1
|
Wu Y, Li B, Deng D, Zhou H, Liu M, Ai H, Xin Y, Hua W, Zhao L, Li L. Circ_0036490 and DKK1 competitively bind miR-29a to promote lipopolysaccharides-induced human gingival fibroblasts injury. Autoimmunity 2024; 57:2312927. [PMID: 38321980 DOI: 10.1080/08916934.2024.2312927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
MicroRNA (miRNA) plays a regulatory role in periodontitis. This study aimed to explore whether miR-29a could affect lipopolysaccharides (LPSs)-induced injury in human gingival fibroblasts (HGFs) through the competitive endogenous RNAs (ceRNA) mechanism. Periodontal ligament (PDL) tissues and HGFs were derived from patients with periodontitis and healthy volunteers. Periodontitis cell model was established by treating HGFs with LPS. Expression levels of circ_0036490, miR-29a, and DKK1 were evaluated by the reverse transcription quantitative real-time PCR (RT-qPCR) method. Western blotting assay was performed to assess protein expression levels of pyroptosis-related proteins and Wnt signalling related proteins. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Concentration of lactate dehydrogenase (LDH), interleukin (IL)-1β, and IL-18 were determined by Enzyme-linked immunosorbent assay (ELISA). Pyroptosis rate were determined by flow cytometry assay to evaluate pyroptosis. The interaction between miR-29a and circ_0036490 or DKK1 was verified by dual-luciferase reporter and RNA pull-down assays. MiR-29a expression was lower in PDL tissues of patients with periodontitis than that in healthy group; likewise, miR-29a was also downregulated in LPS-treated HGFs. Overexpression of miR-29a increased cell viability and decreased pyroptosis of HGFs induced by LPS while inhibition of miR-29a exerted the opposite role. MiR-29a binds to circ_0036490 and elevation of circ_0036490 contributed to dysfuntion of LPS-treated HGFs and reversed the protection function of elevated miR-29a. In addition, miR-29a targets DKK1. Overexpression of DKK1 abrogated the effects of overexpressed miR-29a on cell vaibility, pyroptosis, and protein levels of Wnt signalling pathway of LPS-treated HGFs. Circ_0036490 and DKK1 competitively bind miR-29a to promote LPS-induced HGF injury in vitro. Wnt pathway inactivated by LPS was activated by miR-29a. Thence, miR-29a may be a promising target for periodontitis.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Disi Deng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Min Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huangping Ai
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilin Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Weihan Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Li Li
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Zhang J, Chen L, Yu J, Tian W, Guo S. Advances in the roles and mechanisms of mesenchymal stem cell derived microRNAs on periodontal tissue regeneration. Stem Cell Res Ther 2024; 15:393. [PMID: 39491017 PMCID: PMC11533400 DOI: 10.1186/s13287-024-03998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024] Open
Abstract
Periodontitis is one of the most prevalent oral diseases leading to tooth loss in adults, and is characterized by the destruction of periodontal supporting structures. Traditional therapies for periodontitis cannot achieve ideal regeneration of the periodontal tissue. Mesenchymal stem cells (MSCs) represent a promising approach to periodontal tissue regeneration. Recently, the prominent role of MSCs in this context has been attributed to microRNAs (miRNAs), which participate in post-transcriptional regulation and are crucial for various physiological and pathological processes. Additionally, they function as indispensable elements in extracellular vesicles, which protect them from degradation. In periodontitis, MSCs-derived miRNAs play a pivotal role in cellular proliferation and differentiation, angiogenesis of periodontal tissues, regulating autophagy, providing anti-apoptotic effects, and mediating the inflammatory microenvironment. As a cell-free strategy, their small size and ability to target related sets of genes and regulate signaling networks predispose miRNAs to become ideal candidates for periodontal tissue regeneration. This review aims to introduce and summarize the potential functions and mechanisms of MSCs-derived miRNAs in periodontal tissue repair and regeneration.
Collapse
Affiliation(s)
- Jiaxiang Zhang
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liangrui Chen
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jialu Yu
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
3
|
Feng X, Peng D, Qiu Y, Guo Q, Zhang X, Li Z, Pan C. Identification and Validation of Aging- and Endoplasmic Reticulum Stress-Related Genes in Periodontitis Using a Competing Endogenous RNA Network. Inflammation 2024:10.1007/s10753-024-02124-0. [PMID: 39136902 DOI: 10.1007/s10753-024-02124-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 01/03/2025]
Abstract
Periodontitis is a multifactorial chronic inflammatory disease that destroy periodontium. Apart from microbial infection and host immune responses, emerging evidence shows aging and endoplasmic reticulum stress (ER stress) play a key role in periodontitis pathogenesis. The aim of this study is to identify aging-related genes (ARGs) and endoplasmic reticulum stress-related genes (ERGs) in periodontitis. Data were obtained from the Gene Expression Omnibus (GEO), Human Ageing Genomic Resources (HAGR) and GeneCards databases to identify differentially expressed mRNAs/miRNAs/lncRNAs (DEmRNAs/DEmiRNAs/DElncRNAs), ARGs and ERGs, respectively. We used the MultiMiR database for the reverse prediction of miRNAs and predicted miRNA-lncRNA interactions using the STARBase database. Afterwards, we constructed a mRNA-miRNA-lncRNA ceRNA network. A total of 10 hub genes, namely LCK, LYN, CXCL8, IL6, HCK, IL1B, BTK, CXCL12, GNAI1 and FCER1G, and 5 DEmRNAs-ARGs-ERGs were then discovered. Further, weighted gene co-expression network analysis (WGCNA) and single sample gene set enrichment analysis (ssGSEA) were performed to explore co-expression modules and immune infiltration respectively. Finally, we used transmission electron microscope (TEM), inverted fluorescence microscopy, quantitative real-time polymerase chain reaction (qRT-PCR) and Western Blot to verify the bioinformatic results in periodontal ligament stem cells (PDLSCs) infected with Porphyromonas gingivalis (P. gingivalis). The experimental results broadly confirmed the accuracy of bioinformatic analysis. The present study established an aging- and ER stress-related ceRNA network in periodontitis, contributing to a deeper understanding of the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Xinran Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Da Peng
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Yunjing Qiu
- School of Nursing & Midwifery, Faculty of Health, University of Technology Sydney, Sydney, 2007, Australia
| | - Qian Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhixuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chunling Pan
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China.
| |
Collapse
|
4
|
Márquez-Arrico CF, Silvestre FJ, Marquez-Arrico JE, Silvestre-Rangil J. Could Periodontitis Increase the Risk of Suffering from Pancreatic Cancer?-A Systematic Review. Cancers (Basel) 2024; 16:1257. [PMID: 38610935 PMCID: PMC11010905 DOI: 10.3390/cancers16071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
(1) Background: The relationship between periodontitis and systemic pathologies continues to grow. Recently, the presence of periodontal pathogens has been linked to an increased risk of pancreatic cancer (PC) and its mortality. Thus, a systematic review is needed to identify whether an association between the two diseases can be established. The objective of this review is to elucidate the mechanisms responsible for this association. (2) Methods: A systematic review was carried out using three databases (PubMed, Embase and Scopus) with the following keywords "Periodontitis AND pancreatic cancer". A total of 653 articles were retrieved; before selection and screening, the inclusion and exclusion criteria were defined, resulting in a total of 13 articles being included in the review. (3) Results: The increase in low-grade systemic inflammation, pH changes, and the cytotoxicity of certain periodontopathogenic bacteria were found in the scientific literature reviewed as mechanisms linking periodontitis with the risk of PC. (4) Conclusions: Through this systematic review, we have seen how periodontitis can be related to PC and how it worsens its prognosis. Knowing the behavior of periodontopathogenic bacteria and the influence they have on our immune and inflammatory system may help to achieve an interdisciplinary approach to both pathologies.
Collapse
Affiliation(s)
| | - Francisco Javier Silvestre
- Stomatology Department, University of Valencia, 46010 Valencia, Spain; (F.J.S.); (J.S.-R.)
