1
|
Pavlovič A, Koller J, Vrobel O, Chamrád I, Lenobel R, Tarkowski P. Is the co-option of jasmonate signalling for botanical carnivory a universal trait for all carnivorous plants? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:334-349. [PMID: 37708289 PMCID: PMC10735409 DOI: 10.1093/jxb/erad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
The carnivorous plants in the order Caryophyllales co-opted jasmonate signalling from plant defence to botanical carnivory. However, carnivorous plants have at least 11 independent origins, and here we ask whether jasmonate signalling has been co-opted repeatedly in different evolutionary lineages. We experimentally wounded and fed the carnivorous plants Sarracenia purpurea (order Ericales), Cephalotus follicularis (order Oxalidales), Drosophyllum lusitanicum (order Caryophyllales), and measured electrical signals, phytohormone tissue level, and digestive enzymes activity. Coronatine was added exogenously to confirm the role of jasmonates in the induction of digestive process. Immunodetection of aspartic protease and proteomic analysis of digestive fluid was also performed. We found that prey capture induced accumulation of endogenous jasmonates only in D. lusitanicum, in accordance with increased enzyme activity after insect prey or coronatine application. In C. follicularis, the enzyme activity was constitutive while in S. purpurea was regulated by multiple factors. Several classes of digestive enzymes were identified in the digestive fluid of D. lusitanicum. Although carnivorous plants from different evolutionary lineages use the same digestive enzymes, the mechanism of their regulation differs. All investigated genera use jasmonates for their ancient role, defence, but jasmonate signalling has been co-opted for botanical carnivory only in some of them.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Koller
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Center of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Center of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
2
|
Degtyaryov E, Pigolev A, Miroshnichenko D, Frolov A, Basnet AT, Gorbach D, Leonova T, Pushin AS, Alekseeva V, Dolgov S, Savchenko T. 12-Oxophytodienoate Reductase Overexpression Compromises Tolerance to Botrytis cinerea in Hexaploid and Tetraploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2050. [PMID: 37653967 PMCID: PMC10222670 DOI: 10.3390/plants12102050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
12-Oxophytodienoate reductase is the enzyme involved in the biosynthesis of phytohormone jasmonates, which are considered to be the major regulators of plant tolerance to biotic challenges, especially necrotrophic pathogens. However, we observe compromised tolerance to the necrotrophic fungal pathogen Botrytis cinerea in transgenic hexaploid bread wheat and tetraploid emmer wheat plants overexpressing 12-OXOPHYTODIENOATE REDUCTASE-3 gene from Arabidopsis thaliana, while in Arabidopsis plants themselves, endogenously produced and exogenously applied jasmonates exert a strong protective effect against B. cinerea. Exogenous application of methyl jasmonate on hexaploid and tetraploid wheat leaves suppresses tolerance to B. cinerea and induces the formation of chlorotic damages. Exogenous treatment with methyl jasmonate in concentrations of 100 µM and higher causes leaf yellowing even in the absence of the pathogen, in agreement with findings on the role of jasmonates in the regulation of leaf senescence. Thereby, the present study demonstrates the negative role of the jasmonate system in hexaploid and tetraploid wheat tolerance to B. cinerea and reveals previously unknown jasmonate-mediated responses.
Collapse
Affiliation(s)
- Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
| | - Alexey Pigolev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
| | - Dmitry Miroshnichenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Adi Ti Basnet
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany; (A.F.); (A.T.B.); (D.G.); (T.L.)
| | - Alexander S. Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Valeriya Alekseeva
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Sergey Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.S.P.); (V.A.); (S.D.)
| | - Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.D.); (A.P.); (D.M.)
