1
|
Tomal F, Sausset A, Le Vern Y, Sedano L, Techer C, Lacroix-Lamandé S, Laurent F, Silvestre A, Bussière FI. Microbiota promotes recruitment and pro-inflammatory response of caecal macrophages during E. tenella infection. Gut Pathog 2023; 15:65. [PMID: 38098020 PMCID: PMC10720127 DOI: 10.1186/s13099-023-00591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Eimeria genus belongs to the apicomplexan parasite phylum and is responsible for coccidiosis, an intestinal disease with a major economic impact on poultry production. Eimeria tenella is one of the most virulent species in chickens. In a previous study, we showed a negative impact of caecal microbiota on the physiopathology of this infection. However, the mechanism by which microbiota leads to the physiopathology remained undetermined. Macrophages play a key role in inflammatory processes and their interaction with the microbiota during E. tenella infection have never been investigated. We therefore examined the impact of microbiota on macrophages during E. tenella infection. Macrophages were monitored in caecal tissues by immunofluorescence staining with KUL01 antibody in non-infected and infected germ-free and conventional chickens. Caecal cells were isolated, stained, analyzed and sorted to examine their gene expression using high-throughput qPCR. RESULTS We demonstrated that microbiota was essential for caecal macrophage recruitment in E. tenella infection. Furthermore, microbiota promoted a pro-inflammatory transcriptomic profile of macrophages characterized by increased gene expression of NOS2, ACOD1, PTGS2, TNFα, IL1β, IL6, IL8L1, IL8L2 and CCL20 in infected chickens. Administration of caecal microbiota from conventional chickens to germ-free infected chickens partially restored macrophage recruitment and response. CONCLUSIONS Taken together, these results suggest that the microbiota enhances the physiopathology of this infection through macrophage recruitment and activation. Consequently, strategies involving modulation of the gut microbiota may lead to attenuation of the macrophage-mediated inflammatory response, thereby limiting the negative clinical outcome of the disease.
Collapse
Affiliation(s)
- F Tomal
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
- MixScience, 35170, Bruz, France
| | - A Sausset
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | - Y Le Vern
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | - L Sedano
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | | | | | - F Laurent
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | - A Silvestre
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | - F I Bussière
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France.
| |
Collapse
|
2
|
Hong S, Choi JH, Oh S, Yi MH, Kim SL, Kim M, Lee CW, Yang HJ, Chai JY, Yong TS, Jung BK, Kim JY. Gut microbiota differences induced by Toxoplasma gondii seropositivity in stray cats in South Korea. Parasitol Res 2023; 122:2413-2421. [PMID: 37596434 DOI: 10.1007/s00436-023-07943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
T. gondii is a highly prevalent parasite worldwide, with cats serving as its final host. However, few studies have investigated the impact of T. gondii infection on cat gut microbiota. Therefore, this study examined the influence of T. gondii infection on the gut microbiota of stray cats and identified potential pathogens in their feces. This study examined T. gondii infection through blood of stray cats and the influence of microbiota in their feces using 16S rRNA gene amplicon sequencing. The results revealed significant differences in gut microbiota composition and diversity between the T. gondii seropositive and seronegative groups. Seropositive samples displayed a lower number of operational taxonomic units and reduced Shannon index than the seronegative samples. The seropositive and seronegative groups exhibited enrichment of taxa, including Escherichia and Enterobacteriaceae and Collinsella, Bifidobacterium, and Roseburia, respectively. Furthermore, potential pathogen species, including Campylobacter, Escherichia, and Streptococcus, were identified in the fecal samples. These findings suggest that T. gondii infection significantly impacts gut microbiota composition and diversity in stray cats. Additionally, an increased potential pathogen load, represented by Escherichia spp., was observed. These results underscore the importance of monitoring the prevalence of zoonotic pathogens in stray cats, as they can serve as reservoirs for zoonotic diseases.
Collapse
Affiliation(s)
- Sooji Hong
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul, 07649, Korea
- Department of Parasitology and Ewha Medical Research Center, Ewha Womans University School of Medicine, Seoul, 07084, Korea
| | - Jun Ho Choi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myung-Hee Yi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Soo Lim Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | | | - Hyun-Jong Yang
- Department of Parasitology and Ewha Medical Research Center, Ewha Womans University School of Medicine, Seoul, 07084, Korea
| | - Jong-Yil Chai
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Bong-Kwang Jung
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul, 07649, Korea.
