1
|
Mpakosi A, Cholevas V, Tzouvelekis I, Passos I, Kaliouli-Antonopoulou C, Mironidou-Tzouveleki M. Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature. Healthcare (Basel) 2024; 12:1767. [PMID: 39273791 PMCID: PMC11395540 DOI: 10.3390/healthcare12171767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Environmental disasters are extreme environmental processes such as earthquakes, volcanic eruptions, landslides, tsunamis, floods, cyclones, storms, wildfires and droughts that are the consequences of the climate crisis due to human intervention in the environment. Their effects on human health have alarmed the global scientific community. Among them, autoimmune diseases, a heterogeneous group of disorders, have increased dramatically in many parts of the world, likely as a result of changes in our exposure to environmental factors. However, only a limited number of studies have attempted to discover and analyze the complex association between environmental disasters and autoimmune diseases. This narrative review has therefore tried to fill this gap. First of all, the activation pathways of autoimmunity after environmental disasters have been analyzed. It has also been shown that wildfires, earthquakes, desert dust storms and volcanic eruptions may damage human health and induce autoimmune responses to inhaled PM2.5, mainly through oxidative stress pathways, increased pro-inflammatory cytokines and epithelial barrier damage. In addition, it has been shown that heat stress, in addition to increasing pro-inflammatory cytokines, may also disrupt the intestinal barrier, thereby increasing its permeability to toxins and pathogens or inducing epigenetic changes. In addition, toxic volcanic elements may accelerate the progressive destruction of myelin, which may potentially trigger multiple sclerosis. The complex and diverse mechanisms by which vector-borne, water-, food-, and rodent-borne diseases that often follow environmental diseases may also trigger autoimmune responses have also been described. In addition, the association between post-disaster stress and the onset or worsening of autoimmune disease has been demonstrated. Given all of the above, the rapid restoration of post-disaster health services to mitigate the flare-up of autoimmune conditions is critical.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia "Agios Panteleimon", 18454 Piraeus, Greece
| | | | - Ioannis Tzouvelekis
- School of Agricultural Technology, Food Technology and Nutrition, Alexander Technological Educational Institute of Thessaloniki, 57400 Thessaloniki, Greece
| | - Ioannis Passos
- Surgical Department, 219, Mobile Army, Surgical Hospital, 68300 Didymoteicho, Greece
| | | | - Maria Mironidou-Tzouveleki
- Department of Pharmacology, School of Medical, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Zhou X, Wang X, Xu J, Tang Q, Bergquist R, Shi L, Qin Z. High-throughput autoantibody profiling of different stages of Schistosomiasis japonica. Autoimmunity 2023; 56:2250102. [PMID: 37599561 DOI: 10.1080/08916934.2023.2250102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Infection by the Schistosoma japonicum can result in acute, chronic and late-stage manifestations. The latter often presents with severe organ failures and premature death. Importantly, infection can also produce autoimmune phenomena reflected by the development of autoantibodies. We wished to explore and profile the presence of autoantibodies in sera of patients with different stages of S. japonicum infection with the added aim of providing a reference assisting diagnosis. Blood samples from 55 patients with chronic and 20 patients with late-stage schistosomiasis japonica together, with a control group of 50 healthy people were randomly investigated against a microarray of 121 different autoantigens. In addition, the frequency of antibodies against Schistosoma egg antigen (SEA) was examined. In the sera from patients with chronic schistosomiasis japonica, 14 different highly expressed autoantibodies were detected, while patients with late-stage schistosomiasis were found to express as many as 43 autoantibody specificities together with a significantly higher frequency of antibodies against SEA compared to the control group. The findings presented suggest that autoantibody-based classification of schistosomiasis japonica represents a promising approach for the elucidation of subtypes of the disease. This approach may reflect differential disease mechanisms, which could ultimately lead to better treatment.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jing Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Qi Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Robert Bergquist
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Ingerod, Brastad, Sweden
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhiqiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| |
Collapse
|
3
|