| |
Collapse
|
3
|
Ivesic C, Adlassnig W, Koller-Peroutka M, Kress L, Lang I. Snatching Sundews-Analysis of Tentacle Movement in Two Species of Drosera in Terms of Response Rate, Response Time, and Speed of Movement. PLANTS (BASEL, SWITZERLAND) 2022; 11:3212. [PMID: 36501252 PMCID: PMC9740574 DOI: 10.3390/plants11233212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Drosera, Droseraceae, catch prey with sticky tentacles. Both Australian Drosera allantostigma and widespread D. rotundifolia show three types of anatomically different tentacles: short, peripheral, and snap-tentacles. The latter two are capable of fast movement. This motion was analysed after mechanical, chemical, and electrical stimulation with respect to response rate, response time, and angular velocity of bending. Compared to D. rotundifolia, D. allantostigma responds more frequently and faster; the tentacles bend with higher angular velocity. Snap-tentacles have a lower response rate, shorter response time, and faster angular velocity. The response rates for chemical and electrical stimuli are similar, and higher than the rates for mechanical stimulus. The response time is not dependent on stimulus type. The higher motility in D. allantostigma indicates increased dependence on mechanical prey capture, and a reduced role of adhesive mucilage. The same tentacle types are present in both species and show similar motility patterns. The lower response rate of snap-tentacles might be a safety measure against accidental triggering, since the motion of snap-tentacles is irreversible and tissue destructive. Furthermore, tentacles seem to discern stimuli and respond specifically. The established model of stereotypical tentacle movement may not fully explain these observations.
Collapse
Affiliation(s)
- Caroline Ivesic
- Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Wolfram Adlassnig
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Marianne Koller-Peroutka
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Linda Kress
- Core Facility Cell Imaging and Ultrastructure Research, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ingeborg Lang
- Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
4
|
Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory. PLoS One 2021; 16:e0258235. [PMID: 34679089 PMCID: PMC8535358 DOI: 10.1371/journal.pone.0258235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Carnivorous plants feed on animal prey, mainly insects, to get additional nutrients. This carnivorous syndrome is widely investigated and reported. In contrast, reports on herbivores feeding on carnivorous plants and related defenses of the plants under attack are rare. Here, we studied the interaction of a pitcher plant, Nepenthes x ventrata, with a generalist lepidopteran herbivore, Spodoptera littoralis, using a combination of LC/MS-based chemical analytics, choice and feeding assays. Chemical defenses in N. x ventrata leaves were analyzed upon S. littoralis feeding. A naphthoquinone, plumbagin, was identified in Nepenthes defense against herbivores and as the compound mainly responsible for the finding that S. littoralis larvae gained almost no weight when feeding on Nepenthes leaves. Plumbagin is constitutively present but further 3-fold increased upon long-term (> 1 day) feeding. Moreover, in parallel de novo induced trypsin protease inhibitor (TI) activity was identified. In contrast to TI activity, enhanced plumbagin levels were not phytohormone inducible, not even by defense-related jasmonates although upon herbivory their level increased more than 50-fold in the case of the bioactive jasmonic acid-isoleucine. We conclude that Nepenthes is efficiently protected against insect herbivores by naphthoquinones acting as phytoanticipins, which is supported by additional inducible defenses. The regulation of these defenses remains to be investigated.
