1
|
Kim SA, Choi T, Kim J, Park H, Rhee JS. Acute and chronic effects of the antifouling booster biocide Irgarol 1051 on the water flea Moina macrocopa revealed by multi-biomarker determination. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109994. [PMID: 39111514 DOI: 10.1016/j.cbpc.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Irgarol 1051 is an herbicide extensively utilized in antifouling paint due to its ability to inhibit photosynthesis. Irgarol and its photodegradation products are highly persistent in waters and sediments, although they are present in low concentrations. However, our understanding of the harmful effects of Irgarol on non-target organisms remains limited. In this study, we assessed the effects of acute (24 h) and chronic (14 days across three generations) exposure to different concentrations (including the 1/10 NOEC, NOEC, and 1/10 LC50 calculated from the 24-h acute toxicity test) of Irgarol using the water flea Moina macrocopa. Acute exposure to 1/10 LC50 significantly decreased survival, feeding rate, thoracic limb activity, heart rate, and acetylcholinesterase activity. Elevated levels of intracellular reactive oxygen species and malondialdehyde, along with a significant increase in catalase and superoxide dismutase activity, suggested the induction of oxidative stress in response to 1/10 LC50. An initial boost in glutathione level and the enzymatic activities of glutathione peroxidase and glutathione reductase, followed by a plunge, implies some compromise in the antioxidant defense system. Upon chronic exposure to the NOEC value, both generations F1 and F2 displayed a significant decrease in survival rate, body length, number of neonates per brood, and delayed sexual maturation, suggesting maternal transfer of potential damage through generations. Taken together, Irgarol induced acute toxicity through physiological and cholinergic damage, accompanied by the induction of oxidative stress, in the water flea. Even its sub-lethal concentrations can induce detrimental effects across generations when consistently exposed.
Collapse
Affiliation(s)
- Sung-Ah Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Thine Choi
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaehee Kim
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
2
|
Shuyskaya E, Rakhmankulova Z, Prokofieva M, Lunkova N, Voronin P. Salinity Mitigates the Negative Effect of Elevated Temperatures on Photosynthesis in the C 3-C 4 Intermediate Species Sedobassia sedoides. PLANTS (BASEL, SWITZERLAND) 2024; 13:800. [PMID: 38592796 PMCID: PMC10976079 DOI: 10.3390/plants13060800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
The adaptation of plants to combined stresses requires unique responses capable of overcoming both the negative effects of each individual stress and their combination. Here, we studied the C3-C4 (C2) halophyte Sedobassia sedoides in response to elevated temperature (35 °C) and salinity (300 mM NaCl) as well as their combined effect. The responses we studied included changes in water-salt balance, light and dark photosynthetic reactions, the expression of photosynthetic genes, the activity of malate dehydrogenase complex enzymes, and the antioxidant system. Salt treatment led to altered water-salt balance, improved water use efficiency, and an increase in the abundance of key enzymes involved in intermediate C3-C4 photosynthesis (i.e., Rubisco and glycine decarboxylase). We also observed a possible increase in the activity of the C2 carbon-concentrating mechanism (CCM), which allowed plants to maintain high photosynthesis intensity and biomass accumulation. Elevated temperatures caused an imbalance in the dark and light reactions of photosynthesis, leading to stromal overreduction and the excessive generation of reactive oxygen species (ROS). In response, S. sedoides significantly activated a metabolic pathway for removing excess NADPH, the malate valve, which is catalyzed by NADP-MDH, without observable activation of the antioxidant system. The combined action of these two factors caused the activation of antioxidant defenses (i.e., increased activity of SOD and POX and upregulation of FDI), which led to a decrease in oxidative stress and helped restore the photosynthetic energy balance. Overall, improved PSII functioning and increased activity of PSI cyclic electron transport (CET) and C2 CCM led to an increase in the photosynthesis intensity of S. sedoides under the combined effect of salinity and elevated temperature relative to high temperature alone.
