1
|
Jia X, Xiong Y, Xiong Y, Li D, Ji X, Lei X, You M, Bai S, Zhang J, Ma X. The molecular regulatory mechanism of reed canary grass under salt, waterlogging, and combined stress was analyzed by transcriptomic analysis. BMC PLANT BIOLOGY 2024; 24:857. [PMID: 39266955 PMCID: PMC11396401 DOI: 10.1186/s12870-024-05564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Reed canary grass has been identified as a suitable species for restoring plateau wetlands and understanding plant adaptation mechanisms in wetland environments. In this study, we subjected a reed canary grass cultivar 'Chuanxi' to waterlogging, salt, and combined stresses to investigate its phenotypic characteristics, physiological indices, and transcriptome changes under these conditions. RESULTS The results revealed that the growth rate was slower under salt stress than under waterlogging stress. The chlorophyll content and energy capture efficiency of the PS II reaction center decreased with prolonged exposure to each stress. Conversely, while the activities of enzymes associated with respiratory metabolism, as well as MDA, PRO, Na+, and K+-ATPase, increased. The formation of distinct aerenchyma was observed under waterlogging stress and combined stress. Transcriptome sequencing analysis identified 5,379, 4,169, and 14,993 DEGs under CK vs. W, CK vs. S, and CK vs. SW conditions, respectively. The WRKY was found to be the most abundant under waterlogging stress, whereas the MYB predominated under salt stress and combined stress. Glutathione metabolic pathways and Plant hormone signal transduction have also been found to play important roles in stress. CONCLUSION By integrating phenotypic, physiological, anatomical, and transcriptomic, this research provides valuable insights into how reed canary grass responds to salt, waterlogging, and combined stresses. These findings may inform the ecological application of reed canary grass in high-altitude wetlands and for breeding purposes.
Collapse
Affiliation(s)
- Xuejie Jia
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Xiaofei Ji
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621002, China
| | - Jianbo Zhang
- Sichuan Academy of Grassland Science, Chengdu, 610097, China.
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Mahomud MS, Islam MN, Roy J. Effect of low oxygen stress on the metabolic responses of tomato fruit cells. Heliyon 2024; 10:e24566. [PMID: 38327398 PMCID: PMC10847614 DOI: 10.1016/j.heliyon.2024.e24566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Postharvest losses of fruits and vegetables can occur due to cell breakdown and browning during controlled atmosphere storage as a result of low oxygen (O2) stress. Therefore, the study was designed to better understand the underlying mechanisms of the response of isolated tomato fruit cells incubated at low O2 (hypoxic and anoxic) conditions as a model system. The O2 stress conditions used for the experiment were based on the results of the Michaelis-Menten constant (Km) of respiration. A total of 56 polar metabolites belonging mainly to different functional groups, including amino acids, organic acids, sugars and sugar alcohols, were identified using GC-MS. O2 stress stimulated the biosynthesis of most of the free amino acids while decreasing the synthesis of most of the organic acids (especially those linked to the tricarboxylic acid cycle), sugars (except for ribose) and other nitrogen-containing compounds. The down-regulation of these TCA cycle metabolites served to provide energy to ensure the survival of the cell. Increases in the sugar alcohol levels and induction of fermentative metabolism were observed under low O2 stress. By employing multivariate statistics, metabolites were identified that were essential to the oxygen stress response and establishing the correlation between metabolite abundance, oxygen levels, and incubation period were achievable. A higher correlation was observed between the O2 levels and most of the metabolites.
Collapse
Affiliation(s)
- Md. Sultan Mahomud
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md. Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
- Institute of Food Safety and Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Joysree Roy
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| |
Collapse
|
3
|
Abstract
Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.