- Doctor Peset University Hospital, University of Valencia, 46017 Valencia, Spain
| | - Julia Elena Marquez-Arrico
- Department of Clinical Psychology and Psychobiology, University of Barcelona, 08035 Barcelona, Spain;
- Institut de Neurociències, University of Barcelona, 08035 Barcelona, Spain
| | | |
Collapse
|
5
|
Wang Z, Chen H, Peng L, He Y, Zhang X. Revealing a potential necroptosis-related axis (RP11-138A9.1/hsa-miR-98-5p/ZBP1) in periodontitis by construction of the ceRNA network. J Periodontal Res 2023; 58:968-985. [PMID: 37357608 DOI: 10.1111/jre.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis, a prevalent chronic inflammatory condition, poses a significant risk of tooth loosening and subsequent tooth loss. Within the realm of programmed cell death, a recently recognized process known as necroptosis has garnered attention for its involvement in numerous inflammatory diseases. Nevertheless, its correlation with periodontitis is indistinct. Our study aimed to identify necroptosis-related lncRNAs and crucial lncRNA-miRNA-mRNA regulatory axes in periodontitis to further understand the pathogenesis of periodontitis. MATERIALS AND METHODS Gene expression profiles in gingival tissues were acquired from the Gene Expression Omnibus (GEO) database. Selecting hub necroptosis-related lncRNA and extracting the key lncRNA-miRNA-mRNA axes based on the ceRNA network by adding novel machine-learning models based on conventional analysis and combining qRT-PCR validation. Then, an artificial neural network (ANN) model was constructed for lncRNA in regulatory axes, and the accuracy of the model was validated by receiver operating characteristic (ROC) curve analysis. The clinical effect of the model was evaluated by decision curve analysis (DCA). Weighted correlation network analysis (WGCNA) and single-sample gene set enrichment analysis (ssGSEA) was performed to explore how these lncRNAs work in periodontitis. RESULTS Seven hub necroptosis-related lncRNAs and three lncRNA-miRNA-mRNA regulatory axes (RP11-138A9.1/hsa-miR-98-5p/ZBP1 axis, RP11-96D1.11/hsa-miR-185-5p/EZH2 axis, and RP4-773 N10.4/hsa-miR-21-5p/TLR3 axis) were predicted. WGCNA revealed that RP11-138A9.1 was significantly correlated with the "purple module". Functional enrichment analysis and ssGSEA demonstrated that the RP11-138A9.1/hsa-miR-98-5p/ZBP1 axis is closely related to the inflammation and immune processes in periodontitis. CONCLUSION Our study predicted a crucial necroptosis-related regulatory axis (RP11-138A9.1/hsa-miR-98-5p/ZBP1) based on the ceRNA network, which may aid in elucidating the role and mechanism of necroptosis in periodontitis.
Collapse
Affiliation(s)
- Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Palideh A, Vaghari-Tabari M, Nosrati Andevari A, Qujeq D, Asemi Z, Alemi F, Rouhani Otaghsara H, Rafieyan S, Yousefi B. MicroRNAs and Periodontal Disease: Helpful Therapeutic Targets? Adv Pharm Bull 2023; 13:423-434. [PMID: 37646047 PMCID: PMC10460817 DOI: 10.34172/apb.2023.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/07/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Periodontal disease is the most common oral disease. This disease can be considered as an inflammatory disease. The immune response to bacteria accumulated in the gum line plays a key role in the pathogenesis of periodontal disease. In addition to immune cells, periodontal ligament cells and gingival epithelial cells are also involved in the pathogenesis of this disease. miRNAs which are small RNA molecules with around 22 nucleotides have a considerable relationship with the immune system affecting a wide range of immunological events. These small molecules are also in relation with periodontium tissues especially periodontal ligament cells. Extensive studies have been performed in recent years on the role of miRNAs in the pathogenesis of periodontal disease. In this review paper, we have reviewed the results of these studies and discussed the role of miRNAs in the immunopathogenesis of periodontal disease comprehensively. miRNAs play an important role in the pathogenesis of periodontal disease and maybe helpful therapeutic targets for the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nosrati Andevari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sona Rafieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Ye D, Rahman I. Emerging Oral Nicotine Products and Periodontal Diseases. Int J Dent 2023; 2023:9437475. [PMID: 36819641 PMCID: PMC9937772 DOI: 10.1155/2023/9437475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
Oral nicotine pouches are emerging as a new "modern oral" nicotine product. These prefilled pouches contain nicotine, flavorings, and filling agents that dissolve in the mouth. Nicotine can be derived from tobacco leaf or chemical synthesis. Traces of TSNAs and toxic chromium were detected in the pouch products. This raises the concern about general and periodontal health. This review aims to update the current oral nicotine products research relating to periodontal disease and its relevance in periodontal inflammation. Nicotine interacts with host cells and affects inflammatory responses to microbial challenges. It may directly or indirectly deteriorate periodontal tissues by activating nicotinic acetylcholine receptors, repressing PDL fibroblasts cells, increasing cellular ROS and cytokines/chemokines, growth factors, breaking microbiota balance, and dysregulating miRNAs expression. Studies show that appealing flavorings contained in nicotine pouches pose harm to periodontal innate immune responses and increase penetration of nitrosamines. In addition, flavored ONPs increase the risk of dual or poly-tobacco products among young adults, stacking up detrimental effects on the periodontium. Given the recent growth of users, further studies are needed to elucidate the impact of ONPs, even poly-tobacco use, on systemic and periodontal health. Moreover, policymakers should ensure to avoid generating a new wave of nicotine addiction among youths in the U.S.
Collapse
Affiliation(s)
- Dongxia Ye
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
8
|
Aravindraja C, Vekariya KM, Botello-Escalante R, Rahaman SO, Chan EKL, Kesavalu L. Specific microRNA Signature Kinetics in Porphyromonas gingivalis-Induced Periodontitis. Int J Mol Sci 2023; 24:2327. [PMID: 36768651 PMCID: PMC9916963 DOI: 10.3390/ijms24032327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Porphyromonas gingivalis is one of the major bacteria constituting the subgingival pathogenic polymicrobial milieu during periodontitis. Our objective is to determine the global microRNA (miRNA, miR) expression kinetics in 8- and 16-weeks duration of P. gingivalis infection in C57BL/6J mice and to identify the miRNA signatures at specific time-points in mice. We evaluated differential expression (DE) miRNAs in mandibles (n = 10) using high-throughput NanoString nCounter® miRNA expression panels. The bacterial colonization, alveolar bone resorption (ABR), serum immunoglobulin G (IgG) antibodies, and bacterial dissemination were confirmed. In addition, all the infected mice showed bacterial colonization on the gingival surface, significant increases in ABR (p < 0.0001), and specific IgG antibody responses (p < 0.05-0.001). The miRNA profiling showed 26 upregulated miRNAs (e.g., miR-804, miR-690) and 14 downregulated miRNAs (e.g., miR-1902, miR-1937a) during an 8-weeks infection, whereas 7 upregulated miRNAs (e.g., miR-145, miR-195) and one downregulated miR-302b were identified during a 16-weeks infection. Both miR-103 and miR-30d were commonly upregulated at both time-points, and all the DE miRNAs were unique to the specific time-points. However, miR-31, miR-125b, miR-15a, and miR-195 observed in P. gingivalis-infected mouse mandibles were also identified in the gingival tissues of periodontitis patients. None of the previously identified miRNAs reported in in vitro studies using cell lines (periodontal ligament cells, gingival epithelial cells, human leukemia monocytic cell line (THP-1), and B cells) exposed to P. gingivalis lipopolysaccharide were observed in the in vivo study. Most of the pathways (endocytosis, bacterial invasion, and FcR-mediated phagocytosis) targeted by the DE miRNAs were linked with bacterial pathogen recognition and clearance. Further, eighteen miRNAs were closely associated with the bacterial invasion of epithelial cells. This study highlights the altered expression of miRNA in gingiva, and their expression depends on the time-points of infection. This is the first in vivo study that identified specific signature miRNAs (miR-103 and miR-30d) in P. gingivalis invasion of epithelial cells, establishes a link between miRNA and development of periodontitis and helping to better understand the pathobiology of periodontitis.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Ruben Botello-Escalante
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Costantini E, Sinjari B, Di Giovanni P, Aielli L, Caputi S, Muraro R, Murmura G, Reale M. TNFα, IL-6, miR-103a-3p, miR-423-5p, miR-23a-3p, miR-15a-5p and miR-223-3p in the crevicular fluid of periodontopathic patients correlate with each other and at different stages of the disease. Sci Rep 2023; 13:126. [PMID: 36599866 DOI: 10.1038/s41598-022-26421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Periodontitis is one of the main frequent intraoral diseases. Pathogenesis triggers are the immune responses with pro-inflammatory cytokines production and non-coding RNAs expression. The purpose of the present study was to evaluate the involvement of selected miRNAs in various stages of periodontitis and their relationship with the levels of inflammatory mediators in gingival crevicular fluid (GCF). For this study, 36 subjects (21 with periodontal disease, 15 healthy controls) were selected with an age mean of 59.1 ± 3.7 years. Clinical parameters included plaque index, gingival index, sulcus bleeding index, pocket depth, and clinical attachment level. The GCF samples were taken using capillary paper. The levels of miRNAs in GCF were estimated using a Real-Time PCR and TNFα and IL-6 levels were assessed by enzyme-linked immunosorbent assay (ELISA). The results indicated that the miRNA-103a-3p, miRNA-23a-3p, miRNA-15a-5p, and miRNA-223-3p were significantly upregulated with respect to healthy controls. Significant differences were observed for miRNA-23a-3p, miRNA-103a-3p and miRNA-423-5p levels in accord with the disease stages. Inflammatory mediators evaluated in GCF correlate well with the clinical parameters and the severity of the periodontal disease. miRNAs can represent biomarkers of disease stage and can be investigated as a possible therapeutic target, as well as levels of TNFα and IL-6 may drive the disease progression by acting as prognostic markers.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Science of Aging, University "G. d'Annunzio", 66100, Chieti, Italy.
