1
|
Zhang M, Yan S, Wang J, Zhong Y, Wang C, Zhang T, Xing D, Shao Y. Rational design of multifunctional hydrogels targeting the microenvironment of diabetic periodontitis. Int Immunopharmacol 2024; 138:112595. [PMID: 38950455 DOI: 10.1016/j.intimp.2024.112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Periodontitis is a chronic inflammatory disease and is the primary contributor to adult tooth loss. Diabetes exacerbates periodontitis, accelerates periodontal bone resorption. Thus, effectively managing periodontitis in individuals with diabetes is a long-standing challenge. This review introduces the etiology and pathogenesis of periodontitis, and analyzes the bidirectional relationship between diabetes and periodontitis. In this review, we comprehensively summarize the four pathological microenvironments influenced by diabetic periodontitis: high glucose microenvironment, bacterial infection microenvironment, inflammatory microenvironment, and bone loss microenvironment. The hydrogel design strategies and latest research development tailored to the four microenvironments of diabetic periodontitis are mainly focused on. Finally, the challenges and potential solutions in the treatment of diabetic periodontitis are discussed. We believe this review will be helpful for researchers seeking novel avenues in the treatment of diabetic periodontitis.
Collapse
Affiliation(s)
- Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Shi X, Zhu P, Du M, Deng K, Li P, Sáenz-Ravello G, Xu S, Li A. Dietary patterns and periodontitis: A systematic review. J Periodontal Res 2024. [PMID: 39248151 DOI: 10.1111/jre.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
The systematic review aimed to investigate the associations between index-based dietary patterns and the risk and severity of periodontitis. Four public databases were searched for relevant published articles. Two independent researchers conducted the study selection, quality assessment, and data extraction. Methodological quality of the selected studies was evaluated using Joanna Briggs Institute Checklists. The review was registered with PROSPERO (CRD42023395049). Twenty-five studies were eligible for this review, including 23 cross-sectional studies and two prospective cohort studies. The most utilized dietary indices were the Healthy Eating Index (HEI), the Mediterranean Diet Score (MDS), and the Dietary Inflammatory Index (DII). The results indicated a positive association between higher diet quality (i.e., higher HEI and MDSs and lower DII scores) and healthier periodontal status. Subgroup meta-analysis for four studies utilizing HEI and CDC/AAP case definition indicates the protective effect of higher HEI scores on the risk of periodontitis (OR [95% CI] = 0.77[0.68, 0.88]) with statistical significance (Z = 3.91 [p < 0.0001]). Dietary assessment was conducted by validated food frequency questionnaires (FFQ) in 52% of the studies and 24-h dietary recalls in 36% of the studies. One study utilized a validated 15-item questionnaire to measure patients' adherence to the Mediterranean Diet (QueMD). The quality assessment showed that all studies were of high quality. High HEI and MDSs and low DII scores were associated with a low risk of periodontitis and better periodontal conditions. The standardized and repeatable diet guidelines might be provided for preventing periodontitis. Future prospective studies and clinical trials are needed to confirm this causal association.
Collapse
Affiliation(s)
- Xinyi Shi
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peijun Zhu
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mi Du
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ke Deng
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Ping Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gustavo Sáenz-Ravello
- Center for Surveillance and Epidemiology of Oral Diseases, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Shulan Xu
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - An Li
- School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Jundaeng J, Chamchong R, Nithikathkul C. Periodontitis diagnosis: A review of current and future trends in artificial intelligence. Technol Health Care 2024:THC241169. [PMID: 39302402 DOI: 10.3233/thc-241169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Artificial intelligence (AI) acts as the state-of-the-art in periodontitis diagnosis in dentistry. Current diagnostic challenges include errors due to a lack of experienced dentists, limited time for radiograph analysis, and mandatory reporting, impacting care quality, cost, and efficiency. OBJECTIVE This review aims to evaluate the current and future trends in AI for diagnosing periodontitis. METHODS A thorough literature review was conducted following PRISMA guidelines. We searched databases including PubMed, Scopus, Wiley Online Library, and ScienceDirect for studies published between January 2018 and December 2023. Keywords used in the search included "artificial intelligence," "panoramic radiograph," "periodontitis," "periodontal disease," and "diagnosis." RESULTS The review included 12 studies from an initial 211 records. These studies used advanced models, particularly convolutional neural networks (CNNs), demonstrating accuracy rates for periodontal bone loss detection ranging from 0.76 to 0.98. Methodologies included deep learning hybrid methods, automated identification systems, and machine learning classifiers, enhancing diagnostic precision and efficiency. CONCLUSIONS Integrating AI innovations in periodontitis diagnosis enhances diagnostic accuracy and efficiency, providing a robust alternative to conventional methods. These technologies offer quicker, less labor-intensive, and more precise alternatives to classical approaches. Future research should focus on improving AI model reliability and generalizability to ensure widespread clinical adoption.
Collapse
Affiliation(s)
- Jarupat Jundaeng
- Health Science Program, Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
- Tropical Health Innovation Research Unit, Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
- Dental Department, Fang Hospital, Chiangmai, Thailand
| | - Rapeeporn Chamchong
- Department of Computer Science, Faculty of Informatics, Mahasarakham University, Mahasarakham, Thailand
| | - Choosak Nithikathkul
- Health Science Program, Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
- Tropical Health Innovation Research Unit, Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| |
Collapse
|
4
|
Miguel MMV, Shaddox LM. Grade C Molar-Incisor Pattern Periodontitis in Young Adults: What Have We Learned So Far? Pathogens 2024; 13:580. [PMID: 39057807 PMCID: PMC11279578 DOI: 10.3390/pathogens13070580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Grade C molar-incisor pattern periodontitis (C-MIP) is a disease that affects specific teeth with an early onset and aggressive progression. It occurs in systemically healthy patients, mostly African descendants, at an early age, with familial involvement, minimal biofilm accumulation, and minor inflammation. Severe and rapidly progressive bone loss is observed around the first molars and incisors. This clinical condition has been usually diagnosed in children and young adults with permanent dentition under 30 years of age. However, this disease can also affect the primary dentition, which is not as frequently discussed in the literature. Radiographic records have shown that most patients diagnosed in the permanent dentition already presented disease signs in the primary dentition. A hyperresponsive immunological profile is observed in local (gingival crevicular fluid-GCF) and systemic environments. Siblings have also displayed a heightened inflammatory profile even without clinical signs of disease. A. actinomycetemcomitans has been classified as a key pathogen in C-MIP in both dentitions. Scaling and root planning associated with systemic antibiotics is the current gold standard to treat C-MIP, leading to GCF biomarker reduction, some systemic inflammatory response modulation and microbiome profile changes to a healthy-site profile. Further studies should focus on other possible disease-contributing risk factors.
Collapse
Affiliation(s)
- Manuela Maria Viana Miguel
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40508, USA;
| | - Luciana Macchion Shaddox
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40508, USA;
- Department of Oral Health Practice, Periodontology Division, College of Dentistry, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
5
|
El-Nablaway M, Rashed F, Taher ES, Atia GA, Foda T, Mohammed NA, Abdeen A, Abdo M, Hînda I, Imbrea AM, Taymour N, Ibrahim AM, Atwa AM, Ibrahim SF, Ramadan MM, Dinu S. Bioactive injectable mucoadhesive thermosensitive natural polymeric hydrogels for oral bone and periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1384326. [PMID: 38863491 PMCID: PMC11166210 DOI: 10.3389/fbioe.2024.1384326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, United States
| | - Nourelhuda A. Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Al Karak, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ioana Hînda
- Department of Biology, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ana-Maria Imbrea
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Timișoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Samah F. Ibrahim
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
6
|
Juiz PJL, Ferreira LTB, Pires EA, Villarreal CF. Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis. Antioxidants (Basel) 2024; 13:566. [PMID: 38790671 PMCID: PMC11117607 DOI: 10.3390/antiox13050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontal disease is an inflammatory condition characterized by an aberrant immune response against a dysbiotic dental biofilm, with oxidative stress performing an essential role in its pathogenesis. This paper presents a patent mining, performed in the Orbit Intelligence patent database, related to antioxidant phytochemicals in the technological developments that are working to prevent and treat periodontal disease. To access the documents, the descriptors "PERIODONTAL" and "ANTIOXIDANT" were typed in the title, abstract, and claim search fields. A total of 322 patents demonstrate the growing interest in researching natural antioxidants for scientific and technological purposes. The top ten countries regarding the number of family patents produced were the United States, the European Office, Japan, South Korea, China, India, Mexico, Denmark, Canada, and Great Britain. The most cited compounds were vitamin C, green tea, quercetin, melatonin, lycopene, resveratrol, and curcumin. These compounds have been used for the technological development of gels, membranes, dentifrices, chewing gum, orally disintegrating film, mouthwash, mouth spray, and mouth massage cream and exhibit the ability to neutralize free radicals and reduce oxidative stress, a critical factor in the development and progression of periodontal diseases. The patent documents have shown that using antioxidant compounds in conjunction with traditional periodontal treatments is a promising area of interest in periodontal therapy.
Collapse
Affiliation(s)
- Paulo José Lima Juiz
- Center for Science and Technology in Energy and Sustainability, Federal University of Recôncavo da Bahia, Feira de Santana 44042-280, BA, Brazil; (P.J.L.J.); (L.T.B.F.)
| | - Luiza Teles Barbalho Ferreira
- Center for Science and Technology in Energy and Sustainability, Federal University of Recôncavo da Bahia, Feira de Santana 44042-280, BA, Brazil; (P.J.L.J.); (L.T.B.F.)
| | - Edilson Araújo Pires
- Faculty of Education and Integrated Sciences of Sertão de Canindé, State University of Ceará, Canindé 62700-000, CE, Brazil;
| | | |
Collapse
|
7
|
Agnihotri R, Gaur S, Bhat SG. Role of microRNAs in Diabetes-Associated Periodontitis: A Scoping Review. J Int Soc Prev Community Dent 2024; 14:180-191. [PMID: 39055291 PMCID: PMC11268527 DOI: 10.4103/jispcd.jispcd_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 07/27/2024] Open
Abstract
Aim Diabetes mellitus (DM), a metabolic disorder, exhibits a bidirectional relationship with periodontitis (PD), and recently, microRNAs (miRNAs) were associated with their progression. This review aims to assess the role of miRNAs in the pathogenesis of DM-associated PD and their plausible application as a biomarker for PD in individuals with DM. Materials and Methods The search conducted until September 2023 on Medline (Pubmed), Scopus, Embase, and Web of Science using the keywords "microRNA," "miRNA," or "miR," combined with "Diabetes" and "PD" yielded 100 articles. Only research focusing on the role of miRNAs in the pathogenesis of DM-associated PD and their potential application as biomarkers for both conditions were included. Finally, 14 studies were assessed for any bias, and the collected data included study design, sample size, participant groups, age, sample obtained, PD severity, miRNAs examined, clinical and biochemical parameters related to DM and PD, and primary outcomes. Results In vivo studies indicated altered expression of miRNAs-146a, -146b, -155, -200b, -203, and -223, specifically in the comorbid subjects with both conditions. Animal, ex vivo, and in vitro studies demonstrated altered expression of miRNAs-126, -147, -31, -25-3p, -508-3p, -214, 124-3p, -221, -222, and the SIRT6-miR-216/217 axis. These miRNAs impact innate and adaptive immune mechanisms, oxidative stress, hyperglycemia, and insulin sensitivity, thereby promoting periodontal destruction in DM. miRNA-146a emerges as a reliable biomarker of PD in DM, whereas miRNA-155 is a consistent predictor of PD in subjects without DM. Conclusions miRNAs exert influence on immuno-inflammation in DM-associated PD. Although they can be biomarkers of PD and DM, their clinical utility is hindered by the absence of standardized tests to evaluate their sensitivity and specificity. Moreover, there has been limited exploration of the role of miRNAs in DM-associated PD through human studies. Future clinical trials are warranted to address this gap, focusing on standardizing sample collection, miRNA sources, and detection methods. This approach will enable the identification of specific miRNAs for DM-associated PD.