Collapse
|
4
|
Li X, Zhang M, Li Y, Yu X, Nie J. Effect of neonicotinoid dinotefuran on root exudates of Brassica rapa var. chinensis. CHEMOSPHERE 2021; 266:129020. [PMID: 33248730 DOI: 10.1016/j.chemosphere.2020.129020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Root exudates are released by plant roots and are important carrier substances for material exchange and information transmission among plants and the rhizosphere. In the present study, the effect of dinotefuran on root exudates of Chinese cabbage (Brassica rapa var. chinensis) was investigated. The physiological activities revealed that dinotefuran uptake caused oxidative stress in vegetable tissues even at low dinotefuran exposure levels. The metabolic profile of plant root exudates acquired by LC-QTOF/MS was clearly changed by dinotefuran, where the numbers of both up- and down-regulated MS peaks increased with increasing dinotefuran concentration. Under dinotefuran stress, some osmotic adjustment substances (proline and betaine) and defence-related metabolites (spermidine, phenylalanine and some phenolic acids) were significantly upregulated, which may help plants adapt to adverse environmental conditions. Specifically, the contents of some phenylalanine-derived secondary metabolites increased with increasing dinotefuran concentration, which may increase the external detoxification ability of plants. Moreover, respiration metabolism was significantly affected, where some intermediates in the TCA cycle (succinic acid and malic acid) were upregulated with low-level dinotefuran exposure; however, anaerobic respiration products (lactic acid and 3-phenyllactic acid) were accumulated at high exposure levels. In addition, the release of glucosinolates was significantly inhibited in both dinotefuran treatment groups.
Collapse
Affiliation(s)
- Xiaoqing Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China
| | - Mingxia Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China
| | - Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Zhenjiang City University Road, Zhenjiang, 212001, China.
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
5
|
Mucalo A, Maletić E, Zdunić G. Extended Harvest Date Alter Flavonoid Composition and Chromatic Characteristics of Plavac Mali ( Vitis vinifera L.) Grape Berries. Foods 2020; 9:foods9091155. [PMID: 32825764 PMCID: PMC7555124 DOI: 10.3390/foods9091155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022] Open
Abstract
This study delivers a comprehensive flavonoid fingerprint profile, physiochemical and external color characterization of Plavac Mali grapes through four harvest dates at two distinct vineyards (Split and Zadar) in the Eastern Adriatic region. The experimental harvest lasted 56 days, at total soluble solids content from 18.4 to 22.4°Brix in Split and 16.8 to 20.4°Brix in Zadar. Patterns of 27 skin and seed flavonoid compounds at each location indicate unique flavonoid composition of berries at each harvest date. Extended harvest increased six compounds in skin with maximum values of main anthocyanin malvidin-3-O-glucoside in H3 (4406.6 and 6389.5 mg kg−1, Split and Zadar, respectively) followed by a decrease in October. Peak values of seed and skin catechins and galloylated flavan-3-ol subunits are seen in H1 and H2 at Split, while constantly high values are reported in the case of Zadar, with an incoherent pattern of those in skin extracts. Minimal values of epigallocatechin were detected with an extended harvest date at both locations. Berries of extended harvest dates underwent colorimetric improvements, trough decrease in L*, a*, b* and C characteristics and increase in skin color index for red grapes CIRG. The extended harvest date promotes flavonoid composition, and improves the quality of Plavac Mali grape berries.
Collapse
Affiliation(s)
- Ana Mucalo
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia;
- Correspondence: ; Tel.: +385-21-434-496
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Goran Zdunić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia;
| |
Collapse
|
6
|
Brizzolara S, Manganaris GA, Fotopoulos V, Watkins CB, Tonutti P. Primary Metabolism in Fresh Fruits During Storage. FRONTIERS IN PLANT SCIENCE 2020; 11:80. [PMID: 32140162 PMCID: PMC7042374 DOI: 10.3389/fpls.2020.00080] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 05/07/2023]
Abstract
The extension of commercial life and the reduction of postharvest losses of perishable fruits is mainly based on storage at low temperatures alone or in combination with modified atmospheres (MAs) and controlled atmospheres (CAs), directed primarily at reducing their overall metabolism thus delaying ripening and senescence. Fruits react to postharvest conditions with desirable changes if appropriate protocols are applied, but otherwise can develop negative and unacceptable traits due to the onset of physiological disorders. Extended cold storage periods and/or inappropriate temperatures can result in development of chilling injuries (CIs). The etiology, incidence, and severity of such symptoms vary even within cultivars of the same species, indicating the genotype significance. Carbohydrates and amino acids have protective/regulating roles in CI development. MA/CA storage protocols involve storage under hypoxic conditions and high carbon dioxide concentrations that can maximize quality over extended storage periods but are also affected by the cultivar, exposure time, and storage temperatures. Pyruvate metabolism is highly reactive to changes in oxygen concentration and is greatly affected by the shift from aerobic to anaerobic metabolism. Ethylene-induced changes in fruits can also have deleterious effects under cold storage and MA/CA conditions, affecting susceptibility to chilling and carbon dioxide injuries. The availability of the inhibitor of ethylene perception 1-methylcyclopropene (1-MCP) has not only resulted in development of a new technology but has also been used to increase understanding of the role of ethylene in ripening of both non-climacteric and climacteric fruits. Temperature, MA/CA, and 1-MCP alter fruit physiology and biochemistry, resulting in compositional changes in carbon- and nitrogen-related metabolisms and compounds. Successful application of these storage technologies to fruits must consider their effects on the metabolism of carbohydrates, organic acids, amino acids and lipids.