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
3
|
Lambertini C, Zannoni A, Romagnoli N, Bombardi C, Morini M, Dondi F, Bernardini C, Forni M, Rinnovati R, Spadari A. Expression of Proteinase-Activated Receptor 2 During Colon Volvulus in the Horse. Front Vet Sci 2020; 7:589367. [PMID: 33330716 PMCID: PMC7728609 DOI: 10.3389/fvets.2020.589367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Large colon volvulus in horses is associated with a poor prognosis, especially when ischemic-reperfusion injury of the affected intestinal tract develops. Proteinase-activated receptor 2 (PAR2) plays an important role in the pathogenesis of inflammation in the gastrointestinal tract. The aim of this study was to evaluate the distribution and expression of PAR2 in colonic pelvic flexure of horses spontaneously affected by large colon volvulus (CVH group). Eight horses admitted for severe abdominal colon volvolus and which underwent surgery were included. Colon samples were collected after enterotomy. Data previously obtained from healthy horses were used as a control group. Histologic evaluation was carried out to grade the severity of the colon lesions. Immunofluorescence, western blot and quantitative polymerase chain reaction (RT-qPCR) were carried out on colon samples to evaluate PAR2 expression. In addition, the transcriptional profile of cytokines and chemokines was evaluated using RT2 Profiler™ PCR Array Horse Cytokines & Chemokines. Three out of the eight patients were euthanised due to clinical deterioration. Immunostaining for PAR2 was observed in the enterocytes, intestinal glands and neurons of the submucosal and myenteric plexi. In the CVH horses, the expression of PAR2 mesenger RNA (mRNA) did not differ significantly from that of the healthy animals; western blots of the mucosa of the colon tracts showed a clear band of the expected molecular weight for PAR2 (~44 kDa) and a band smaller than the expected molecular weight for PAR2 (25kDa), suggesting its activation. The gene expressions for C-X-C motif ligand 1 (CXCL1); interleukin 8 (IL8), macrophage inflammatory protein 2 beta (MIP-2BETA) were upregulated in the colic horses as compared with the colons of the healthy horses. Therefore, in the present study, the expression and activation of PAR2 in the colons of horses in the presence of an inflammatory reaction like that occurring in those with spontaneous colon volvulus was confirmed.
Collapse
Affiliation(s)
- Carlotta Lambertini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Spadari
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Debierre-Grockiego F, Moiré N, Torres Arias M, Dimier-Poisson I. Recent Advances in the Roles of Neutrophils in Toxoplasmosis. Trends Parasitol 2020; 36:956-958. [PMID: 32952059 DOI: 10.1016/j.pt.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
Abstract
Neutrophils are now recognized as major components of the response to Toxoplasma gondii by their contribution to parasite elimination by a number of mechanisms. This article focuses on recent advances in the understanding of the mechanisms of migration, cytokine release, and formation of extracellular traps by neutrophils during toxoplasmosis.
Collapse
|
5
|
Salvioni A, Belloy M, Lebourg A, Bassot E, Cantaloube-Ferrieu V, Vasseur V, Blanié S, Liblau RS, Suberbielle E, Robey EA, Blanchard N. Robust Control of a Brain-Persisting Parasite through MHC I Presentation by Infected Neurons. Cell Rep 2020; 27:3254-3268.e8. [PMID: 31189109 DOI: 10.1016/j.celrep.2019.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/03/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Control of CNS pathogens by CD8 T cells is key to avoid fatal neuroinflammation. Yet, the modalities of MHC I presentation in the brain are poorly understood. Here, we analyze the antigen presentation mechanisms underlying CD8 T cell-mediated control of the Toxoplasma gondii parasite in the CNS. We show that MHC I presentation of an efficiently processed model antigen (GRA6-OVA), even when not expressed in the bradyzoite stage, reduces cyst burden and dampens encephalitis in C57BL/6 mice. Antigen presentation assays with infected primary neurons reveal a correlation between lower MHC I presentation of tachyzoite antigens by neurons and poor parasite control in vivo. Using conditional MHC I-deficient mice, we find that neuronal MHC I presentation is required for robust restriction of T. gondii in the CNS during chronic phase, showing the importance of MHC I presentation by CNS neurons in the control of a prevalent brain pathogen.
Collapse
Affiliation(s)
- Anna Salvioni
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Marcy Belloy
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Aurore Lebourg
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Emilie Bassot
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Vincent Cantaloube-Ferrieu
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Virginie Vasseur
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Sophie Blanié
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Roland S Liblau
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Elsa Suberbielle
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Ellen A Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas Blanchard
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France.
| |
Collapse
|
6
|
Role of proteinase-activated receptors 1 and 2 in nonsteroidal anti-inflammatory drug enteropathy. Pharmacol Rep 2020; 72:1347-1357. [DOI: 10.1007/s43440-020-00119-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
|
7
|
Majer M, Macháček T, Súkeníková L, Hrdý J, Horák P. The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunol 2020; 42:e12710. [PMID: 32145079 DOI: 10.1111/pim.12710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Trichobilharzia regenti (Schistosomatidae) percutaneously infects birds and mammals and invades their central nervous system (CNS). Here, we characterized the peripheral immune response of infected mice and showed how it was influenced by the parasite-induced inflammation in the skin and the CNS. As revealed by flow cytometry, T cells expanded in the spleen and the CNS-draining lymph nodes 7-14 days post-infection. Both T-bet+ and GATA-3+ T cells were markedly elevated suggesting a mixed type 1/2 immune response. However, it dropped after 7 dpi most likely being unaffected by the neuroinflammation. Splenocytes from infected mice produced a high amount of IFN-γ and, to a lesser extent, IL-10, IL-4 and IL-17 after in vitro stimulation by cercarial homogenate. Nevertheless, it had only a limited capacity to alter the maturation status of bone marrow-derived dendritic cells (BMDCs), contrary to the recombinant T. regenti cathepsin B2, which also strongly augmented expression of Ccl5, Cxcl10, Il12a, Il33 and Il10 by BMDCs. Taken together, mice infected with T. regenti developed the mixed type 1/2 immune response, which was driven by the early skin inflammation rather than the late neuroinflammation. Parasite peptidases might play an active role in triggering the host immune response.