Collapse
Affiliation(s)
- Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Estarreja J, Pimenta AC, Botelho J, Vilares AM, Mendes JJ, Rocha J, Pinto R, Mateus V, Machado V. Blood count, endocrine, immunologic, renal, and hepatic markers in a case-control animal study of induced periodontitis in female rodents. Front Physiol 2024; 15:1327399. [PMID: 38444766 PMCID: PMC10912185 DOI: 10.3389/fphys.2024.1327399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction: Periodontitis is a non-communicable chronic inflammatory disease with a systemic burden. Animal models of induced periodontitis help elucidate the mechanisms by which periodontal inflammation drives systemic effects. Studying this systemic involvement over longer follow-up periods may provide a strong foundation for future research on the association between diseases and periodontitis, particularly in female rats. Therefore, we aimed to compare blood, endocrine, immunologic, renal, and hepatic markers in a rat model of induced periodontitis in females with their control counterparts. Methods: Experimental periodontitis was induced in 20 female Wistar rats by the application and maintenance of silk ligatures on the upper molars. The rats were then assessed for macroscopical analysis, complete blood count, and biochemical, endocrine, and immunologic markers at 21, 28, 42, and 56 days. Results: Chronic periodontal inflammation was observed after 42 days of exposure to the ligatures. Additionally, it was also possible to notice significant systemic manifestations, such as the reduction of triiodothyronine and thyroxine levels, along with an increase in the expression of alkaline phosphatase, gamma-glutamyl transpeptidase, and lactate dehydrogenase. Discussion: The study's findings imply that certain changes can be underscored to highlight a reduced risk of conception. Notably, previous investigations have indicated that subfertile women exhibit lower levels of thyroid hormones and elevated lactate dehydrogenase expression. Despite the absence of preclinical data delineating a possible association between periodontitis and female infertility, the results of this study may prove to be a crucial contribution to both the scientific and medical fields.
Collapse
Affiliation(s)
- João Estarreja
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Ana Clara Pimenta
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Almada, Portugal
| | - João Botelho
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Almada, Portugal
| | - Arminda Maria Vilares
- Laboratório de Fisiologia e Bioquímica do Exercício, Universidade de Lisboa Faculdade de Motricidade Humana, Lisboa, Portugal
| | - José João Mendes
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Almada, Portugal
| | - João Rocha
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Joaquim Chaves Saúde, Joaquim Chaves Laboratório de Análises Clínicas, Miraflores, Portugal
| | - Vanessa Mateus
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa Machado
- Clinical Research Unit (CRU), Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Almada, Portugal
| |
Collapse
|
9
|
de Vasconcelos Gurgel BC, Peixe PG, Queiroz SIML, de Almeida Freitas R, de Aquino Martins ARL, Duarte PM. Comparison of immunoexpression of dendritic cells, mast cells and blood vessels in periodontal disease between adults and elderly. Clin Oral Investig 2023; 27:6823-6833. [PMID: 37814161 DOI: 10.1007/s00784-023-05297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE The aim of this study was to compare, in adults and elderly individuals, the immunoexpression of immature and mature dendritic cells (DCs), mast cells, and blood vessels in healthy and diseased gingival tissues. MATERIALS AND METHODS The expressions of immunohistochemical markers, including CD1a (immature dendritic cells), CD83 (mature dendritic cells), tryptase (mast cells) and CD34 (blood vessels), were analyzed in gingival biopsies from elderly (n = 27) and adult (n = 127) patients presenting health, gingivitis and periodontitis. Positive cells for each specimen and marker were counted. RESULTS There were no differences in the immunostaining of DCs, mast cells and the amount of blood vessels among gingival biopsies with health, gingivitis and periodontitis in adult and elderly subjects (p > 0.05). Immature DCs were more frequent in tissues with gingivitis and periodontitis in elderly patients, when compared to adults (p < 0.05). Furthermore, degranulated mast cell counts were higher, whereas the number of microvessels was lower in gingivitis in the elderly, when compared to adults (p < 0.05). CONCLUSIONS Diseased periodontal sites in the elderly present an overall significant overexpression of immature DCs and degranulated mast cells, in relation to those of adults. Furthermore, gingivitis in elderly is associated with decreased microvessel growth. These immunoinflammatory differences between elderly and adults may have implications in periodontal tissue breakdown in the late adulthood. Further studies should be performed to elucidate this hypothesis. CLINICAL RELEVANCE Understading the relationship between aging and changes in immune cells during periodontal inflammation may lead to therapeutic targets for the future management of periodontal diseases.
Collapse
Affiliation(s)
- Bruno Cesar de Vasconcelos Gurgel
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil.
| | - Patrícia Guerra Peixe
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Salomão Israel Monteiro Lourenço Queiroz
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Roseana de Almeida Freitas
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Ana Rafaela Luz de Aquino Martins
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Poliana Mendes Duarte
- Department of Periodontology, University of Florida, 1395 Center Dr, Gainesville, FL, 32610, USA
| |
Collapse
|
10
|
Alves JM, Germano DB, Kim YJ, Fonseca FAH, Izar MC, Tuleta ID, Nagai R, Novo NF, Juliano Y, Neves LM, Pallos D, França CN. Modulation of monocyte subtypes in diabetes after non-surgical periodontal treatment. Clin Oral Investig 2023; 27:6847-6854. [PMID: 37843636 DOI: 10.1007/s00784-023-05299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES The current study aims to evaluate the effect of non-surgical periodontal treatment on the modulation of monocyte phenotype, in the presence or absence of diabetes. MATERIALS AND METHODS The identification, quantification, and phenotypic characterization of monocyte subtypes (classical, intermediate, and non-classical) were performed by flow cytometry, at baseline and 1 month after the end of non-surgical periodontal treatment, in patients with periodontitis, associated or not with diabetes. RESULTS There was an increase in non-classical monocytes after treatment and a reduction in intermediate monocytes, without differences for the classical subtype, regardless of the diabetes status. Furthermore, there was a reduction in intermediate monocytes and an increase in non-classical and classical monocytes after treatment in the diabetes group, while no significant differences were observed for classical, intermediate, and non-classical monocytes in the group without diabetes. Comparisons between the two groups showed significant differences for classical, intermediate, and non-classical monocytes at baseline; these differences were not found one month after treatment. CONCLUSIONS Non-surgical periodontal treatment leads to modulation of monocytes to a less inflammatory phenotype, especially in individuals with diabetes. CLINICAL RELEVANCE A better understanding of the role of these biomarkers in the periodontitis contex may constitute a new strategic target for a better treatment of patiens with diabetes associated to periodontitis. CLINICAL TRIAL REGISTRATION Brazilian Registry of Clinical Trials-RBR-35szwc. Jhefferson Miranda Alves and Danielle Borges Germano contributed equality to this study and should be considered first authors.
Collapse
Affiliation(s)
- Jhefferson Miranda Alves
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Danielle Borges Germano
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Yeon Jung Kim
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | | | - Maria Cristina Izar
- Department of Medicine, Federal University of Sao Paulo, Cardiology Division, Sao Paulo, Brazil
| | | | - Rogério Nagai
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | - Neil Ferreira Novo
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Lucas Melo Neves
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Débora Pallos
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil.
| |
Collapse
|
11
|
Toraman A, Sağlam E, Savran L, Sağlam M, Köseoğlu S. Salivary levels of NLRC4 inflammasome in different periodontal clinical status. Oral Dis 2023; 29:2765-2771. [PMID: 36327138 DOI: 10.1111/odi.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Nucleotide-binding and oligomerization domain (NOD)-like receptor family CARD domain-containing protein 4 (NLRC4) has a critical role in the regulation of interleukin-1β (IL-1β), an important cytokine in the pathogenesis of the periodontal diseases. In this study, we aimed to evaluate levels of salivary NLRC4 inflammasomes in different periodontal clinical statuses. METHODS The individuals with 20 periodontally healthy (healthy), 20 gingivitis, and 20 periodontitis were periodontally examined. Saliva samples were collected, after the clinical measurements (plaque index, gingival index, gingival bleeding index, probing depth, and clinical attachment level). The levels of salivary NLRC4, IL-1β, and interleukin 10 (IL-10) were examined by enzyme-linked immunosorbent assay. RESULTS The results demonstrated that levels of salivary NLRC4 (p < 0.01), and IL-1β (p < 0.001) were significantly higher in gingivitis and periodontitis than in the healthy group. No significant difference was salivary IL-10 levels between the groups (p > 0.05). Positive significant correlations among NLRC4 and IL-1β salivary levels and clinical parameters were detected (p < 0.05). CONCLUSION The findings of this study suggest that the NLRC4 is elevated in periodontal disease. Larger randomized controlled clinical studies are needed to use salivary NLRC4 levels as a potential marker for detecting the presence and/or severity of the periodontal disease.