Collapse
Affiliation(s)
- Elena Shuyskaya
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; (Z.R.); (M.P.); (N.L.); (P.V.)
| | | | | | | | | |
Collapse
|
3
|
Messant M, Hani U, Lai TL, Wilson A, Shimakawa G, Krieger-Liszkay A. Plastid terminal oxidase (PTOX) protects photosystem I and not photosystem II against photoinhibition in Arabidopsis thaliana and Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:669-678. [PMID: 37921075 DOI: 10.1111/tpj.16520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
The plastid terminal oxidase PTOX controls the oxidation level of the plastoquinone pool in the thylakoid membrane and acts as a safety valve upon abiotic stress, but detailed characterization of its role in protecting the photosynthetic apparatus is limited. Here we used PTOX mutants in two model plants Arabidopsis thaliana and Marchantia polymorpha. In Arabidopsis, lack of PTOX leads to a severe defect in pigmentation, a so-called variegated phenotype, when plants are grown at standard light intensities. We created a green Arabidopsis PTOX mutant expressing the bacterial carotenoid desaturase CRTI and a double mutant in Marchantia lacking both PTOX isoforms, the plant-type and the alga-type PTOX. In both species, lack of PTOX affected the redox state of the plastoquinone pool. Exposure of plants to high light intensity showed in the absence of PTOX higher susceptibility of photosystem I to light-induced damage while photosystem II was more stable compared with the wild type demonstrating that PTOX plays both, a pro-oxidant and an anti-oxidant role in vivo. Our results shed new light on the function of PTOX in the protection of photosystem I and II.
Collapse
Affiliation(s)
- Marine Messant
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| | - Umama Hani
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| | - Thanh-Lan Lai
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| | - Ginga Shimakawa
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
4
|
Idoudi M, Slatni T, Laifa I, Rhimi N, Rabhi M, Hernández-Apaolaza L, Zorrig W, Abdelly C. Silicon (Si) mitigates the negative effects of iron deficiency in common bean (Phaseolus vulgaris L.) by improving photosystem activities and nutritional status. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108236. [PMID: 38064901 DOI: 10.1016/j.plaphy.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
Silicon (Si) is the second most abundant element in the Earth's crust after oxygen. Its beneficial impact on crop development and yield, particularly under stressful conditions such as iron (Fe) deficiency, has been well documented. Fe deficiency is a critical constraint that limits crop production globally. The objective of this study was to investigate the effects of silicon (Na2SiO3) on common bean (Phaseolus vulgaris L. 'Coco Rose' variety) under iron-deficient conditions. The common bean plants were subjected to six treatments, which included three sufficient iron treatments (50 μM Fe) each paired with three varying silicon concentrations (0, 0.25, and 0.5 mM Si), and three iron-deficient treatments (0.1 μM Fe) each associated with the same silicon concentrations (0, 0.25, and 0.5 mM Si). The results indicate that iron deficiency had a negative impact on almost all the measured parameters. However, under silicon treatments, especially with 0.5 mM Si, the depressive effects of iron deficiency were significantly mitigated. The addition of 0.5 mM Si alleviated leaf chlorosis and improved biomass production, nutritional status, photosynthetic pigment content, photosynthetic gas exchange, and photosystem (PSI and PSII) activities. Interestingly, a greater beneficial effect of silicon was observed on PSII compared to PSI. This was accompanied by a significant augmentation in leaf iron concentration by 42%. Therefore, by enhancing the photosystem activities and nutritional status, among other mechanisms, silicon is capable of mitigating the adverse effects of iron-deficient conditions, making it a successful and effective solution to cope with this nutritional stress.