Wang X, Tang Q, Bergquist R, Zhou X, Qin Z. The Cytokine Profile in Different Stages of Schistosomiasis Japonica. Pathogens 2023; 12:1201. [PMID: 37887717 PMCID: PMC10610117 DOI: 10.3390/pathogens12101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
To explore and profile the level of cytokines in the sera of patients infected with Schistosoma japonicum to explore the helper T-cell response of patients either at the chronic or advanced stage of the disease. We randomly selected 58 subjects from several areas endemic for schistosomiasis japonica in China and collected serum samples to be tested for 18 different cytokines secreted by (1) Th1/Th2 cells (GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-12p70, IL-10, IL-13, IL-18 and TNF-α) and (2) Th9/Th17/Th22/Treg cells (IL-9, IL-17A, IL-21, IL-22, IL-23 and IL-27). The Th1/Th2 cytokines in chronic patients were not significantly different from those in healthy people, while patients with advanced schistosomiasis had higher levels of IL-2, IL-23 and IL-27 and lower levels of IL-18 and IFN-γ. With respect to the Th9/Th17/Th22/Treg cell cytokines, there were higher levels of IL-23. Thus, a limited variation of the cytokine response between the three patient groups was evident, but only in those with advanced infection, while there was no difference between chronic schistosomiasis infection and healthy subjects in this respect. The cytokine expression should be followed in patients with advanced schistosomiasis who show a cytokine pattern of a weakened Th1 cell response and an increased Th17 response.
Collapse
Affiliation(s)
- Xi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.W.); (Q.T.)
| | - Qi Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.W.); (Q.T.)
| | | | - Xiaorong Zhou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China;
| | - Zhiqiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.W.); (Q.T.)
| |
Collapse
|
4
|
Aschenbrenner D, Ye Z, Zhou Y, Hu W, Brooks I, Williams I, Capitani M, Gartner L, Kotlarz D, Snapper SB, Klein C, Muise AM, Marsden BD, Huang Y, Uhlig HH. Pathogenic Interleukin-10 Receptor Alpha Variants in Humans - Balancing Natural Selection and Clinical Implications. J Clin Immunol 2023; 43:495-511. [PMID: 36370291 PMCID: PMC9892166 DOI: 10.1007/s10875-022-01366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
Balancing natural selection is a process by which genetic variants arise in populations that are beneficial to heterozygous carriers, but pathogenic when homozygous. We systematically investigated the prevalence, structural, and functional consequences of pathogenic IL10RA variants that are associated with monogenic inflammatory bowel disease. We identify 36 non-synonymous and non-sense variants in the IL10RA gene. Since the majority of these IL10RA variants have not been functionally characterized, we performed a systematic screening of their impact on STAT3 phosphorylation upon IL-10 stimulation. Based on the geographic accumulation of confirmed pathogenic IL10RA variants in East Asia and in Northeast China, the distribution of infectious disorders worldwide, and the functional evidence of IL-10 signaling in the pathogenesis, we identify Schistosoma japonicum infection as plausible selection pressure driving variation in IL10RA. Consistent with this is a partially augmented IL-10 response in peripheral blood mononuclear cells from heterozygous variant carriers. A parasite-driven heterozygote advantage through reduced IL-10 signaling has implications for health care utilization in regions with high allele frequencies and potentially indicates pathogen eradication strategies that target IL-10 signaling.
Collapse
Affiliation(s)
- Dominik Aschenbrenner
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ziqing Ye
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ying Zhou
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenhui Hu
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Isabel Brooks
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Isabelle Williams
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Melania Capitani
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- SenTcell Ltd., London, UK
| | - Lisa Gartner
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Scott B Snapper
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Gene Center, LMU Munich, Munich, Germany
- Deutsche Zentrum für Infektionsforschung (DZIF) and Deutsches Zentrum für Kinder- und Jugendgesundheit, Partner site Munich, Munich, Germany
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Toronto, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Brian D Marsden
- Centre of Medicines Discovery, NDM, University of Oxford, Oxford, OX3 7DQ, UK
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY, UK
| | - Ying Huang
- Department of Gastroenterology, National Children's Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
- Department of Pediatrics, University of Oxford, Oxford, UK.