Collapse
Affiliation(s)
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Christopher B. Watkins
- School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Pietro Tonutti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- *Correspondence: Pietro Tonutti,
| |
Collapse
|
7
|
Chaudhary J, Khatri P, Singla P, Kumawat S, Kumari A, R V, Vikram A, Jindal SK, Kardile H, Kumar R, Sonah H, Deshmukh R. Advances in Omics Approaches for Abiotic Stress Tolerance in Tomato. BIOLOGY 2019; 8:biology8040090. [PMID: 31775241 PMCID: PMC6956103 DOI: 10.3390/biology8040090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Tomato, one of the most important crops worldwide, has a high demand in the fresh fruit market and processed food industries. Despite having considerably high productivity, continuous supply as per the market demand is hard to achieve, mostly because of periodic losses occurring due to biotic as well as abiotic stresses. Although tomato is a temperate crop, it is grown in almost all the climatic zones because of widespread demand, which makes it challenge to adapt in diverse conditions. Development of tomato cultivars with enhanced abiotic stress tolerance is one of the most sustainable approaches for its successful production. In this regard, efforts are being made to understand the stress tolerance mechanism, gene discovery, and interaction of genetic and environmental factors. Several omics approaches, tools, and resources have already been developed for tomato growing. Modern sequencing technologies have greatly accelerated genomics and transcriptomics studies in tomato. These advancements facilitate Quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). However, limited efforts have been made in other omics branches like proteomics, metabolomics, and ionomics. Extensive cataloging of omics resources made here has highlighted the need for integration of omics approaches for efficient utilization of resources and a better understanding of the molecular mechanism. The information provided here will be helpful to understand the plant responses and the genetic regulatory networks involved in abiotic stress tolerance and efficient utilization of omics resources for tomato crop improvement.
Collapse
Affiliation(s)
- Juhi Chaudhary
- Department of Biology, Oberlin College, Oberlin, OH 44074, USA;
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Pankaj Singla
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Anu Kumari
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Vinaykumar R
- Department of Vegetable Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (V.R.); (A.V.)
| | - Amit Vikram
- Department of Vegetable Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (V.R.); (A.V.)
| | - Salesh Kumar Jindal
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Hemant Kardile
- Division of Crop Improvement, ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh 171001, India;
| | - Rahul Kumar
- Department of Plant Science, University of Hyderabad, Hyderabad 500046, India;
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
- Correspondence: (H.S.); (R.D.)
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
- Correspondence: (H.S.); (R.D.)