Collapse
|
5
|
Hatcher CR, Sommer U, Heaney LM, Millett J. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. ANNALS OF BOTANY 2021; 128:301-314. [PMID: 34077503 PMCID: PMC8389465 DOI: 10.1093/aob/mcab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Secondary metabolites are integral to multiple key plant processes (growth regulation, pollinator attraction and interactions with conspecifics, competitors and symbionts) yet their role in plant adaptation remains an underexplored area of research. Carnivorous plants use secondary metabolites to acquire nutrients from prey, but the extent of the role of secondary metabolites in plant carnivory is not known. We aimed to determine the extent of the role of secondary metabolites in facilitating carnivory of the Cape sundew, Drosera capensis. METHODS We conducted metabolomic analysis of 72 plants in a time-series experiment before and after simulated prey capture. We used ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and the retention time index to identify compounds in the leaf trap tissue that changed up to 72 h following simulated prey capture. We identified associated metabolic pathways, and cross-compared these compounds with metabolites previously known to be involved in carnivorous plants across taxa. KEY RESULTS For the first time in a carnivorous plant, we have profiled the whole-leaf metabolome response to prey capture. Reliance on secondary plant metabolites was higher than previously thought - 2383 out of 3257 compounds in fed leaves had statistically significant concentration changes in comparison with unfed controls. Of these, ~34 compounds are also associated with carnivory in other species; 11 are unique to Nepenthales. At least 20 compounds had 10-fold changes in concentration, 12 of which had 30-fold changes and are typically associated with defence or attraction in non-carnivorous plants. CONCLUSIONS Secondary plant metabolites are utilized in plant carnivory to an extent greater than previously thought - we found a whole-metabolome response to prey capture. Plant carnivory, at the metabolic level, likely evolved from at least two distinct functions: attraction and defence. Findings of this study support the hypothesis that secondary metabolites play an important role in plant diversification and adaptation to new environments.
Collapse
Affiliation(s)
- Christopher R Hatcher
- Loughborough University, Loughborough, UK
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | - Ulf Sommer
- Biocrates Life Sciences AG, Innsbruck, Austria
| | - Liam M Heaney
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | | |
Collapse
|
6
|
Adamec L, Matušíková I, Pavlovič A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. ANNALS OF BOTANY 2021; 128:241-259. [PMID: 34111238 PMCID: PMC8389183 DOI: 10.1093/aob/mcab071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
Collapse
Affiliation(s)
- Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 01 Třeboň, Czech Republic
| | - Ildikó Matušíková
- University of Ss. Cyril and Methodius, Department of Ecochemistry and Radioecology, J. Herdu 2, SK-917 01 Trnava, Slovak Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
7
|
Cazalis R, Cottam R. An approach to the plant body: Assessing concrete and abstract aspects. Biosystems 2021; 207:104461. [PMID: 34166731 DOI: 10.1016/j.biosystems.2021.104461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023]
Abstract
The paper aims at proposing a representation of plants as individuals. The first section selects the population of plants to which this study is addressed. The second section describes the effective architecture of plants as modular systems with fixed and mobile elements, in other words, plants and their extensions. The third section presents how plants integrate the fixed and mobile modules into functional units through three areas of particular relevance to plant growth and development: nutrition, defence and pollination. Based on the tangible elements introduced in the previous sections, the fourth section presents the main issue of the proposal which is not apparent at first glance, namely, the local-global relationship in plants' architecture that determines their individuality as organisms. Finally, in the conclusion, we issue the challenge of developing a collective presentation of plants which satisfies their complementary dimension.
Collapse
Affiliation(s)
- Roland Cazalis
- Dept. of 'Sciences, Philosophies, Societies', ESPHIN, NAXYS, University of Namur, Namur, Belgium
| | - Ron Cottam
- The Living Systems Project, Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
8
|
Mahmoud Hamdy AEA, Mohamed Salah K. Antiviral and Antinematodal potentials of chitosan: Review. JOURNAL OF PLANT SCIENCE AND PHYTOPATHOLOGY 2020; 4:055-059. [DOI: 10.29328/journal.jpsp.1001051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
For many years, chemical pesticides have been performed to control different pests and diseases and this may be due to their broad spectrum of action, easy of application and the relatively low cost. But these chemicals have environmental risks, thus alternative control agents are needed. Chitosan is one of the novel suggested solutions to reduce the economic losses associated with chemical pesticides. Chitosan is naturally-occurring compound, as well as safe and biodegradable which obtained from certain natural sources. Chitosan have unique properties which help to control viruses, bacteria, fungi, insects, plant nematodes and other pests locally and systemically.