| | - Bruna Sinjari
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Pamela Di Giovanni
- Department of Pharmacy, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Sergio Caputi
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Raffaella Muraro
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Giovanna Murmura
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", 66100, Chieti, Italy
| |
Collapse
|
10
|
Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva‐Santos A, Tamayol A, Sharifi E, Makvandi P. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med 2023; 8:e10343. [PMID: 36684081 PMCID: PMC9842058 DOI: 10.1002/btm2.10343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) as therapeutic agents have attracted increasing interest in the past decade owing to their significant effectiveness in treating a wide array of ailments. These polymerases II-derived noncoding RNAs act through post-transcriptional controlling of different proteins and their allied pathways. Like other areas of medicine, researchers have utilized miRNAs for managing acute and chronic wounds. The increase in the number of patients suffering from either under-healing or over-healing wound demonstrates the limited efficacy of the current wound healing strategies and dictates the demands for simpler approaches with greater efficacy. Various miRNA can be designed to induce pathway beneficial for wound healing. However, the proper design of miRNA and its delivery system for wound healing applications are still challenging due to their limited stability and intracellular delivery. Therefore, new miRNAs are required to be identified and their delivery strategy needs to be optimized. In this review, we discuss the diverse roles of miRNAs in various stages of wound healing and provide an insight on the most recent findings in the nanotechnology and biomaterials field, which might offer opportunities for the development of new strategies for this chronic condition. We also highlight the advances in biomaterials and delivery systems, emphasizing their challenges and resolutions for miRNA-based wound healing. We further review various biovectors (e.g., adenovirus and lentivirus) and abiotic materials such as organic and inorganic nanomaterials, along with dendrimers and scaffolds, as the delivery systems for miRNA-based wound healing. Finally, challenges and opportunities for translation of miRNA-based strategies into clinical applications are discussed.
Collapse
Affiliation(s)
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityPunjabIndia
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100RomeItaly
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterCardiovascular Research Institute, Isfahan University of Medical SciencesIsfahanIran
| | | | - Sumit Jamwal
- Department of Psychiatry, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjanIran
- Cancer Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | | | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Ana Cláudia Paiva‐Santos
- Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
- LAQV, REQUIMTE, Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
| | - Ali Tamayol
- Department of Biomedical EngineeringUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials InterfacesPontederaItaly
- School of Chemistry, Damghan UniversityDamghanIran
| |
Collapse
|
11
|
Exploring the Expression of Pro-Inflammatory and Hypoxia-Related MicroRNA-20a, MicroRNA-30e, and MicroRNA-93 in Periodontitis and Gingival Mesenchymal Stem Cells under Hypoxia. Int J Mol Sci 2022; 23:ijms231810310. [PMID: 36142220 PMCID: PMC9499533 DOI: 10.3390/ijms231810310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia associated with inflammation are common hallmarks observed in several diseases, and it plays a major role in the expression of non-coding RNAs, including microRNAs (miRNAs). In addition, the miRNA target genes for hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T cells-5 (NFAT5) modulate the adaptation to hypoxia. The objective of the present study was to explore hypoxia-related miRNA target genes for HIF-1α and NFAT5, as well as miRNA-20a, miRNA-30e, and miRNA-93 expression in periodontitis versus healthy gingival tissues and gingival mesenchymal stem cells (GMSCs) cultured under hypoxic conditions. Thus, a case-control study was conducted, including healthy and periodontitis subjects. Clinical data and gingival tissue biopsies were collected to analyze the expression of miRNA-20a, miRNA-30e, miRNA-93, HIF-1α, and NFAT5 by qRT-PCR. Subsequently, GMSCs were isolated and cultured under hypoxic conditions (1% O2) to explore the expression of the HIF-1α, NFAT5, and miRNAs. The results showed a significant upregulation of miRNA-20a (p = 0.028), miRNA-30e (p = 0.035), and miRNA-93 (p = 0.026) in periodontitis tissues compared to healthy gingival biopsies. NFAT5 mRNA was downregulated in periodontitis tissues (p = 0.037), but HIF-1α was not affected (p = 0.60). Interestingly, hypoxic GMSCs upregulated the expression of miRNA-20a and HIF-1α, but they downregulated miRNA-93e. In addition, NFAT5 mRNA expression was not affected in hypoxic GMSCs. In conclusion, in periodontitis patients, the expression of miRNA-20a, miRNA-30e, and miRNA-93 increased, but a decreased expression of NFAT5 mRNA was detected. In addition, GMSCs under hypoxic conditions upregulate the HIF-1α and increase miRNA-20a (p = 0.049) expression. This study explores the role of inflammatory and hypoxia-related miRNAs and their target genes in periodontitis and GMSCs. It is crucial to determine the potential therapeutic target of these miRNAs and hypoxia during the periodontal immune–inflammatory response, which should be analyzed in greater depth in future studies.
Collapse
|
12
|
The New Era of Salivaomics in Dentistry: Frontiers and Facts in the Early Diagnosis and Prevention of Oral Diseases and Cancer. Metabolites 2022; 12:metabo12070638. [PMID: 35888762 PMCID: PMC9319392 DOI: 10.3390/metabo12070638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 12/22/2022] Open
Abstract
Nowadays, with the development of new and highly sensitive, blood is not the only medium of choice for the diagnosis of several diseases and pathological conditions. Saliva is now considered a safe and non-invasive sample to study oral and systemic diseases, showing great diagnostic potential. According to several recent studies, saliva has emerged as an emerging biofluid for the early diagnosis of several diseases, indicated as a mirror of oral and systemic health and a valuable source of clinically relevant information. Indeed, several studies have observed that saliva is useful for detecting and diagnosing malignant tumours, human immunodeficiency virus, heart disease, and autoimmune diseases. The growing realisation that saliva is an inexhaustible source of information has led to the coining of the term ‘Salivaomics’, which includes five “omics” in connection with the main constituents of saliva: genome and epigenome, transcriptomics, metabolomics, lipidomics, proteomics and microbiota. All those may be changed by disease state, so they offer significant advantages in the early diagnosis and prognosis of oral diseases. The aim of the present review isto update and highlight the new frontiers of salivaomics in diagnosing and managing oral disorders, such as periodontitis, premalignant disorders, and oral squamous cell carcinoma (OSCC).
