrolled release of drugs at target sites is the biggest challenge of NDs in precision medicine. This study presents the development of phototriggerable ND-based drug delivery systems, utilizing ortho-nitrobenzyl (o-NB) molecules as photocleavable linkers between drugs and nanocarriers. UV irradiation specifically cleaved o-NB molecules and then was followed by releasing antisense oligonucleotides from ND-based carriers in both buffer and cellular environments. This ND system carried cell nonpermeable therapeutic agents for bypassing lysosomal trapping and degradation. The presence of fluorescent nitrogen-vacancy centers also allowed NDs to serve as biological probes for tracing in cells. We successfully demonstrated phototriggered release of antisense oligonucleotides from ND-based nanocarriers, reactivating their antisense functions. This highlights the potential of NDs, photocleavable linkers, and light stimuli to create advanced drug delivery systems for controlled drug release in disease therapy, opening possibilities for targeted and personalized treatments.
Collapse
Affiliation(s)
- Hoi Man Leung
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ling Sum Liu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, United Kingdom
| | - Yuzhen Cai
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Xinru Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Yizhi Huang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Hoi Ching Chu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Y Rebecca Chin
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, 518057 Shenzhen, China
| |
Collapse
|
10
|
Huang L, Han G. Triplet-triplet annihilation photon upconversion-mediated photochemical reactions. Nat Rev Chem 2024; 8:238-255. [PMID: 38514833 DOI: 10.1038/s41570-024-00585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Photon upconversion is a method for harnessing high-energy excited states from low-energy photons. Such photons, particularly in the red and near-infrared wavelength ranges, can penetrate tissue deeply and undergo less competitive absorption in coloured reaction media, enhancing the efficiency of large-scale reactions and in vivo phototherapy. Among various upconversion methodologies, the organic-based triplet-triplet annihilation upconversion (TTA-UC) stands out - demonstrating high upconversion efficiencies, requiring low excitation power densities and featuring tunable absorption and emission wavelengths. These factors contribute to improved photochemical reactions for fields such as photoredox catalysis, photoactivation, 3D printing and immunotherapy. In this Review, we explore concepts and design principles of organic TTA-UC-mediated photochemical reactions, highlighting notable advancements in the field, as well as identify challenges and propose potential solutions. This Review sheds light on the potential of organic TTA-UC to advance beyond the traditional photochemical reactions and paves the way for research in various fields and clinical applications.
Collapse
Affiliation(s)
- Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Nierengarten I. Nanoscale scythe cuts molecular tethers using mechanical forces. Nature 2024; 628:269-270. [PMID: 38600266 DOI: 10.1038/d41586-024-00909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
|
12
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
13
|
Long K, Lv W, Wang Z, Zhang Y, Chen K, Fan N, Li F, Zhang Y, Wang W. Near-infrared light-triggered prodrug photolysis by one-step energy transfer. Nat Commun 2023; 14:8112. [PMID: 38062051 PMCID: PMC10703928 DOI: 10.1038/s41467-023-43805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Prodrug photolysis enables spatiotemporal control of drug release at the desired lesions. For photoactivated therapy, near-infrared (NIR) light is preferable due to its deep tissue penetration and low phototoxicity. However, most of the photocleavable groups cannot be directly activated by NIR light. Here, we report a upconversion-like process via only one step of energy transfer for NIR light-triggered prodrug photolysis. We utilize a photosensitizer (PS) that can be activated via singlet-triplet (S-T) absorption and achieve photolysis of boron-dipyrromethene (BODIPY)-based prodrugs via triplet-triplet energy transfer. Using the strategy, NIR light can achieve green light-responsive photolysis with a single-photon process. A wide range of drugs and bioactive molecules are designed and demonstrated to be released under low-irradiance NIR light (100 mW/cm2, 5 min) with high yields (up to 87%). Moreover, a micellar nanosystem encapsulating both PS and prodrug is developed to demonstrate the practicality of our strategy in normoxia aqueous environment for cancer therapy. This study may advance the development of photocleavable prodrugs and photoresponsive drug delivery systems for photo-activated therapy.
