1
|
Vermeire ML, Thiour-Mauprivez C, De Clerck C. Agroecological transition: towards a better understanding of the impact of ecology-based farming practices on soil microbial ecotoxicology. FEMS Microbiol Ecol 2024; 100:fiae031. [PMID: 38479782 PMCID: PMC10994205 DOI: 10.1093/femsec/fiae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Alternative farming systems have developed since the beginning of industrial agriculture. Organic, biodynamic, conservation farming, agroecology and permaculture, all share a grounding in ecological concepts and a belief that farmers should work with nature rather than damage it. As ecology-based agricultures rely greatly on soil organisms to perform the functions necessary for agricultural production, it is thus important to evaluate the performance of these systems through the lens of soil organisms, especially soil microbes. They provide numerous services to plants, including growth promotion, nutrient supply, tolerance to environmental stresses and protection against pathogens. An overwhelming majority of studies confirm that ecology-based agricultures are beneficial for soil microorganisms. However, three practices were identified as posing potential ecotoxicological risks: the recycling of organic waste products, plastic mulching, and pest and disease management with biopesticides. The first two because they can be a source of contaminants; the third because of potential impacts on non-target microorganisms. Consequently, developing strategies to allow a safe recycling of the increasingly growing organic matter stocks produced in cities and factories, and the assessment of the ecotoxicological impact of biopesticides on non-target soil microorganisms, represent two challenges that ecology-based agricultural systems will have to face in the future.
Collapse
Affiliation(s)
- Marie-Liesse Vermeire
- CIRAD, UPR Recyclage et Risque, Dakar 18524, Sénégal
- Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier 34398, France
| | - Clémence Thiour-Mauprivez
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, Dijon 21000, France
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, 2 Passage des Déportés, 5030 Gembloux, Belgium
| |
Collapse
|
2
|
Taylor RE, Waterworth W, West CE, Foyer CH. WHIRLY proteins maintain seed longevity by effects on seed oxygen signalling during imbibition. Biochem J 2023; 480:941-956. [PMID: 37351567 PMCID: PMC10422932 DOI: 10.1042/bcj20230008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/24/2023]
Abstract
The WHIRLY (WHY) family of DNA/RNA binding proteins fulfil multiple but poorly characterised functions in plants. We analysed WHY protein functions in the Arabidopsis Atwhy1, Atwhy3, Atwhy1why3 single and double mutants and wild type controls. The Atwhy3 and Atwhy1why3 double mutants showed a significant delay in flowering, having more siliques per plant but with fewer seeds per silique than the wild type. While germination was similar in the unaged high-quality seeds of all lines, significant decreases in vigour and viability were observed in the aged mutant seeds compared with the wild type. Imbibition of unaged high-quality seeds was characterised by large increases in transcripts that encode proteins involved in oxygen sensing and responses to hypoxia. Seed aging resulted in a disruption of the imbibition-induced transcriptome profile such that transcripts encoding RNA metabolism and processing became the most abundant components of the imbibition signature. The imbibition-related profile of the Atwhy1why3 mutant seeds, was characterised by decreased expression of hypoxia-related and oxygen metabolism genes even in the absence of aging. Seed aging further decreased the abundance of hypoxia-related and oxygen metabolism transcripts relative to the wild type. These findings suggest that the WHY1 and WHY3 proteins regulate the imbibition-induced responses to oxygen availability and hypoxia. Loss of WHY1 and WHY3 functions decreases the ability of Arabidopsis seeds to resist the adverse effects of seed aging.