Collapse
|
9
|
Palfalvi G, Hackl T, Terhoeven N, Shibata TF, Nishiyama T, Ankenbrand M, Becker D, Förster F, Freund M, Iosip A, Kreuzer I, Saul F, Kamida C, Fukushima K, Shigenobu S, Tamada Y, Adamec L, Hoshi Y, Ueda K, Winkelmann T, Fuchs J, Schubert I, Schwacke R, Al-Rasheid K, Schultz J, Hasebe M, Hedrich R. Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory. Curr Biol 2020; 30:2312-2320.e5. [PMID: 32413308 PMCID: PMC7308799 DOI: 10.1016/j.cub.2020.04.051] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Most plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata. We identified an early whole-genome duplication in the family as source for carnivory-associated genes. Recruitment of genes to the trap from the root especially was a major mechanism in the evolution of carnivory, supported by family-specific duplications. Still, these genomes belong to the gene poorest land plants sequenced thus far, suggesting reduction of selective pressure on different processes, including non-carnivorous nutrient acquisition. Our results show how non-carnivorous plants evolved into the most skillful green hunters on the planet.
Collapse
Affiliation(s)
- Gergo Palfalvi
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Thomas Hackl
- Department for Bioinformatics, Biocenter, University Würzburg, Am Hubland, 97074 Würzburg, Germany; Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Niklas Terhoeven
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | | | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | - Markus Ankenbrand
- Department for Bioinformatics, Biocenter, University Würzburg, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Frank Förster
- Department for Bioinformatics, Biocenter, University Würzburg, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Anda Iosip
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Franziska Saul
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany
| | - Chiharu Kamida
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Kenji Fukushima
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan; Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan; School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
| | - Lubomir Adamec
- Department of Functional Ecology, Institute of Botany CAS, 379 01 Třeboň, Czech Republic
| | - Yoshikazu Hoshi
- Department of Plant Science, School of Agriculture, Tokai University, Kumamoto 862-8652, Japan
| | - Kunihiko Ueda
- Faculty of Education, Gifu University, Gifu 501-1193, Japan
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Woody Plant and Propagation Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rainer Schwacke
- Institute of Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Corrensstraße 3, 06466 Gatersleben, Germany
| | - Khaled Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Schultz
- Department for Bioinformatics, Biocenter, University Würzburg, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, Faculty for Biology, University Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, 97074 Würzburg, Germany.
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan.
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|
10
|
Hatcher CR, Ryves DB, Millett J. The function of secondary metabolites in plant carnivory. ANNALS OF BOTANY 2020; 125:399-411. [PMID: 31760424 PMCID: PMC7061172 DOI: 10.1093/aob/mcz191] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Carnivorous plants are an ideal model system for evaluating the role of secondary metabolites in plant ecology and evolution. Carnivory is a striking example of convergent evolution to attract, capture and digest prey for nutrients to enhance growth and reproduction and has evolved independently at least ten times. Though the roles of many traits in plant carnivory have been well studied, the role of secondary metabolites in the carnivorous habit is considerably less understood. SCOPE This review provides the first synthesis of research in which secondary plant metabolites have been demonstrated to have a functional role in plant carnivory. From these studies we identify key metabolites for plant carnivory and their functional role, and highlight biochemical similarities across taxa. From this synthesis we provide new research directions for integrating secondary metabolites into understanding of the ecology and evolution of plant carnivory. CONCLUSIONS Carnivorous plants use secondary metabolites to facilitate prey attraction, capture, digestion and assimilation. We found ~170 metabolites for which a functional role in carnivory has been demonstrated. Of these, 26 compounds are present across genera that independently evolved a carnivorous habit, suggesting convergent evolution. Some secondary metabolites have been co-opted from other processes, such as defence or pollinator attraction. Secondary metabolites in carnivorous plants provide a potentially powerful model system for exploring the role of metabolites in plant evolution. They also show promise for elucidating how the generation of novel compounds, as well as the co-option of pre-existing metabolites, provides a strategy for plants to occupy different environments.