Collapse
Affiliation(s)
- Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wen Lv
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Zihan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yaming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ni Fan
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Feiyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yichi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
14
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
15
|
Grimes PJ, Jenkinson‐Finch M, Symons HE, Briscoe WH, Rochat S, Mann S, Gobbo P. A Photo-degradable Crosslinker for the Development of Light-responsive Protocell Membranes. Chemistry 2023; 29:e202302058. [PMID: 37497813 PMCID: PMC10946628 DOI: 10.1002/chem.202302058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
The achievement of light-responsive behaviours is an important target for protocell engineering to allow control of fundamental protocellular processes such as communication via diffusible chemical signals, shape changes or even motility at the flick of a switch. As a step towards this ambitious goal, here we describe the synthesis of a novel poly(ethylene glycol)-based crosslinker, reactive towards nucleophiles, that effectively degrades with UV light (405 nm). We demonstrate its utility for the fabrication of the first protocell membranes capable of light-induced disassembly, for the photo-generation of patterns of protocells, and for the modulation of protocell membrane permeability. Overall, our results not only open up new avenues towards the engineering of spatially organised, communicating networks of protocells, and of micro-compartmentalised systems for information storage and release, but also have important implications for other research fields such as drug delivery and soft materials chemistry.
Collapse
Affiliation(s)
- Patrick J. Grimes
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Henry E. Symons
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Wuge H. Briscoe
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Sebastien Rochat
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of Engineering Mathematics and TechnologyUniversity of BristolAda Lovelace BuildingTankard's CloseBristolBS8 1TWUK
| | - Stephen Mann
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 1Trieste34127Italy
- National Interuniversity Consortium of Materials Science and Technology Unit of TriesteVia G. Giusti 9Firenze50121Italy
| |
Collapse
|
16
|
Zheng X, Li Y, Cui T, Yang J, Meng X, Wang H, Chen L, He J, Chen N, Meng L, Ding L, Xie R. Traceless Protein-Selective Glycan Labeling and Chemical Modification. J Am Chem Soc 2023; 145:23670-23680. [PMID: 37857274 DOI: 10.1021/jacs.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Executing glycan editing at a molecular level not only is pivotal for the elucidation of complicated mechanisms involved in glycan-relevant biological processes but also provides a promising solution to potentiate disease therapy. However, the precision control of glycan modification or glyco-editing on a selected glycoprotein is by far a grand challenge. Of note is to preserve the intact cellular glycan landscape, which is preserved after editing events are completed. We report herein a versatile, traceless glycan modification methodology for customizing the glycoforms of targeted proteins (subtypes), by orchestrating chemical- and photoregulation in a protein-selective glycoenzymatic system. This method relies on a three-module, ligand-photocleavable linker-glycoenzyme (L-P-G) conjugate. We demonstrated that RGD- or synthetic carbohydrate ligand-containing conjugates (RPG and SPG) would not activate until after the ligand-receptor interaction is accomplished (chemical regulation). RPG and SPG can both release the glycoenzyme upon photoillumination (photoregulation). The adjustable glycoenzyme activity, combined with ligand recognition selectivity, minimizes unnecessary glycan editing perturbation, and photolytic cleavage enables precise temporal control of editing events. An altered target protein turnover and dimerization were observed in our system, emphasizing the significance of preserving the native physiological niche of a particular protein when precise modification on the carbohydrate epitope occurs.