Collapse
Affiliation(s)
- Ayşe Toraman
- Department of Periodontology, Hamidiye Faculty of Dentistry, Health Sciences University, İstanbul, Turkey
| | - Ebru Sağlam
- Department of Periodontology, Hamidiye Faculty of Dentistry, Health Sciences University, İstanbul, Turkey
| | - Levent Savran
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Mehmet Sağlam
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, İzmir, Turkey
| | - Serhat Köseoğlu
- Department of Periodontology, Faculty of Dentistry, İstanbul Medeniyet University, İstanbul, Turkey
| |
Collapse
|
12
|
Maquera-Huacho PM, Spolidorio DP, Manthey J, Grenier D. Effect of Hesperidin on Barrier Function and Reactive Oxygen Species Production in an Oral Epithelial Cell Model, and on Secretion of Macrophage-Derived Inflammatory Mediators during Porphyromonas gingivalis Infection. Int J Mol Sci 2023; 24:10389. [PMID: 37373533 DOI: 10.3390/ijms241210389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Porphyromonas gingivalis is a periodontopathogenic bacterium that can adhere to and colonize periodontal tissues, leading to an inflammatory process, and, consequently, tissue destruction. New therapies using flavonoids, such as hesperidin, are being studied, and their promising properties have been highlighted. The aim of this study was to evaluate the effect of hesperidin on the epithelial barrier function, reactive oxygen species (ROS) production, and on the inflammatory response caused by P. gingivalis in in vitro models. The integrity of the epithelial tight junctions challenged by P. gingivalis was determined by monitoring the transepithelial electrical resistance (TER). P. gingivalis adherence to a gingival keratinocyte monolayer and a basement membrane model were evaluated by a fluorescence assay. A fluorometric assay was used to determine the ROS production in gingival keratinocytes. The level of pro-inflammatory cytokines and matrix metalloproteinases (MMPs) secretion was evaluated by ELISA; to assess NF-κB activation, the U937-3xjB-LUC monocyte cell line transfected with a luciferase reporter gene was used. Hesperidin protected against gingival epithelial barrier dysfunction caused by P. gingivalis and reduced the adherence of P. gingivalis to the basement membrane model. Hesperidin dose-dependently inhibited P. gingivalis-mediated ROS production by oral epithelial cells as well as the secretion of IL-1β, TNF-α, IL-8, MMP-2, and MMP-9 by macrophages challenged with P. gingivalis. Additionally, it was able to attenuate NF-κB activation in macrophages stimulated with P. gingivalis. These findings suggest that hesperidin has a protective effect on the epithelial barrier function, in addition to reducing ROS production and attenuating the inflammatory response associated with periodontal disease.
Collapse
Affiliation(s)
- Patricia Milagros Maquera-Huacho
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
- School of Medicine, Faculty of Health Sciences, National University of Moquegua, Moquegua 18001, Peru
| | - Denise Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Araraquara 14801-903, SP, Brazil
| | - John Manthey
- U.S. Horticultural Research Laboratory, Agricultural Research Service, USDA, Fort Pierce, FL 34945, USA
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
13
|
Guru SR, Aghanashini S. Impact of scaling and root planing on salivary and serum plasminogen activator inhibitor-1 expression in patients with periodontitis with and without type 2 diabetes mellitus. J Periodontol 2023; 94:20-30. [PMID: 35708712 DOI: 10.1002/jper.22-0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) is significantly enhanced in insulin resistance and inflammation and ascribed as a proinflammatory marker. This study aimed to compare and correlate salivary and serum PAI-1 and alpha 2-macroglobulin (α2MG) in patients with periodontitis with and without type 2 diabetes mellitus (T2DM) and also appraise the consequence of periodontal treatment on these biomarkers. METHODS Sixty subjects enlisted were split into two groups; Group 1 consisted of 30 systemically healthy subjects with Stage II and III, generalized, Grade B, C periodontitis while Group 2 consisted of 30 patients with periodontitis and well-controlled T2DM (PDM). Salivary and serum PAI-1 and α2MG levels were estimated by enzyme-linked immunosorbent assay and allied with clinical parameters before and 3 months post non-surgical periodontal therapy (NSPT). Data were statistically analyzed using student t-test and Spearman correlation. RESULTS Analogous improvements in clinical periodontal markers were experienced in both groups after initial periodontal treatment. Estimates of salivary and serum PAI-1 and α2MG were higher among the PDM group compared with periodontitis alone at baseline. Significant diminution in estimates of biomarkers was noted 3 months after NSPT. In the PDM group, there was also an improvement in glycemic control. CONCLUSIONS NSPT positively impacted both groups. Noteworthy expression of salivary and serum PAI-1 in patients with periodontitis and diabetes insinuates a possible role of the adipokine in periodontal inflammation and glucose level regulation. Salivary PAI-1 could thus be used as a diagnostic biomarker to detect disease activity and to track periodontal therapy response.
Collapse
Affiliation(s)
- Sanjeela R Guru
- Department of Periodontics, Vydehi Institute of Dental Sciences and Research Centre, Whitefield, Bangalore, Karnataka, India
| | - Suchetha Aghanashini
- Department of Periodontics, DA Pandu Memorial R V Dental College and Hospital, J.P. Nagar, Bangalore, India
| |
Collapse
|
14
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Wojciech Tynior, Joanna Katarzyna Strzelczyk. A Brief Landscape of Epigenetic Mechanisms in Dental Pathologies. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Ebersole JL, Nagarajan R, Kirakodu SS, Gonzalez OA. Immunoglobulin gene expression profiles and microbiome characteristics in periodontitis in nonhuman primates. Mol Immunol 2022; 148:18-33. [PMID: 35665658 DOI: 10.1016/j.molimm.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Colonization of mucosal tissues throughout the body occurs by a wide array of bacteria in the microbiome that stimulate the cells and tissues, as well as respond to changes in the local milieu. A feature of periodontitis is the detection of adaptive immune responses to members of the oral microbiome that show specificity and changes with disease and treatment. Thus, variations in antibody responses are noted across the population and affected by aging, albeit, data are still unclear as to how these differences relate to disease risk and expression. This study used a nonhuman primate model of experimental periodontitis to track local microbiome changes as they related to the use and expression of a repertoire of immunoglobulin genes in gingival tissues. Gingival tissue biopsies from healthy tissues and following ligature-placement for disease initiation and progression provided gene expression analysis. Additionally, following removal of the ligatures, clinical healing occurs with gene expression in disease resolved tissues. Groups of 9 animals (young: <3 yrs., adolescent: 3-7 yrs., adult -12 to 15 yrs.; aged: 17-22 yrs) were used in the investigation. In healthy tissues, young and adolescent animals showed levels of expression of 78 Ig genes that were uniformly less than adults. In contrast, ⅔ of the Ig genes were elevated by > 2-fold in the aged samples. Specific increases in an array of the Ig gene transcripts were detected in adults at disease initiation and throughout progression, while increases in young and adolescent animals were observed only with disease progression, and in aged samples primarily late in disease progression. Resolved lesions continued to demonstrate elevated levels of Ig gene expression in only young, adolescent and adult animals. The array of Ig genes significantly correlated with inflammatory, tissue biology and hypoxia genes in the gingival tissues, with variations associated with age. In the young group of animals, specific members of the oral microbiome positively correlated with Ig gene expression, while in the older animals, many of these correlations were negative. Significant correlations were observed with a select assortment of bacterial OTUs and multiple Ig genes in both younger and older animal samples, albeit the genera/species showed little overlap. Incorporating this array of microbes and host responses clearly discriminated the various time points in transition from health to disease and resolution in both the young and adult animals. The results support a major importance of adaptive immune responses in the kinetics of periodontal lesion formation, and support aging effects on the repertoire of Ig genes that may relate to the increased prevalence and severity of periodontitis with age.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, USA; Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Radhakrishnan Nagarajan
- Center for Oral and Systemic Health, Marshfield Clinic Research Institute, Marshfield Clinic Health System, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA; Division of Periodontology, College of Dentistry, University of Kentucky, USA
| |
Collapse
|
17
|
Ebersole JL, Nguyen LM, Gonzalez OA. Gingival tissue antibody gene utilization in aging and periodontitis. J Periodontal Res 2022; 57:780-798. [PMID: 35582846 DOI: 10.1111/jre.13000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study used a nonhuman primate model of ligature-induced periodontitis to document the characteristics of immunoglobulin (Ig) gene usage in gingival tissues with disease and affected by age. BACKGROUND Adaptive immune responses to an array of oral bacteria are routinely detected in local gingival tissues and the systemic circulation across the human population. The level and diversity of antibody increases with periodontitis, reflecting the increased quantity of B cells and plasmacytes in the tissues at sites of periodontal lesions. METHODS Macaca mulatta (n = 36) in four groups (young - ≤3 years; adolescent >3-7 years; adult - 12-15 years; aged - 17-23 years) were used in this study. Gingival tissues were sampled at baseline (health), 2 weeks (initiation), 1 and 3 months (progression), and 5 months (resolution) of the lesion development and transcriptomic analysis included 78 Ig-related genes. RESULTS The results demonstrated extensive variation in Ig gene usage patterns and changes with the disease process that was substantially affected by the age of the animal. Of note was that the aged animals generally demonstrated elevated expression on multiple Ig genes even in the baseline/healthy gingival tissues. The expression levels revealed 5 aggregates of Ig gene change profiles across the age groups. The number of gene changes were greatly increased in adult animals with the initiation of disease, while the young and adolescent animals showed extensive changes with disease progression. Elevated Ig gene transcripts remained with disease resolution except in the aged animals. The response profiles demonstrated selective heavy/light change gene transcripts that differed with age and clustering of the transcript expression was dominated by the age of the animals. CONCLUSIONS The results suggested potential critical variations in the molecular aspects of Ig gene expression in gingival tissues that can contribute to understanding the kinetics of periodontal lesions, as well as the variation in episodes, rapidity of progression, and role in resolution that are impacted by age.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Linh M Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
18
|
Bueno MR, Ishikawa KH, Almeida-Santos G, Ando-Suguimoto ES, Shimabukuro N, Kawamoto D, Mayer MPA. Lactobacilli Attenuate the Effect of Aggregatibacter actinomycetemcomitans Infection in Gingival Epithelial Cells. Front Microbiol 2022; 13:846192. [PMID: 35602018 PMCID: PMC9116499 DOI: 10.3389/fmicb.2022.846192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Probiotics may be considered as an additional strategy to achieve a balanced microbiome in periodontitis. However, the mechanisms underlying the use of probiotics in the prevention or control of periodontitis are still not fully elucidated. This in vitro study aimed to evaluate the effect of two commercially available strains of lactobacilli on gingival epithelial cells (GECs) challenged by Aggregatibacter actinomycetemcomitans. OBA-9 GECs were infected with A. actinomycetemcomitans strain JP2 at an MOI of 1:100 and/or co-infected with Lactobacillus acidophilus La5 (La5) or Lacticaseibacillus rhamnosus Lr32 (Lr32) at an MOI of 1:10 for 2 and 24 h. The number of adherent/internalized bacteria to GECs was determined by qPCR. Production of inflammatory mediators (CXCL-8, IL-1β, GM-CSF, and IL-10) by GECs was determined by ELISA, and the expression of genes encoding cell receptors and involved in apoptosis was determined by RT-qPCR. Apoptosis was also analyzed by Annexin V staining. There was a slight loss in OBA-9 cell viability after infection with A. actinomycetemcomitans or the tested probiotics after 2 h, which was magnified after 24-h co-infection. Adherence of A. actinomycetemcomitans to GECs was 1.8 × 107 (± 1.2 × 106) cells/well in the mono-infection but reduced to 1.2 × 107 (± 1.5 × 106) in the co-infection with Lr32 and to 6 × 106 (± 1 × 106) in the co-infection with La5 (p < 0.05). GECs mono-infected with A. actinomycetemcomitans produced CXCL-8, GM-CSF, and IL-1β, and the co-infection with both probiotic strains altered this profile. While the co-infection of A. actinomycetemcomitans with La5 resulted in reduced levels of all mediators, the co-infection with Lr32 promoted reduced levels of CXCL-8 and GM-CSF but increased the production of IL-1β. The probiotics upregulated the expression of TLR2 and downregulated TLR4 in cells co-infected with A. actinomycetemcomitans. A. actinomycetemcomitans-induced the upregulation of NRLP3 was attenuated by La5 but increased by Lr32. Furthermore, the transcription of the anti-apoptotic gene BCL-2 was upregulated, whereas the pro-apoptotic BAX was downregulated in cells co-infected with A. actinomycetemcomitans and the probiotics. Infection with A. actinomycetemcomitans induced apoptosis in GECs, whereas the co-infection with lactobacilli attenuated the apoptotic phenotype. Both tested lactobacilli may interfere in A. actinomycetemcomitans colonization of the oral cavity by reducing its ability to interact with gingival epithelial cells and modulating cells response. However, L. acidophilus La5 properties suggest that this strain has a higher potential to control A. actinomycetemcomitans-associated periodontitis than L. rhamnosus Lr32.