Collapse
Affiliation(s)
| | - David B Ryves
- Geography and Environment, Loughborough University, Loughborough, LE, UK
| | - Jonathan Millett
- Geography and Environment, Loughborough University, Loughborough, LE, UK
| |
Collapse
|
11
|
Pavlovič A, Mithöfer A. Jasmonate signalling in carnivorous plants: copycat of plant defence mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3379-3389. [PMID: 31120525 DOI: 10.1093/jxb/erz188] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/09/2019] [Indexed: 05/09/2023]
Abstract
The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, CZ, Olomouc, Czech Republic
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße, Jena, Germany
| |
Collapse
|
12
|
Tavallali V, Karimi S. Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gas-exchange. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:98-105. [PMID: 30743088 DOI: 10.1016/j.jplph.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 05/23/2023]
Abstract
The effects of methyl jasmonate (MeJA) foliar application (0, 0.025, 0.050 and 0.075 mM) on the growth and physiological responses of two almond rootstocks (GF677 and bitter almond) exposed to various concentrations of NaCl in irrigation water (0, 50, 100 and 150 mM) were evaluated. 60 days after salt stress exposure, the mitotic index of root apical meristem cells as well as shoot and root growth, activity of main antioxidant enzymes, gas exchange parameters and contents of cytokinins and ABA were determined. Salt stress decreased the plants' growth, particularly at higher levels. Application of MeJA in optimal concentrations of 0.025 to 0.05 mM alleviated the adverse effect of salt stress by increasing the photosynthetic rate, activity of antioxidant enzymes (APX, SOD and POX), root and shoot dry mass, as well as cell membrane integrity. Furthermore, MeJA application brought about a two-fold increase in the concentration of leaf cytokinins. This reposition of cytokinins was due to restriction of both the activity of cytokinin oxidase and gene expression of this enzyme. The MeJA mitigating effect on the growth of salt-stressed plants could be a result of the inhibition of cytokinin decline under salt stress. The results revealed the effective impact of endogenous cytokinins in protective and growth improvement effects of MeJA on almond rootstocks under salt stress.
Collapse
Affiliation(s)
- Vahid Tavallali
- Department of Agriculture, Payame Noor University (PNU), P.O. Box: 19395-3697, Tehran, Iran.
| | - Soheil Karimi
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Kuo YW, Lin JS, Li YC, Jhu MY, King YC, Jeng ST. MicroR408 regulates defense response upon wounding in sweet potato. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:469-483. [PMID: 30403812 PMCID: PMC6322576 DOI: 10.1093/jxb/ery381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/02/2018] [Indexed: 05/08/2023]
Abstract
MiRNAs play diverse roles in plant development and defense responses by binding to their mRNA targets based on sequence complementarity. Here, we investigated a wound-related miR408 and its target genes in sweet potato (Ipomoea batatas) by small RNA deep sequencing and transcriptome analysis. The expression patterns of miR408 and the miR408 precursor were significantly repressed by wounding and jasmonate (JA). In contrast, expression of the putative target genes IbKCS (3-ketoacyl-CoA synthase 4), IbPCL (plantacyanin), and IbGAUT (galacturonosyltransferase 7-like) of miR408 was increased following wounding, whereas only IbKCS was increased after JA treatment. Target cleavage site mapping and Agrobacterium-mediated transient assay demonstrated that IbKCS, IbPCL, and IbGAUT were the targets of miR408. The expression of miR408 target genes was repressed in transgenic sweet potatoes overexpressing miR408. These data indicated a relationship between miR408 and its target genes. Notably, miR408-overexpressing plants showed a semi-dwarf phenotype and attenuated resistance to insect feeding, while transgenic plants overexpressing IbKCS exhibited more insect resistance than plants overexpressing only the empty vector. Collectively, sweet potato reduces the abundance of miR408 upon wounding to elevate the expression of IbKCS, IbPCL, and IbGAUT. The expression of IbKCS enhances the defense system against herbivore wounding.
