1
|
Bhardwaj S, Kapoor B, Kapoor D, Thakur U, Dolma Y, Raza A. Manifold roles of potassium in mediating drought tolerance in plants and its underlying mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112337. [PMID: 39603421 DOI: 10.1016/j.plantsci.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Drought stress (DS) is a major devastating factor affecting plant growth and development worldwide. Potassium (K) is considered a vigorous moiety and stress alleviator, which crop cultivars need for better yield. It is also helpful in alleviating the DS-induced negative consequences by regulating various morphological, physiological, biochemical, and molecular mechanisms in plants. Particularly, the K application improves plant tolerance against DS by improving plant growth parameters, photosynthetic pigments, cell turgor pressure, osmotic pressure, nutritional balance, compatible solutes, and the plant's antioxidant defense system. Apart from its role as a constituent of the plant structure, biochemical processes such as protein synthesis, carbohydrate metabolism, and enzyme activation are also regulated by K. However, the exact K-mediated molecular mechanisms of DS tolerance are still unclear and require more investigation. The present review aims to provide insight into the role of K in regulating various morphological and physico-chemical aspects under DS. It also emphasizes the crosstalk of K with other nutrients and phytohormones, as well as molecular mechanisms for K homeostasis under DS. We have also shed light on genomics analysis to discover K transporter's novel genes in different plant species.
Collapse
Affiliation(s)
- Savita Bhardwaj
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Bharat Kapoor
- Department of Hotel Management and Tourism, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Dhriti Kapoor
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| | - Usha Thakur
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Yanchen Dolma
- Department of Zoology, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Ali Raza
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Bolat I, Korkmaz K, Dogan M, Turan M, Kaya C, Seyed Hajizadeh H, Kaya O. Enhancing drought, heat shock, and combined stress tolerance in Myrobalan 29C rootstocks with foliar application of potassium nitrate. BMC PLANT BIOLOGY 2024; 24:140. [PMID: 38413882 PMCID: PMC10898176 DOI: 10.1186/s12870-024-04811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Drought and heat stress are significant concerns to food security in arid and semi-arid regions, where global warming is predicted to increase both frequency and severity. To cope with these challenges, the use of drought-tolerant plants or technological interventions are essential. In this study, the effects of foliar potassium nitrate (KNO3) application on the stress tolerance and recovery of Myrobalan 29C rootstocks (Prunus cerasifera Ehrh.) were evaluated. These rootstocks are widely recognized for their adaptability and are extensively used in fruit production. To assess their response, the rootstocks were subjected to drought, heat shock, or a combination of both stressors. Additionally, they were treated with 1.0% KNO3 via foliar application. Throughout the stress and recovery periods, various morphological, physiological, and bio-chemical parameters were measured. RESULTS Based on our results, KNO3 treatment improved LRWC, Chl stability, SC, and key stress markers like proline, MDA, H2O2, along with antioxidant enzymes CAT, SOD, POD during both stress and recovery phases. Moreover, our results emphasized KNO3's critical role in hormone regulation under stress. KNO3 application significantly altered hormone levels, notably increasing ABA during drought and heat shock stress, essential for stress response and adaptation. In contrast, IAA, GA, and cytokinin's significantly increased during the recovery phase in KNO3-treated plants, indicating improved growth regulation and stress recovery. In addition, KNO3 application improved the recovery process of the rootstocks by restoring their physiological and biochemical functions. CONCLUSION This study suggests that the application of foliar KNO3 is an effective technique for enhancing the drought and heat tolerance as well as the recovery of Myrobalan 29C rootstocks. These results hold significant value for farmers, policymakers, and researchers, as they offer crucial insights into the development of drought-tolerant crops and the management of climate change's adverse effects on agriculture.
