1
|
Cordiano R, Caserta S, Minciullo PL, Allegra A, Gangemi S. Anthraquinones and Aloe Vera Extracts as Potential Modulators of Inflammaging Mechanisms: A Translational Approach from Autoimmune to Onco-Hematological Diseases. Molecules 2025; 30:1251. [PMID: 40142026 PMCID: PMC11944353 DOI: 10.3390/molecules30061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammaging is a chronic, low-grade inflammatory state that contributes to age-related diseases, including cardiovascular disorders, osteoporosis, neurodegeneration, and cancer. This process involves immunosenescence, oxidative stress, and immune aging, all of which contribute to the breakdown of immune tolerance and the onset of autoimmune disorders. Aloe vera (AV) has recently gained attention for its immunomodulatory, anti-inflammatory, and antioxidant properties. This review explores the effects of AV extracts and anthraquinones (e.g., aloe-emodin, emodin, aloin) on key inflammaging-driven mechanisms in autoimmunity. Our analysis highlights AV's ability to regulate hormone balance, autoantibody production, and cytokine/chemokine signaling (such as interleukin-1β, tumor necrosis factor-α, and interferon-γ). It modulates inflammatory pathways, including mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), thereby inhibiting nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation. Additionally, AV enhances antioxidant defenses and restores immune balance by reducing Th1/Th17 subsets while promoting Th2-mediated regulation. Notably, AV also modulates inflammasome-mediated mechanisms and counteracts immunosenescence, which is driven by autophagy-related processes. These effects position AV as a potential integrative approach to mitigating inflammaging-driven autoimmunity. Furthermore, as inflammaging is increasingly recognized in onco-hematological diseases, AV-based strategies may offer novel therapeutic avenues. Future studies should focus on clinical validation, optimizing formulations, and expanding applications to broader age-related and immune-mediated disorders.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| |
Collapse
|
2
|
Li L, He Z, Yu C, Zhang C, Yu Y, Li Y, Xu X. Combination Fractional Carbon Dioxide Laser Treatment and Bone Marrow Mesenchymal Stem Cell Therapy Enhances the Treatment of Skin Photoaging in a Murine Model System. Clin Cosmet Investig Dermatol 2025; 18:319-330. [PMID: 39927128 PMCID: PMC11803962 DOI: 10.2147/ccid.s490225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025]
Abstract
Background Fractional carbon dioxide lasers and bone marrow mesenchymal stem cells (BMSCs) are commonly employed in the treatment of skin photoaging. Objective This study was developed to explore the effects of combination carbon dioxide laser treatment and BMSC injection on skin photoaging and the underlying molecular mechanisms. Methods & Materials In total, 24 mice with experimentally photoaged skin were separated into control, carbon dioxide fractional laser treatment, combination therapy, and BMSC injection groups. Samples of dorsal skin from these animals were subjected to hematoxylin and eosin staining or Masson's trichrome staining. In addition, immunohistochemical analyses and real-time polymerase chain reaction analyses were conducted to detect MMP-3 and MMP-9 expression. Results After 1 week, both dermal thickness and collagen fiber density were significantly increased in the BMSC and combination treatment groups as compared to the control group (P<0.05), while both of these parameters were significantly increased in all treatment groups after 4 weeks relative to the control group (P<0.05), with the most pronounced effect in the combination therapy group (P<0.05). MMP-3 and MMP-9 mRNA and protein levels in the treatment groups were decreased relative to the control group after 4 weeks. Conclusion Combination BMSC and carbon dioxide laser therapy was more effective than either of these therapeutic approaches in isolation as a treatment for photoaged skin. The improvement of effect may be due to the decrease of MMP-3 and MMP-9 expression in combination therapy.
Collapse
Affiliation(s)
- Li Li
- ShanXi Medical University, Taiyuan, People’s Republic of China
- Department of Dermatology, The First Hospital of ShanXi Medical University, Taiyuan, 030001, People’s Republic of China
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 030001, People’s Republic of China
| | - Zeyu He
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 030001, People’s Republic of China
- Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, 110001, People’s Republic of China
- NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, 110001, People’s Republic of China
| | - Chengqian Yu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 030001, People’s Republic of China
- Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, 110001, People’s Republic of China
- NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, 110001, People’s Republic of China
| | - Chao Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 030001, People’s Republic of China
- Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, 110001, People’s Republic of China
- NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, 110001, People’s Republic of China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Yuanhong Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 030001, People’s Republic of China
- Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, 110001, People’s Republic of China
- NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, 110001, People’s Republic of China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 030001, People’s Republic of China
- Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, 110001, People’s Republic of China
- NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, 110001, People’s Republic of China
| |
Collapse
|
3
|
Kaur S, Bains K. Aloe Barbadensis Miller (Aloe Vera). INT J VITAM NUTR RES 2024; 94:308-321. [PMID: 37915246 DOI: 10.1024/0300-9831/a000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Aloe Barbadensis Miller (Aloe Vera, AV) is a widely recognized for its diverse health-promoting, skin care, and medicinal properties. This narrative review provides a comprehensive overview of AV's bioactive compounds, pharmacological activities, potential applications, its toxic and adverse effects, as well as the clinical evidence supporting AV's efficacy in disease prevention. AV contains over 200 bioactive compounds, with the inner clear gel of the leaves containing the majority of these compounds. These include phenolic acids (274.5-307.5 mg/100 g), flavonoids. (3.63-4.70 g/kg), polysaccharides (3.82-6.55 g/kg), saponins, alkaloids, terpenoids, and anthraquinone derivatives. Findings from clinical studies involving both humans and animals highlight the therapeutic potential of AV across diverse health domains. The studies demonstrate AV's efficacy in reducing blood glucose levels, exhibiting antioxidant and immunomodulatory effects, inducing apoptosis in cancer cells, protecting the liver from damage, and displaying antimicrobial properties. In the fields of dermatology and dentistry, AV has also been observed to promote skin and oral health. However, it is imperative to acknowledge potential risks, adhere to recommended dosages, and seek guidance from healthcare experts before employing AV as a natural therapeutic option. Moreover, considering safety concerns, further well-designed randomized controlled trials are necessary to substantiate the potential benefits of AV and comprehensively assess any associated risks.