Collapse
Affiliation(s)
- Yun-Wei Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chi Li
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Min-Yao Jhu
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi King
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Pavlovič A, Jakšová J, Novák O. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). THE NEW PHYTOLOGIST 2017; 216:927-938. [PMID: 28850713 DOI: 10.1111/nph.14747] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
In the carnivorous plant Venus flytrap (Dionaea muscipula), the sequence of events after prey capture resembles the well-known plant defence signalling pathway in response to pathogen or herbivore attack. Here, we used wounding to mimic prey capture to show the similarities and differences between botanical carnivory and plant defence mechanisms. We monitored movement, electrical signalling, jasmonate accumulation and digestive enzyme secretion in local and distal (systemic) traps in response to prey capture, the mechanical stimulation of trigger hairs and wounding. The Venus flytrap cannot discriminate between wounding and mechanical trigger hair stimulation. Both induced the same action potentials, rapid trap closure, hermetic trap sealing, the accumulation of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile), and the secretion of proteases (aspartic and cysteine proteases), phosphatases and type I chitinase. The jasmonate accumulation and enzyme secretion were confined to the local traps, to which the stimulus was applied, which correlates with the propagation of electrical signals and the absence of a systemic response in the Venus flytrap. In contrast to plant defence mechanisms, the absence of a systemic response in carnivorous plant may represent a resource-saving strategy. During prey capture, it could be quite expensive to produce digestive enzymes in the traps on the plant without prey.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| |
Collapse
|
15
|
Kruse J, Gao P, Eibelmeier M, Alfarraj S, Rennenberg H. Dynamics of amino acid redistribution in the carnivorous Venus flytrap (Dionaea muscipula) after digestion of 13 C/ 15 N-labelled prey. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:886-895. [PMID: 28727249 DOI: 10.1111/plb.12603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey-derived carbon backbones of amino acids for the success of Dionaea's carnivorous life-style. The present study aimed at characterizing the metabolic fate of 15 N and 13 C in amino acids acquired from double-labeled insect powder. We tracked changes in plant amino acid pools and their δ13 C- and δ15 N-signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non-fed traps and attached petioles of Dionaea). Isotope signatures (i.e., δ13 C and δ15 N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen-rich transport compounds (i.e., amides) during peak time of prey digestion increased 15 N- relative to 13 C- abundances in amino acid pools. After completion of prey digestion, 13 C in amino acid pools was progressively exchanged for newly fixed 12 C. The latter process was most evident for non-fed traps and attached petioles of plants that had received ample insect powder. We argue that prey-derived amino acids contribute to respiratory energy gain and loss of 13 CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino-nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding).
Collapse
Affiliation(s)
- J Kruse
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
| | - P Gao
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
| | - M Eibelmeier
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
| | - S Alfarraj
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - H Rennenberg
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Mithöfer A. What Darwin only divined: unraveling the hierarchy of signaling events upon prey catch in carnivorous sundew plants. THE NEW PHYTOLOGIST 2017; 213:1564-1566. [PMID: 28164339 DOI: 10.1111/nph.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| |
Collapse
|
17
|
Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. THE NEW PHYTOLOGIST 2017; 213:1818-1835. [PMID: 27933609 DOI: 10.1111/nph.14352] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 05/28/2023]
Abstract
The carnivorous sundew plant (Drosera capensis) captures prey using sticky tentacles. We investigated the tentacle and trap reactions in response to the electrical and jasmonate signalling evoked by different stimuli to reveal how carnivorous sundews recognize digestible captured prey in their traps. We measured the electrical signals, phytohormone concentration, enzyme activities and Chla fluorescence in response to mechanical stimulation, wounding or insect feeding in local and systemic traps. Seven new proteins in the digestive fluid were identified using mass spectrometry. Mechanical stimuli and live prey induced a fast, localized tentacle-bending reaction and enzyme secretion at the place of application. By contrast, repeated wounding induced a nonlocalized convulsive tentacle movement and enzyme secretion in local but also in distant systemic traps. These differences can be explained in terms of the electrical signal propagation and jasmonate accumulation, which also had a significant impact on the photosynthesis in the traps. The electrical signals generated in response to wounding could partially mimic a mechanical stimulation of struggling prey and might trigger a false alarm, confirming that the botanical carnivory and plant defence mechanisms are related. To trigger the full enzyme activity, the traps must detect chemical stimuli from the captured prey.