Collapse
Affiliation(s)
- Mariem Idoudi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Faculty of Sciences of Tunis (FST), University of Tunis El Manar (UTM), 1060, Tunis, Tunisia
| | - Tarek Slatni
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Faculty of Sciences of Tunis (FST), University of Tunis El Manar (UTM), 1060, Tunis, Tunisia
| | - Israa Laifa
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Nassira Rhimi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Mokded Rabhi
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Walid Zorrig
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia.
| | - Chedly Abdelly
- Laboratory of Extremophile Plants (LPE), Centre of Biotechnology of Borj Cedria (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
5
|
Shimakawa G. Electron transport in cyanobacterial thylakoid membranes: Are cyanobacteria simple models for photosynthetic organisms? JOURNAL OF EXPERIMENTAL BOTANY 2023:erad118. [PMID: 37025010 DOI: 10.1093/jxb/erad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cyanobacteria are structurally the simplest oxygenic phototrophs, which makes it difficult to understand the regulation of photosynthesis because the photosynthetic and respiratory processes share the same thylakoid membranes and cytosolic space. This review aimed to summarise the molecular mechanisms and in vivo activities of electron transport in cyanobacterial thylakoid membranes based on the latest progress in photosynthesis research in cyanobacteria. Photosynthetic linear electron transport for CO2 assimilation has the dominant electron flux in the thylakoid membranes. The capacity of O2 photoreduction in cyanobacteria is comparable to the photosynthetic CO2 assimilation, which is mediated by flavodiiron proteins. Additionally, cyanobacterial thylakoid membranes harbour the significant electron flux of respiratory electron transport through a homologue of respiratory complex I, which is also recognized as the part of cyclic electron transport chain if it is coupled with photosystem I in the light. Further, O2-independent alternative electron transports through hydrogenase and nitrate reductase function with reduced ferredoxin as the electron donor. Whereas all these electron transports are recently being understood one by one, the complexity as the whole regulatory system remains to be uncovered in near future.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
6
|
Cruz de Carvalho R, Feijão E, Matos AR, Cabrita MT, Utkin AB, Novais SC, Lemos MFL, Caçador I, Marques JC, Reis-Santos P, Fonseca VF, Duarte B. Ecotoxicological Effects of the Anionic Surfactant Sodium Dodecyl Sulfate (SDS) in Two Marine Primary Producers: Phaeodactylum tricornutum and Ulva lactuca. TOXICS 2022; 10:toxics10120780. [PMID: 36548613 PMCID: PMC9785791 DOI: 10.3390/toxics10120780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 05/14/2023]
Abstract
Sodium Dodecyl Sulfate (SDS) is an anionic surfactant, extensively used in detergents, household and personal care products, as well as in industrial processes. The present study aimed to disclose the potential toxicological effects of SDS exposure under environmentally relevant concentrations (0, 0.1, 1, 3, and 10 mg L-1) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems, and energy balance) of two marine autotrophs: the diatom Phaeodactylum tricornutum and the macroalgae Ulva lactuca. A growth rate (GR) reduction in P. tricornutum was observed with a classic dose-response effect towards the highest applied concentration, while a GR increase occurred in U. lactuca. Regarding photochemistry, the decrease in the fluorescence of the OJIP curves and laser-induced fluorescence allowed a better separation between SDS treatments in U. lactuca compared with P. tricornutum. Although all pigments significantly decreased in U. lactuca at the highest concentrations (except for antheraxanthin), no significant variations occurred in P. tricornutum. On the other hand, changes in fatty acid content were observed in P. tricornutum but not in U. lactuca. In terms of classical biomarker assessment, a dose-effect relationship of individual biomarkers versus SDS dose applied; U. lactuca displayed a higher number of biomarker candidates, including those in distinct metabolic pathways, increasing its usefulness for ecotoxicological applications. By evaluating the potential application of optical and biochemical traits, it was evident that the fatty acid profiles of the different exposure groups are excellent candidates in P. tricornutum, concomitant with the characteristics of this anionic surfactant. On the other hand, the results presented by laser-induced fluorescence and some parameters of PAM fluorometry in U. lactuca may be an advantage in the field, offering non-invasive, fast, easy-to-use, high-throughput screening techniques as excellent tools for ecotoxicology assessment.