Collapse
Affiliation(s)
- Sukhdeep Kaur
- Department of Food & Nutrition, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kiran Bains
- Department of Food & Nutrition, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
4
|
Lei D, Ye L, Wen S, Zhang J, Zhang L, Man MQ. Preventive and Therapeutic Benefits of Natural Ingredients in Photo-Induced Epidermal Dysfunction. Skin Pharmacol Physiol 2024; 37:1-18. [PMID: 38615652 DOI: 10.1159/000538832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The skin, particularly the epidermis, is subjected to various external stresses, including ultraviolet (UV) irradiation. UV irradiation, mainly UVB at wavelength of 280-315 nm, can alter several epidermal functions, including cutaneous inflammation, epidermal hyperproliferation, DNA damage, disruption of epidermal permeability barrier and reduction in stratum corneum hydration levels. Because of the negative impacts of UVB irradiation on epidermal functions, great efforts have been made to develop regimens for the protection of alterations in epidermal function induced by UV irradiation. SUMMARY While sunscreen can provide physical barrier to UV light, some natural ingredients can also effectively protect the skin from UVB irradiation-induced damages. Studies have demonstrated that either topical or oral administrations of some natural ingredients attenuate UVB irradiation-induced alterations in the epidermal function. The underlying mechanisms by which natural ingredients improve epidermal functions are attributable to antioxidation, stimulation of keratinocyte differentiation, increases in the content of epidermal natural moisturizers and inhibition of inflammation. KEY MESSAGE Some natural ingredients exhibit protective and therapeutical benefits in photo-induced epidermal dysfunctions via divergent mechanisms.
Collapse
Affiliation(s)
- Dongyun Lei
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Li Ye
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Wei M, He X, Liu N, Deng H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div 2024; 19:1. [PMID: 38217019 PMCID: PMC10787507 DOI: 10.1186/s13008-024-00107-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Reactive oxygen species (ROS), such as superoxides (O2 •-) and hydroxyl groups (OH·), are short-lived molecules containing unpaired electrons. Intracellular ROS are believed to be mainly produced by the mitochondria and NADPH oxidase (NOX) and can be associated with various physiological processes, such as proliferation, cell signaling, and oxygen homeostasis. In recent years, many studies have indicated that ROS play crucial roles in regulating ultraviolet (UV)-induced photodamage of the skin, including exogenous aging, which accounts for 80% of aging. However, to the best of our knowledge, the detailed signaling pathways, especially those related to the mechanisms underlying apoptosis in which ROS are involved have not been reviewed previously. In this review, we elaborate on the biological characteristics of ROS and its role in regulating UV-induced photodamage of the skin.
Collapse
Affiliation(s)
- Min Wei
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin He
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Na Liu
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Deng
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Li A, Chen AJ, Xu J, Wen ZY, Bai GL, Wang ZY, Jiang YX, Wang P. Rapamycin protects mouse skin from ultraviolet B-induced photodamage by modulating Hspb2-mediated autophagy and apoptosis. Mol Biol Rep 2024; 51:80. [PMID: 38183537 DOI: 10.1007/s11033-023-08954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Continuous exposure to UVB is the main extrinsic cause of skin photodamage, which is associated with oxidative stress, DNA damage, apoptosis and degradation of collagen. Rapamycin, a mechanistic target inhibitor of rapamycin complex 1 (mTORC1), has been shown to play a crucial role anti-tumor and aging retardation, but its mechanism of action in UVB-induced photodamage still remains unknown. In this study, we investigated the role of rapamycin and Hspb2 (also known as Hsp27) in UVB-induced photodamage in mice. METHODS AND RESULTS We constructed skin acute photodamage models on the ears of WT and Hspb2 KO mice, respectively, and administered rapamycin treatment. Histological results showed that knockout of the hspb2 exacerbated the skin damage, as evidenced by thickening of the epidermis, breakage and disruption of collagen fibers and reduction in their number, which is reversed by rapamycin treatment. In addition, hspb2 knockout promoted UVB-induced apoptosis and reduced autophagy levels, with a significant increase in p53 levels and Bax/Bcl-2 ratio, a reduction in LC3II/I ratio and an increase in p62 levels in the KO mice compared to those in WT mice after the same dose of UVB irradiation. Rapamycin was also found to inhibit collagen degradation induced by hspb2 knockdown through activation of the TGF-β/Smad signaling pathway. CONCLUSIONS Rapamycin can alleviate skin photodamage from Hspb2 knockout to some extent. It may be a potential therapeutic drug for skin photodamage. In this study, we investigated the role of rapamycin and Hspb2 in UVB-induced photodamage in mice. Histological results showed that knockout of the hspb2 exacerbated the skin damage, as evidenced by thickening of the epidermis, breakage and disruption of collagen fibers and reduction in their number, which is reversed by rapamycin treatment. In addition, hspb2 knockout promoted UVB-induced apoptosis and reduced autophagy levels. Rapamycin was also found to inhibit collagen degradation induced by hspb2 knockdown through activation of the TGF-β/Smad signaling pathway. We conclude that rapamycin and Hspb2 exert a synergistic protective effect in skin photodamage.
Collapse
Affiliation(s)
- Ang Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ai-Jun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Xu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhu-Yuan Wen
- College of Pediatrics, Chongqing Medical University, Chongqing, 400016, China
| | - Gen-Long Bai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zi-Yue Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Xin Jiang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Jung J, Choi YJ, Yoo J, Choi SY, Kim E. Antiphotoaging Effect of AGEs Blocker™ in UVB-Irradiated Cells and Skh:HR-1 Hairless Mice. Curr Issues Mol Biol 2023; 45:4181-4199. [PMID: 37232735 DOI: 10.3390/cimb45050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Chronic exposure to ultraviolet (UV) radiation is a major cause of photoaging. It involves extrinsic aging, wrinkle formation, and skin dehydration, and leads to excessive production of active oxygen that adversely affects the skin. Here, we investigated the antiphotoaging effect of AGEs BlockerTM (AB), which comprises Korean mint aerial part and fig and goji berry fruits. Compared to its individual components, AB was more potent at increasing the expression of collagen and hyaluronic acid and decreasing MMP-1 expression in UVB-irradiated Hs68 fibroblasts and HaCaT keratinocytes. In Skh:HR-1 hairless mice exposed to 60 mJ/cm2 UVB for 12 weeks, oral administration of 20 or 200 mg/kg/day AB restored skin moisture by improving UVB-induced erythema, skin moisture, and transepidermal water loss, and alleviated photoaging by improving UVB-induced elasticity and wrinkles. Moreover, AB upregulated the mRNA levels of hyaluronic acid synthase and collagen-related Col1a1, Col3a1, and Col4a1 genes, increasing hyaluronic acid and collagen expression, respectively. AB inhibited UVB-induced MAPK and AP-1 (c-fos) activation, resulting in significantly downregulated expression of MMP-1 and -9, which are responsible for collagen degradation. AB also stimulated the expression and activity of antioxidative enzymes and reduced lipid peroxidation. Thus, AB is a potential preventive and therapeutic agent for photoaging.