Collapse
Affiliation(s)
- Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
| | - Zdeněk Perutka
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Andrej Pavlovič
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
18
|
Xu K, Yang L, Yang Y, Yuan C. Improved ethanol gas sensing performances of a ZnO/Co3O4 composite induced by its flytrap-like structure. Phys Chem Chem Phys 2017; 19:29601-29607. [DOI: 10.1039/c7cp05228f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocomposite materials with excellent receptor and transducer functions are promising in ameliorating their gas sensing properties.
Collapse
Affiliation(s)
- Keng Xu
- Jiangxi Key Laboratory of Nanomaterials and Sensors
- Jiangxi Key Laboratory of Photoelectronics and Telecommunication
- School of Physics
- Communication and Electronics
- Jiangxi Normal University
| | - Li Yang
- Faculty of Metallurgical and Energy Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Yong Yang
- Jiangxi Key Laboratory of Nanomaterials and Sensors
- Jiangxi Key Laboratory of Photoelectronics and Telecommunication
- School of Physics
- Communication and Electronics
- Jiangxi Normal University
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors
- Jiangxi Key Laboratory of Photoelectronics and Telecommunication
- School of Physics
- Communication and Electronics
- Jiangxi Normal University
| |
Collapse
|
19
|
Frenzke L, Lederer A, Malanin M, Eichhorn KJ, Neinhuis C, Voigt D. Plant pressure sensitive adhesives: similar chemical properties in distantly related plant lineages. PLANTA 2016; 244:145-154. [PMID: 27002970 DOI: 10.1007/s00425-016-2496-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
A mixture of resins based on aliphatic esters and carboxylic acids occurs in distantly related genera Peperomia and Roridula , serving different functions as adhesion in seed dispersal and prey capture. According to mechanical characteristics, adhesive secretions on both leaves of the carnivorous flypaper Roridula gorgonias and epizoochorous fruits of Peperomia polystachya were expected to be similar. The chemical analysis of these adhesives turned out to be challenging because of the limited available mass for analysis. Size exclusion chromatography and Fourier transform infrared spectroscopy were suitable methods for the identification of a mixture of compounds, most appropriately containing natural resins based on aliphatic esters and carboxylic acids. The IR spectra of the Peperomia and Roridula adhesive resemble each other; they correspond to that of a synthetic ethylene-vinyl acetate copolymer, but slightly differ from that of natural tree resins. Thus, the pressure sensitive adhesive properties of the plant adhesives are chemically proved. Such adhesives seem to appear independently in distantly related plant lineages, habitats, life forms, as well as plant organs, and serve different functions such as prey capture in Roridula and fruit dispersal in Peperomia. However, more detailed chemical analyses still remain challenging because of the small available volume of plant adhesive.
Collapse
Affiliation(s)
- Lena Frenzke
- Institute for Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Albena Lederer
- Analytical Department, Leibniz-Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Mikhail Malanin
- Analytical Department, Leibniz-Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Klaus-Jochen Eichhorn
- Analytical Department, Leibniz-Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Christoph Neinhuis
- Institute for Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Dagmar Voigt
- Institute for Botany, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
20
|
Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:101-10. [PMID: 26748373 DOI: 10.1016/j.jplph.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/23/2023]
Abstract
The treatment of 4-days-old wheat seedlings with methyl jasmonate (MeJA) in concentration optimal for their growth (0.1 μM) resulted in a rapid transient almost two-fold increase in the level of cytokinins (CKs). MeJA-induced accumulation of CKs was due to inhibition of both cytokinin oxidase (CKX) (cytokinin oxidase/dehydrogenase, EC 1.5.99.12) gene expression and activity of this enzyme. Pretreatment of wheat seedlings with MeJA decreased the growth-retarding effect of sodium chloride salinity and accelerated growth recovery after withdrawal of NaCl from the incubation medium. We speculate that this protective effect of the hormone might be due to MeJA's ability to prevent the salinity-induced decline in CK concentration that was caused by inhibition of gene expression and activity of CKX in wheat seedlings. The data might indicate an important role for endogenous cytokinins in the implementation of growth-promoting and protective effects of exogenous MeJA application on wheat plants.