Collapse
Affiliation(s)
- Xiaocui Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangfeng Meng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liusheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Nan Chen
- ChinaChomiX Biotech (Nanjing) Co., Ltd., Nanjing 210061, China
| | - Liying Meng
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Gagarin AA, Minin AS, Shevyrin VA, Kostova IP, Benassi E, Belskaya NP. Photocaging of Carboxylic Function Bearing Biomolecules by New Thiazole Derived Fluorophore. Chemistry 2023; 29:e202302079. [PMID: 37530503 DOI: 10.1002/chem.202302079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
The design and synthesis of a new fluorophore containing an arylidene thiazole scaffold resulted in a compound with good photophysical characteristics. Furthermore, the thiazole C5-methyl group was easily modified into specific functional groups (CH2 Br and CH2 OH) for the formation of a series of photocourier molecules containing model compounds (benzoic acids), as well as prodrugs, including salicylic acid, caffeic acid, and chlorambucil via a "benzyl" linker. Spectral characteristics (1 H, 13 C NMR, and high-resolution mass spectra) corresponded to the proposed structures. The photocourier molecules demonstrated absorption with high values of coefficient of molar extinction, exhibited contrasting green emission, and showed good dark stability. The mechanism of the photorelease was investigated through spectral analysis, HPLC-HRMS, and supported by TD-DFT calculations. The photoheterolysis and elimination of carboxylic acids were proved to occur in the excited state, yielding a carbocation as an intermediate moiety. The fluorophore structure provided stability to the carbocation through the delocalization of the positive charge via resonance structures. Viability assessment of Vero cells using the MTT-test confirmed the weak cytotoxicity of prodrugs without irradiation and it increase upon UV-light.
Collapse
Affiliation(s)
- Aleksey A Gagarin
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| | - Artem S Minin
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
- M. N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Science, 18S. Kovalevskaya Str., Yekaterinburg, 620108, Russia
| | - Vadim A Shevyrin
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| | - Irena P Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., Sofia, Bulgaria
| | - Enrico Benassi
- Novosibirsk State University, Pirogova Str. 2, 630090, Novosibirsk, Russia
| | - Nataliya P Belskaya
- Department of Technology for Organic Synthesis, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russia
| |
Collapse
|
18
|
Kang W, Liu Y, Wang W. Light-responsive nanomedicine for cancer immunotherapy. Acta Pharm Sin B 2023; 13:2346-2368. [PMID: 37425044 PMCID: PMC10326299 DOI: 10.1016/j.apsb.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapy emerged as a paradigm shift in cancer treatments, which can effectively inhibit cancer progression by activating the immune system. Remarkable clinical outcomes have been achieved through recent advances in cancer immunotherapy, including checkpoint blockades, adoptive cellular therapy, cancer vaccine, and tumor microenvironment modulation. However, extending the application of immunotherapy in cancer patients has been limited by the low response rate and side effects such as autoimmune toxicities. With great progress being made in nanotechnology, nanomedicine has been exploited to overcome biological barriers for drug delivery. Given the spatiotemporal control, light-responsive nanomedicine is of great interest in designing precise modality for cancer immunotherapy. Herein, we summarized current research utilizing light-responsive nanoplatforms to enhance checkpoint blockade immunotherapy, facilitate targeted delivery of cancer vaccines, activate immune cell functions, and modulate tumor microenvironment. The clinical translation potential of those designs is highlighted and challenges for the next breakthrough in cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Weirong Kang
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong, China
| | - Yuwei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Sarabando SN, Palmeira A, Sousa ME, Faustino MAF, Monteiro CJP. Photomodulation Approaches to Overcome Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:682. [PMID: 37242465 PMCID: PMC10221556 DOI: 10.3390/ph16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Photopharmacology is an approach that aims to be an alternative to classical chemotherapy. Herein, the different classes of photoswitches and photocleavage compounds and their biological applications are described. Proteolysis targeting chimeras (PROTACs) containing azobenzene moieties (PHOTACs) and photocleavable protecting groups (photocaged PROTACs) are also mentioned. Furthermore, porphyrins are referenced as successful photoactive compounds in a clinical context, such as in the photodynamic therapy of tumours as well as preventing antimicrobial resistance, namely in bacteria. Porphyrins combining photoswitches and photocleavage systems are highlighted, taking advantage of both photopharmacology and photodynamic action. Finally, porphyrins with antibacterial activity are described, taking advantage of the synergistic effect of photodynamic treatment and antibiotic therapy to overcome bacterial resistance.