Collapse
Affiliation(s)
- JaeIn Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Republic of Korea
| | - JinHee Yoo
- Functional Ingredient Development Team, COSMAX NS, INC., Seongnam-si 13486, Republic of Korea
| | - Su-Young Choi
- Functional Ingredient Development Team, COSMAX NBT, INC., Seongnam-si 13486, Republic of Korea
| | - EunJi Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
8
|
Chen T, Wang J, Mao Z. Lipid Differences and Related Metabolism Present on the Hand Skin Surface of Different-Aged Asiatic Females-An Untargeted Metabolomics Study. Metabolites 2023; 13:metabo13040553. [PMID: 37110211 PMCID: PMC10142664 DOI: 10.3390/metabo13040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
This cross-sectional study aimed to investigate differences in skin surface lipids (SSL) and explore related metabolic pathways among females of different ages in Henan Province. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used to determine the lipid composition of the skin surface of 58 female volunteers who were divided into three age groups. Statistical analysis was performed using Progenesis QI, Ezinfo, and MetaboAnalyst. Multivariate and enrichment analysis were used to identify the different SSL among the groups. A total of 530 lipid entities were identified and classified into eight classes. Among these, 63 lipids were significantly different between the groups. Lower levels of glycerolipids (GLs) and sphingolipids (SPs) were observed in the middle-aged group, while higher levels of GLs were found in the elder group. GLs belonged to the largest and statistically significant enrichment of lipid metabolic pathways, and the lipid individuals enriched to the sphingoid bases metabolism were the most and statistically significant. These findings suggest that there are differences in hand SSL among females of different ages, which may be related to GLs and sphingoid bases metabolism.
Collapse
Affiliation(s)
- Tian Chen
- Division of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai 200336, China
| | - Juan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenxing Mao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Kong S, Lv L, Guo J, Yang X, Liao M, Zhao T, Sun H, Zhang S, Li W. Preparation of Cod Skin Collagen Peptides/Chitosan-Based Temperature-Sensitive Gel and Its Anti-Photoaging Effect in Skin. Drug Des Devel Ther 2023; 17:419-437. [PMID: 36798808 PMCID: PMC9926988 DOI: 10.2147/dddt.s391812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
Background Photoaging decreases quality of life and increases the risk of skin cancer, underscoring the urgent need to explore natural, high-efficacy, anti-skin photoaging (SP) active substances. Methods In this study, a gel (CS/CSCPs/β-GP gel) was prepared using chitosan (CS) and sodium β-glycerophosphate (β-GP) through crosslinking with small molecular CSCPs as the carried drug. We evaluated its structural characteristics and properties. The effect of CS/CSCPs/β-GP gel on the degree of ultraviolet (UV)-induced skin aging of mice was investigated through comparative analysis of skin damage, the integrity of collagen tissues and elastic fibers, levels of reactive oxygen species (ROS) and key inflammatory factors (tumor necrosis factor [TNF]-α and interleukin [IL]-1β, IL-6, and IL-10), and tissue expression of matrix metalloproteinase-3 (MMP-3) after repeated UV irradiation in a nude mice SP model. Results The results showed that CS/CSCPs/β-GP gel was successfully prepared and had the desired characteristics. Compared with CSCPs alone, the CS/CSCPs/β-GP gel more evidently improved typical photoaging characteristics on mouse dorsal skin. It also increased the moisture content, causing the skin to become glossy and elastic. Pathological skin analysis revealed that this peptide-carrying gel can effectively inhibit epidermal thickening, reduce tissue inflammatory infiltration, suppress collagen fiber degradation, increase the collagen content, alleviate structural elastic fiber damage, and significantly inhibit abnormal MMP-3 expression. In addition, biochemical analysis showed that the CS/CSCPs/β-GP gel can effectively inhibit the elevated expressions of ROS and key proinflammatory factors (TNF-α, IL-1β, IL-6) in photoaging skin tissues and promote expression of the anti-inflammatory factor IL-10. Conclusion SP can cause many clinical skin diseases, such as solar freckle-like nevus, solar keratosis, cutaneous melanoma, and squamous cell carcinoma. CSCPs are a high-efficacy anti-SP natural active substance and CS/CSCPs/β-GP gel can synergistically enhance the CSCPs' anti-SP effect. The mechanism is likely related to the inhibited activation of ROS/nuclear transcription factor-κB signaling and the expression of downstream inflammatory factors.
Collapse
Affiliation(s)
- Songzhi Kong
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People’s Republic of China,Correspondence: Songzhi Kong, School of Chemistry and Environmental Science, Guangdong Ocean University, 1 Haida Road, Mazhang District, Zhanjiang, 524088, People’s Republic of China, Tel +86-759-238-3679, Email
| | - Lijiao Lv
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People’s Republic of China
| | - Jiaqi Guo
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People’s Republic of China
| | - Xiaohong Yang
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People’s Republic of China
| | - Mingneng Liao
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People’s Republic of China
| | - Tianyang Zhao
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People’s Republic of China
| | - Haiyang Sun
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People’s Republic of China
| | - Shuqun Zhang
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People’s Republic of China
| | - Wenjie Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China,Wenjie Li, Department of Hematology, Affiliated Hospital of Guangdong Medical University, People’s Avenue, Xiashan District, Zhanjiang, 524001, People’s Republic of China, Email
| |
Collapse
|
10
|
Protective Effects of Orange Sweet Pepper Juices Prepared by High-Speed Blender and Low-Speed Masticating Juicer against UVB-induced Skin Damage in SKH-1 Hairless Mice. Molecules 2022; 27:molecules27196394. [PMID: 36234931 PMCID: PMC9572457 DOI: 10.3390/molecules27196394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Sweet pepper fruits (Capsicum annuum L.) contain various nutrients and phytochemicals that enhance human health and prevent the pathogenesis of certain diseases. Here, we report that oral administration of orange sweet pepper juices prepared by a high-speed blender and low-speed masticating juicer reduces UVB-induced skin damage in SKH-1 hairless mice. Sweet pepper juices reduced UVB-induced skin photoaging by the regulation of genes involved in dermal matrix production and maintenance such as collagen type I α 1 and matrix metalloproteinase-2, 3, 9. Administration of sweet pepper juices also restored total collagen levels in UVB-exposed mice. In addition, sweet pepper juices downregulated the expression of pro-inflammatory proteins such as cyclooxygenase-2, interleukin (IL)-1β, IL-17, and IL-23, which was likely via inhibiting the NF-κB pathway. Moreover, primary antioxidant enzymes in the skin were enhanced by oral supplementation of sweet pepper juices, as evidenced by increased expression of catalase, glutathione peroxidase, and superoxide dismutase-2. Immunohistochemical staining showed that sweet pepper juices reduced UVB-induced DNA damage by preventing 8-OHdG formation. These results suggest that sweet pepper juices may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, inflammatory response, and DNA damage as well as enhancing antioxidant defense, which leads to an overall reduction in skin damage.