Collapse
|
13
|
Sawangpanyangkura T, Laohapand P, Boriboonhirunsarn D, Boriboonhirunsarn C, Bunpeng N, Tansriratanawong K. Upregulation of microRNA-223 expression in gingival crevicular blood of women with gestational diabetes mellitus and periodontitis. J Dent Sci 2022; 17:863-869. [PMID: 35756772 PMCID: PMC9201537 DOI: 10.1016/j.jds.2021.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Indexed: 11/19/2022] Open
Abstract
Background/Purpose MicroRNA-223 (miR-223) is involved in several inflammatory diseases, including gestational diabetes mellitus (GDM) and periodontitis. We first described a procedure for purifying miR-223 from gingival crevicular blood (GCB) of pregnant women with or without GDM and periodontitis. This study aimed to determine whether GDM and/or periodontitis modifies miR-223 expression in pregnant women and to analyze miR-223-targeted messenger RNA (mRNA) expression levels in GCB compared to peripheral blood (PB). Materials and methods Pregnant women were allocated to 4 groups: 10 women with GDM and periodontitis (GDM/P), 10 women with GDM without periodontitis (GDM/NP), 9 women with periodontitis and without GDM (NGDM/P) and 10 women without either condition (NGDM/NP). Clinical parameters of GDM and periodontal status were examined. GCB and PB were collected to assess miR-223, ICAM-1, IL-1β and β1-integrin gene expression by quantitative real-time polymerase chain reaction. Results The GDM/P group demonstrated the highest miR-223 expression levels among the 4 groups in GCB. A significant difference was found between GDM/P and GDM/NP group (P = 0.04). In contrast, the GDM/P showed the lowest miR-223 expression level in PB among the 4 groups. Moreover, ICAM-1 and IL-1β mRNA expression exhibited the opposite trend of miRNA-223, indicating that miRNA-223 might regulate the mRNA function of those genes by epigenetic events. Conclusion The upregulation of miR-223 expression in GCB but downregulation in PB, ICAM-1 and IL-1β genes expression in women with GDM and periodontitis suggest a promising role of miR-223 in the association between GDM and periodontitis.
Collapse
Affiliation(s)
- Teerat Sawangpanyangkura
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Penpan Laohapand
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Dittakarn Boriboonhirunsarn
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nattawan Bunpeng
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Kallapat Tansriratanawong
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- Corresponding author. Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, 10400. Thailand.
| |
Collapse
|
14
|
Kwon EJ, Kim HJ, Woo BH, Joo JY, Kim YH, Park HR. Profiling of plasma-derived exosomal RNA expression in patients with periodontitis: a pilot study. Oral Dis 2022; 29:1726-1737. [PMID: 35119164 DOI: 10.1111/odi.14145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aimed to profile differentially expressed (DE) exosomal RNAs in healthy subjects and periodontitis patients and compare their levels before and after treatment. MATERIALS AND METHODS Plasma samples from healthy subjects and patients with periodontitis (pre-/post-periodontal treatment) were collected for this case-control study. After isolation of exosomes from the plasma, the RNA was extracted and small RNA sequencing was performed (3 healthy samples, 4 pre-treatment samples, and 5 post-treatment samples). Two-way analyses were conducted according to the treatment status in the periodontitis group, unpaired analysis (grouping as pre-/post-treatment) and paired analysis (matching pre- and post-treatment in the same subject). The DE exosomal RNAs were screened by sequencing and visualized using the R software. Gene Ontology analysis was performed, and target genes were identified. RESULTS In both paired and unpaired analyses, two DE microRNAs (DEmiRs; miR-1304-3p and miR-200c-3p) and two DE small nucleolar RNAs (DEsnoRs; SNORD57 and SNODB1771) were common, and they were found to be downregulated during periodontitis and recovered to healthy levels after treatment. The top three target genes (NR3C1, GPR158, and CNN3) commonly regulated by DEmiRs were identified. CONCLUSIONS Plasma-derived exosomal miRs (miR-1304-3p and miR-200c-3p) and snoRs (SNORD57 and SNODB1771) could be valuable biomarkers for periodontitis.
Collapse
Affiliation(s)
- Eun Jung Kwon
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, Republic of Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Bok Hee Woo
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Young Joo
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, Republic of Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
15
|
The Expression of miR-23a and miR-146a in the Saliva of Patients with Periodontitis and Its Clinical Significance. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5135278. [PMID: 34888382 PMCID: PMC8651402 DOI: 10.1155/2021/5135278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022]
Abstract
Background This study is aimed at exploring the significance of the expression of miR-23a and miR-146a in patients with periodontitis and their correlations with inflammatory factors. Methods A total of 120 patients with chronic periodontitis admitted to the department of stomatology in Yantai Yuhuangding Hospital from August 2017 to December 2018 were enrolled as a study group, and 80 healthy volunteers in physical examination during the same period were enrolled as a control group. The expression of miR-23a, miR-146a, interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-17 (IL-17) in the saliva of people in the two groups was determined using the quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Results The study group showed significantly higher relative expression of saliva miR-23a and miR-146a than the control group. The area under the curve (AUC) of saliva miR-23a and miR-146a for diagnosing periodontitis was 0.857 and 0.886, respectively. The expression of saliva miR-23a and miR-146a increased with the deterioration of periodontitis in the patients. After basic treatment, the study group showed significantly decreased expression of saliva miR-23a and miR-146a. Patients in the study group showed significantly higher levels of saliva IL-1β, IL-6, and IL-17 than those in the control group, and their saliva miR-23a and miR-146a were positively correlated with their saliva IL-1β, IL-6, and IL-17, respectively. Conclusion Saliva miR-23a and miR-146a can be used as biomarkers for the diagnosis and assessment of periodontitis, and they may have regulatory relationships with IL-1β, IL-6, and IL-17.
Collapse
|
16
|
Rovas A, Puriene A, Snipaitiene K, Punceviciene E, Buragaite-Staponkiene B, Matuleviciute R, Butrimiene I, Jarmalaite S. Gingival crevicular fluid microRNA associations with periodontitis. J Oral Sci 2021; 64:11-16. [PMID: 34690249 DOI: 10.2334/josnusd.21-0282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The present study was performed to assess the associations of gingival crevicular fluid (GCF) microRNAs miR-140-3p, miR-145-5p, miR-146a-5p, and miR-195-5p with periodontitis (PD) and to evaluate the possible influence of rheumatoid arthritis (RA) in this context. METHOD GCF samples were collected from 134 individuals with PD and 76 periodontally healthy individuals, with or without RA. After miRNA extraction from GCF, the levels of miR-140-3p, miR-145-5p, miR-146a-5p, and miR-195-5p were assessed using RT-qPCR. RESULTS MiR-146a-5p levels were significantly lower among the patients with PD than among the healthy individuals (P < 0.001) and negatively correlated with PD severity based on PD stage and periodontal outcome parameters (P < 0.05). Patients with severe PD had higher GCF levels of miR-140-3p and miR-145-5p than did periodontally healthy individuals (P < 0.05). Significant AUC values for diagnosis of severe PD were revealed for miR-140-3p (AUC = 0.614, P = 0.022), miR-145-5p (AUC = 0.621, P = 0.016) and miR-146a-5p (AUC = 0.702, P < 0.001). Combination of the aforementioned miRNAs increased the diagnostic performance (AUC = 0.709, P < 0.001). CONCLUSION It was demonstrated that miR-140-3p, miR-145-5p and miR-146a-5p were associated with PD and would be potentially effective for GCF-based non-invasive periodontitis diagnostics in patients with and without RA.