Collapse
Affiliation(s)
- Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Pontarollo G, Mann A, Brandão I, Malinarich F, Schöpf M, Reinhardt C. Protease-activated receptor signaling in intestinal permeability regulation. FEBS J 2019; 287:645-658. [PMID: 31495063 DOI: 10.1111/febs.15055] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Protease-activated receptors (PARs) are a unique class of G-protein-coupled transmembrane receptors, which revolutionized the perception of proteases from degradative enzymes to context-specific signaling factors. Although PARs are traditionally known to affect several vascular responses, recent investigations have started to pinpoint the functional role of PAR signaling in the gastrointestinal (GI) tract. This organ is exposed to the highest number of proteases, either from the gut lumen or from the mucosa. Luminal proteases include the host's digestive enzymes and the proteases released by the commensal microbiota, while mucosal proteases entail extravascular clotting factors and the enzymes released from resident and infiltrating immune cells. Active proteases and, in case of a disrupted gut barrier, even entire microorganisms are capable to translocate the intestinal epithelium, particularly under inflammatory conditions. Especially PAR-1 and PAR-2, expressed throughout the GI tract, impact gut permeability regulation, a major factor affecting intestinal physiology and metabolic inflammation. In addition, PARs are critically involved in the onset of inflammatory bowel diseases, irritable bowel syndrome, and tumor progression. Due to the number of proteases involved and the multiple cell types affected, selective regulation of intestinal PARs represents an interesting therapeutic strategy. The analysis of tissue/cell-specific knockout animal models will be of crucial importance to unravel the intrinsic complexity of this signaling network. Here, we provide an overview on the implication of PARs in intestinal permeability regulation under physiologic and disease conditions.
Collapse
Affiliation(s)
- Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Inês Brandão
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany.,Centro de Apoio Tecnológico Agro Alimentar (CATAA), Zona Industrial de Castelo Branco, Portugal
| | - Frano Malinarich
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Marie Schöpf
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| |
Collapse
|
9
|
Small DM, Brown RR, Doherty DF, Abladey A, Zhou-Suckow Z, Delaney RJ, Kerrigan L, Dougan CM, Borensztajn KS, Holsinger L, Booth R, Scott CJ, López-Campos G, Elborn JS, Mall MA, Weldon S, Taggart CC. Targeting of cathepsin S reduces cystic fibrosis-like lung disease. Eur Respir J 2019; 53:13993003.01523-2018. [PMID: 30655278 DOI: 10.1183/13993003.01523-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/27/2018] [Indexed: 11/05/2022]
Abstract
Cathepsin S (CatS) is upregulated in the lungs of patients with cystic fibrosis (CF). However, its role in CF lung disease pathogenesis remains unclear.In this study, β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice, a model of CF-like lung disease, were crossed with CatS null (CatS-/-) mice or treated with the CatS inhibitor VBY-999.Levels of active CatS were elevated in the lungs of βENaC-Tg mice compared with wild-type (WT) littermates. CatS-/-βENaC-Tg mice exhibited decreased pulmonary inflammation, mucus obstruction and structural lung damage compared with βENaC-Tg mice. Pharmacological inhibition of CatS resulted in a significant decrease in pulmonary inflammation, lung damage and mucus plugging in the lungs of βENaC-Tg mice. In addition, instillation of CatS into the lungs of WT mice resulted in inflammation, lung remodelling and upregulation of mucin expression. Inhibition of the CatS target, protease-activated receptor 2 (PAR2), in βENaC-Tg mice resulted in a reduction in airway inflammation and mucin expression, indicating a role for this receptor in CatS-induced lung pathology.Our data indicate an important role for CatS in the pathogenesis of CF-like lung disease mediated in part by PAR2 and highlight CatS as a therapeutic target.
Collapse
Affiliation(s)
- Donna M Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Ryan R Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These two authors contributed equally to this work
| | - Declan F Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anthony Abladey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Zhe Zhou-Suckow
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Rebecca J Delaney
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Lauren Kerrigan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Caoifa M Dougan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Keren S Borensztajn
- INSERM UMRS_933, Université Pierre et Marie Curie, Hôpital Trousseau, Paris, France
| | | | | | - Christopher J Scott
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Guillermo López-Campos
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK
| | - Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Dept of Pediatric Pulmonology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|