Collapse
|
11
|
Hu J, Yao W, Chang S, You L, Zhao M, Chi-Keung Cheung P, Hileuskaya K. Structural characterization and anti-photoaging activity of a polysaccharide from Sargassum fusiforme. Food Res Int 2022; 157:111267. [PMID: 35761578 DOI: 10.1016/j.foodres.2022.111267] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022]
Abstract
In this study, a purified algal polysaccharide (P1) was isolated from Sargassum fusiforme and its structural characteristics and anti-photoaging activity were studied. Results showed that P1 had a molecular weight of 289 kDa and was mainly composed of mannuronic acid, guluronic acid and fucose with molar ratio of 7.67:2.35:1.00. The backbone of P1 was →4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→4)-β-ManA-(1→4)-α-GulA-(1→4)-β-ManA-(1→3,4)-β-ManA-(1→ with a terminal group of α-Fucp-(1→ linked to O-3 position of →3,4)-β-ManA-(1→. In addition, P1 could inhibit the expressions of MMPs (MMP-1, MMP-3 and MMP-9) in the UVB-irradiated HaCaT cells, indicating that P1 could reduce collagen loss caused by UVB irradiation. It also reduced the contents of ROS and inflammatory factors (TNF-α, IL-6 and IL-1β), indicating that P1 could reduce the oxidative stress and inflammation response. Thus, Sargassum fusiforme polysaccharide P1 could be used as a potential functional food to relieve skin photoaging.
Collapse
Affiliation(s)
- Jinhong Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Shiyuan Chang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, People's Republic of China
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Skaryna str., Minsk 220141, Belarus
| |
Collapse
|
12
|
Zhang Q, Qiao S, Yang C, Jiang G. Nuclear factor-kappa B and effector molecules in photoaging. Cutan Ocul Toxicol 2022; 41:187-193. [PMID: 35658705 DOI: 10.1080/15569527.2022.2081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nuclear factor-kappa B (NF-κB) has important but complex functions in the photoaging of the human skin. This protein complex is activated upon UV irradiation and plays a key role in the signalling pathway of the inflammatory cascade. NF-κB induces the expression of various proinflammatory cytokines, such as tumour necrosis factor (TNF) and interleukin-1 (IL-1). These proinflammatory cytokines can in turn stimulate the activation of NF-κB, forming a vicious cycle. These processes cause chronic inflammation and contribute to skin ageing. In addition, the activation of NF-κB upregulates the expression of matrix metalloproteinases (MMPs) and leads to the degradation of structural proteins in the dermis. NF-κB disrupts the barrier function of the skin under prolonged and repeated UV stimulations in these ways. Such activity causes chronic skin damage, followed by the formation of wrinkles, dryness, roughness, laxity, and other photoaging manifestations. This study on the NF-κB signalling pathway and effector molecules provides a new perspective to understand and prevent photoaging.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Shiyun Qiao
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Chunsheng Yang
- Department of Dermatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Guan Jiang
- Department of Dermatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Chaiprasongsuk A, Panich U. Role of Phytochemicals in Skin Photoprotection via Regulation of Nrf2. Front Pharmacol 2022; 13:823881. [PMID: 35645796 PMCID: PMC9133606 DOI: 10.3389/fphar.2022.823881] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Ethnopharmacological studies have become increasingly valuable in the development of botanical products and their bioactive phytochemicals as novel and effective preventive and therapeutic strategies for various diseases including skin photoaging and photodamage-related skin problems including abnormal pigmentation and inflammation. Exploring the roles of phytochemicals in mitigating ultraviolet radiation (UVR)-induced skin damage is thus of importance to offer insights into medicinal and ethnopharmacological potential for development of novel and effective photoprotective agents. UVR plays a role in the skin premature aging (or photoaging) or impaired skin integrity and function through triggering various biological responses of skin cells including apoptosis, oxidative stress, DNA damage and inflammation. In addition, melanin produced by epidermal melanocytes play a protective role against UVR-induced skin damage and therefore hyperpigmentation mediated by UV irradiation could reflect a sign of defensive response of the skin to stress. However, alteration in melanin synthesis may be implicated in skin damage, particularly in individuals with fair skin. Oxidative stress induced by UVR contributes to the process of skin aging and inflammation through the activation of related signaling pathways such as the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), the nuclear factor kappa B (NF-κB) and the signal transducer and activator of transcription (STAT) in epidermal keratinocytes and dermal fibroblasts. ROS formation induced by UVR also plays a role in regulation of melanogenesis in melanocytes via modulating MAPK, PI3K/Akt and the melanocortin 1 receptor (MC1R)-microphthalmia-associated transcription factor (MITF) signaling cascades. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defenses can affect the major signaling pathways involved in regulation of photoaging, inflammation associated with skin barrier dysfunction and melanogenesis. This review thus highlights the roles of phytochemicals potentially acting as Nrf2 inducers in improving photoaging, inflammation and hyperpigmentation via regulation of cellular homeostasis involved in skin integrity and function. Taken together, understanding the role of phytochemicals targeting Nrf2 in photoprotection could provide an insight into potential development of natural products as a promising strategy to delay skin photoaging and improve skin conditions.
Collapse
Affiliation(s)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Uraiwan Panich,
| |
Collapse
|
14
|
Tang SC, Hsiao YP, Ko JL. Genistein protects against ultraviolet B-induced wrinkling and photoinflammation in in vitro and in vivo models. GENES & NUTRITION 2022; 17:4. [PMID: 35209841 PMCID: PMC8903702 DOI: 10.1186/s12263-022-00706-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
Background Chronic exposure to ultraviolet (UV) rays causes severe skin damage by inducing oxidative stress and inflammation. Identifying a safe and natural substance for skin protection is a crucial research goal. Objective The aim of this study was to clarify the effects of genistein on skin inflammation and photoaging by using 3 models (humans: skin parameters; animals: wrinkle formation; and cells: anti-inflammatory effects). Methods Food frequency questionnaire data and serum and skin parameter data from 120 volunteers (a group with a genistein-rich diet [RG group] and a control group). Human keratinocytes were pretreated with genistein before ultraviolet B (UVB) irradiation. Genistein was topically applied to the dorsal skin of rats. Results The blood samples of the RG group had lower serum uric acid levels and blood urea nitrogen levels. The dynamic elasticity level in the RG group was higher than that in the controls. Genistein pretreatment suppressed the expression of proinflammatory cytokines (CXCL1, IL-1, MIF, and PLANH1) and the proteins released by UVB-treated keratinocytes. Topical application of genistein to the dorsal skin of rats reduced the severity of UVB-induced wrinkling. Both intake and topical application of genistein combated UVB-induced inflammation and aging. Conclusions Genistein could be used as a safe and natural compound for use in novel anti-inflammatory agents for topical application. Graphical abstract The experimental design procedure, including the skin parameter and blood serum measurements of 137 participants. Genistein-rich compounds provide protection against UVB-induced inflammation, as determined using in vitro and in vivo animal model experiments.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12263-022-00706-x.
Collapse
Affiliation(s)
- Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, 403, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, Chung Shan Medical University, No.110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan. .,Department of Dermatology, Chung Shan Medical University Hospital, No.110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan.