Collapse
Affiliation(s)
- Rachel E. Taylor
- The Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Wanda Waterworth
- The Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Christopher E West
- The Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, U.K
| |
Collapse
|
3
|
Barbaś P, Aslan H, Aslan I, Skiba D, Otekunrin OA, Sawicka BH. Prospects for using pesticides in agriculture. AGRONOMY SCIENCE 2023; 78:97-120. [DOI: 10.24326/as.2023.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Concerns about food safety issues have put considerable pressure on pesticide producers in Europe and worldwide to reduce the levels of pesticide residues in food. The aim of this work is to assess the use of traditional pesticides and their effects, to present perspectives in this field and to identify regulatory needs for their use and implementation. The work is based on a systematic review in which the research problem was defined, primary sources were selected and critically appraised, data were collected, analysed and evaluated, and conclusions were formulated. The state of the pesticide market and the current legal requirements for risk assessment in relation to exposure to chemical substances were reviewed. Food safety issues are presented through the prism of pesticide residues in food. Their widespread use and considerable persistence have made them ubiquitous in the natural environment and their residues pose a threat to the environment and to human and animal health. It has been shown that the most important factor influencing the search for new tools to control diseases and pests of crops is the progressive development of resistance of these populations to currently used pesticides. Various alternatives to the phasing out of synthetic pesticides in the form of natural products are therefore being developed to support the development of the natural products market.
Collapse
|
4
|
Taylor RE, West CE, Foyer CH. WHIRLY protein functions in plants. Food Energy Secur 2023; 12:e379. [PMID: 38440693 PMCID: PMC10909546 DOI: 10.1002/fes3.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 03/06/2024] Open
Abstract
Environmental stresses pose a significant threat to food security. Understanding the function of proteins that regulate plant responses to biotic and abiotic stresses is therefore pivotal in developing strategies for crop improvement. The WHIRLY (WHY) family of DNA-binding proteins are important in this regard because they fulfil a portfolio of important functions in organelles and nuclei. The WHY1 and WHY2 proteins function as transcription factors in the nucleus regulating phytohormone synthesis and associated growth and stress responses, as well as fulfilling crucial roles in DNA and RNA metabolism in plastids and mitochondria. WHY1, WHY2 (and WHY3 proteins in Arabidopsis) maintain organelle genome stability and serve as auxiliary factors for homologous recombination and double-strand break repair. Our understanding of WHY protein functions has greatly increased in recent years, as has our knowledge of the flexibility of their localization and overlap of functions but there is no review of the topic in the literature. Our aim in this review was therefore to provide a comprehensive overview of the topic, discussing WHY protein functions in nuclei and organelles and highlighting roles in plant development and stress responses. In particular, we consider areas of uncertainty such as the flexible localization of WHY proteins in terms of retrograde signalling connecting mitochondria, plastids, and the nucleus. Moreover, we identify WHY proteins as important targets in plant breeding programmes designed to increase stress tolerance and the sustainability of crop yield in a changing climate.
Collapse
Affiliation(s)
- Rachel E. Taylor
- Faculty of Biological SciencesThe Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Christopher E. West
- Faculty of Biological SciencesThe Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Christine H. Foyer
- School of BiosciencesCollege of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
5
|
López-González D, Graña E, Teijeira M, Verdeguer M, Reigosa MJ, Sánchez-Moreiras AM, Araniti F. Similarities on the mode of action of the terpenoids citral and farnesene in Arabidopsis seedlings involve interactions with DNA binding proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:507-519. [PMID: 36764266 DOI: 10.1016/j.plaphy.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The sesquiterpene farnesene and the monoterpene citral are phytotoxic natural compounds characterized by a high similarity in macroscopic effects, suggesting an equal or similar mechanism of action when assayed at IC50 concentration. In the present study, a short-time experiment (24 and 48 h) using an imaging spectrofluorometer allowed us to monitor the in-vivo effects of the two molecules, highlighting that both terpenoids were similarly affecting all PSII parameters, even when the effects of citral were quicker in appearing than those of farnesene. The multivariate, univariate, and pathway analyses, carried out on untargeted-metabolomic data, confirmed a clear separation of the plant metabolome in response to the two treatments, whereas similarity in the affected pathways was observed. The main metabolites affected were amino acids and polyamine, which significantly accumulated in response to both treatments. On the contrary, a reduction in sugar content (i.e. glucose and sucrose) was observed. Finally, the in-silico studies demonstrated a similar mechanism of action for both molecules by interacting with DNA binding proteins, although differences concerning the affinity with the proteins with which they could potentially interact were also highlighted. Despite the similarities in macroscopic effects of these two molecules, the metabolomic and in-silico data suggest that both terpenoids share a similar but not equal mechanism of action and that the similar effects observed on the photosynthetic machinery are more imputable to a side effect of molecules-induced oxidative stress.