Collapse
Affiliation(s)
- Manuela R. Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gislane Almeida-Santos
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natali Shimabukuro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Gheisary Z, Mahmood R, Harri shivanantham A, Liu J, Lieffers JRL, Papagerakis P, Papagerakis S. The Clinical, Microbiological, and Immunological Effects of Probiotic Supplementation on Prevention and Treatment of Periodontal Diseases: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14051036. [PMID: 35268009 PMCID: PMC8912513 DOI: 10.3390/nu14051036] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Periodontal diseases are a global health concern. They are multi-stage, progressive inflammatory diseases triggered by the inflammation of the gums in response to periodontopathogens and may lead to the destruction of tooth-supporting structures, tooth loss, and systemic health problems. This systematic review and meta-analysis evaluated the effects of probiotic supplementation on the prevention and treatment of periodontal disease based on the assessment of clinical, microbiological, and immunological outcomes. (2) Methods: This study was registered under PROSPERO (CRD42021249120). Six databases were searched: PubMed, MEDLINE, EMBASE, CINAHL, Web of Science, and Dentistry and Oral Science Source. The meta-analysis assessed the effects of probiotic supplementation on the prevention and treatment of periodontal diseases and reported them using Hedge’s g standardized mean difference (SMD). (3) Results: Of the 1883 articles initially identified, 64 randomized clinical trials were included in this study. The results of this meta-analysis indicated statistically significant improvements after probiotic supplementation in the majority of the clinical outcomes in periodontal disease patients, including the plaque index (SMD = 0.557, 95% CI: 0.228, 0.885), gingival index, SMD = 0.920, 95% CI: 0.426, 1.414), probing pocket depth (SMD = 0.578, 95% CI: 0.365, 0.790), clinical attachment level (SMD = 0.413, 95% CI: 0.262, 0.563), bleeding on probing (SMD = 0.841, 95% CI: 0.479, 1.20), gingival crevicular fluid volume (SMD = 0.568, 95% CI: 0.235, 0.902), reduction in the subgingival periodontopathogen count of P. gingivalis (SMD = 0.402, 95% CI: 0.120, 0.685), F. nucleatum (SMD = 0.392, 95% CI: 0.127, 0.658), and T. forsythia (SMD = 0.341, 95% CI: 0.050, 0.633), and immunological markers MMP-8 (SMD = 0.819, 95% CI: 0.417, 1.221) and IL-6 (SMD = 0.361, 95% CI: 0.079, 0.644). (4) Conclusions: The results of this study suggest that probiotic supplementation improves clinical parameters, and reduces the periodontopathogen load and pro-inflammatory markers in periodontal disease patients. However, we were unable to assess the preventive role of probiotic supplementation due to the paucity of studies. Further clinical studies are needed to determine the efficacy of probiotic supplementation in the prevention of periodontal diseases.
Collapse
Affiliation(s)
- Zohre Gheisary
- Laboratory of Oral, Head and Neck Cancer—Personalized Diagnostics and Therapeutics, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (Z.G.); (R.M.); (A.H.s.)
| | - Razi Mahmood
- Laboratory of Oral, Head and Neck Cancer—Personalized Diagnostics and Therapeutics, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (Z.G.); (R.M.); (A.H.s.)
| | - Aparna Harri shivanantham
- Laboratory of Oral, Head and Neck Cancer—Personalized Diagnostics and Therapeutics, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (Z.G.); (R.M.); (A.H.s.)
| | - Juxin Liu
- Department of Mathematics and Statistics, College of Arts and Science, University of Saskatchewan, 106 Wiggins Road, Saskatoon, SK S7N 5E6, Canada;
| | - Jessica R. L. Lieffers
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer—Personalized Diagnostics and Therapeutics, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (Z.G.); (R.M.); (A.H.s.)
- Correspondence: ; Tel.: +1-3069661960
| |
Collapse
|
21
|
Blanco-Pintos T, Regueira-Iglesias A, Balsa-Castro C, Tomás I. Update on the Role of Cytokines as Oral Biomarkers in the Diagnosis of Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:283-302. [DOI: 10.1007/978-3-030-96881-6_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Sedghi LM, Bacino M, Kapila YL. Periodontal Disease: The Good, The Bad, and The Unknown. Front Cell Infect Microbiol 2021; 11:766944. [PMID: 34950607 PMCID: PMC8688827 DOI: 10.3389/fcimb.2021.766944] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
Periodontal disease is classically characterized by progressive destruction of the soft and hard tissues of the periodontal complex, mediated by an interplay between dysbiotic microbial communities and aberrant immune responses within gingival and periodontal tissues. Putative periodontal pathogens are enriched as the resident oral microbiota becomes dysbiotic and inflammatory responses evoke tissue destruction, thus inducing an unremitting positive feedback loop of proteolysis, inflammation, and enrichment for periodontal pathogens. Keystone microbial pathogens and sustained gingival inflammation are critical to periodontal disease progression. However, recent studies have revealed the importance of previously unidentified microbes involved in disease progression, including various viruses, phages and bacterial species. Moreover, newly identified immunological and genetic mechanisms, as well as environmental host factors, including diet and lifestyle, have been discerned in recent years as further contributory factors in periodontitis. These factors have collectively expanded the established narrative of periodontal disease progression. In line with this, new ideologies related to maintaining periodontal health and treating existing disease have been explored, such as the application of oral probiotics, to limit and attenuate disease progression. The role of systemic host pathologies, such as autoimmune disorders and diabetes, in periodontal disease pathogenesis has been well noted. Recent studies have additionally identified the reciprocated importance of periodontal disease in potentiating systemic disease states at distal sites, such as in Alzheimer's disease, inflammatory bowel diseases, and oral cancer, further highlighting the importance of the oral cavity in systemic health. Here we review long-standing knowledge of periodontal disease progression while integrating novel research concepts that have broadened our understanding of periodontal health and disease. Further, we delve into innovative hypotheses that may evolve to address significant gaps in the foundational knowledge of periodontal disease.
Collapse
Affiliation(s)
- Lea M. Sedghi
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Margot Bacino
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Yvonne Lorraine Kapila
- School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
- Department of Periodontology, School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
23
|
Shimizu Y, Takeda-Kawaguchi T, Kuroda I, Hotta Y, Kawasaki H, Hariyama T, Shibata T, Akao Y, Kunisada T, Tatsumi J, Tezuka KI. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis. J Periodontal Res 2021; 57:162-172. [PMID: 34826339 DOI: 10.1111/jre.12949] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Exosomes are small vesicles secreted from many cell types. Their biological effects largely depend on their cellular origin and the physiological state of the originating cells. Exosomes secreted by mesenchymal stem cells exert therapeutic effects against multiple diseases and may serve as potential alternatives to stem cell therapies. We previously established and characterized human leukocyte antigen (HLA) haplotype homo (HHH) dental pulp cell (DPC) lines from human wisdom teeth. In this study, we aimed to investigate the effect of local administration of HHH-DPC exosomes in a mouse model of periodontitis. METHODS Exosomes purified from HHH-DPCs were subjected to particle size analysis, and expression of exosome markers was confirmed by western blotting. We also confirmed the effect of exosomes on the migration of both HHH-DPCs and mouse osteoblastic MC3T3-E1 cells. A mouse experimental periodontitis model was used to evaluate the effect of exosomes in vivo. The morphology of alveolar bone was assessed by micro-computed tomography (μCT) and histological analysis. The effect of exosomes on osteoclastogenesis was evaluated using a co-culture system. RESULTS The exosomes purified from HHH-DPCs were homogeneous and had a spherical membrane structure. HHH-DPC exosomes promoted the migration of both human DPCs and mouse osteoblastic cells. The MTT assay showed a positive effect on the proliferation of human DPCs, but not on mouse osteoblastic cells. Treatment with HHH-DPC exosomes did not alter the differentiation of osteoblastic cells. Imaging with µCT revealed that the exosomes suppressed alveolar bone resorption in the mouse model of periodontitis. Although no change was apparent in the dominance of TRAP-positive osteoclast-like cells in decalcified tissue sections upon exosome treatment, HHH-DPC exosomes significantly suppressed osteoclast formation in vitro. CONCLUSIONS HHH-DPC exosomes stimulated the migration of human DPCs and mouse osteoblastic cells and effectively attenuated bone loss due to periodontitis.
Collapse
Affiliation(s)
- Yuta Shimizu
- Division of Oral Infections and Health Sciences, Department of Periodontology, Asahi University School of Dentistry, Gifu, Japan
| | - Tomoko Takeda-Kawaguchi
- Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Izumi Kuroda
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuaki Hotta
- Central Research Institute of Oral Science, Asahi University School of Dentistry, Gifu, Japan
| | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Toshiyuki Shibata
- Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Takahiro Kunisada
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junichi Tatsumi
- Division of Oral Infections and Health Sciences, Department of Periodontology, Asahi University School of Dentistry, Gifu, Japan
| | - Ken-Ichi Tezuka
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| |
Collapse
|
24
|
Clark D, Kotronia E, Ramsay SE. Frailty, aging, and periodontal disease: Basic biologic considerations. Periodontol 2000 2021; 87:143-156. [PMID: 34463998 PMCID: PMC8771712 DOI: 10.1111/prd.12380] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is associated with the development of disease. Periodontal disease is one of the many diseases and conditions that increase in prevalence with age. In addition to the traditional focus on individual age-related conditions, there is now a greater recognition that multisystem conditions such as frailty play an important role in the health of older populations. Frailty is a clinical condition in older adults that increases the risk of adverse health outcomes. Both frailty and periodontal disease are common chronic conditions in older populations and share several risk factors. There is likely a bidirectional relationship between periodontal disease and frailty. Comorbid systemic diseases, poor physical functioning, and limited ability to self-care in frail older people have been implicated as underlying the association between frailty and periodontal disease. In addition, both frailty and periodontal disease also have strong associations with inflammatory dysregulation and other age-related pathophysiologic changes that may similarly underlie their development and progression. Investigating age-related changes in immune cells that regulate inflammation may lead to a better understanding of age-related disease and could lead to therapeutic targets for the improved management of frailty and periodontal disease.