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, No.110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan. .,Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
15
|
Xiao J, Li H, Zhao W, Cai C, You T, Wang Z, Wang M, Zeng F, Cheng J, Li J, Duan X. Zinc-metal–organic frameworks with tunable UV diffuse-reflectance as sunscreens. J Nanobiotechnology 2022; 20:87. [PMID: 35183191 PMCID: PMC8858458 DOI: 10.1186/s12951-022-01292-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
UV exposure continues to induce many health issues, though commercial sunscreens are available. Novel UV filters with high safety and efficacy are urgently needed. Metal–organic frameworks (MOFs) could be a suitable platform for UV filter development, due to their tunable optical, electrical, and photoelectric properties by precise controlled synthesis.
Results
Herein, four zinc-based MOFs with various bandgap energies were chose to investigate their optical behaviors and evaluate their possibility as sunscreens. Zeolitic imidazolate framework-8 (ZIF-8) was found to possess the highest and widest UV reflectance, thereby protecting against sunburn and DNA damage on mouse skin and even achieving a comparable or higher anti-UV efficacy relative to the commercially available UV filters, TiO2 or ZnO, on pig skin, a model that correlates well with human skin. Also, ZIF-8 exerted appealing characteristics for topical skin use with low radical production, low skin penetration, low toxicity, high transparency, and high stability.
Conclusion
These results confirmed ZIF-8 could potentially be a safe and effective sunscreen surrogate for human, and MOFs could be a novel source to develop more effective and safe UV filters.
Graphical Abstract
Collapse
|
16
|
NABESHIMA K, MIZUTANI A, MISAWA E, TANAKA M, YAMAUCHI K, ABE F. Validation of an LC-MS/MS method for the quantitation of phytosterols derived from Aloe vera gel. MethodsX 2022; 9:101642. [PMID: 35273905 PMCID: PMC8902629 DOI: 10.1016/j.mex.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/19/2022] [Indexed: 12/01/2022] Open
Abstract
A method to quantitate five minor phytosterols named Aloe sterols identified from Aloe vera gel was validated using AVGP (Aloe vera gel powder) as the sample. To measure the Aloe sterols content, AVGP was extracted with chloroform/methanol (2:1, v/v) and analyzed by liquid chromatography-tandem mass spectrometry. The calibration curve revealed a high coefficient of determination (>0.999). The limit of quantification was 2.3–4.1 ng/mL. Average recoveries ranged from 95 to 105%. The intra-day and inter-day precision were 2.6–6.4% and 3.8–7.3%, respectively, confirming good method precision. Aloe sterols were also quantified in AVGE (Aloe vera gel extract) using this method. We showed that the composition ratio of each Aloe sterol in AVGP did not change in AVGE. Additionally, we measured the concentration of Aloe sterols in the capsule containing AVGE, and confirmed that it was stable even after 1 year of storage. In conclusion, a quantification method was established to simultaneously measure multiple plant sterols with similar structures. • A quantification method to simultaneously measure several plant sterols with similar structures was established. • Results from the intra-day precision and the inter-day precision confirmed good precision. • This method can be applied to processed raw materials and/or foods in long-term storage.
Collapse
|
17
|
Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M. Inflammatory Molecules Associated with Ultraviolet Radiation-Mediated Skin Aging. Int J Mol Sci 2021; 22:ijms22083974. [PMID: 33921444 PMCID: PMC8069861 DOI: 10.3390/ijms22083974] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Skin is the largest and most complex organ in the human body comprised of multiple layers with different types of cells. Different kinds of environmental stressors, for example, ultraviolet radiation (UVR), temperature, air pollutants, smoking, and diet, accelerate skin aging by stimulating inflammatory molecules. Skin aging caused by UVR is characterized by loss of elasticity, fine lines, wrinkles, reduced epidermal and dermal components, increased epidermal permeability, delayed wound healing, and approximately 90% of skin aging. These external factors can cause aging through reactive oxygen species (ROS)-mediated inflammation, as well as aged skin is a source of circulatory inflammatory molecules which accelerate skin aging and cause aging-related diseases. This review article focuses on the inflammatory pathways associated with UVR-mediated skin aging.
Collapse
|
18
|
Zheng X, Chen L, Jin S, Xiong L, Chen H, Hu K, Fan X, Fan S, Li C. Ultraviolet B irradiation up-regulates MM1 and induces photoageing of the epidermis. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:395-403. [PMID: 33565151 DOI: 10.1111/phpp.12670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND ΔNp63α and c-Myc are key transcription factors controlling proliferation and senescence in epithelial cells. We previously reported that the c-Myc modulator MM1 and its E3 ligase, HERC3, together with the transcription factor ΔNp63α, compose a feedback loop, which regulates proliferative senescence in MCF-10A mammary epithelial cells. However, it is unknown whether this loop is involved in skin ageing. On the other hand, ultraviolet B (UVB) rays are assumed to be the main culprits for photoageing of the epidermis, but the underlying mechanisms are obscure. AIMS To investigate whether MM1/ΔNp63α axis is involved in UVB-induced photoageing of the epidermis. MATERIALS AND METHODS HaCaT human immortalized keratinocytes overexpressed with MM1, knocked down with c-Myc or irradiated with UVB, were subjected to MTT assays to measure cell proliferation, as well as RT-qPCR or immunoblot to detect the members of MM1/ΔNp63α loop and the cellular senescence markers. Meanwhile, primary normal human keratinocytes (NHKs) or mice were irradiated with UVB, followed by immunoblot analysis, SA-β-gal, haematoxylin-eosin or immunohistochemistry staining. RESULTS Overexpression of MM1 down-regulated ΔNp63α and induced proliferative senescence in the HaCaT cells. In the HaCaT cells, NHKs and the mouse epidermis, UVB irradiation increased MM1 mRNA level and led to a down-regulation of ΔNp63α, HERC3 and c-Myc, concomitant with cellular senescence or photoageing. Additionally, knock-down of c-Myc induced proliferative senescence in the HaCaT cells and abrogated UVB-induced cellular senescence. CONCLUSIONS UVB up-regulates MM1 and consequently modulates ΔNp63α and c-Myc, which may account for the proliferative senescence of keratinocytes and photoageing of the epidermis.
Collapse
Affiliation(s)
- Xuan Zheng
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuguang Jin
- Pediatric Surgery Department, West China Hospital, Sichuan University, Chengdu, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huimin Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ke Hu
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xueying Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shijie Fan
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Kumar N, Jose J. Current developments in the nanomediated delivery of photoprotective phytochemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38446-38471. [PMID: 32761528 DOI: 10.1007/s11356-020-10100-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Natural products have been used to protect the skin from harmful UV radiation for decades. Due to the ecotoxicological implications of synthetic sunscreen exposure in aquatic ecosystems, there is a greater need to explore alternative sources of UV filters. Recent research has focused on discovering novel UV absorbing photoprotective molecules from nature. In response to the excessive damage caused by UVB rays, plants induce the production of high concentrations of phytoprotective secondary metabolites and anti-oxidative enzymes. Despite promising UV absorbing and photoprotective properties, plant secondary metabolites have been underutilized in topical delivery due to low solubility and high instability. Numerous phytochemicals have been effectively nanosized, incorporated in formulations, and studied for their sustained effects in photoprotection. The present review outlines recent developments in nanosizing and delivering photoprotective crude plant extract and phytochemicals from a phytochemical perspective. We searched for articles using keywords: "UV damage," "skin photoprotection," "photodamage," and "nano delivery" in varied combinations. We identified and reviewed literature from 43 original research articles exploring nanosized phytochemicals and crude plant extracts with photoprotective activity. Nanosized phytochemicals retained higher amounts of bioactive compounds in the skin and acted as depots for their sustained release. Novel approaches in nanosizing considerably improved the photostability, efficacy, and water resistance of plant secondary metabolites. We further discuss the need for broad-spectrum sunscreen products, potential challenges, and future growth in this area.