Collapse
Affiliation(s)
- Adomas Rovas
- Institute of Odontology, Faculty of Medicine, Vilnius University
| | - Alina Puriene
- Institute of Odontology, Faculty of Medicine, Vilnius University
| | | | - Egle Punceviciene
- Clinic of Rheumatology, Orthopedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University
| | | | | | - Irena Butrimiene
- Clinic of Rheumatology, Orthopedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University
| | | |
Collapse
|
17
|
Abstract
Periodontitis is a multi-etiologic infection characterized clinically by pathologic loss of the periodontal ligament and alveolar bone. Herpesviruses and specific bacterial species are major periodontal pathogens that cooperate synergistically in producing severe periodontitis. Cellular immunity against herpesviruses and humoral immunity against bacteria are key periodontal host defenses. Genetic, epigenetic, and environmental factors are modifiers of periodontal disease severity. MicroRNAs are a class of noncoding, gene expression-based, posttranscriptional regulatory RNAs of great importance for maintaining tissue homeostasis. Aberrant expression of microRNAs has been associated with several medical diseases. Periodontal tissue cells and herpesviruses elaborate several microRNAs that are of current research interest. This review attempts to conceptualize the role of periodontal microRNAs in the pathogenesis of periodontitis. The diagnostic potential of salivary microRNAs is also addressed. Employment of microRNA technology in periodontics represents an interesting new preventive and therapeutic possibility.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jørgen Slots
- Department of Periodontology, University of Southern California School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
18
|
Gao K, Dou Y, Lv M, Zhu Y, Hu S, Ma P. Research hotspots and trends of microRNA in periodontology and dental implantology: a bibliometric analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1122. [PMID: 34430563 PMCID: PMC8350631 DOI: 10.21037/atm-21-726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
Background Periodontal disease is a leading cause of tooth loss, and microRNA (miRNA) has been shown to regulate various biological processes. This study aimed to quantitatively analyze the literature related to miRNA in periodontology and dental implantology and summarize the research hotspots and trends in this field. Methods Literature records from 1985 to 2020 were obtained from the Web of Science Core Collection database. After manual selection, the data was used for cooperative network analysis, keyword co-occurrence analysis, and reference co-citation analysis and visualized by CiteSpace. Results A total of 287 papers were analyzed between 2007 and 2020, and more than 95% of them were published in the past decade. The largest number of publications were from China, followed by the USA and Japan. The direct cooperation among the productive institutions was not close. At present, most of the research belongs to the discipline of dentistry, oral surgery, cell biology, and molecular biology. Literature clusters generated by reference co-citation analysis and keyword co-occurrence network showed that previous studies mainly focused on four hotspots: periodontal ligament stem cells (PDLSCs), the pathological process of periodontitis, osteogenic differentiation/bone regeneration, and the competing endogenous RNA (ceRNA) network. Conclusions The therapeutic potential of miRNA in promoting bone formation and how the ceRNA network contributes to miRNA regulation at a deeper level have become the two main research trends of this field.
Collapse
Affiliation(s)
- Kang Gao
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiping Dou
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Menghao Lv
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yihui Zhu
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Sitong Hu
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Pan Ma
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
miRNA-146a and miRNA-126 as Potential Biomarkers in Patients with Coronary Artery Disease and Generalized Periodontitis. MATERIALS 2021; 14:ma14164692. [PMID: 34443215 PMCID: PMC8398247 DOI: 10.3390/ma14164692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
The present study aims to compare the levels of micro-RNA-146a and micro-RNA-126 in oral subgingival plaque and coronary plaque from artery walls in patients with coronary artery disease who suffer from generalized periodontitis. A total of 75 participants were selected and grouped into three categories of 25 patients each: GP+CAD, GP, and HP groups. GP+CAD consisted of patients diagnosed with generalized periodontitis (GP) and coronary artery disease (CAD). The GP+CAD group was further divided into two groups—GP+CADa: where subgingival plaque samples were collected; GP+CADb group: where coronary plaque samples were collected while the patient underwent a coronary artery bypass grafting surgery. The GP group consisted of 25 patients diagnosed with only generalized periodontitis. The HP group consisted of 25 systemically and periodontally healthy controls. miRNA-146a and miRNA126 levels were assessed in subgingival plaque (SP) samples from all groups. Results revealed that miRNA-146a was expressed at higher levels and miRNA-126 was downregulated in the GP+CAD group. microRNAs in subgingival plaque samples showed a significant correlation with the coronary plaque samples in the GP+CAD group. miRNA-146a and miRNA-126 were present in coronary artery disease patients with periodontitis. These micro-RNAs may serve as risk biomarkers for coronary artery disease and generalized periodontitis.
Collapse
|
20
|
Kim H, Momen-Heravi F, Chen S, Hoffmann P, Kebschull M, Papapanou PN. Differential DNA methylation and mRNA transcription in gingival tissues in periodontal health and disease. J Clin Periodontol 2021; 48:1152-1164. [PMID: 34101221 DOI: 10.1111/jcpe.13504] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/13/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
AIM We investigated differential DNA methylation in gingival tissues in periodontal health, gingivitis, and periodontitis, and its association with differential mRNA expression. MATERIALS AND METHODS Gingival tissues were harvested from individuals and sites with clinically healthy and intact periodontium, gingivitis, and periodontitis. Samples were processed for differential DNA methylation and mRNA expression using the IlluminaEPIC (850 K) and the IlluminaHiSeq2000 platforms, respectively. Across the three phenotypes, we identified differentially methylated CpG sites and regions, differentially expressed genes (DEGs), and genes with concomitant differential methylation at their promoters and expression were identified. The findings were validated using our earlier databases using HG-U133Plus2.0Affymetrix microarrays and Illumina (450 K) methylation arrays. RESULTS We observed 43,631 differentially methylated positions (DMPs) between periodontitis and health, and 536 DMPs between gingivitis and health (FDR < 0.05). On the mRNA level, statistically significant DEGs were observed only between periodontitis and health (n = 126). Twelve DEGs between periodontitis and health (DCC, KCNA3, KCNA2, RIMS2, HOXB7, PNOC, IRX1, JSRP1, TBX1, OPCML, CECR1, SCN4B) were also differentially methylated between the two phenotypes. Spearman correlations between methylation and expression in the EPIC/mRNAseq dataset were largely replicated in the 450 K/Affymetrix datasets. CONCLUSIONS Concomitant study of DNA methylation and gene expression patterns may identify genes whose expression is epigenetically regulated in periodontitis.
Collapse
Affiliation(s)
- Hyunjin Kim
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Fatemeh Momen-Heravi
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA
| | - Steven Chen
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Moritz Kebschull
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA.,School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
21
|
Santonocito S, Polizzi A, Palazzo G, Isola G. The Emerging Role of microRNA in Periodontitis: Pathophysiology, Clinical Potential and Future Molecular Perspectives. Int J Mol Sci 2021; 22:5456. [PMID: 34064286 PMCID: PMC8196859 DOI: 10.3390/ijms22115456] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
During the last few decades, it has been established that messenger ribonucleic acid (mRNA) transcription does not inevitably lead to protein translation, but there are numerous processes involved in post-transcriptional regulation, which is a continuously developing field of research. MicroRNAs (miRNAs) are a group of small non-coding RNAs, which negatively regulate protein expression and are implicated in several physiological and pathological mechanisms. Aberrant expression of miRNAs triggers dysregulation of multiple cellular processes involved in innate and adaptive immune responses. For many years, it was thought that miRNAs acted only within the cell in which they were synthesised, but, recently, they have been found outside cells bound to lipids and proteins, or enclosed in extracellular vesicles, namely exosomes. They can circulate throughout the body, transferring information between cells and altering gene expression in the recipient cells, as they can fuse with and be internalised by the recipient cells. Numerous studies on miRNAs have been conducted in order to identify possible biomarkers that can be used in the diagnosis of periodontal disease. However, as therapeutic agents, single miRNAs can target several genes and influence multiple regulatory networks. The aim of this review was to examine the molecular role of miRNAs and exosomes in the pathophysiology of periodontal disease and to evaluate possible clinical and future implications for a personalised therapeutical approach.