Collapse
Affiliation(s)
- David López-González
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Elisa Graña
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Marta Teijeira
- Universidade de Vigo, Departamento de Química Orgánica, Facultade de Química, 36310, Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213, Vigo, Spain
| | - Mercedes Verdeguer
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Manuel J Reigosa
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain.
| | - Fabrizio Araniti
- Dipartamento di Science Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n °2, 20133, Milano, Italy.
| |
Collapse
|
6
|
Preusche M, Vahl M, Riediger J, Ulbrich A, Schulz M. Modulating Expression Levels of TCP Transcription Factors by Mentha x piperita Volatiles-An Allelopathic Tool to Influence Leaf Growth? PLANTS (BASEL, SWITZERLAND) 2022; 11:3078. [PMID: 36432807 PMCID: PMC9697212 DOI: 10.3390/plants11223078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Peppermint (Mentha x piperita) is a species with inhibitory allelopathic properties due to its high amounts of terpenes. Recent studies have disclosed dosage dependent growth promotion or defense reactions in plants when facing appropriate amounts of Mentha bouquet terpenes. These positive effects could be of interest for agricultural applications. To obtain more insights into leaf growth modulations, the expression of Arabidopsis and Brassica rapa TCP transcription factors were studied after fumigation with M. x piperita bouquets (Arabidopsis), with M. x piperita essential oil or with limonene (Arabidopsis and Chinese cabbage). According to qPCR studies, expression of TCP3, TCP24, and TCP20 were downregulated by all treatments in Arabidopsis, leading to altered leaf growth. Expressions of B. rapa TCPs after fumigation with the essential oil or limonene were less affected. Extensive greenhouse and polytunnel trials with white cabbage and Mentha plants showed that the developmental stage of the leaves, the dosage, and the fumigation time are of crucial importance for changed fresh and dry weights. Although further research is needed, the study may contribute to a more intensive utilization of ecologically friendly and species diversity conservation and positive allelopathic interactions in future agricultural systems.
Collapse
Affiliation(s)
- Matthias Preusche
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| | - Marvin Vahl
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
| | - Johanna Riediger
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| | - Andreas Ulbrich
- Department of Horticultural Production, University of Applied Science, 49090 Osnabrück, Germany
| | - Margot Schulz
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
7
|
Ruan Q, Wang Y, Xu H, Wang B, Zhu X, Wei B, Wei X. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of Whirly (WHY) gene family in Medicago sativa L. Sci Rep 2022; 12:18676. [PMID: 36333411 PMCID: PMC9636397 DOI: 10.1038/s41598-022-22658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The WHY family is a group of plant-specific transcription factors, that can bind to single-stranded DNA molecules and play a variety of functions in plant nuclei and organelles, participating in the regulation of plant leaf senescence. It has been identified and analyzed in many species, however, the systematic identification and analysis of the WHY genes family have not yet been reported in alfalfa (Medicago sativa L.). Therefore, to explore the function of alfalfa the WHY genes, and 10 MsWHY genes were identified and further characterized their evolutionary relationship and expression patterns by analyzing the recently published genome of alfalfa. Comprehensive analysis of the chromosome location, physicochemical properties of the protein, evolutionary relationship, conserved motifs, and responses to abiotic stresses of the WHY gene family in alfalfa using bioinformatics methods. The results showed that 10 MsWHY genes were distributed on 10 chromosomes, and collinearity analysis showed that many MsWHYs might be derived from segmental duplications, and these genes are under purifying selection. Based on phylogenetic analyses, the WHY gene family of alfalfa can be divided into four subfamilies: I-IV subfamily, and approximately all the WHY genes within the same subfamily share similar gene structures. The 10 MsWHY gene family members contained 10 motifs, of which motif 2 and motif 4 are the conserved motifs shared by these genes. Furthermore, the analysis of cis-regulatory elements indicated that regulatory elements related to transcription, cell cycle, development, hormone, and stress response are abundant in the promoter sequence of the MsWHY genes. Real-time quantitative PCR demonstrated that MsWHYs gene expression is induced by drought, salt, and methyl jasmonate. The present study serves as a basic foundation for future functional studies on the alfalfa WHY family.