Collapse
Affiliation(s)
- Nimmy Kumar
- Department of Pharmacognosy, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, 575018, Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore, 575018, India.
| |
Collapse
|
20
|
Kaminaka C, Yamamoto Y, Sakata M, Hamamoto C, Misawa E, Nabeshima K, Saito M, Tanaka M, Abe F, Jinnin M. Effects of low-dose Aloe sterol supplementation on skin moisture, collagen score and objective or subjective symptoms: 12-week, double-blind, randomized controlled trial. J Dermatol 2020; 47:998-1006. [PMID: 32515040 PMCID: PMC7496846 DOI: 10.1111/1346-8138.15428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Daily oral intake of 40 μg Aloe sterol was shown in a double‐blind clinical trial to significantly increase skin barrier function, moisture and elasticity. Ultrasonographic results also suggested that the intake of Aloe sterol increases collagen content in the dermis. Here, we evaluate the effects of a much smaller dose of Aloe sterol, approximately half that used previously, on skin functions in more detail. This is a monocentric, double‐blind, randomized, placebo‐controlled, supplementation study of the effects of low‐dose Aloe sterol on skin transepidermal water loss, hydration, collagen score, evaluation of objective or subjective symptoms, and safety after 12 weeks of daily intake. We randomly administrated either Aloe sterol or placebo to 122 healthy volunteers. Transepidermal water loss was significantly reduced and collagen score was increased in the Aloe sterol group compared with the placebo group at week 12. In the Aloe sterol group, there was significant improvement of objective skin condition (face erythema and pruritus of inner and outer arms) at week 12 compared with week 0, but not in the placebo group. Subjectively, there was significant improvement of visual analog scale of skin acne, fingernail brittleness and constipation in the Aloe sterol group. According to subgroup analysis, although not planned before the study initiation, subjects with dry skin in the Aloe sterol group had significantly increased skin hydration values at week 12 compared with the placebo group. Our results confirmed that even low‐dose Aloe sterol ingestion improves skin moisture by promoting skin barrier function and dermal collagen production, which contributes to maintenance of healthy skin.
Collapse
Affiliation(s)
- Chikako Kaminaka
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Mariko Sakata
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Chiaki Hamamoto
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Eriko Misawa
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Kazumi Nabeshima
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Marie Saito
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Miyuki Tanaka
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Fumiaki Abe
- Functional Food Ingredients Department, Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd, Zama, Japan
| | - Masatoshi Jinnin
- Department of Dermatology, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| |
Collapse
|
21
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
22
|
Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020; 25:molecules25061324. [PMID: 32183224 PMCID: PMC7144722 DOI: 10.3390/molecules25061324] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/23/2023] Open
Abstract
Aloe vera has been traditionally used to treat skin injuries (burns, cuts, insect bites, and eczemas) and digestive problems because its anti-inflammatory, antimicrobial, and wound healing properties. Research on this medicinal plant has been aimed at validating traditional uses and deepening the mechanism of action, identifying the compounds responsible for these activities. The most investigated active compounds are aloe-emodin, aloin, aloesin, emodin, and acemannan. Likewise, new actions have been investigated for Aloe vera and its active compounds. This review provides an overview of current pharmacological studies (in vitro, in vivo, and clinical trials), written in English during the last six years (2014–2019). In particular, new pharmacological data research has shown that most studies refer to anti-cancer action, skin and digestive protective activity, and antimicrobial properties. Most recent works are in vitro and in vivo. Clinical trials have been conducted just with Aloe vera, but not with isolated compounds; therefore, it would be interesting to study the clinical effect of relevant metabolites in different human conditions and pathologies. The promising results of these studies in basic research encourage a greater number of clinical trials to test the clinical application of Aloe vera and its main compounds, particularly on bone protection, cancer, and diabetes.
Collapse
|
23
|
Han JH, Bang JS, Choi YJ, Choung SY. Oral administration of oyster (Crassostrea gigas) hydrolysates protects against wrinkle formation by regulating the MAPK pathway in UVB-irradiated hairless mice. Photochem Photobiol Sci 2019; 18:1436-1446. [PMID: 30949655 DOI: 10.1039/c9pp00036d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic ultraviolet (UV) irradiation induces wrinkle formation. UV exposure increases reactive oxygen species (ROS) and upregulates the expression of matrix metalloproteinases (MMPs), which results in skin photoaging. Oyster (Crassostrea gigas), which is an abundant food resource in Asia and Europe, contains various sources of biological compounds and has several effects. Also, oyster hydrolysate (OH) has many biological activities. We investigated the inhibitory effects of OH on wrinkle formation in UVB-irradiated hairless mice. We induced UVB irradiation in hairless mice for 18 weeks and administered OH orally from the 9th week to the 18th week. We performed skin replicas and histological analyses in UVB-irradiated hairless mice dorsal skins. To determine the inhibitory mechanism of OH on wrinkle formation, we measured gene and protein expressions in dorsal skin using RT-qPCR and western blot analyses respectively. In our study, OH decreases wrinkle formation, epidermal thickness and collagen degradation in UVB-irradiated hairless mice. The gene expressions of MMPs were decreased and the gene expressions of collagen type I and TIMP-1 were increased in OH administered groups. Like gene expression tendencies, the protein expressions of MMPs were reduced and that of collagen type I was increased. Furthermore, the phosphorylation levels of ERK, JNK, and p38 were reduced in OH administered groups. We found that OH inhibits wrinkle formation, skin thickening, and collagen degradation by downregulating the MMP expression via the regulation of phosphorylation of MAPK. The results showed that OH significantly prevents UVB-induced photoaging in dorsal skin. Consistent with in vivo data, OH has potential as an anti-wrinkle agent.