Collapse
Affiliation(s)
| | | | | | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.P.); (G.P.)
| |
Collapse
|
22
|
Menini M, Dellepiane E, Pera F, Izzotti A, Baldi D, Delucchi F, Bagnasco F, Pesce P. MicroRNA in Implant Dentistry: From Basic Science to Clinical Application. Microrna 2021; 10:14-28. [PMID: 33970853 DOI: 10.2174/2211536610666210506123240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
Specific microRNA (miRNA) expression profiles have been reported to be predictive of specific clinical outcomes of dental implants and might be used as biomarkers in implant dentistry with diagnostic and prognostic purposes. The aim of the present narrative review was to summarize current knowledge regarding the use of miRNAs in implant dentistry. The authors attempted to identify all available evidence on the topic and critically appraise it in order to lay the foundation for the development of further research oriented towards the clinical application of miRNAs in implant dentistry.
Collapse
Affiliation(s)
- Maria Menini
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Elena Dellepiane
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Francesco Pera
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genova, Italy
| | - Domenico Baldi
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Francesca Delucchi
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Francesco Bagnasco
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| | - Paolo Pesce
- Division of Fixed and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genoa, Genova, Italy
| |
Collapse
|
23
|
Parolini F, Biancalana E, Rossi C, Raggi F, Mengozzi A, Solini A. Clinical and epigenetic determinants of edentulism in type 2 diabetic subjects referring to a tertiary center. J Diabetes Complications 2021; 35:107910. [PMID: 33757716 DOI: 10.1016/j.jdiacomp.2021.107910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/12/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
AIMS Edentulism, extreme consequence of severe periodontitis, carries a high cardiovascular and all-cause death risk. The prevailing phenotype of edentulous patients with type 2 diabetes (T2D) has never been defined, neither it is known whether an epigenetic signature of such condition exists. METHODS We collected clinical and biochemical data and administered a questionnaire on oral health in 248 consecutive T2D individuals. Vital status was checked after 17 ± 7 months. miRNAs involved in periodontal inflammation were measured. RESULTS Forty-seven patients (19%) were edentulous (ED), a higher prevalence than in the Italian general population (10.9% from ISTAT data). ED were older, with low level of instruction and higher fasting glucose vs not edentulous (noED). Participants displayed a scarce awareness of the association periodontitis-T2D. ED showed a specific epigenetic signature (lower miR214-5p and higher miR126-5p urinary levels). At the follow-up, metabolic profile similarly improved in ED and noED; death occurrence was similar. CONCLUSIONS In this cohort of T2D, age is the only variable associated with edentulism; such condition displays an epigenetic signature, independent of the clinical phenotype; awareness of the clinical relevance and implications of periodontitis and edentulism are scarce. However, edentulism does not mark an increased rate of micro-macrovascular complications or mortality.
Collapse
Affiliation(s)
- Federico Parolini
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Italy
| | - Francesco Raggi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Italy
| | | | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Italy.
| |
Collapse
|
24
|
Rovas A, Puriene A, Snipaitiene K, Punceviciene E, Buragaite-Staponkiene B, Matuleviciute R, Butrimiene I, Jarmalaite S. Analysis of periodontitis-associated miRNAs in gingival tissue, gingival crevicular fluid, saliva and blood plasma. Arch Oral Biol 2021; 126:105125. [PMID: 33862403 DOI: 10.1016/j.archoralbio.2021.105125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Periodontitis (PD) is a chronic inflammatory disease which is associated with multiple systemic comorbidities, including rheumatoid arthritis (RA), meanwhile the etiopathology of PD may be modulated by various factors including microRNA (miRNA). The present study aimed to reveal miRNAs associated with PD in gingival tissue, gingival crevicular fluid (GCF), saliva, plasma and to assess the possible influence of RA. DESIGN The cross-sectional study included 30 patients with PD and 31 periodontally healthy participants. A total of 25 participants were additionally diagnosed with RA. Microarray analysis of eight gingival tissue samples was performed and four PD-associated miRNAs were selected: miR-199a-5p, miR-483-5p, miR-3198 and miR-4299. Target miRNAs were further assessed by means of RT-qPCR in 61 gingival tissue samples and corresponding bodily fluids - GCF, saliva and plasma. RESULTS The upregulation of miR-199a-5p and downregulation of miR-4299 in gingival tissue was associated with the presence of PD and RA (P < 0.05). GCF level of miR-3198 was higher amongst participants with PD (P = 0.019) and showed a good diagnostic ability (AUC = 0.72, P = 0.008). Increased miR-199a-5p salivary level and decreased miR-199a-5p plasma level were observed amongst patients with worse clinical status of PD (P < 0.05). MiR-3198 and miR-4299 combination in GCF demonstrated AUC value of 0.86 and reached sensitivity of 68 % and specificity of 96 %. CONCLUSIONS Aberrant expression of miR-199a-5p, miR-483-5p, miR-3198, miR-4299 in gingival tissues is associated with the presence and/or severity of PD. MiR-3198, miR-4299 level in GCF and miR-199a-5p level in plasma strongly correlated with PD, demonstrating significant diagnostic performance.
Collapse
Affiliation(s)
- Adomas Rovas
- Institute of Odontology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Vilnius University Hospital Zalgiris Clinic, Vilnius, Lithuania.
| | - Alina Puriene
- Institute of Odontology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Vilnius University Hospital Zalgiris Clinic, Vilnius, Lithuania
| | - Kristina Snipaitiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania; National Cancer Institute, Vilnius, Lithuania
| | - Egle Punceviciene
- Clinic of Rheumatology, Orthopedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Center of Rheumatology, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | | | - Ruta Matuleviciute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Irena Butrimiene
- Clinic of Rheumatology, Orthopedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Center of Rheumatology, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
| | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania; National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
25
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
26
|
Yu B, Hu J, Li Q, Wang F. CircMAP3K11 Contributes to Proliferation, Apoptosis and Migration of Human Periodontal Ligament Stem Cells in Inflammatory Microenvironment by Regulating TLR4 via miR-511 Sponging. Front Pharmacol 2021; 12:633353. [PMID: 33679417 PMCID: PMC7930627 DOI: 10.3389/fphar.2021.633353] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Growing number of studies regarding the role of circRNAs in the development of various diseases have emerged in recent years, but the role of circRNAs in periodontitis pathogenesis remains obscure. Human periodontal ligament stem cells (hPDLSCs) play a critical role in periodontal remodeling, regeneration and repair processes, and their regenerative capacity could be prohibited in local periodontal inflammatory microenvironment. Herein, we sought to uncover the molecular mechanisms of periodontitis pathogenesis by investigating the role of circMAP3K11 (hsa_circ_002284) for regenerative capacity of hPDLSCs under an inflammatory condition. The hPDLSCs isolated from periodontitis patients were used as a cell model of inflammatory microenvironment to study the effect of the circMAP3K11/miR-511-3p/TLR4 axis on the proliferation, apoptosis and migration of hPDLSCs under inflammatory conditions. Compared to the periodontal tissues from normal subjects, those from periodontitis patients exhibited higher expression levels of circMAP3K11 and TLR4, and lower expression level of miR-511-3p. Both the expressions of circMAP3K11 and TLR4 were negatively correlated with the expressions of miR-511-3p in periodontitis. In vitro studies demonstrated that circMAP3K11 is capable of enhancing hPDLSCs proliferation and migration, and reducing the apoptosis of hPDLSCs. We also found that circMAP3K11 could up-regulate the expression of transcription factors that are closely related to periodontal regeneration (Runx2, OSX, ATF4, and BSP). RT-PCR and western blot showed that the inhibitory role of miR-511-3p on TLR4 expression could be reversed by circMAP3K11, which was in line with the results of bioinformatics tools and luciferase reporter assay. Meanwhile, both in vitro and in vivo studies indicated that circMAP3K11 could reverse the effects of miR-511-3p in periodontitis, which further confirmed that circMAP3K11 functioned as a ‘sponge’ of miR-511-3p to positively regulate the expression of TLR4. Taken together, our study preliminarily uncovered a circMAP3K11/miR-511-3p/TLR4 axis that regulates the function of hPDLSCs in periodontitis, providing novel insight and scientific base in the treatment of periodontal tissue regeneration based on stem cells.