| |
Collapse
|
8
|
Armstrong W, Beckett PM, Colmer TD, Setter TL, Greenway H. Tolerance of roots to low oxygen: 'Anoxic' cores, the phytoglobin-nitric oxide cycle, and energy or oxygen sensing. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:92-108. [PMID: 31255944 DOI: 10.1016/j.jplph.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Acclimation by plants to hypoxia and anoxia is of importance in various ecological systems, and especially for roots in waterlogged soil. We present evidence for acclimation by roots via 'anoxic' cores rather than being triggered by O2 sensors. The evidence for 'anoxic' cores comes from radial O2 profiles across maize roots and associated metabolic changes such as increases in the 'anaerobic enzymes' ADH and PDC in the 'anoxic' core, and inhibition of Cl- transport to the xylem. These cores are predicted to develop within 15-20 min after sudden transfer of a root to hypoxia, so that the cores are 'anoxically-shocked'. We suggest that 'anoxic' cores could emanate a signal(s), such as ACC the precursor of ethylene and/or propagation of a 'Ca2+ wave', to other tissue zones. There, the signalling would result in acclimation of the tissues to energy crisis metabolism. An O2 diffusion model for tissues with an 'anoxic' core, indicates that the phytoglobin-nitric oxide (Pgb-NO) cycle would only be engaged in a thin 'shell' (annulus) of tissue surrounding the 'anoxic' core, and so would only contribute small amounts of ATP on a whole organ basis (e.g. whole roots). A key feature within this annulus of tissue, where O2 is likely to be limiting, is that the ratio (ATP formed) / (O2 consumed) is 5-6, both when the NAD(P)H of glycolysis is converted to NAD(P)+ by the Pgb-NO cycle or by the TCA cycle linked to the electron transport chain. The main function of the Pgb-NO cycle may be the modulating of NO levels and O2 scavenging, thus preventing oxidative damage. We speculate that an 'anoxic' core in hypoxic plant organs may have a particularly high tolerance to anoxia because cells might receive a prolonged supply of carbohydrates and/or ATP from the regions still receiving sufficient O2 for oxidative phosphorylation. Severely hypoxic or 'anoxic' cores are well documented, but much research on responses of roots to hypoxia is still based on bulk tissue analyses. More research is needed on the interaction between 'anoxic' cores and tissues still receiving sufficient O2 for oxidative phosphorylation, both during a hypoxic exposure and during subsequent anoxia of the tissue/organ as a whole.
Collapse
Affiliation(s)
- William Armstrong
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia; Department of Biological Sciences, The University of Hull, Hull, UK
| | | | - Timothy D Colmer
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia.
| | - Timothy L Setter
- Agricultural and Environmental Consultant, P.O. Box 305, Bull Creek, 6149, WA, Australia
| | - Hank Greenway
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia
| |
Collapse
|
9
|
Belay ZA, Caleb OJ, Mahajan PV, Opara UL. Response of pomegranate arils (cv. Wonderful) to low oxygen stress under active modified atmosphere condition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1088-1097. [PMID: 30022481 DOI: 10.1002/jsfa.9276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Successful characterization of the relationship between respiration rate (RR) and low oxygen (O2 ) limit is critical for optimizing the modified atmosphere condition. It is well documented that a low O2 atmosphere reduces the RR of fresh produce, but could also lead to abiotic stress due to the accumulation of glycolysis end products. Therefore, this study investigated the response of pomegranate arils exposed to low O2 atmosphere (composed of 2 kPa O2 , 18 kPa carbon dioxide, and 80 kPa nitrogen) and identified the low O2 limit at 5 °C and 10 °C. The study aim was achieved by using real-time RR and respiration quotient (RQ) data, microbial growth, identifying changes in the fermentative volatile organic compounds profile, and the consumption of respiratory metabolites (organic acids and individual sugars). RESULTS The gas concentrations changed significantly respective to the storage temperature and resulted in a significant change in the parameters studied. The response of pomegranate arils to low O2 stress involves making alterations to the metabolic composition, especially those involved in anaerobiosis, such as the accumulation of ethanol, and an immediate increase on RQ. CONCLUSION Pomegranate arils (cv. Wonderful) can tolerate down to 1.9 kPa O2 and 2.3 kPa O2 concentrations at 5 °C and 10 °C respectively. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zinash A Belay
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Oluwafemi J Caleb
- Department of Horticultural Engineering, Leibniz-Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam-Bornim, Potsdam, Germany
| | - Pramod V Mahajan
- Department of Horticultural Engineering, Leibniz-Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam-Bornim, Potsdam, Germany
| | - Umezuruike L Opara
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Biswas S, Biswas AK, De B. Metabolomics analysis of Cajanus cajan L. seedlings unravelled amelioration of stress induced responses to salinity after halopriming of seeds. PLANT SIGNALING & BEHAVIOR 2018; 13:e1489670. [PMID: 29995565 PMCID: PMC6128681 DOI: 10.1080/15592324.2018.1489670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Soil salinity has become a major concern for agriculture. Such constraints not only reinforce the urgent need to understand the underlying mechanisms by which plants cope during salt stress but also to develop cost-effective and farmer friendly halopriming technique to alleviate the adverse effects of salinity to some extent. Metabolomics approach was used to explore different responses to physiological metabolites and pathway variations that occur during salt stress responses in Cajanus cajan L. var. Rabi and to understand the role of halopriming in ameliorating stress at the level of metabolite. Seedlings raised from non-primed and haloprimed seeds, grown in hydroponic solution, were subjected to different concentrations of NaCl. After 21 days, metabolites were extracted, derivatized and analyzed by GC-MS. The data were analysed by different multivariate analyses. Chemometric study of the identified metabolites indicated that the leaves responded most to NaCl induced stress than the stem and root with production of beta-cyano-L-alanine and also increased level of different compatible solutes. O-Acetylsalicylic was also found to increase in all the parts upon facing stress but, such upregulated metabolite production was downregulated in the leaves when the seeds were haloprimed before germination, although many of the metabolites, including beta-cyanoalanine, showed a trend of increase with increase in salt concentrations. Important metabolites produced by C. cajan seedlings in response to salinity were unravelled. Pre-germination haloprimimg of seeds resulted in amelioration of NaCl induced stress, as the levels of stress induced metabolites were lowered.