- Biomedical Research Center, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Autoimmunity in human CE: Correlative with the fertility status of the CE cyst. Helminthologia 2022; 59:1-17. [PMID: 35601761 PMCID: PMC9075880 DOI: 10.2478/helm-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Cystic echinococcosis is speculated to exert several immune-evasion strategies involving autoimmune-phenomena. We evaluated the hypothesizes that the prevalence of autoantibodies increases in the sera of CE patients that may evidence the association between the parasite and autoimmune diseases. Sera from 63 subjects at distinct types of CE cyst fertility were investigated for antinuclear antibodies (ANA), and anti-CCP antibodies. Plasma levels and cellular production of IL-17A cytokine were specifically defined as being assumed to prime for autoimmunity. Healthy-controls were age and gender-matched to test sera. ANA expressions inside the surgically removed metacestode and adventitial layer were also assayed. Out of 63 patients, 35 % had fertile highly viable cysts (group-1), 41 % had fertile low viable cysts (group-2) and 24 % had non-fertile cysts (group-3). A four-fold increase in ANA sera-levels was detected in group-1 compared with their controls (p-value 0.001) while anti-CCP levels were of insignificant differences. In group-2 and group-3, no significant differences were detected between ANA and anti-CCP sera-levels in CE patients and their controls. IL-17A sera-levels in group-1 and group- 2 were significantly higher than their healthy-controls while being of insignificant differences in group-3, p-value= 0.300. No association was detected between sera-levels of IL-17A and ANA as well as anti-CCP antibodies. Interestingly, relative IL-17A cellular expression associated positive ANA deposition in the parasite cells and adventitial layer. Collectively, based on the parasite fertility, IL-17A and ANA seemed to be involved in the host immune defenses against CE. There is no association between CE and anti-CCP antibodies.
Collapse
|
6
|
El Saftawy EA, Abdelmoktader A, Sabry MM, Alghandour SM. Histological and immunological insights to hydatid disease in camels. Vet Parasitol Reg Stud Reports 2021; 26:100635. [PMID: 34879946 DOI: 10.1016/j.vprsr.2021.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate the immuno-histological evidences in viable and non-viable hydatid cysts obtained from naturally infected camels. METHODS A cohort study (February 2018-December 2019), a total of 15 hydatidosis-infected camels from slaughter houses in Cairo were involved. Specimens were investigated for parasite viability, liver histological changes, IL-17A cytokine immunohistochemical expressions in the adventitial layer, and the anti-nuclear antibodies (ANAs) immunofluorescent expression in the metacestode's structures. Real-Time Quantitative -Morphocytometry and SPSS were utilized. RESULTS Multi-focal lesions and high viability were found in 60% of the cases. Overall accumulation of collagen associated the parasite establishment that involved infiltrations of mononuclear cells with significantly increased IL-17A expression. Interestingly, the ANAs appeared to have a role in the immune-defense against the metacestode showing different patterns. ANAs production correlated with IL-17A expression and the viability of the parasite. CONCLUSION IL-17A responses in hydatidosis is associated with collagen deposition and ANA production as a sort of anti-parasite immunity in a viability dependent manner.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt; Medical Parasitology Department, Faculty of Medicine, Armed Forces College of Medicine, Cairo, Egypt.
| | - Abdelrahman Abdelmoktader
- Medical Microbiology and Immunology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa Mohamed Sabry
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
7
|
Zheng L, Wang L, Hu Y, Yi J, Wan L, Shen Y, Liu S, Zhou X, Cao J. Higher frequency of circulating Vδ1 γδT cells in patients with advanced schistosomiasis. Parasite Immunol 2021; 43:e12871. [PMID: 34037255 PMCID: PMC9285544 DOI: 10.1111/pim.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
Gamma‐delta (γδ) T cells are the bridge between natural and adaptive immunity. In the present study, peripheral blood was collected from 13 patients with advanced schistosomiasis (schistosomiasis group) and 13 uninfected people (control group) to investigate the γδ T cells and their subtypes in human schistosomiasis. Compared with the control group, the proportion of Vδ1 cells and CD27+Vδ1+ cells in the schistosomiasis group increased significantly, while CD27− cells and CD27−Vδ1− cells decreased. Only the level of IL‐17A differed between the groups, being significantly decreased in the schistosomiasis group. In the schistosomiasis group, there were no correlations between the liver fibrosis and subsets of γδ T cells, or the level of cytokines. Additionally, the level of IL‐17A correlated positively with the proportion of CD27− Vδ1− cells. Thus, there was a higher frequency of circulating Vδ1 γδT cells in patients with advanced schistosomiasis. The decreased IL‐17A might be related to the reduction in CD27−Vδ1− cell.