Collapse
Affiliation(s)
- Ricardo Cruz de Carvalho
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence:
| | - Eduardo Feijão
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- BioISI–Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal
- Laboratório Associado TERRA, Edifício Prof. Azevedo Gomes, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Andrei B. Utkin
- INOV-INESC, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
- CeFEMA, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Sara C. Novais
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Marco F. L. Lemos
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| | - Isabel Caçador
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - João Carlos Marques
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Patrick Reis-Santos
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Vanessa F. Fonseca
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Bernardo Duarte
- MARE–Marine and Environmental Sciences Centre, ARNET–Aquatic Research Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Shuyskaya E, Rakhmankulova Z, Prokofieva M, Saidova L, Toderich K, Voronin P. Intensity and duration of salinity required to form adaptive response in C 4 halophyte Kochia prostrata (L.) Shrad. FRONTIERS IN PLANT SCIENCE 2022; 13:955880. [PMID: 36275591 PMCID: PMC9585317 DOI: 10.3389/fpls.2022.955880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Plant adaptation to salinity is a highly multifaceted process, harnessing various physiological mechanisms depending on the severity and duration of salt stress. This study focuses on the effects of 4- and 10-day treatments with low (100 mM NaCl) and moderate (200 mM NaCl) salinity on growth, CO2/H2O gas exchange, stomatal apparatus performance, the efficiency of photosystems I and II (PS I and II), content of key C4 photosynthesis enzymes, and the accumulation of Na+, K+, and proline in shoots of the widespread forage C4 halophyte Kochia prostrata. Our data show that 4 days of low salinity treatment resulted in a decrease in biomass, intensity of apparent photosynthesis, and cyclic electron transport around PS I. It was accompanied by an increase in transpiration and Rubisco and PEPC contents, while the Na+ and proline contents were low in K. prostrata shoots. By the 10th day of salinity, Na+ and proline have accumulated; PS I function has stabilized, while PS II efficiency has decreased due to the enhanced non-photochemical quenching of chlorophyll fluorescence (NPQ). Thus, under low salinity conditions, Na+ accumulated slowly and the imbalance between light and dark reactions of photosynthesis was observed. These processes might be induced by an early sodium signaling wave that affects cellular pH and ion homeostasis, ultimately disturbing photosynthetic electron transport. Another adaptive reaction more "typical" of salt-tolerant species was observed at 200 mM NaCl treatment. It proceeds in two stages. First, during the first 4 days, dry biomass and apparent photosynthesis decrease, whereas stomata sensitivity and dissipation energy during dark respiration increase. In parallel, an active Na+ accumulation and a decreased K+/Na+ ratio take place. Second, by the 10th day, a fully-fledged adaptive response was formed, when growth and apparent photosynthesis stabilized and stomata closed. Decreased dissipation energy, increased WUE, stabilization of Rubisco and PEPC contents, and decreased proline content testify to the completion of the adaptation and stabilization of the physiological state of plants. The obtained results allowed us to conclude that the formation of a full-fledged salt-tolerant response common for halophytes in K. prostrata occurs by the 10th day of moderate salinity.