Collapse
Affiliation(s)
- Sabarni Biswas
- Centre for Advanced Study, Department of Botany, University of Calcutta, Kolkata India
| | - Asok K. Biswas
- Centre for Advanced Study, Department of Botany, University of Calcutta, Kolkata India
| | - Bratati De
- Centre for Advanced Study, Department of Botany, University of Calcutta, Kolkata India
- CONTACT Bratati DeCentre for Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|
11
|
Schoina C, Bouwmeester K, Govers F. Infection of a tomato cell culture by Phytophthora infestans; a versatile tool to study Phytophthora-host interactions. PLANT METHODS 2017; 13:88. [PMID: 29090012 PMCID: PMC5657071 DOI: 10.1186/s13007-017-0240-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND The oomycete Phytophthora infestans causes late blight on potato and tomato. Despite extensive research, the P. infestans-host interaction is still poorly understood. To find new ways to further unravel this interaction we established a new infection system using MsK8 tomato cells. These cells grow in suspension and can be maintained as a stable cell line that is representative for tomato. RESULTS MsK8 cells can host several Phytophthora species pathogenic on tomato. Species not pathogenic on tomato could not infect. Microscopy revealed that 16 h after inoculation up to 36% of the cells were infected. The majority were penetrated by a germ tube emerging from a cyst (i.e. primary infection) while other cells were already showing secondary infections including haustoria. In incompatible interactions, MsK8 cells showed defense responses, namely reactive oxygen species production and cell death leading to a halt in pathogen spread at the single cell level. In compatible interactions, several P. infestans genes, including RXLR effector genes, were expressed and in both, compatible and incompatible interactions tomato genes involved in defense were differentially expressed. CONCLUSIONS Our results show that P. infestans can prosper as a pathogen in MsK8 cells; it not only infects, but also makes haustoria and sporulates, and it receives signals that activate gene expression. Moreover, MsK8 cells have the ability to support pathogen growth but also to defend themselves against infection in a similar way as whole plants. An advantage of MsK8 cells compared to leaves is the more synchronized infection, as all cells have an equal chance of being infected. Moreover, analyses and sampling of infected tissue can be performed in a non-destructive manner from early time points of infection onwards and as such the MsK8 infection system offers a potential platform for large-scale omics studies and activity screenings of inhibitory compounds.