Collapse
Affiliation(s)
- Li Zheng
- Department of Immunology, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China
| | - Lixia Wang
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People's Republic of China, WHO Collaborating Center for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Yi
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Lun Wan
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People's Republic of China, WHO Collaborating Center for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Liu
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaorong Zhou
- Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of People's Republic of China, WHO Collaborating Center for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Chimponda TN, Mduluza T. Inflammation during Schistosoma haematobium infection and anti-allergy in pre-school-aged children living in a rural endemic area in Zimbabwe. Trop Med Int Health 2020; 25:618-623. [PMID: 31990094 DOI: 10.1111/tmi.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Allergies and autoimmune disorders are less prevalent in areas where parasitic infections are abundant. The relationship between schistosomiasis, Chitinase 3-Like 1 protein (YKL-40), an inflammatory marker, and antinuclear antibodies (ANA), an allergy marker, was investigated in pre-school-aged children (1-5 years old) living in an area endemic to Schistosoma haematobium infection. METHODS Cross-sectional study including 145 participants, 66 females and 79 males. S. haematobium infection was diagnosed using the urine filtration technique. Levels of YKL-40 and antinuclear antibodies concentrations were determined using enzyme-linked immunosorbent assay. RESULTS The prevalence of S. haematobium infection was 21.4 % (n = 31) with 114 not infected, 18 with light and 13 with moderate infections. YKL-40 levels were higher in the S. haematobium-infected group than in the uninfected group (P = 0.038). However, S. haematobium infection intensity did not correlate with YKL-40 levels. ANA levels were significantly higher in uninfected children than in infected children (P = 0.028). There was a significant inverse relationship between ANA levels and schistosome infection intensity (r = -0.225, P = 0.016). The correlation between ANA levels and YKL-40 levels was not significant. CONCLUSION Inflammatory marker in pre-school-aged children living in an area endemic for schistosomiasis indicate YKL-40 as a possible biomarker of S. haematobium infection in pre-school-aged children, warranting further investigations in a longitudinal study. The study gives an insight into allergy as ANA levels were higher in schistosome-uninfected than infected participants, further studies on allergies are needed.
Collapse
Affiliation(s)
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
9
|
Abdoli A, Ardakani HM. Helminth infections and immunosenescence: The friend of my enemy. Exp Gerontol 2020; 133:110852. [PMID: 32007545 DOI: 10.1016/j.exger.2020.110852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/13/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Age-associated alterations of the immune system, which known as "immunosenescence", is characterized by a decline in innate and adaptive immunity, which leading to increased susceptibility to age-associated diseases, such as infectious diseases, rheumatic disease and malignancies. On the other hand, helminth infections are among the most prevalent infections in older individuals, especially in the nursing homes. Most of helminth infections have minor clinical symptoms and usually causing chronic infections without treatment. Nevertheless, chronic helminthiasis alters immune responses somewhat similar to the immunosenescence. Some similarities also exist between helminth infections and immunosenescence: 1) both of them led to declining the immune responses; 2) undernutrition is a consequence of immunosenescence and helminthiasis; 3) vaccine efficacy declines in aging and individuals with helminth infections; 4) increase incidence and prevalence of infectious diseases in the elder individuals and patients with helminth infections; and 5) both of them promote tumorigenesis. Hence, it is probable that helminth infections in the elderly population can intensify the immunosenescence outcomes due to the synergistic immunoregulatory effects of each of them. It would be suggested that, diagnosis, treatment and prevention of helminth infections should be more considered in older individuals. Also, it would be suggested that helminths or their antigens can be used for investigation of immunosenescence because both of them possess some similarities in immune alterations. Taken together, this review offers new insights into the immunology of aging and helminth infections.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|