Collapse
Affiliation(s)
- Elena Shuyskaya
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| | - Zulfira Rakhmankulova
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| | - Maria Prokofieva
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| | - Luizat Saidova
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| | - Kristina Toderich
- International Platform for Dryland Research and Education, Tottori University, Tottori City, Japan
| | - Pavel Voronin
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| |
Collapse
|
8
|
Carvalho FEL, Ware MA, Lima Neto MC, Aranjuelo I. Editorial: Photosynthetic Efficiency Under Multiple Stress Conditions: Prospects for Increasing Crop Yields. FRONTIERS IN PLANT SCIENCE 2022; 13:893730. [PMID: 35574071 PMCID: PMC9096905 DOI: 10.3389/fpls.2022.893730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Affiliation(s)
| | - Maxwell Adam Ware
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Iker Aranjuelo
- Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Sustainable Agriculture and Climate Change Lab Navarra, Agrobiotechnology Institute (IdAB), Navarra, Spain
| |
Collapse
|
9
|
Pompelli MF, Ferreira PPB, Chaves ARM, Figueiredo RCBQ, Martins AO, Jarma-Orozco A, Bhatt A, Batista-Silva W, Endres L, Araújo WL. Physiological, metabolic, and stomatal adjustments in response to salt stress in Jatropha curcas. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:116-127. [PMID: 34628173 DOI: 10.1016/j.plaphy.2021.09.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Salinity is a major issue affecting photosynthesis and crop production worldwide. High salinity induces both osmotic and ionic stress in plant tissues as a result of complex interactions among morphological, physiological, and biochemical processes. Salinity, in turn, can provoke inactivation of some enzymes in the Calvin-Benson cycle and therefore affect the fine adjustment of electron transport in photosystem I and carbon related reactions. Here, we used three contrasting Jatropha curcas genotypes namely CNPAE183 (considered tolerant to salinity), CNPAE218 (sensible), and JCAL171 (intermediate) to understand salinity responses. By performing a long-term (12 months) experiment in land conditions, we investigated distinct mechanisms used by J. curcas to cope with threatening salinity effects by analyzing gas exchange, mineral nutrition and metabolic responses. First, our results highlighted the plasticity of stomatal development and density in J. curcas under salt stress. It also demonstrated that the CNPAE183 presented higher salt-tolerance whereas CNPAE218 displayed a more sensitive salt-tolerance response. Our results also revealed that both tolerance and sensitivity to salinity were connected with an extensive metabolite reprogramming in the Calvin-Benson cycle and Tricarboxylic Acid cycle intermediates with significant changes in amino acids and organic acids. Collectively, these results indicate that the CNPAE183 and CNPAE218 genotypes demonstrated certain characteristics of salt-tolerant-like and salt-sensitive-like genotypes, respectively. Overall, our results highlight the significance of metabolites associated with salt responses and further provide a useful selection criterion in during screening for salt tolerance in J. curcas in breeding programmes.
Collapse
Affiliation(s)
- Marcelo F Pompelli
- Grupo Regional de Investigación Participativa de los Pequeños Productores de la Costa Atlantica. Universidad de Córdoba, Carrera 6 No. 77- 305 Montería, Córdoba, Colombia.
| | - Pedro P B Ferreira
- Pós-Graduação em Botânica, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | | | - Regina C B Q Figueiredo
- Centro de Pesquisas Aggeu Magalhães/FIOCRUZ, Departamento de Microbiologia, Recife, PE, Brazil
| | - Auxiliadora O Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Alfredo Jarma-Orozco
- Grupo Regional de Investigación Participativa de los Pequeños Productores de la Costa Atlantica. Universidad de Córdoba, Carrera 6 No. 77- 305 Montería, Córdoba, Colombia
| | - Arvind Bhatt
- Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, China
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Laurício Endres
- Laboratório de Fisiologia Vegetal, Centro de Agronomia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
10
|
Farhat N, Kouas W, Braun HP, Debez A. Stability of thylakoid protein complexes and preserving photosynthetic efficiency are crucial for the successful recovery of the halophyte Cakile maritima from high salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:177-190. [PMID: 34116337 DOI: 10.1016/j.plaphy.2021.05.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Plants native to extreme habitats often face changes in environmental conditions such as salinity level and water availability. In response, plants have evolved efficient mechanisms allowing them to survive or recover. In the present work, effects of high salinity and salt-stress release were studied on the halophyte Cakile maritima. Four week-old plants were either cultivated at 0 mM NaCl or 200 mM NaCl. After one month of treatment, plants were further irrigated at either 0 mM NaCl, 200 mM NaCl, or rewatered to 0 mM NaCl (stress release). Upon salt stress, C. maritima plants exhibited reduced biomass production and shoot hydration which were associated with a decrease in the amount of chlorophyll a and b. However, under the same stressful conditions a significant increase of anthocyanin and malonyldialdehyde concentrations was noticed. Salt-stressed plants were able to maintain stable protein complexes of thylakoid membranes. Measurement of chlorophyll fluorescence and P700 redox state showed that PSI was more susceptible for damage by salinity than PSII. PSII machinery was significantly enhanced under saline conditions. All measured parameters were partially restored under salt-stress release conditions. Photoinhibition of PSI was also reversible and C. maritima was able to successfully re-establish PSI machinery indicating the high contribution of chloroplasts in salt tolerance mechanisms of C. maritima. Overall, to overcome high salinity stress, C. maritima sets a cascade of physio-biochemical and molecular pathways. Chloroplasts seem to act as metabolic centers as part of this adaptive process enabling growth restoration in this halophyte following salt stress release.