Collapse
Affiliation(s)
- Charikleia Schoina
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
12
|
Beshir WF, Mbong VBM, Hertog MLATM, Geeraerd AH, Van den Ende W, Nicolaï BM. Dynamic Labeling Reveals Temporal Changes in Carbon Re-Allocation within the Central Metabolism of Developing Apple Fruit. FRONTIERS IN PLANT SCIENCE 2017; 8:1785. [PMID: 29093725 PMCID: PMC5651688 DOI: 10.3389/fpls.2017.01785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/02/2017] [Indexed: 05/05/2023]
Abstract
In recent years, the application of isotopically labeled substrates has received extensive attention in plant physiology. Measuring the propagation of the label through metabolic networks may provide information on carbon allocation in sink fruit during fruit development. In this research, gas chromatography coupled to mass spectrometry based metabolite profiling was used to characterize the changing metabolic pool sizes in developing apple fruit at five growth stages (30, 58, 93, 121, and 149 days after full bloom) using 13C-isotope feeding experiments on hypanthium tissue discs. Following the feeding of [U-13C]glucose, the 13C-label was incorporated into the various metabolites to different degrees depending on incubation time, metabolic pathway activity, and growth stage. Evidence is presented that early in fruit development the utilization of the imported sugars was faster than in later developmental stages, likely to supply the energy and carbon skeletons required for cell division and fruit growth. The declined 13C-incorporation into various metabolites during growth and maturation can be associated with the reduced metabolic activity, as mirrored by the respiratory rate. Moreover, the concentration of fructose and sucrose increased during fruit development, whereas concentrations of most amino and organic acids and polyphenols declined. In general, this study showed that the imported compounds play a central role not only in carbohydrate metabolism, but also in the biosynthesis of amino acid and related protein synthesis and secondary metabolites at the early stage of fruit development.
Collapse
Affiliation(s)
- Wasiye F. Beshir
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Victor B. M. Mbong
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Maarten L. A. T. M. Hertog
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Annemie H. Geeraerd
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bart M. Nicolaï
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
- *Correspondence: Bart M. Nicolaï
| |
Collapse
|
13
|
Yasmeen F, Raja NI, Razzaq A, Komatsu S. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:28-42. [PMID: 27717896 DOI: 10.1016/j.bbapap.2016.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
To elucidate the role of Cu and Fe NPs on the yield of wheat varieties, a gel-free proteomic technique was used. NPs were synthesized and characterized through zeta potential, EDX, and SEM. Spike length, number of grains per spike, and 1000 grain weight were increased in wheat varieties treated with 25ppm Cu and Fe NPs. On treatment with 25ppm Cu and Fe NPs, a total of 58, 121, and 25 proteins were changed in abundance in wheat seeds of galaxy-13, Pakistan-13, and NARC-11, respectively. In galaxy-13, exposure to Cu NPs increased proteins involved in starch degradation and glycolysis. Furthermore, the number of proteins related to starch degradation, glycolysis, and tricarboxylic acid cycle was increased in galaxy-13 on Fe NPs exposure. Proteins related to glycolysis and the tricarboxylic acid cycle was increased in Pakistan-13 and NARC-11 by Fe NPs exposure. The sugar content and SOD activity was increased in wheat seeds treated with Cu and Fe NPs. The Cu content was increased at 25ppm Cu NPs exposure in seeds of wheat varieties. These results suggest that Cu NPs improved stress tolerance in wheat varieties by mediating the process of starch degradation, glycolysis, and tricarboxylic acid cycle through NPs uptake.
Collapse
Affiliation(s)
- Farhat Yasmeen
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Abdul Razzaq
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
14
|
Freund DM, Hegeman AD. Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Curr Opin Biotechnol 2016; 43:41-48. [PMID: 27610928 DOI: 10.1016/j.copbio.2016.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023]
Abstract
Methods employing isotope labeled compounds have been an important part of the bioanalytical canon for many decades. The past fifteen years have seen the development of many new approaches using stable (non-radioactive) isotopes as labels for high-throughput bioanalytical, 'omics-scale' measurements of metabolites (metabolomics) and proteins (proteomics). This review examines stable isotopic labeling approaches that have been developed for labeling whole intact plants, plant tissues, or crude extracts of plant materials with stable isotopes (mainly using 2H, 13C, 15N, 18O or 34S). The application of metabolome-scale labeling for improving metabolite annotation, metabolic pathway elucidation, and relative quantification in mass spectrometry-based metabolomics of plants is also reviewed.