Collapse
Affiliation(s)
- Jae-Hyeong Han
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | | | | | | |
Collapse
|
24
|
Piao MJ, Kang KA, Zhen AX, Kang HK, Koh YS, Kim BS, Hyun JW. Horse Oil Mitigates Oxidative Damage to Human HaCaT Keratinocytes Caused by Ultraviolet B Irradiation. Int J Mol Sci 2019; 20:ijms20061490. [PMID: 30934595 PMCID: PMC6471125 DOI: 10.3390/ijms20061490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
Horse oil products have been used in skin care for a long time in traditional medicine, but the biological effects of horse oil on the skin remain unclear. This study was conducted to evaluate the protective effect of horse oil on ultraviolet B (UVB)-induced oxidative stress in human HaCaT keratinocytes. Horse oil significantly reduced UVB-induced intracellular reactive oxygen species and intracellular oxidative damage to lipids, proteins, and DNA. Horse oil absorbed light in the UVB range of the electromagnetic spectrum and suppressed the generation of cyclobutane pyrimidine dimers, a photoproduct of UVB irradiation. Western blotting showed that horse oil increased the UVB-induced Bcl-2/Bax ratio, inhibited mitochondria-mediated apoptosis and matrix metalloproteinase expression, and altered mitogen-activated protein kinase signaling-related proteins. These effects were conferred by increased phosphorylation of extracellular signal-regulated kinase 1/2 and decreased phosphorylation of p38 and c-Jun N-terminal kinase 1/2. Additionally, horse oil reduced UVB-induced binding of activator protein 1 to the matrix metalloproteinase-1 promoter site. These results indicate that horse oil protects human HaCaT keratinocytes from UVB-induced oxidative stress by absorbing UVB radiation and removing reactive oxygen species, thereby protecting cells from structural damage and preventing cell death and aging. In conclusion, horse oil is a potential skin protectant against skin damage involving oxidative stress.
Collapse
Affiliation(s)
- Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Kyoung Ah Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Ao Xuan Zhen
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Hee Kyoung Kang
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Young Sang Koh
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| | - Bong Seok Kim
- Bio Convergence Center, Jeju Technopark, Jeju 63243, Korea.
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
25
|
Role of PGE-2 and Other Inflammatory Mediators in Skin Aging and Their Inhibition by Topical Natural Anti-Inflammatories. COSMETICS 2019. [DOI: 10.3390/cosmetics6010006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human skin aging is due to two types of aging processes, “intrinsic” (chronological) aging and “extrinsic” (external factor mediated) aging. While inflammatory events, triggered mainly by sun exposure, but also by pollutants, smoking and stress, are the principle cause of rapid extrinsic aging, inflammation also plays a key role in intrinsic aging. Inflammatory events in the skin lead to a reduction in collagen gene activity but an increase in activity of the genes for matrix metalloproteinases. Inflammation also alters proliferation rates of cells in all skin layers, causes thinning of the epidermis, a flattening of the dermo-epidermal junction, an increase in irregular pigment production, and, finally, an increased incidence of skin cancer. While a large number of inflammatory mediators, including IL-1, TNF-alpha and PGE-2, are responsible for many of these damaging effects, this review will focus primarily on the role of PGE-2 in aging. Levels of this hormone-like mediator increase quickly when skin is exposed to ultraviolet radiation (UVR), causing changes in genes needed for normal skin structure and function. Further, PGE-2 levels in the skin gradually increase with age, regardless of whether or not the skin is protected from UVR, and this smoldering inflammation causes continuous damage to the dermal matrix. Finally, and perhaps most importantly, PGE-2 is strongly linked to skin cancer. This review will focus on: (1) the role of inflammation, and particularly the role of PGE-2, in accelerating skin aging, and (2) current research on natural compounds that inhibit PGE-2 production and how these can be developed into topical products to retard or even reverse the aging process, and to prevent skin cancer.
Collapse
|
26
|
Ashigai H, Komano Y, Wang G, Kawachi Y, Sunaga K, Yamamoto R, Takata R, Yanai T. Orally Administered Polysaccharide Derived from Blackcurrants (Ribes nigrum L.) Improves Skin Hydration in Ultraviolet-Irradiated Hairless Mice. J Nutr Sci Vitaminol (Tokyo) 2019; 64:301-304. [PMID: 30175796 DOI: 10.3177/jnsv.64.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Blackcurrants (Ribes nigrum L.) have various benefits for human health. In particular, a polysaccharide derived from blackcurrant was found to be an immunostimulating food ingredient in a mouse model. We named a polysaccharide derived from blackcurrant cassis polysaccharide (CAPS). In a previous clinical study, we reported that CAPS affects skin dehydration, demonstrating its effectiveness against skin inflammation was related to atopic dermatitis; skin inflammation caused skin dehydration. However, there are no studies regarding CAPS effectiveness against skin dehydration. The current study aimed to investigate CAPS effectiveness against skin dehydration. We further demonstrate the effect of oral administration of CAPS on skin dehydration caused by ultraviolet (UV) irradiation-induced inflammation in mice. We found that CAPS administration suppresses skin dehydration caused by UV irradiation. We also found that CAPS decreases interleukin-6 and matrix metalloproteinase transcription levels in the mouse skin. These results show that CAPS improves skin hydration in UV-irradiated mice.
Collapse
Affiliation(s)
- Hiroshi Ashigai
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd
| | - Yuta Komano
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd
| | - Guanying Wang
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd
| | - Yasuji Kawachi
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd
| | | | - Reiko Yamamoto
- Research Laboratories for Wine Technologies, Kirin Co., Ltd
| | - Ryoji Takata
- Research Laboratories for Wine Technologies, Kirin Co., Ltd
| | - Takaaki Yanai
- Research Laboratories for Wine Technologies, Kirin Co., Ltd
| |
Collapse
|
27
|
Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, Kadekaro AL. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation. Front Pharmacol 2018; 9:392. [PMID: 29740318 PMCID: PMC5928335 DOI: 10.3389/fphar.2018.00392] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
Human skin exposed to solar ultraviolet radiation (UVR) results in a dramatic increase in the production of reactive oxygen species (ROS). The sudden increase in ROS shifts the natural balance toward a pro-oxidative state, resulting in oxidative stress. The detrimental effects of oxidative stress occur through multiple mechanisms that involve alterations to proteins and lipids, induction of inflammation, immunosuppression, DNA damage, and activation of signaling pathways that affect gene transcription, cell cycle, proliferation, and apoptosis. All of these alterations promote carcinogenesis and therefore, regulation of ROS levels is critical to the maintenance of normal skin homeostasis. Several botanical products have been found to exhibit potent antioxidant capacity and the ability to counteract UV-induced insults to the skin. These natural products exert their beneficial effects through multiple pathways, including some known to be negatively affected by solar UVR. Aging of the skin is also accelerated by UVR exposure, in particular UVA rays that penetrate deep into the epidermis and the dermis where it causes the degradation of collagen and elastin fibers via oxidative stress and activation of matrix metalloproteinases (MMPs). Because natural compounds are capable of attenuating some of the UV-induced aging effects in the skin, increased attention has been generated in the area of cosmetic sciences. The focus of this review is to cover the most prominent phytoproducts with potential to mitigate the deleterious effects of solar UVR and suitability for use in topical application.