Collapse
Affiliation(s)
- Sofia N. Sarabando
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | | | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| |
Collapse
|
20
|
Jin W, Fan B, Qin X, Liu Y, Qian C, Tang B, James TD, Chen G. Structure-activity of chlormethine fluorescent prodrugs: Witnessing the development of trackable drug delivery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
22
|
Seitz I, Ijäs H, Linko V, Kostiainen MA. Optically Responsive Protein Coating of DNA Origami for Triggered Antigen Targeting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38515-38524. [PMID: 35984232 PMCID: PMC9437894 DOI: 10.1021/acsami.2c10058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA nanostructures have emerged as modular building blocks in several research fields including biomedicine and nanofabrication. Their proneness to degradation in various environments has led to the development of a variety of nature-inspired protection strategies. Coating of DNA origami nanostructures with proteins can circumvent degradation and alter their properties. Here, we have used a single-chain variable antibody fragment and serum albumin to construct positively charged and stimuli-responsive protein-dendron conjugates, which were complexed with DNA origami through electrostatic interactions. Using a stepwise assembly approach, the coated nanostructures were studied for their interaction with the corresponding antigen in fluorescence-based immunoassays. The results suggest that the antibody-antigen interaction can be disturbed by the addition of the bulky serum albumin. However, this effect is fully reversible upon irradiation of the structures with an optical stimulus. This leads to a selective dissociation of the serum albumin from the nanostructure due to cleavage of a photolabile group integrated in the dendron structure, exposing the antibody fragment and enabling triggered binding to the antigen, demonstrating that serum albumin can be considered as an externally controlled "camouflaging" agent. The presented stimuli-responsive complexation approach is highly versatile regarding the choice of protein components and could, therefore, find use in DNA origami protection, targeting, and delivery as well as their spatiotemporal control.
Collapse
Affiliation(s)
- Iris Seitz
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Heini Ijäs
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Veikko Linko
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- LIBER
Center of Excellence, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- LIBER
Center of Excellence, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
23
|
Margaret McCutcheon M, Freindorf M, Kraka E. Bonding in Nitrile Photo-dissociating Ruthenium Drug Candidates --A Local Vibrational Mode Study. J Chem Phys 2022; 157:014301. [DOI: 10.1063/5.0094567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigated bonding features 15 ruthenium complexes of the type [Ru(tpy)(L)-(CH3CN)]n+, containing the tridentate tpy ligand (tpy = 2,2':6',2'--terpyridine) and various bidentate ancillary ligands, 12 compounds originally synthesized by Loftus et al. (J. Phys. Chem. C 123, 10291-10299 (2019)) complemented with three additional complexes. The main focus of our work was to relate these local features to the experimental data of Loftus et al. which assess the efficiency of nitrile release in an indirect way via observed quantum yields for ruthenium water association after nitrile release. As a tool to quantitatively assess Ru-NC and Ru-L bonding we utilized the local vibrational mode analysis complemented by the topological analysis of the electron density and the natural bond orbital analysis. Interestingly, the stronger Ru-NC bonds have the greater observed quantum yields, leading to the conclusion that the observed quantum yields are a result of a complex interplay of several processes excluding a direct relationship between QY and Ru-NC or Ru-L bond strengths. We identified the ST splitting as one of the key players and not the Ru-NC bond strength, as one may have thought. In summary, this work has presented a modern computational tool set for the investigation of bonding features applied to nitrile photo-dissociating ruthenium drug candidates forming a valuable basis for future design and fine tuning of nitrile releasing ruthenium compounds, as well as for the understanding of how local properties affect overall experimental outcomes.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Chemistry, Southern Methodist University, United States of America
| |
Collapse
|