Collapse
Affiliation(s)
- Dana M Freund
- Department of Horticultural Science, Department of Plant Biology, and the Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN, USA
| | - Adrian D Hegeman
- Department of Horticultural Science, Department of Plant Biology, and the Microbial and Plant Genomics Institute, University of Minnesota, Twin Cities, MN, USA.
| |
Collapse
|
15
|
Zhang J, Yang D, Li M, Shi L. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress. PLoS One 2016; 11:e0159622. [PMID: 27442489 PMCID: PMC4956222 DOI: 10.1371/journal.pone.0159622] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/06/2016] [Indexed: 11/19/2022] Open
Abstract
Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean (Glycine soja) under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrometry (GC-MS)-based metabolomics, to reveal the physiological and molecular differences in salt tolerance. According to comparisons of growth parameters under the two kinds of salt stresses, the level of inhibition in wild soybean was lower than in cultivated soybean, especially under alkali-salt stress. Moreover, wild soybean contained significantly higher amounts of phenylalanine, asparagine, citraconic acid, citramalic acid, citric acid and α-ketoglutaric acid under neutral-salt stress, and higher amounts of palmitic acid, lignoceric acid, glucose, citric acid and α-ketoglutaric acid under alkali-salt stress, than cultivated soybean. Further investigations demonstrated that the ability of wild soybean to salt tolerance was mainly based on the synthesis of organic and amino acids, and the more active tricarboxylic acid cycle under neutral-salt stress. In addition, the metabolite profiling analysis suggested that the energy generation from β-oxidation, glycolysis and the citric acid cycle plays important roles under alkali-salt stress. Our results extend the understanding of mechanisms involved in wild soybean salt tolerance and provide an important reference for increasing yields and developing salt-tolerant soybean cultivars.
Collapse
Affiliation(s)
- Jing Zhang
- School of life sciences, Northeast Normal University, Changchun, 130024, China
| | - Dongshuang Yang
- School of life sciences, Northeast Normal University, Changchun, 130024, China
| | - Mingxia Li
- School of life sciences, Northeast Normal University, Changchun, 130024, China
| | - Lianxuan Shi
- School of life sciences, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
16
|
Bekele EA, Beshir WF, Hertog MLATM, Nicolai BM, Geeraerd AH. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress. PHYSIOLOGIA PLANTARUM 2015; 155:232-47. [PMID: 26031836 DOI: 10.1111/ppl.12351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/30/2015] [Accepted: 05/06/2015] [Indexed: 05/14/2023]
Abstract
Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production.
Collapse
Affiliation(s)
- Elias A Bekele
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Wasiye F Beshir
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Maarten L A T M Hertog
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Bart M Nicolai
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| | - Annemie H Geeraerd
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), KU Leuven, Willem de Croylaan 42, bus 2428, 3001, Leuven, Belgium
| |
Collapse
|
17
|
Klecker M, Gasch P, Peisker H, Dörmann P, Schlicke H, Grimm B, Mustroph A. A Shoot-Specific Hypoxic Response of Arabidopsis Sheds Light on the Role of the Phosphate-Responsive Transcription Factor PHOSPHATE STARVATION RESPONSE1. PLANT PHYSIOLOGY 2014; 165:774-790. [PMID: 24753539 PMCID: PMC4044847 DOI: 10.1104/pp.114.237990] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/17/2014] [Indexed: 05/05/2023]
Abstract
Plant responses to biotic and abiotic stresses are often very specific, but signal transduction pathways can partially or completely overlap. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the transcriptional responses to phosphate starvation and oxygen deficiency stress comprise a set of commonly induced genes. While the phosphate deficiency response is systemic, under oxygen deficiency, most of the commonly induced genes are found only in illuminated shoots. This jointly induced response to the two stresses is under control of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), but not of the oxygen-sensing N-end rule pathway, and includes genes encoding proteins for the synthesis of galactolipids, which replace phospholipids in plant membranes under phosphate starvation. Despite the induction of galactolipid synthesis genes, total galactolipid content and plant survival are not severely affected by the up-regulation of galactolipid gene expression in illuminated leaves during hypoxia. However, changes in galactolipid molecular species composition point to an adaptation of lipid fluxes through the endoplasmic reticulum and chloroplast pathways during hypoxia. PHR1-mediated signaling of phosphate deprivation was also light dependent. Because a photoreceptor-mediated PHR1 activation was not detectable under hypoxia, our data suggest that a chloroplast-derived retrograde signal, potentially arising from metabolic changes, regulates PHR1 activity under both oxygen and phosphate deficiency.
Collapse
Affiliation(s)
- Maria Klecker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Philipp Gasch
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Helga Peisker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Peter Dörmann
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Hagen Schlicke
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Bernhard Grimm
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Angelika Mustroph
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| |
Collapse
|