Collapse
Affiliation(s)
- Bohan Yu
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jiahui Hu
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qin Li
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Fang Wang
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
27
|
Abstract
Inflammation is triggered by stimulation of innate sensors that recognize pathogens, chemical and physical irritants, and damaged cells subsequently initiating a well-orchestrated adaptive immune response. Immune cell activation is a strictly regulated and self-resolving process supported by an array of negative feedback mechanisms to sustain tissue homeostasis. The disruption of these regulatory pathways forms the basis of chronic inflammatory diseases, including periodontitis. Ubiquitination, a covalent posttranslational modification of target proteins with ubiquitin, has a profound effect on the stability and activity of its substrates, thereby regulating the immune system at molecular and cellular levels. Through the cooperative actions of E3 ubiquitin ligases and deubiquitinases, ubiquitin modifications are implicated in several biological processes, including proteasomal degradation, transcriptional regulation, regulation of protein-protein interactions, endocytosis, autophagy, DNA repair, and cell cycle regulation. A20 (tumor necrosis factor α-induced protein 3 or TNFAIP3) is a ubiquitin-editing enzyme that mainly functions as an endogenous regulator of inflammation through termination of nuclear factor (NF)-κB activation as part of a negative feedback loop. A20 interacts with substrates that reside downstream of immune sensors, including Toll-like receptors, nucleotide-binding oligomerization domain-containing receptors, lymphocyte receptors, and cytokine receptors. Due to its pleiotropic functions as a ubiquitin binding protein, deubiquitinase and ubiquitin ligase, and its versatile role in various signaling pathways, aberrant A20 levels are associated with numerous conditions such as rheumatoid arthritis, diabetes, systemic lupus erythematosus, inflammatory bowel disease, psoriasis, Sjögren syndrome, coronary artery disease, multiple sclerosis, cystic fibrosis, asthma, cancer, neurological disorders, and aging-related sequelae. Similarly, A20 has recently been implicated as an essential regulator of inflammation in the oral cavity. This review presents information on the ubiquitin system and regulation of NF-κB by ubiquitination using A20 as a representative molecule and highlights how the dysregulation of this system can lead to several immune pathologies, including oral cavity-related disorders mainly focusing on periodontitis.
Collapse
Affiliation(s)
- E.C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Dentistry, Richmond, VA, USA
| | - S.E. Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Chaparro A, Atria P, Realini O, Monteiro LJ, Betancur D, Acuña-Gallardo S, Ramírez V, Bendek MJ, Pascual A, Nart J, Beltrán V, Sanz A. Diagnostic potential of peri-implant crevicular fluid microRNA-21-3p and microRNA-150-5p and extracellular vesicles in peri-implant diseases. J Periodontol 2020; 92:11-21. [PMID: 33185898 DOI: 10.1002/jper.20-0372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND To explore the diagnostic usefulness of extracellular vesicles (EVs), and their subpopulations (micro-vesicles and exosomes), and microRNAs (miRNA-21-3p, miRNA-150-5p, and miRNA-26a-5p) in peri-implant crevicular fluid (PICF) of subjects with healthy, peri-implant mucositis and peri-implantitis implants. METHODS A total of 54 patients were enrolled into healthy, peri-implant mucositis, and peri-implantitis groups. PICF samples were collected, EVs subpopulations (MVs and Exo) were isolated and characterized by nanoparticle tracking analysis and transmission electron microscopy. The expression of miRNA-21-3p, miRNA-150-5p and miRNA-26a-5p was quantified by qRT-PCR. Logistic regression models and accuracy performance tests were estimated. RESULTS PICF samples show the presence of EVs delimited by a bi-layered membrane, in accordance with the morphology and size (< 200 nm). The concentration of PICF-EVs, micro-vesicles and exosomes was significantly increased in peri-implantitis implants compared to healthy implants (P = 0.023, P = 0.002, P = 0.036, respectively). miRNA-21-3p and miRNA-150-5p expression were significantly downregulated in patients with peri-implantitis in comparison with peri-implant mucositis sites (P = 0.011, P = 0.020, respectively). The reduced expression of miRNA-21-3p and miRNA-150-5p was associated with peri-implantitis diagnosis (OR:0.23, CI 0.08-0.66, P = 0.007 and OR:0.07, CI 0.01-0.78, P = 0.031, respectively). The model which included the miRNA-21-3p and miRNA-150-5p expression had a sensitivity of 93.3%, a specificity of 76.5%, a positive predictive value of 77.8%, and a negative predictive value of 92.9%. The positive and negative likelihood ratios were 3.97 and 0.09, respectively. The area under the receiver operating characteristics curve for the model was 0.84. CONCLUSIONS An increase concentration of EVs with a downregulation expression of miRNA-21-3p and miRNA-150-5p could be related with the peri-implantitis development.
Collapse
Affiliation(s)
- Alejandra Chaparro
- Department of Periodontology, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Pablo Atria
- Department of Periodontology, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Ornella Realini
- Department of Periodontology, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Lara J Monteiro
- Department of Obstetrics and Gynecology, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Daniel Betancur
- Department of Periodontology, School of Dentistry, Universidad de Concepción, Concepción, Chile
| | - Stephanie Acuña-Gallardo
- Department of Obstetrics and Gynecology, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Valeria Ramírez
- Department of Statistics and Epidemiology, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - María José Bendek
- Department of Periodontology, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Andrés Pascual
- Department of Periodontology, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Victor Beltrán
- Centre of Investigation and Innovation in Clinical Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco, Chile
| | - Antonio Sanz
- Department of Periodontology, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
29
|
Li R, Ruan Q, Yin F, Zhao K. MiR-23b-3p promotes postmenopausal osteoporosis by targeting MRC2 and regulating the Wnt/β-catenin signaling pathway. J Pharmacol Sci 2020; 145:69-78. [PMID: 33357782 DOI: 10.1016/j.jphs.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is one of the most common metabolic bone diseases in postmenopausal women. Increasing evidence has indicated that microRNAs (miRNAs) play vital regulatory roles during osteoporosis progression. This study aimed to investigate the potential function of miR-23b-3p in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). PMOP was induced in mice by bilateral ovariectomy. X-ray absorptiometry was applied to detect BMD and BMC in PMOP mice. Luciferase reporter assay and RIP assay were utilized to investigate the relationship between miR-23b-3p and MRC2. We found the upregulation of miR-23b-3p in bone tissues of PMOP mice. Silencing of miR-23b-3p relieved PMOP in mice. Moreover, miR-23b-3p knockdown facilitated the osteogenic differentiation of hMSCs by increasing the expression of Runx2, OCN, Osterix and promoting ALP activity. Mechanistically, MRC2 is a downstream target gene of miR-23b-3p. MRC2 knockdown significantly rescued the promoting effect of lenti-miR-23b-3p inhibitor on osteogenic differentiation of hMSCs. Furthermore, miR-23b-3p targeted MRC2 to inhibit the Wnt/β-catenin pathway during the osteogenic differentiation of hMSCs. In summary, inhibition of miR-23b-3p alleviates PMOP by targeting MRC2 to inhibit the Wnt/β-catenin signaling, which may provide a novel molecular insight for osteoporosis therapy.
Collapse
Affiliation(s)
- Ran Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Qing Ruan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Fei Yin
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Kunchi Zhao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
30
|
Steigmann L, Maekawa S, Sima C, Travan S, Wang CW, Giannobile WV. Biosensor and Lab-on-a-chip Biomarker-identifying Technologies for Oral and Periodontal Diseases. Front Pharmacol 2020; 11:588480. [PMID: 33343358 PMCID: PMC7748088 DOI: 10.3389/fphar.2020.588480] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a complex multifactorial disease that can lead to destruction of tooth supporting tissues and subsequent tooth loss. The most recent global burden of disease studies highlight that severe periodontitis is one of the most prevalent chronic inflammatory conditions affecting humans. Periodontitis risk is attributed to genetics, host-microbiome and environmental factors. Empirical diagnostic and prognostic systems have yet to be validated in the field of periodontics. Early diagnosis and intervention prevents periodontitis progression in most patients. Increased susceptibility and suboptimal control of modifiable risk factors can result in poor response to therapy, and relapse. The chronic immune-inflammatory response to microbial biofilms at the tooth or dental implant surface is associated with systemic conditions such as cardiovascular disease, diabetes or gastrointestinal diseases. Oral fluid-based biomarkers have demonstrated easy accessibility and potential as diagnostics for oral and systemic diseases, including the identification of SARS-CoV-2 in saliva. Advances in biotechnology have led to innovations in lab-on-a-chip and biosensors to interface with oral-based biomarker assessment. This review highlights new developments in oral biomarker discovery and their validation for clinical application to advance precision oral medicine through improved diagnosis, prognosis and patient stratification. Their potential to improve clinical outcomes of periodontitis and associated chronic conditions will benefit the dental and overall public health.