Collapse
Affiliation(s)
- Azamat Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kirill Somov
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450054, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Farida Shakirova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia.
| |
Collapse
|
21
|
Sánchez-Romera B, Ruiz-Lozano JM, Zamarreño ÁM, García-Mina JM, Aroca R. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. MYCORRHIZA 2016; 26:111-22. [PMID: 26070449 DOI: 10.1007/s00572-015-0650-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/01/2015] [Indexed: 05/08/2023]
Abstract
Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.
Collapse
Affiliation(s)
- Beatriz Sánchez-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - Ángel María Zamarreño
- CIPAV TimacAGRO International-Roullier Group, Polígono Arazuri-Orcoyen, c/C no. 32, 31160, Orcoyen, Navarra, Spain
| | - José María García-Mina
- CIPAV TimacAGRO International-Roullier Group, Polígono Arazuri-Orcoyen, c/C no. 32, 31160, Orcoyen, Navarra, Spain
| | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
22
|
Scholz SS, Reichelt M, Boland W, Mithöfer A. Additional evidence against jasmonate-induced jasmonate induction hypothesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:9-14. [PMID: 26398786 DOI: 10.1016/j.plantsci.2015.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/20/2015] [Accepted: 06/27/2015] [Indexed: 06/05/2023]
Abstract
Jasmonates are phytohormones involved in development and stress reactions. The most prominent jasmonate is jasmonic acid, however, the bioactive jasmonate is (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile). Biosynthesis of jasmonates is long time known; compartmentalization, enzymes and corresponding genes are well studied. Because all genes encoding these biosynthetic enzymes are jasmonate inducible, a hypothesis of jasmonate-induced-jasmonate-biosynthesis is widely accepted. Here, this hypothesis was revisited by employing the synthetic JA-Ile mimic coronalon to intact and wounded leaves, which excludes structural cross-contamination with endogenous jasmonates. At an effective concentration that induced various jasmonate-responsive genes in Arabidopsis, neither accumulation of endogenous jasmonic acid, JA-Ile, nor of their hydroxylated metabolites was detected. Results indicate that in spite of jasmonate-induced biosynthetic gene expression, no jasmonate biosynthesis/accumulation takes place supporting a post-translational regulation.
Collapse
Affiliation(s)
- Sandra S Scholz
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Michael Reichelt
- Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Axel Mithöfer
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| |
Collapse
|
23
|
Pavlovič A, Saganová M. A novel insight into the cost-benefit model for the evolution of botanical carnivory. ANNALS OF BOTANY 2015; 115:1075-92. [PMID: 25948113 PMCID: PMC4648460 DOI: 10.1093/aob/mcv050] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Michaela Saganová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| |
Collapse
|
24
|
Buch F, Kaman WE, Bikker FJ, Yilamujiang A, Mithöfer A. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants. PLoS One 2015; 10:e0118853. [PMID: 25750992 PMCID: PMC4353617 DOI: 10.1371/journal.pone.0118853] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/16/2015] [Indexed: 12/03/2022] Open
Abstract
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.
Collapse
Affiliation(s)
- Franziska Buch
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Wendy E. Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, `s-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Ayufu Yilamujiang
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745, Jena, Germany
| |
Collapse
|
25
|
Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates. PLoS One 2014; 9:e104424. [PMID: 25153528 PMCID: PMC4143254 DOI: 10.1371/journal.pone.0104424] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.
Collapse
|