Collapse
Affiliation(s)
- Daniel Clark
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Eftychia Kotronia
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Sheena E Ramsay
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
25
|
Aziz J, Rahman MT, Vaithilingam RD. Dysregulation of metallothionein and zinc aggravates periodontal diseases. J Trace Elem Med Biol 2021; 66:126754. [PMID: 33831799 DOI: 10.1016/j.jtemb.2021.126754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periodontitis (PD) is a multifaceted inflammatory disease connected to bacterial infection that results in the destruction of tooth supporting structures and eventually tooth loss. Given their involvement in infection and inflammation, both metallothionein (MT) and zinc (Zn) might play vital roles in the development and progression of PD. More specifically, both MT and Zn are heavily involved in regulating immune functions, controlling bacterial infection, balancing inflammatory responses, and reducing oxidative stress, all of which are associated with the pathogenesis of PD. OBJECTIVE This review paper will explore the physiological functions of MT and Zn and hypothesise how dysregulation could negatively affect periodontal health, leading to PD. FINDINGS Bacterial lipopolysaccharide (LPS) derived from periodontal pathogens, namely P. gingivalis initiates the acute phase response, thus upregulating the expression of MT which leads to the subsequent deficiency of Zn, a hallmark of periodontal disease. This deficiency leads to ineffective NETosis, increases the permeability of the gingival epithelium, and disrupts the humoral immune response, collectively contributing to PD. In addition, the presence of LPS in Zn deficient conditions favours M1 macrophage polarisation and maturation of dendritic cells, and also inhibits the anti-inflammatory activity of regulatory T cells. Collectively, these observations could theoretically give rise to the chronic inflammation seen in PD. CONCLUSION A disrupted MT and Zn homeostasis is expected to exert an adverse impact on periodontal health and contribute to the development and progression of PD.
Collapse
Affiliation(s)
- Jazli Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia; Dept. of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
26
|
Ilango P, Kumar D, Mahalingam A, Thanigaimalai A, Reddy VK. Evidence revealing the role of T cell regulators (Tregs) in periodontal diseases: A review. J Indian Soc Periodontol 2021; 25:278-282. [PMID: 34393396 PMCID: PMC8336777 DOI: 10.4103/jisp.jisp_308_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 01/27/2023] Open
Abstract
Periodontitis is an inflammatory disease of the periodontium, which is a reflection of the overgrowth of oral commensals. This alteration in the oral microbiota initiates inflammation of the gingiva, which when left untreated, terminates with the resorption of the alveolar bone that may lead to a poor and hopeless prognosis. With upcoming trends in modulating the host's immunity, the role of regulatory T-cells has gained importance. These T-cells defend against inflammation and autoimmunity as they suppress both. However, in both the conditions, the regulatory cells are invariably reduced in number. Novel methods to enhance the function of Tregs have made their way in dentistry, as a promising approach to cure periodontitis. This article discusses various significant tests and trials of Tregs in the recent years.
Collapse
Affiliation(s)
- Paavai Ilango
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Dhanapriya Kumar
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Arulpari Mahalingam
- Department of Pedodontics, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Abirami Thanigaimalai
- Department of Periodontics, Priyadarshini Dental College and Hospital, Thiruvallur, India
| | - Vineela Katam Reddy
- Department of Periodontics, Indira Gandhi Dental College and Hospital, Puducherry, India
| |
Collapse
|
27
|
Are periodontal diseases associated with sleep duration or sleep quality? A systematic review. Arch Oral Biol 2021; 129:105184. [PMID: 34118748 DOI: 10.1016/j.archoralbio.2021.105184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVES This study aimed to systematically review the associations between periodontal diseases/tooth loss and sleep duration/quality. MATERIAL AND METHODS PubMed, Scopus, and Embase databases were searched (up to May 2021) to identify studies that assessed the association between periodontal diseases or number of teeth with sleep quality and sleep duration. Two researchers independently selected the studies and extracted the data. Considering the high heterogeneity among the included studies, meta-analysis was deemed unviable. Results are presented descriptively for sleep quality (studies that have used PSQI), self-reported sleep hours, and other tools that assessed sleep patterns. RESULTS Twenty studies (16 cross-sectional, two case-control, and two cohort) were included. Eight studies used the Pittsburgh Sleep Quality Index (PSQI) to assess quality of sleep. Six of these studies demonstrated that individuals with worse periodontal conditions demonstrated poorer sleep quality. However, most of the included studies that performed adjusted analysis showed no statistically significant association between self-reported hours of sleep and periodontitis. The mean number of present teeth was assessed in four studies; three of them demonstrated lower numbers of present teeth in individuals with inadequate sleep. CONCLUSION The literature shows conflicting results for the association between sleep hours and periodontitis. However, inadequate sleep may be associated with lower number of present teeth and periodontal diseases. Further studies are necessary in order to confirm these results.
Collapse
|
28
|
Zhou K, Sun M, Xia Y, Xie Y, Shu R. LPS stimulates gingival fibroblasts to express PD-L1 via the p38 pathway under periodontal inflammatory conditions. Arch Oral Biol 2021; 129:105161. [PMID: 34090065 DOI: 10.1016/j.archoralbio.2021.105161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The overall aim of this research was to investigate the differences in the expression of programmed death ligand 1 (PD-L1) in human gingival fibroblasts (HGFs) between a periodontal healthy group and a periodontal inflammatory group. and explore the possible mechanism involved. METHODS Differences in PD-L1 mRNA and protein expression in HGFs from a periodontal healthy group and a periodontal inflammatory group were examined by qPCR and western blotting, respectively, and were further tested after lipopolysaccharide (LPS) stimulation in both groups. The effects of a p38 pathway inhibitor on the changes in p38 phosphorylation levels and PD-L1 expression after LPS stimulation were investigated in both groups. RESULTS PD-L1 mRNA and protein levels in HGFs in the periodontal inflammatory group were significantly higher than those in the periodontal healthy group (p < 0.05). After 10 μg/mL LPS stimulation, PD-L1 mRNA levels in HGFs from both groups increased significantly (p < 0.05), peaking at 4 h, and the peak was significantly higher in the periodontal inflammatory group than in the periodontal healthy group (p < 0.05). However, PD-L1 protein expression was upregulated only in the inflammatory group (p < 0.05). Inhibition of the p38 pathway in HGFs decreased p38 phosphorylation in both groups (p < 0.05) but this treatment reversed the LPS-induced increase in PD-L1 mRNA and protein levels only in the inflammatory group (p < 0.05). CONCLUSION In the periodontal inflammatory state, the expression of PD-L1 in HGFs is more easily activated, and may be influenced by the p38 pathway.
Collapse
Affiliation(s)
- Kecong Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjun Sun
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yiru Xia
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yufeng Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
29
|
Machado V, Botelho J, Viana J, Pereira P, Lopes LB, Proença L, Delgado AS, Mendes JJ. Association between Dietary Inflammatory Index and Periodontitis: A Cross-Sectional and Mediation Analysis. Nutrients 2021; 13:nu13041194. [PMID: 33916342 PMCID: PMC8066166 DOI: 10.3390/nu13041194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation-modulating elements are recognized periodontitis (PD) risk factors, nevertheless, the association between dietary inflammatory index (DII) and PD has never been appraised. We aimed to assess the association between DII and PD and the mediation effect of DII in the association of PD with systemic inflammation. Using the National Health and Nutrition Examination Survey 2009–2010, 2011–2012 and 2013–2014, participants who received periodontal exam and provided dietary recall data were included. The inflammatory potential of diet was calculated via DII. PD was defined according to the 2012 case definition. White blood cells (WBC), segmented neutrophils and C-reactive protein (CRP) were used as proxies for systemic inflammation. The periodontal measures were regressed across DII values using adjusted multivariate linear regression and adjusted mediation analysis. Overall, 10,178 participants were included. DII was significantly correlated with mean periodontal probing depth (PPD), mean clinical attachment loss (CAL), thresholds of PPD and CAL, WBC, segmented neutrophils and DII (p < 0.01). A linear regression logistic adjusted for multiple confounding variables confirmed the association between DII and mean PPD (B = 0.02, Standard Error [SE]: 0.02, p < 0.001) and CAL (B = −0.02, SE: 0.01, p < 0.001). The association of mean PPD and mean CAL with both WBC and segmented neutrophils were mediated by DII (from 2.1 to 3.5%, p < 0.001). In the 2009–2010 subset, the association of mean CAL with serum CRP was mediated by DII (52.0%, p < 0.01). Inflammatory diet and PD may be associated. Also, the inflammatory diet significantly mediated the association of leukocyte counts and systemic inflammation with PD.
Collapse
Affiliation(s)
- Vanessa Machado
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz–Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (V.M.); (J.V.); (L.B.L.); (A.S.D.); (J.J.M.)
- Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, 2829-511 Almada, Portugal;
| | - João Botelho
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz–Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (V.M.); (J.V.); (L.B.L.); (A.S.D.); (J.J.M.)
- Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, 2829-511 Almada, Portugal;
- Correspondence: ; Tel.: +351-212-946-800
| | - João Viana
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz–Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (V.M.); (J.V.); (L.B.L.); (A.S.D.); (J.J.M.)
| | - Paula Pereira
- Grupo de Estudos em Nutrição Aplicada (GENA), CiiEM, Egas Moniz–Cooperativa de Ensino Superior, 2829-511 Almada, Portugal;
| | - Luísa Bandeira Lopes
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz–Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (V.M.); (J.V.); (L.B.L.); (A.S.D.); (J.J.M.)
| | - Luís Proença
- Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, 2829-511 Almada, Portugal;
- Quantitative Methods for Health Research (MQIS), CiiEM, Egas Moniz–Cooperativa de Ensino Superior, 2829-511 Almada, Portugal
| | - Ana Sintra Delgado
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz–Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (V.M.); (J.V.); (L.B.L.); (A.S.D.); (J.J.M.)
| | - José João Mendes
- Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz–Cooperativa de Ensino Superior, 2829-511 Almada, Portugal; (V.M.); (J.V.); (L.B.L.); (A.S.D.); (J.J.M.)
- Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, 2829-511 Almada, Portugal;
| |
Collapse
|
30
|
Escalda C, Botelho J, Mendes JJ, Machado V. Association of bacterial vaginosis with periodontitis in a cross-sectional American nationwide survey. Sci Rep 2021; 11:630. [PMID: 33436651 PMCID: PMC7803979 DOI: 10.1038/s41598-020-79496-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
To explore the association between bacterial vaginosis (BV) and periodontitis (PD) and to determine whether PD and BV might be linked with systemic serum alterations. We used the National Health and Nutrition Examination Survey 2001-2004, with women aged 18-49 years old and diagnosed with or without BV according to Nugent's method. PD was defined according to the 2012 case definition. We compared serum counts according to the presence of PD and the presence of BV. Multivariable regression was used to explore and identify relevant variables towards the presence of BV. 961 women fulfilled the inclusion criteria. In women with BV, PD was associated with higher inflammation, characterized by increased white blood cells (p = 0.006) and lymphocyte (p = 0.009) counts. Predictive models presented a statistically significant association between PD and BV [Odds Ratio (OD) = 1.69, 95% Confidence Interval (CI): 1.09-2.61 for periodontitis; OD = 2.37, 95% CI: 1.30-4.29 for severe PD]. Fully adjusted models for age, smoking, body mass index, diabetes mellitus and number of systemic conditions reinforced this association [OD = 1.71, 95% CI: 1.06-2.76 for PD; OD = 2.21, 95% CI: 1.15-4.25 for severe PD]. An association between BV and PD is conceivable. PD was associated with higher systemic markers of inflammation in women with BV. Our data is novel and could serve as a foundation to guide future studies in the confirmation of this association and the underlying mechanisms.
Collapse
Affiliation(s)
- Cláudia Escalda
- Evidence-Based Hub Egas Moniz, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz - Cooperativa de Ensino Superior, CRL, Almada, Portugal
| | - João Botelho
- Evidence-Based Hub Egas Moniz, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz - Cooperativa de Ensino Superior, CRL, Almada, Portugal
- Periodontology Department, Egas Moniz Dental Clinic, Clinical Research Unit (CRU), Egas Moniz Interdisciplinary Research Center (EMIRC), IUEM, Egas Moniz University, Campus Universitário, Quinta da Granja, Monte de Caparica, Caparica, 2829 - 511, Almada, Portugal
| | - José João Mendes
- Evidence-Based Hub Egas Moniz, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz - Cooperativa de Ensino Superior, CRL, Almada, Portugal
| | - Vanessa Machado
- Evidence-Based Hub Egas Moniz, Clinical Research Unit (CRU), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz - Cooperativa de Ensino Superior, CRL, Almada, Portugal.
- Periodontology Department, Egas Moniz Dental Clinic, Clinical Research Unit (CRU), Egas Moniz Interdisciplinary Research Center (EMIRC), IUEM, Egas Moniz University, Campus Universitário, Quinta da Granja, Monte de Caparica, Caparica, 2829 - 511, Almada, Portugal.
| |
Collapse
|
31
|
Momen-Heravi F, Friedman RA, Albeshri S, Sawle A, Kebschull M, Kuhn A, Papapanou PN. Cell Type-Specific Decomposition of Gingival Tissue Transcriptomes. J Dent Res 2021; 100:549-556. [PMID: 33419383 DOI: 10.1177/0022034520979614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genome-wide transcriptomic analyses in whole tissues reflect the aggregate gene expression in heterogeneous cell populations comprising resident and migratory cells, and they are unable to identify cell type-specific information. We used a computational method (population-specific expression analysis [PSEA]) to decompose gene expression in gingival tissues into cell type-specific signatures for 8 cell types (epithelial cells, fibroblasts, endothelial cells, neutrophils, monocytes/macrophages, plasma cells, T cells, and B cells). We used a gene expression data set generated using microarrays from 120 persons (310 tissue samples; 241 periodontitis affected and 69 healthy). Decomposition of the whole-tissue transcriptomes identified differentially expressed genes in each of the cell types, which mapped to biologically relevant pathways, including dysregulation of Th17 cell differentiation, AGE-RAGE signaling, and epithelial-mesenchymal transition in epithelial cells. We validated selected PSEA-predicted, differentially expressed genes in purified gingival epithelial cells and B cells from an unrelated cohort (n = 15 persons), each of whom contributed with 1 periodontitis-affected and 1 healthy gingival tissue sample. Differential expression of these genes by quantitative reverse transcription polymerase chain reaction corroborated the PSEA predictions and pointed to dysregulation of biologically important pathways in periodontitis. Collectively, our results demonstrate the robustness of the PSEA in the decomposition of gingival tissue transcriptomes and its ability to identify differentially regulated transcripts in particular cellular constituents. These genes may serve as candidates for further investigation with respect to their roles in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- F Momen-Heravi
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, New York, NY, USA
| | - R A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - S Albeshri
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, New York, NY, USA
| | - A Sawle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - M Kebschull
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, New York, NY, USA.,School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - A Kuhn
- Institute of Life Technologies, School of Engineering, HES-SO University of Applied Sciences and Arts Western Switzerland, Sion, Switzerland
| | - P N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, New York, NY, USA
| |
Collapse
|
32
|
Gofur NRP, Handono K, Nurdiana N, Kalim H. Periodontal Comparison on Systemic Lupus Erythematosus Patients and Healthy Subjects: A Cross-Sectional Study. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
34
|
Puletic M, Popovic B, Jankovic S, Brajovic G. Detection rates of periodontal bacteria and herpesviruses in different forms of periodontal disease. Microbiol Immunol 2020; 64:815-824. [PMID: 33107981 DOI: 10.1111/1348-0421.12857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023]
Abstract
The aim was to investigate the detection rates of periodontal bacteria (Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans) and herpesviruses (herpes simplex virus-1 [HSV-1], cytomegalovirus [CMV], and Epstein-Barr virus [EBV]) in different forms and severity of periodontal disease, and to compare them with those in periodontally healthy subjects. One hundred and twenty-nine patients participated in the study: 39 diagnosed with periodontal abscess (PA), 33 with necrotizing ulcerative periodontitis (NUP), 27 with chronic periodontitis (CP), and 30 participants with healthy periodontal tissue represented a healthy control group. All patients with periodontal disease (PA, NUP, and CP) were also divided into two groups according to the severity of their disease: moderate and severe periodontitis. The subgingival samples were collected from the periodontitis active sites and the detection of microorganisms was performed by end-point polymerase chain reaction analyses. The results revealed significantly higher detection rates of P. gingivalis, T. forsythia, and P. intermedia in all three groups of patients with periodontitis than in healthy participants. The highest detection rate of A. actinomycetemcomitans was noticed in CP, which was significantly higher than that in PA, NUP, and healthy control. The occurrence of EBV was significantly higher in NUP than in CP and healthy participants. CMV was detected significantly more frequently in PA and NUP than in CP and healthy participants. Comparisons among healthy participants and patients with moderate and severe periodontitis showed significantly higher detection rates of EBV and CMV in patients with severe forms of periodontitis than in healthy participants and those with moderate periodontitis.
Collapse
Affiliation(s)
- Miljan Puletic
- Clinic for Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Popovic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Sasa Jankovic
- Clinic for Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Gavrilo Brajovic
- Department of Physiology, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
Sands RW, Verbeke CS, Ouhara K, Silva EA, Hsiong S, Kawai T, Mooney D. Tuning cytokines enriches dendritic cells and regulatory T cells in the periodontium. J Periodontol 2020; 91:1475-1485. [PMID: 32150760 PMCID: PMC7483931 DOI: 10.1002/jper.19-0411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periodontal disease results from the pathogenic interactions between the tissue, immune system, and microbiota; however, standard therapy fails to address the cellular mechanism underlying the chronic inflammation. Dendritic cells (DC) are key regulators of T cell fate, and biomaterials that recruit and program DC locally can direct T cell effector responses. We hypothesized that a biomaterial that recruited and programmed DC toward a tolerogenic phenotype could enrich regulatory T cells within periodontal tissue, with the eventual goal of attenuating T cell mediated pathology. METHODS The interaction of previously identified factors that could induce tolerance, granulocyte-macrophage colony stimulating factor (GM-CSF) and thymic stromal lymphopoietin (TSLP), with the periodontitis network was confirmed in silico. The effect of the cytokines on DC migration was explored in vitro using time-lapse imaging. Finally, regulatory T cell enrichment in the dermis and periodontal tissue in response to alginate hydrogels delivering TSLP and GM-CSF was examinedin vivo in mice using immunohistochemistry and live-animal imaging. RESULTS The GM-CSF and TSLP interactome connects to the periodontitis network. GM-CSF enhances DC migration in vitro. An intradermal injection of an alginate hydrogel releasing GM-CSF enhanced DC numbers and the addition of TSLP enriched FOXP3+ regulatory T cells locally. Injection of a hydrogel with GM-CSF and TSLP into the periodontal tissue in mice increased DC and FOXP3+ cell numbers in the tissue, FOXP3+ cells in the lymph node, and IL-10 in the tissue. CONCLUSION Local biomaterial-mediated delivery of GM-CSF and TSLP can enrich DC and FOXP3+ cells and holds promise for treating the pathologic inflammation of periodontal disease.
Collapse
Affiliation(s)
- R. Warren Sands
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
- University of Pittsburgh Medical Center, Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Pittsburgh, PA
| | - Catia S. Verbeke
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
| | - Kazuhisa Ouhara
- Hiroshima University, Department of Periodontal Medicine, Hiroshima, Japan
- Forsyth Institute, Boston, MA
| | - Eduardo A. Silva
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
- University of California, Davis, Department of Biomedical Engineering, Davis, CA
| | - Susan Hsiong
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
| | - Toshihisa Kawai
- Forsyth Institute, Boston, MA
- College of Dental Medicine, Nova Southeastern University, Ft. Lauderdale, FL
| | - David Mooney
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA
- Wyss Institute, Boston, MA
| |
Collapse
|
36
|
Handono K, Putra Gofur NR, Nurdiana N, Kalim H, Wahono CS, Poeranto S, Barlianto W. Role of Lymphocytes CD4/CD8 Ratio and Immunoglobulin G Cytomegalovirus as Potential Markers for Systemic Lupus Erythematosus Patients with Periodontal Disease. Eur J Dent 2020; 14:544-550. [PMID: 32932531 PMCID: PMC7535962 DOI: 10.1055/s-0040-1715788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objectives
The aim of the study was to analyze the correlation between periodontitis severity in systemic lupus erythematosus (SLE) with CD4/CD8 lymphocytes ratio and cytomegalovirus gamma immunoglobulin (IgG CMV) level.
Materials and Methods
This is a descriptive study using a cross-sectional approach that included 93 subjects who were diagnosed with SLE in Rheumatology Department, Saiful Anwar Hospital, during 2017 to 2019. Periodontitis severity was assessed by periodontal Index (PI). CD4/CD8 lymphocyte ratio was determined using flow cytometry and IgG CMV levels using enzyme-linked immunosorbent assay.
Statistical Analysis
The differences among the three groups were analyzed using analysis of variance. Correlation among the groups was calculated using Spearman/Pearson correlation coefficient test, while regression analysis was done using Statistical Package for the Social Sciences.