Collapse
Affiliation(s)
- Ibrahim Bolat
- Faculty of Agriculture, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Kubra Korkmaz
- Graduate School of Natural and Applied Sciences, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Meral Dogan
- Graduate School of Natural and Applied Sciences, Department of Horticulture, Harran University, Sanliurfa, Türkiye
| | - Metin Turan
- Faculty of Economy and Administrative Science, Yeditepe University, Istanbul, 34755, Türkiye
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Türkiye.
| | - Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Ozkan Kaya
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, 24060, Türkiye.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
3
|
Hameed R, Abbas A, Saeed M, Shahani AAA, Huang P, Du D, Zulfiqar U, Alamri S, Alfagham AT. Investigating the dynamic responses of Aegilops tauschii Coss. to salinity, drought, and nitrogen stress: a comprehensive study of competitive growth and biochemical and molecular pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1238704. [PMID: 37745988 PMCID: PMC10511890 DOI: 10.3389/fpls.2023.1238704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Aegilops tauschii (Coss.) is a highly deleterious, rapidly proliferating weed within the wheat, and its DD genome composition exhibits adaptability toward diverse abiotic stresses and demonstrates heightened efficacy in nutrient utilization. Current study investigated different variegated impacts of distinct nitrogen concentrations with varied plant densities, scrutinizing the behavior of Ae. tauschii under various salinity and drought stress levels through multiple physiological, biochemical, and molecular pathways. Different physiological parameters attaining high growth with different plant density and different nitrogen availability levels increased Ae. tauschii dominancy. Conversely, under the duress of salinity and drought, Ae. tauschii showcased an enhanced performance through a comprehensive array of physiological and biochemical parameters, including catalase, peroxidase, malondialdehyde, and proline content. Notably, salinity-associated traits such as sodium, potassium, and the sodium-potassium ratio exhibited significant variations and demonstrated remarkable tolerance capabilities. In the domain of molecular pathways, the HKT and DREB genes have displayed a remarkable upregulation, showcasing a comparatively elevated expression profile in reaction to different levels of salinity and drought-induced stress. Without a doubt, this information will make a substantial contribution to the understanding of the fundamental behavioral tendencies and the efficiency of nutrient utilization in Ae. tauschii. Moreover, it will offer innovative viewpoints for integrated management, thereby enabling the enhancement of strategies for adept control and alleviation.
Collapse
Affiliation(s)
- Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Saeed
- Department of Weed Science and Botany, The University of Agriculture, Peshawar, Pakistan
| | - Aitezaz A. A. Shahani
- Key Laboratory of Crop Sciences and Plant Breeding Genetics, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alanoud T. Alfagham
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Kalamartzis I, Papakaloudis P, Dordas C. Basil ( Ocimum basilicum) Landraces Can Be Used in a Water-Limited Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2425. [PMID: 37446986 DOI: 10.3390/plants12132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Basil (Ocimum basilicum L.) is a member of the Labiatae family and is one of the most widely consumed aromatic and medicinal plants in many countries due to its numerous properties and uses. The objective of the study was to determine whether landraces are better adapted to water-limited environments compared to commercial cultivars. Irrigation levels and genotypes affected plant height and leaf area index, with 25% and 33% higher values observed under complete irrigation, respectively. Additionally, limited water availability resulted in a 20% reduction in dry matter yield and a 21% reduction in essential oil yield over the three years in all of the genotypes tested, specifically in the lower irrigation treatment (d40), compared to the control treatment (d100). The landraces that performed the best under limited water supply were Athos white spike (AWS) and Gigas white spike (GWS), indicating their suitability for environments with limited water resources. The results demonstrate that there are landraces that can be utilized in dryland climates with appropriate water management, enabling water conservation and utilization of fields in water-scarce areas for irrigation purposes.
Collapse
Affiliation(s)
- Iakovos Kalamartzis
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Papakaloudis
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Dordas
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Abbas F, Yu Y, Bendahmane M, Wang HC. Plant volatiles and color compounds: From biosynthesis to function. PHYSIOLOGIA PLANTARUM 2023; 175:e13947. [PMID: 37357979 DOI: 10.1111/ppl.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Affiliation(s)
- Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yixun Yu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Development des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|