Collapse
Affiliation(s)
- Qian Ruan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Yizhen Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Haoyu Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Bochuang Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, 730070, China.
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, 730070, China.
| |
Collapse
|
8
|
The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis. Int J Mol Sci 2022; 23:ijms23094618. [PMID: 35563008 PMCID: PMC9104956 DOI: 10.3390/ijms23094618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.
Collapse
|
9
|
Duke SO, Pan Z, Bajsa-Hirschel J, Boyette CD. The potential future roles of natural compounds and microbial bioherbicides in weed management in crops. ADVANCES IN WEED SCIENCE 2022; 40. [PMID: 0 DOI: 10.51694/advweedsci/2022;40:seventy-five003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
10
|
Duke SO, Pan Z, Bajsa-Hirschel J. Proving the Mode of Action of Phytotoxic Phytochemicals. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1756. [PMID: 33322386 PMCID: PMC7763512 DOI: 10.3390/plants9121756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Knowledge of the mode of action of an allelochemical can be valuable for several reasons, such as proving and elucidating the role of the compound in nature and evaluating its potential utility as a pesticide. However, discovery of the molecular target site of a natural phytotoxin can be challenging. Because of this, we know little about the molecular targets of relatively few allelochemicals. It is much simpler to describe the secondary effects of these compounds, and, as a result, there is much information about these effects, which usually tell us little about the mode of action. This review describes the many approaches to molecular target site discovery, with an attempt to point out the pitfalls of each approach. Clues from molecular structure, phenotypic effects, physiological effects, omics studies, genetic approaches, and use of artificial intelligence are discussed. All these approaches can be confounded if the phytotoxin has more than one molecular target at similar concentrations or is a prophytotoxin, requiring structural alteration to create an active compound. Unequivocal determination of the molecular target site requires proof of activity on the function of the target protein and proof that a resistant form of the target protein confers resistance to the target organism.
Collapse
Affiliation(s)
- Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38655, USA
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Oxford, MS 38655, USA; (Z.P.); (J.B.-H.)
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Oxford, MS 38655, USA; (Z.P.); (J.B.-H.)
| |
Collapse
|
11
|
Verdeguer M, Sánchez-Moreiras AM, Araniti F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. PLANTS 2020; 9:plants9111571. [PMID: 33202993 PMCID: PMC7697004 DOI: 10.3390/plants9111571] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Weeds are one of the major constraints in crop production affecting both yield and quality. The excessive and exclusive use of synthetic herbicides for their management is increasing the development of herbicide-resistant weeds and is provoking risks for the environment and human health. Therefore, the development of new herbicides with multitarget-site activity, new modes of action and low impact on the environment and health are badly needed. The study of plant–plant interactions through the release of secondary metabolites could be a starting point for the identification of new molecules with herbicidal activity. Essential oils (EOs) and their components, mainly terpenoids, as pure natural compounds or in mixtures, because of their structural diversity and strong phytotoxic activity, could be good candidates for the development of new bioherbicides or could serve as a basis for the development of new natural-like low impact synthetic herbicides. EOs and terpenoids have been largely studied for their phytotoxicity and several evidences on their modes of action have been highlighted in the last decades through the use of integrated approaches. The review is focused on the knowledge concerning the phytotoxicity of these molecules, their putative target, as well as their potential mode of action.
Collapse
Affiliation(s)
- Mercedes Verdeguer
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Adela M. Sánchez-Moreiras
- Department of Plant Biology and Soil Science, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Fabrizio Araniti
- Department AGRARIA, University Mediterranea of Reggio Calabria, Loc. Feo di Vito, 89100 Reggio Calabria, Italy;
| |
Collapse
|