Collapse
Affiliation(s)
- Spencer Dunaway
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rachel Odin
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Linli Zhou
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Liyuan Ji
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, United States
| | - Ana L Kadekaro
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
28
|
Abstract
Skin aging is continuously influenced by various internal and external factors such as the biologic progression of cells, ultraviolet (UV) radiation, tobacco, nutritional deficiencies, and hormonal imbalances that lead to the degradation of skin cells. Through the degradation of skin cells, free radicals and inflammation weaken repair mechanisms and result in collagen and elastic fiber breakdown. The appearance of aging skin is highlighted by skin roughness, wrinkling, pigmentation change, telangiectasias, loss of elasticity, and decreased firmness, all of which are accelerated by these internal and external factors. Throughout the years, nutraceuticals have been studied to delay and fight against these internal and external factors, many of which are found in foods and byproducts consumed naturally. The aim of this review is to aid dermatologists in understanding the mechanism of action of popular nutraceuticals and their possible efficacy in antiaging and skin health.
Collapse
Affiliation(s)
- Skylar A Souyoul
- Lupo Center for Aesthetic and General Dermatology, New Orleans, LA, USA.
| | - Katharine P Saussy
- Department of Internal Medicine, Tulane University, New Orleans, LA, USA
| | - Mary P Lupo
- Lupo Center for Aesthetic and General Dermatology, New Orleans, LA, USA
| |
Collapse
|
29
|
Kong SZ, Li DD, Luo H, Li WJ, Huang YM, Li JC, Hu Z, Huang N, Guo MH, Chen Y, Li SD. Anti-photoaging effects of chitosan oligosaccharide in ultraviolet-irradiated hairless mouse skin. Exp Gerontol 2017; 103:27-34. [PMID: 29275159 DOI: 10.1016/j.exger.2017.12.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Skin photoaging (SP) is a premature skin-aging damage after repeated exposure to ultraviolet (UV) radiation, mainly characterized by oxidative stress and inflammatory disequilibrium, which makes skin show the typical symptoms of photoaging such as coarse wrinkling, dryness, irregular pigmentation and laxity. Chitosan oligosaccharide (COS), a natural polysaccharide with good humectant property, is the depolymerized product of chitosan with various biological activities, among which the antioxidant and anti-inflammatory effects have been frequently reported in recent years. However, no existing invivo study indicates whether COS has direct protective effect on UV-induced SP. In the current research, we investigated the potential preventive effect of COS against UV-caused damage in hairless mouse dorsal skin. The data showed that COS, by topical application after each UV-radiation for 10weeks, effectively inhibited the undesirable changes on the skin induced by UV. To be specific, COS obviously alleviated the macroscopic and histopathological damages of mice skin, via mitigating the disrupted collagenous fibers, as well as improving the relative content of type I collagen and the amount of total collagen. Furthermore, COS effectively inhibited the levels of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6, and markedly improved the activities of antioxidant enzymes (SOD, GSH-Px, CAT), as well as the content of skin hydroxyproline and moisture. These findings demonstrated that this natural polysaccharide attenuated UV-induced SP, at least in part, by virtue of favorable regulation of antioxidant and anti-inflammatory status, which presumably worked in concert to maintain the morphology and level of dermal collagen.
Collapse
Affiliation(s)
- Song-Zhi Kong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Dong-Dong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hui Luo
- Guangdong Medical University, Zhanjiang 524023, China
| | - Wen-Jie Li
- Affiliated hospital of Guangdong Medical University, Zhanjiang 524001, China
| | | | - Ji-Cheng Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhang Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Na Huang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min-Hui Guo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yao Chen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Si-Dong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
30
|
Wollina U, Wetzker R, Abdel-Naser MB, Kruglikov IL. Role of adipose tissue in facial aging. Clin Interv Aging 2017; 12:2069-2076. [PMID: 29255352 PMCID: PMC5723114 DOI: 10.2147/cia.s151599] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Age-dependent modification of the facial subcutaneous white adipose tissue (sWAT) connected with reduction of its volume, modification of collagen content and adhesion between dermal and adipose layers can significantly influence mechanical stability of the skin and cause the development of aging symptoms such as wrinkles. Typical aging appearance in facial skin is at least partly connected with special phenotypical features of facial preadipocytes and mature adipocytes. In this paper, we have discussed the possible roles of local inflammation, compartmental structure of facial sWAT and trans-differentiation processes such as beiging of white adipocytes and adipocyte-myofibroblast transition in facial skin aging.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Academic Teaching Hospital Dresden-Friedrichstadt, Dresden
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, and Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | | |
Collapse
|
31
|
Moon NR, Kang S, Park S. Consumption of ellagic acid and dihydromyricetin synergistically protects against UV-B induced photoaging, possibly by activating both TGF-β1 and wnt signaling pathways. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:92-100. [PMID: 29128706 DOI: 10.1016/j.jphotobiol.2017.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 01/31/2023]
Abstract
Ellagic acid (EGA) and dihydromyricetin (DHM) are both found in fruits and vegetables are used for anti-aging treatment for the skin. The anti-photoaging efficacy of EGA and DHM was investigated in UV-B irradiated skin in vivo and the involvement of transforming growth factor (TGF)-β1 and wnt signaling pathways were examined in vitro. HaCaT cells were treated with either 50μM EGA, 50μM DHM or 25μM EGA+25μM DHM before 100mJ/cm2 UV-B exposure, and then oxidative stress and inflammation was measured. The involvement of TGF-β1 and wnt signaling was measured using their inhibitors, respectively, in HaCaT cells. Mice were fed a high fat diet with either 0.7% cellulose, 0.7% EGA, 0.7% DHM or 0.35% EGA+0.35% DHM for 3weeks and the dorsal skin of the mice had UV-B irradiation. 3% cellulose, 3% EGA, 3% DHM or 1.5% EGA+1.5% DHM in 1,3-buthylene glycol was applied onto the dorsal skin at 30min before 1 MED UV-B exposure. In 100mJ/cm2 UVB irradiation, EGA and DHM mainly decreased oxidative stress and inflammation, respectively in HaCaT cells. Their activities were blocked by the TGF-β1 inhibitor, indicating their actions were mediated by TGF-β1 signaling (TGF-β1➔pSmad3➔Smad7). DHM enhanced wnt signaling by increasing β-catenin and decreasing Dickkopf-related protein-1. In mice, 1 MED UV-B exposure induced sunburn, redness, and blistering. EGA, DHM and especially EGA+DHM lessened their severity. UV-B increased epidermal thickness and damaged epidermal nucleus and cell structures. DHM and especially EGA+DHM prevented damage to the nucleus and cell structures. Expressions of circulating and dorsal skin IL-1β and TNF-α mRNA were lower in descending order of: control, EGA, DHM, EGA+DHM and normal-control. In conclusion, the consumption of EGA+DHM had a synergistically protective action against UV-B damage in the skin tissues of mice and HaCaT cells, and it may be associated with activating of both TGF-β1 and wnt signaling.
Collapse
Affiliation(s)
- Na Rang Moon
- Dept. of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Suna Kang
- Dept. of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Sunmin Park
- Dept. of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| |
Collapse
|