Collapse
Affiliation(s)
- Nèjia Farhat
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Wafa Kouas
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, (CBBC), P. O. Box 901, 2050, Hammam-Lif, Tunisia; Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University of Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
11
|
Neto MCL, Carvalho FEL, Souza GM, Silveira JAG. Understanding photosynthesis in a spatial-temporal multiscale: The need for a systemic view. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2021; 33:113-124. [PMID: 33842196 PMCID: PMC8019523 DOI: 10.1007/s40626-021-00199-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In October 2020, at the peak of the COVID-19 pandemic, a group of young Brazilian photosynthesis researchers organized the 1st Brazilian Symposium on Photosynthesis. The event was free and online, with the presence of important guest speakers from all over the world, who discussed their recent works on topics related to the future and perspectives of photosynthesis research. Summarizing the expectations of this symposium we highlighted the importance of adopting a systemic perspective for a better understanding of photosynthesis as a complex and dynamic process. Plants are modular and self-regulating presenting metabolic redundancy and functional degeneration. Among the various biological processes, photosynthesis plays a crucial role in promoting the direct conversion of light energy into carbon skeletons for support growth and productivity. In the past decades, significant advances have been made in photosynthesis at the biophysical, biochemical, and molecular levels. However, this myriad of knowledge has been insufficient to answer crucial questions, such as: how can we understand and eventually increase photosynthetic efficiency and yield in crops subjected to adverse environment related to climate-changing? We believe that a crucial limitation to the whole comprehension of photosynthesis is associated with a vastly widespread classic reductionist view. Moreover, this perspective is commonly accompanied by non-integrative, simplistic, and descriptive approaches to investigate a complex and dynamic process as photosynthesis. Herein, we propose the use of new approaches, mostly based on the Systems Theory, which certainly comes closer to the real world, such as the complex systems that the plants represent.