Results
The mean of periodontitis severity and standard deviation in SLE was 2.66 ± 1.02. There were negative correlation between CD4/CD8 lymphocyte ratio with periodontal index (
r
= –0.971) and positive correlation between IgG CMV level with periodontal index (
r
= 0.977).
Conclusions
Inverted CD4/CD8 ratio and IgG CMV were found associated with periodontitis severity in SLE patient. Further research was recomended that CD4/CD8 lymphocytes ratio and IgG CMV can be used as a potensial marker of periodontitis severity in SLE patients.
Collapse
Affiliation(s)
- Kusworini Handono
- Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nanda Rachmad Putra Gofur
- Biomedical Science, Postgraduate Program, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nurdiana Nurdiana
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Cesarius Singgih Wahono
- Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Sri Poeranto
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Wisnu Barlianto
- Department of Pediatric, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
37
|
Dental Pulp Mesenchymal Stem Cells as a Treatment for Periodontal Disease in Older Adults. Stem Cells Int 2020; 2020:8890873. [PMID: 32908546 PMCID: PMC7450326 DOI: 10.1155/2020/8890873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease (PD) is one of the main causes of tooth loss and is related to oxidative stress and chronic inflammation. Although different treatments have been proposed in the past, the vast majority do not regenerate lost tissues. In this sense, the use of dental pulp mesenchymal stem cells (DPMSCs) seems to be an alternative for the regeneration of periodontal bone tissue. A quasi-experimental study was conducted in a sample of 22 adults between 55 and 64 years of age with PD, without uncontrolled systemic chronic diseases. Two groups were formed randomly: (i) experimental group (EG) n = 11, with a treatment based on DPMSCs; and a (ii) control group (CG) n = 11, without a treatment of DPMSCs. Every participant underwent clinical and radiological evaluations and measurement of bone mineral density (BMD) by tomography. Saliva samples were taken as well, to determine the total concentration of antioxidants, superoxide dismutase (SOD), lipoperoxides, and interleukins (IL), before and 6 months after treatment. All subjects underwent curettage and periodontal surgery, the EG had a collagen scaffold treated with DPMSCs, while the CG only had the collagen scaffold placed. The EG with DPMSCs showed an increase in the BMD of the alveolar bone with a borderline statistical significance (baseline 638.82 ± 181.7 vs. posttreatment 781.26 ± 162.2 HU, p = 0.09). Regarding oxidative stress and inflammation markers, salivary SOD levels were significantly higher in EG (baseline 1.49 ± 0.96 vs. 2.14 ± 1.12 U/L posttreatment, p < 0.05) meanwhile IL1β levels had a decrease (baseline 1001.91 ± 675.5vs. posttreatment 722.3 ± 349.4 pg/ml, p < 0.05). Our findings suggest that a DPMSCs treatment based on DPMSCs has both an effect on bone regeneration linked to an increased SOD and decreased levels of IL1β in aging subjects with PD.
Collapse
|
38
|
Immunological and Microbiological Profiling of Cumulative Risk Score for Periodontitis. Diagnostics (Basel) 2020; 10:diagnostics10080560. [PMID: 32764360 PMCID: PMC7460115 DOI: 10.3390/diagnostics10080560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
The cumulative risk score (CRS) is a mathematical salivary diagnostic model to define an individual's risk of having periodontitis. In order to further validate this salivary biomarker, we investigated how periodontal bacteria, lipopolysaccharide (LPS), and systemic and local host immune responses relate to CRS. Subgingival plaque, saliva, and serum samples collected from 445 individuals were used in the analyses. Plaque levels of 28 microbial species, especially those of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, and Tannerella forsythia, and serum and salivary levels of IgA and IgG against these five species were determined. Additionally, LPS activity was measured. High CRS associated strongly with all IgA/IgG antibody and LPS levels in saliva, whereas in serum the associations were not that obvious. In the final logistic regression model, the best predictors of high CRS were saliva IgA burden against the five species (OR 7.04, 95% CI 2.25-22.0), IgG burden (3.79, 1.78-8.08), LPS (2.19, 1.38-3.47), and the sum of 17 subgingival Gram-negative species (6.19, 2.10-18.3). CRS is strongly associated with microbial biomarker species of periodontitis and salivary humoral immune responses against them.
Collapse
|
39
|
Proteome Analysis of Molecular Events in Oral Pathogenesis and Virus: A Review with a Particular Focus on Periodontitis. Int J Mol Sci 2020; 21:ijms21155184. [PMID: 32707841 PMCID: PMC7432693 DOI: 10.3390/ijms21155184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Some systemic diseases are unquestionably related to periodontal health, as periodontal disease can be an extension or manifestation of the primary disease process. One example is spontaneous gingival bleeding, resulting from anticoagulant treatment for cardiac diseases. One important aspect of periodontal therapy is the care of patients with poorly controlled disease who require surgery, such as patients with uncontrolled diabetes. We reviewed research on biomarkers and molecular events for various diseases, as well as candidate markers of periodontal disease. Content of this review: (1) Introduction, (2) Periodontal disease, (3) Bacterial and viral pathogens associated with periodontal disease, (4) Stem cells in periodontal tissue, (5) Clinical applications of mass spectrometry using MALDI-TOF-MS and LC-MS/MS-based proteomic analyses, (6) Proteome analysis of molecular events in oral pathogenesis of virus in GCF, saliva, and other oral Components in periodontal disease, (7) Outlook for the future and (8) Conclusions. This review discusses proteome analysis of molecular events in the pathogenesis of oral diseases and viruses, and has a particular focus on periodontitis.
Collapse
|
40
|
Esberg A, Johansson A, Claesson R, Johansson I. 43-Year Temporal Trends in Immune Response to Oral Bacteria in a Swedish Population. Pathogens 2020; 9:pathogens9070544. [PMID: 32645865 PMCID: PMC7400255 DOI: 10.3390/pathogens9070544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 01/01/2023] Open
Abstract
Bacteria colonizing the mouth induce an adaptive immune response with the systemic and local presence of species or strain-specific immunoglobulins. Few studies have addressed global antibody patterns for oral bacteria or potential population time trends. We assessed these aspects in relation to a panel of oral bacteria. Using multiplex immunoblotting, IgG levels for 26 oral bacterial species (54 strains) were determined in 888 plasma samples from 30-year-old early pregnant women (n = 516) and 50-year-old men and women (n = 372) collected between 1976 and 2018. Inter-species correlations were found and age-dependent profiles and levels of immune responses to oral bacteria confirmed. We found temporal trends in the global and single-species antibody responses, but this was age-specific with both inclining and declining shifts. Prominent shifts in the younger group increased IgG towards health-associated Streptococcus salivarius and Streptococcus sanguinis, and in the older group towards disease-associated Aggregatibacter actinomycetemcomitans, Filifactor alocis, and Streptococcus mutans, among others. We concluded that temporal shifts occurred from 1976 to 2018, which may reflect improved oral health (more remaining teeth) and altered lifestyle habits, but this needs to be evaluated in observational studies considering more aspects.
Collapse
|
41
|
Souissi M, Azelmat J, Chaieb K, Grenier D. Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections. Anaerobe 2020; 61:102089. [DOI: 10.1016/j.anaerobe.2019.102089] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
|
42
|
Ebersole JL, Al-Sabbagh M, Dawson DR. Heterogeneity of human serum antibody responses to P. gingivalis in periodontitis: Effects of age, race/ethnicity, and sex. Immunol Lett 2020; 218:11-21. [PMID: 31863783 PMCID: PMC6956649 DOI: 10.1016/j.imlet.2019.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Aging humans display an increased prevalence and severity of periodontitis, although the mechanisms underlying these findings remain poorly understood. This report examined antigenic diversity of P. gingivalis related to disease presence and patient demographics. Serum IgG antibody to P. gingivalis strains ATCC33277, FDC381, W50 (ATCC53978), W83, A7A1-28 (ATCC53977) and A7436 was measured in 426 participants [periodontally healthy (n = 61), gingivitis (N = 66) or various levels of periodontitis (N = 299)]. We hypothesized that antigenic diversity in P. gingivalis could contribute to a lack of "immunity" in the chronic infections of periodontal disease. Across the strains, the antibody levels in the oldest age group were lower than in the youngest groups, and severe periodontitis patients did not show higher antibody with aging. While 80 % of the periodontitis patients in any age group showed an elevated response to at least one of the P. gingivalis strains, the patterns of individual responses in the older group were also substantially different than the other age groups. Significantly greater numbers of older patients showed strain-specific antibody profiles to only 1 strain. The findings support that P. gingivalis may demonstrate antigenic diversity/drift within patients and could be one factor to help explain the inefficiency/ineffectiveness of the adaptive immune response in managing the infection.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas and Department of Periodontology, College of Dentistry, University of Kentucky, United States.
| | - M Al-Sabbagh
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas and Department of Periodontology, College of Dentistry, University of Kentucky, United States
| | - D R Dawson
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas and Department of Periodontology, College of Dentistry, University of Kentucky, United States
| |
Collapse
|
43
|
Bao K, Li X, Kajikawa T, Toshiharu A, Selevsek N, Grossmann J, Hajishengallis G, Bostanci N. Pressure Cycling Technology Assisted Mass Spectrometric Quantification of Gingival Tissue Reveals Proteome Dynamics during the Initiation and Progression of Inflammatory Periodontal Disease. Proteomics 2020; 20:e1900253. [PMID: 31881116 DOI: 10.1002/pmic.201900253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Understanding the progression of periodontal tissue destruction is at the forefront of periodontal research. The authors aimed to capture the dynamics of gingival tissue proteome during the initiation and progression of experimental (ligature-induced) periodontitis in mice. Pressure cycling technology (PCT), a recently developed platform that uses ultra-high pressure to disrupt tissues, is utilized to achieve efficient and reproducible protein extraction from ultra-small amounts of gingival tissues in combination with liquid chromatography-tandem mass spectrometry (MS). The MS data are processed using Progenesis QI and the regulated proteins are subjected to METACORE, STRING, and WebGestalt for functional enrichment analysis. A total of 1614 proteins with ≥2 peptides are quantified with an estimated protein false discovery rate of 0.06%. Unsupervised clustering analysis shows that the gingival tissue protein abundance is mainly dependent on the periodontitis progression stage. Gene ontology enrichment analysis reveals an overrepresentation in innate immune regulation (e.g., neutrophil-mediated immunity and antimicrobial peptides), signal transduction (e.g., integrin signaling), and homeostasis processes (e.g., platelet activation and aggregation). In conclusion, a PCT-assisted label-free quantitative proteomics workflow that allowed cataloging the deepest gingival tissue proteome on a rapid timescale and provided novel mechanistic insights into host perturbation during periodontitis progression is applied.