Collapse
Affiliation(s)
- Milton C. Lima Neto
- Biosciences Institute, State University of São Paulo – UNESP, Coastal Campus, São Vicente, SP Brazil
| | - Fabricio E. L. Carvalho
- LABPLANT, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Av. Humberto Monte SN, Campus do Pici, Bl. 907, Fortaleza, CE CEP 60451-970 Brazil
- Colombiana de Investigación Agropecuaria – Agrosavia. Centro de Investigación La Suiza – Rionegro, Santander, Colombia
| | - Gustavo M. Souza
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS Brazil
| | - Joaquim A. G. Silveira
- LABPLANT, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Av. Humberto Monte SN, Campus do Pici, Bl. 907, Fortaleza, CE CEP 60451-970 Brazil
| |
Collapse
|
12
|
Sousa GT, Neto MCL, Choueri RB, Castro ÍB. Photoprotection and antioxidative metabolism in Ulva lactuca exposed to coastal oceanic acidification scenarios in the presence of Irgarol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105717. [PMID: 33307389 DOI: 10.1016/j.aquatox.2020.105717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 05/27/2023]
Abstract
Anthropogenic changes such as ocean acidification, eutrophication, and the release of hazardous chemicals affect coastal environments and aquatic organisms. We investigated the effects of seawater pH (7.4 and 8.2) isolated and in combination with Irgarol on Ulva lactuca. Stress indicators such as membrane damage, lipid peroxidation, and hydrogen peroxide content were assessed. In addition, chlorophyll fluorescence and antioxidant enzyme activities were measured. The photosynthetic yield was affected by low pH in assays with and without Irgarol. However, the combination of low pH and Irgarol promoted photoinhibition, besides the induction of non-photochemical quenching (NPQ) and changes in photosynthetic pigment contents. The induction of NPQ was directly influenced by low pH. The membrane damage was increased in low pH with and without Irgarol exposure. Total soluble protein and carbohydrate contents decreased in low pH, and in presence of Irgarol. The H2O2 content and lipid peroxidation were not affected by low pH. In contrast, Irgarol exposure strongly increased lipid peroxidation in both pHs, suggesting a possible synergistic effect. To avoid the harmful effects of high H2O2, U. lactuca increased antioxidant enzyme activities in treatments under low pH and in presence of Irgarol. Our results indicate that U. lactuca is tolerant to low pH by inducing NPQ, changing pigment contents, and increasing antioxidant defenses. In contrast, these protective mechanisms could not avoid the harmful effects of the combination with Irgarol.
Collapse
Affiliation(s)
- Gabriela Tavares Sousa
- Instituto do Mar da Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP, 11030-400, Brazil; Biosciences Institute, Coastal Campus, State University of São Paulo, Praça Infante Dom Henrique, s/n, São Vicente, SP, 11330-900, Brazil
| | - Milton C Lima Neto
- Biosciences Institute, Coastal Campus, State University of São Paulo, Praça Infante Dom Henrique, s/n, São Vicente, SP, 11330-900, Brazil
| | - Rodrigo Brasil Choueri
- Instituto do Mar da Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP, 11030-400, Brazil
| | - Ítalo Braga Castro
- Instituto do Mar da Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP, 11030-400, Brazil.
| |
Collapse
|
13
|
Salt-tolerance induced by leaf spraying with H 2O 2 in sunflower is related to the ion homeostasis balance and reduction of oxidative damage. Heliyon 2020; 6:e05008. [PMID: 33005807 PMCID: PMC7509778 DOI: 10.1016/j.heliyon.2020.e05008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/01/2022] Open
Abstract
Salinity is still one of the main factors that limit the growth and production of crops. However, currently, hydrogen peroxide (H2O2) priming has become a promising technique to alleviate the deleterious effects caused by salt. Therefore, this study aimed to test different leaf spraying strategies with H2O2 for acclimation of sunflower plants to salt stress, identifying the main physiological and biochemical changes involved in this process. The experiment was conducted in a completely randomized design, with four replications. Initially, four concentrations of H2O2 were tested (0.1; 1; 10 and 100 mM) associated with different applications: 1AP - one application (48 h before exposure to NaCl); 2AP - two applications (1AP + one application 7 days after exposure to NaCl) and 3AP - three applications (2AP + one application 14 days after exposure to NaCl), besides this two reference treatments were also added: control (absence of NaCl and absence of H2O2) and salt control (presence of 100 mM of NaCl and absence of H2O2). The experiment was conducted in hydroponic system containing Furlani's nutrient solution. Salt stress reduced the growth of sunflower plants, however, the H2O2 priming through leaf spraying was able to reduce the deleterious effects caused by salt, especially in the 1 mM H2O2 treatment with one application. H2O2 acts as a metabolic signal assisting in the maintenance of ionic and redox homeostasis, and consequently increasing the tolerance of plants to salt stress.
Collapse
|