Collapse
Affiliation(s)
- Kai Bao
- Section of Peridontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Kartolinska Insitutet, Alfred Nobels alle 8, 14104, Huddinge, Sweden
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Abe Toshiharu
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Nathalie Selevsek
- Swiss Integrative Center for Human Health, Passage du Cardinal 13 B, CH-1700, Fribourg, Switzerland
| | - Jonas Grossmann
- Function Genomic Centre, ETH Zurich and University of Zurich, 8092, Zurich, Switzerland
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Nagihan Bostanci
- Section of Peridontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Kartolinska Insitutet, Alfred Nobels alle 8, 14104, Huddinge, Sweden
| |
Collapse
|
44
|
Bi J, Koivisto L, Dai J, Zhuang D, Jiang G, Larjava M, Shen Y, Bi L, Liu F, Haapasalo M, Häkkinen L, Larjava H. Epidermal growth factor receptor signaling suppresses αvβ6 integrin and promotes periodontal inflammation and bone loss. J Cell Sci 2019; 133:jcs.236588. [PMID: 31722981 DOI: 10.1242/jcs.236588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
In periodontal disease (PD), bacterial biofilms cause gingival inflammation, leading to bone loss. In healthy individuals, αvβ6 integrin in junctional epithelium maintains anti-inflammatory transforming growth factor-β1 (TGF-β1) signaling, whereas its expression is lost in individuals with PD. Bacterial biofilms suppress β6 integrin expression in cultured gingival epithelial cells (GECs) by attenuating TGF-β1 signaling, leading to an enhanced pro-inflammatory response. In the present study, we show that GEC exposure to biofilms induced activation of mitogen-activated protein kinases and epidermal growth factor receptor (EGFR). Inhibition of EGFR and ERK stunted both the biofilm-induced ITGB6 suppression and IL1B stimulation. Furthermore, biofilm induced the expression of endogenous EGFR ligands that suppressed ITGB6 and stimulated IL1B expression, indicating that the effects of the biofilm were mediated by autocrine EGFR signaling. Biofilm and EGFR ligands induced inhibitory phosphorylation of the TGF-β1 signaling mediator Smad3 at S208. Overexpression of a phosphorylation-defective mutant of Smad3 (S208A) reduced the β6 integrin suppression. Furthermore, inhibition of EGFR signaling significantly reduced bone loss and inflammation in an experimental PD model. Thus, EGFR inhibition may provide a target for clinical therapies to prevent inflammation and bone loss in PD.
Collapse
Affiliation(s)
- Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiayin Dai
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Deshu Zhuang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Guoqiao Jiang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Milla Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ya Shen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liangjia Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Markus Haapasalo
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
45
|
Kaur K, Sculley D, Wallace J, Turner A, Ferraris C, Veysey M, Lucock M, Beckett EL. Micronutrients and bioactive compounds in oral inflammatory diseases. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Samiei M, Ahmadian E, Eftekhari A, Eghbal MA, Rezaie F, Vinken M. Cell junctions and oral health. EXCLI JOURNAL 2019; 18:317-330. [PMID: 31338005 PMCID: PMC6635732 DOI: 10.17179/excli2019-1370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022]
Abstract
The oral cavity and its appendices are exposed to considerable environmental and mechanical stress. Cell junctions play a pivotal role in this context. Among those, gap junctions permit the exchange of compounds between cells, thereby controlling processes such as cell growth and differentiation. Tight junctions restrict paracellular transportation and inhibit movement of integral membrane proteins between the different plasma membrane poles. Adherens junctions attach cells one to another and provide a solid backbone for resisting to mechanistical stress. The integrity of oral mucosa, normal tooth development and saliva secretion depend on the proper function of all these types of cell junctions. Furthermore, deregulation of junctional proteins and/or mutations in their genes can alter tissue functioning and may result in various human disorders, including dental and periodontal problems, salivary gland malfunction, hereditary and infectious diseases as well as tumorigenesis. The present manuscript reviews the role of cell junctions in the (patho)physiology of the oral cavity and its appendices, including salivary glands.
Collapse
Affiliation(s)
- Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Pharmacology and Toxicology department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Eghbal
- Drug Applied Research Center and Pharmacology and Toxicology department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshte Rezaie
- General Practitioner, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
47
|
Nagarajan R, Miller CS, Dawson D, Ebersole JL. Biologic modelling of periodontal disease progression. J Clin Periodontol 2019; 46:160-169. [DOI: 10.1111/jcpe.13064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/03/2018] [Accepted: 01/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Radhakrishnan Nagarajan
- Division of Biomedical Informatics College of Medicine University of Kentucky Lexington Kentucky
| | - Craig S. Miller
- Division of Oral Diagnosis, Oral Medicine and Oral Radiology University of Kentucky Lexington Kentucky
- Center for Oral Health Research College of Dentistry University of Kentucky Lexington Kentucky
| | - Dolph Dawson
- Center for Oral Health Research College of Dentistry University of Kentucky Lexington Kentucky
- Division of Periodontics University of Kentucky Lexington Kentucky
| | - Jeffrey L. Ebersole
- Center for Oral Health Research College of Dentistry University of Kentucky Lexington Kentucky
- Department of Biomedical Sciences School of Dental Medicine University of Nevada Las Vegas Las Vegas Nevada
| |
Collapse
|
48
|
Reinhardt B, Klocke A, Neering SH, Selbach S, Peters U, Flemmig TF, Beikler T. Microbiological dynamics of red complex bacteria following full-mouth air polishing in periodontally healthy subjects-a randomized clinical pilot study. Clin Oral Investig 2019; 23:3905-3914. [PMID: 30729346 DOI: 10.1007/s00784-019-02821-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Suppression of periodontal pathogens in the oral cavity of periodontally healthy individuals may lower the risk for periodontal or periimplant diseases. Therefore, the present study aimed to analyze the effect of supragingival debridement (SD) with adjunctive full mouth glycine powder air polishing (FM-GPAP) on the prevalence of periodontal pathogens in periodontally healthy individuals. MATERIALS AND METHODS Eighty-seven systemically and periodontally healthy intraoral carriers of red complex bacteria, i.e., Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola or other periodontal pathogens including Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Eikenella corrodens were enrolled into the study and randomly assigned to receive SD with adjunctive FM-GPAP (test, n = 42) or SD alone (control, n = 45). In the first observation period, microbiological samples were obtained prior to, and 2, 5, and 9 days following intervention. If one of these periodontal pathogens could still not be identified, additional microbial sampling was performed after 6 and 12 weeks. RESULTS The prevalence of red complex bacteria was significantly reduced in the test compared to the control group following treatment (p = 0.004) and at day 9 (p = 0.031). Intragroup comparison showed a significant (test, p < 0.001; control, p ≤ 0.01) reduction in the mean prevalence in both groups from BL through day 9 with an additional significant intergroup difference (p = 0.048) at day 9. However, the initial strong reduction returned to baseline values after 6 and 12 weeks. CONCLUSION In periodontally healthy carriers of periodontal pathogens, FM-GPAP as an adjunct to SD transiently enhances the suppression of red complex bacteria. CLINICAL RELEVANCE Whether the enhanced suppression of red complex bacteria by adjunctive FM-GPAP prevents the development of periodontitis in periodontally healthy carriers requires further investigations.
Collapse
Affiliation(s)
| | | | | | | | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center of Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | | | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center of Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.
| |
Collapse
|
49
|
CD8 + Foxp3 + T Cells Affect Alveolar Bone Homeostasis via Modulating Tregs/Th17 During Induced Periodontitis: an Adoptive Transfer Experiment. Inflammation 2019; 41:1791-1803. [PMID: 29951876 DOI: 10.1007/s10753-018-0822-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontitis is a dysbiotic bacteria-mediated disease characterized by periodontal inflammations and alveolar bone damage. Its mechanisms were complicated, involving an inflammation-mediated bone destruction. We sought to determine roles and rules that CD8+ regulatory T cells (CD8+ Tregs) affect alveolar bone homeostasis during periodontitis. Presence of CD8+ Tregs in the gingiva, cervical lymph nodes (CLNs), and spleens of healthy or periodontitis animals was analyzed. CD8+ regulatory T cells from periodontitis animals were sorted by magnetic-activated cell sorting and fluorescent-activated cell sorting technique, subsequently injected into recipient animals to set adoptive transfer model. We induced experimental periodontitis on transfer models and equal number healthy animals. Four weeks later, their alveolar bone loss and osteoclast coverage length were measured. We also detected CD8+ Tregs, CD4+ T cell, CD4+ Tregs, Th17 cell, and IL-1β, IL-6, IL-10, IL-17A, RANKL, TGF-β expression in the gingiva, CLNs, and spleen to illustrate possible working mechanism of CD8+ regulatory T cells. Periodontitis does not induce significant change on proportion or amount of CD8+ Tregs. Adoptive transfer of CD8+ Tregs reduces alveolar bone destruction and osteoclast formation. In addition, experimental periodontitis increases percentage of Th17 cells and decreases CD4+ Tregs in the gingiva and CLNs. More IL-1β, IL-6, IL-17A, and RANKL, and less IL-10 and TGF-β are also detected in the gingiva and CLNs from animals with periodontitis than the one from healthy animals. Adoptive transfer of CD8+ regulatory T cells remedies all above pathological change effectively. We did not find any significant difference in spleen, regardless group and detected items. Outcomes of present study clarify function that CD8+ regulatory T cells affect alveolar bone homeostasis, and disclose its possible working mechanisms. CD8+ regulatory T cells protect alveolar bone via reducing osteoclastogenesis and modulating local immune response.
Collapse
|
50
|
Tsuchida S, Satoh M, Takiwaki M, Nomura F. Current Status of Proteomic Technologies for Discovering and Identifying Gingival Crevicular Fluid Biomarkers for Periodontal Disease. Int J Mol Sci 2018; 20:ijms20010086. [PMID: 30587811 PMCID: PMC6337088 DOI: 10.3390/ijms20010086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Periodontal disease is caused by bacteria in dental biofilms. To eliminate the bacteria, immune system cells release substances that inflame and damage the gums, periodontal ligament, or alveolar bone, leading to swollen bleeding gums, which is a sign of gingivitis. Damage from periodontal disease can cause teeth to loosen also. Studies have demonstrated the proteomic approach to be a promising tool for the discovery and identification of biochemical markers of periodontal diseases. Recently, many studies have applied expression proteomics to identify proteins whose expression levels are altered by disease. As a fluid lying in close proximity to the periodontal tissue, the gingival crevicular fluid (GCF) is the principal target in the search for periodontal disease biomarkers because its protein composition may reflect the disease pathophysiology. Biochemical marker analysis of GCF is effective for objective diagnosis in the early and advanced stages of periodontal disease. Periodontal diseases are also promising targets for proteomics, and several groups, including ours, have applied proteomics in the search for GCF biomarkers of periodontal diseases. This search is of continuing interest in the field of experimental and clinical periodontal disease research. In this article, we summarize the current situation of proteomic technologies to discover and identify GCF biomarkers for periodontal diseases.
Collapse
Affiliation(s)
- Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| | - Masaki Takiwaki
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| |
Collapse
|