Collapse
Affiliation(s)
- Larissa Steigmann
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Shogo Maekawa
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Suncica Travan
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Chin-Wei Wang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - William V. Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
- Biointerfaces Institute and Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Elazazy O, Amr K, Abd El Fattah A, Abouzaid M. Evaluation of serum and gingival crevicular fluid microRNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2. Arch Oral Biol 2020; 121:104949. [PMID: 33157494 DOI: 10.1016/j.archoralbio.2020.104949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
microRNA dysregulation is a reported feature of multiple pathologies, including periodontal disease, as demonstrated on cell lines, in animal models, and tissues biopsies, but serum and gingival crevicular fluid microRNA expression data in humans is scarce, especially with the diabetes (type 2) systemic complication. OBJECTIVE To assess serum and gingival crevicular fluid relative quantification levels of miR-223, miR-203, and miR-200b in chronic periodontitis and type 2 diabetic chronic periodontitis patients to address their possible implication in chronic periodontitis pathogenesis and its systemic complications and also to correlate their differential expression with some inflammatory (serum tumor necrosis factor-α and interleukin-10) parameters. METHODS Sixty subjects were recruited and divided into three groups; chronic periodontitis (n = 20), type 2 diabetic chronic periodontitis (n = 20), and healthy control (n = 20). Both serum and gingival crevicular fluid were collected from each participant for miRNA expression analysis and serum inflammatory parameters assessment. RESULTS A significant increase in the relative quantification levels of miR-223 and miR-200b were detected in patient groups along with a positive correlation with tumor necrosis factor-α. However, miR-203 was significantly decreased in patient groups associated with a negative correlation with tumor necrosis factor-α. CONCLUSIONS miR-223 and miR-200b have a potential role in chronic periodontitis pathogenesis associated with type 2 diabetes, with the ability to induce tumor necrosis factor-α secretion, while miR-203 might have a protective and healing role due to the negative correlation with the serum tumor necrosis factor-α levels found. Therefore, they may be considered as a promising therapeutic target and effective serum disease biomarkers.
Collapse
Affiliation(s)
- Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Khalda Amr
- Department of Medical Molecular Genetics, National Research Center, Cairo, Egypt
| | - Abeer Abd El Fattah
- Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Maha Abouzaid
- Department of Orodental Genetics, National Research Center, Cairo, Egypt
| |
Collapse
|
32
|
Wang Y, Tatakis DN. Integrative mRNA/miRNA expression analysis in healing human gingiva. J Periodontol 2020; 92:863-874. [PMID: 32857863 DOI: 10.1002/jper.20-0397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are implicated in the epigenetic regulation of complex biological processes. Their possible role in human oral wound healing, a process that differs from cutaneous wound healing by being faster and typically scar-free, has been unexplored. This report presents the miRNA expression profile of experimental human oral wounds and an integrative analysis of mRNA/miRNA expression. METHODS Nine healthy volunteers provided standardized normal and 5-day healing palatal biopsies, used for next generation miRNA and mRNA sequencing analysis, correlation and network analysis, real-time PCR (qPCR) and immunohistochemistry. RESULTS On average, 169 significantly regulated precursor miRNAs were detected, including 21 novel miRNAs, selectively confirmed by PCR. Hsa-miR-223-3p and hsa-miR-124-3p were, respectively, the most up- and downregulated miRNAs in healing gingiva. Hsa-miR-124-3p had the most predicted mRNA target interactions, with angiogenesis-related genes the most enriched. Correlation analysis showed the highest correlation between hsa-miR-181a-3p and SERPINB1; hsa-miR-223-5p and SLC2A3; hsa-miR-1301 and MS4A7. In addition, SERPINB1 mRNA had the most associations with differentially regulated miRNAs. IL33 was the only cytokine significantly correlated with miRNAs (ρ > 0.95). qPCR and immunohistochemistry verified the significant upregulation of SERPINB1 and IL33 in healing gingiva. CONCLUSIONS This study is the first to report on the miRNome of healing human gingiva and to provide an integrative analysis of miRNA/mRNA expression during human oral wound healing; the results offer novel insights into the participating molecular mechanisms and raise the possibility of SERPINB1 and IL-33 as potential wound healing therapeutic targets.
Collapse
Affiliation(s)
- Yun Wang
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
33
|
Sewer A, Zanetti F, Iskandar AR, Guedj E, Dulize R, Peric D, Bornand D, Mathis C, Martin F, Ivanov NV, Peitsch MC, Hoeng J. A meta-analysis of microRNAs expressed in human aerodigestive epithelial cultures and their role as potential biomarkers of exposure response to nicotine-containing products. Toxicol Rep 2020; 7:1282-1295. [PMID: 33014713 PMCID: PMC7522043 DOI: 10.1016/j.toxrep.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 11/03/2022] Open
Abstract
The expression of some microRNAs (miRNA) is modulated in response to cigarette smoke (CS), which is a leading cause of major preventable diseases. However, whether miRNA expression is also modulated by the aerosol/extract from potentially reduced-risk products is not well studied. The present work is a meta-analysis of 12 in vitro studies in human organotypic epithelial cultures of the aerodigestive tract (buccal, gingival, bronchial, nasal, and small airway epithelia). These studies compared the effects of exposure to aerosols from electronic vapor (e-vapor) products and heated tobacco products, and to extracts from Swedish snus products (in the present work, will be referred to as reduced-risk products [RRPs]) on miRNA expression with the effects of exposure to CS or its total particulate matter fraction. This meta-analysis evaluated 12 datasets of a total of 736 detected miRNAs and 2775 exposed culture inserts. The t-distributed stochastic neighbor embedding method was used to find similarities across the diversity of miRNA responses characterized by tissue type, exposure type, and product concentration. The CS-induced changes in miRNA expression in gingival cultures were close to those in buccal cultures; similarly, the alterations in miRNA expression in small airway, bronchial, and nasal tissues resembled each other. A supervised clustering was performed to identify miRNAs exhibiting particular response patterns. The analysis identified a set of miRNAs whose expression was altered in specific tissues upon exposure to CS (e.g., miR-125b-5p, miR-132-3p, miR-99a-5p, and 146a-5p). Finally, we investigated the impact of RRPs on miRNA expression in relation to that of CS by calculating the response ratio r between the RRP- and CS-induced alterations at an individual miRNA level, showing reduced alterations in miRNA expression following RRP exposure relative to CS exposure (94 % relative reduction). No specific miRNA response pattern indicating exposure to aerosols from heated tobacco products and e-vapor products, or extracts from Swedish snus was identifiable.
Collapse
Key Words
- 2D, two-dimensional
- AKT, protein kinase B
- ALI, air-liquid interface
- CHTP 1.2, Carbon Heated Tobacco Product 1.2
- COPD, chronic obstructive pulmonary disease
- CRP, CORESTA Reference Product
- CS, cigarette smoke and its TPM fraction
- FDA, Food & Drug Administration
- FDR, false discovery rate
- GCW, General Classic White
- HCI, Health Canada intense
- HTP, heated tobacco product
- Heated tobacco product
- IL-1β, interleukin 1β
- MMP-1, matrix metalloproteinase 1
- N/A, not applicable
- Organotypic aerodigestive culture
- RRP, reduced-risk product
- Systems toxicology
- THS 2.2, Tobacco Heating System 2.2
- TPM, total particulate matter
- Tobacco Heating System 2.2
- e-vapor
- e-vapor, electronic vapor
- mRNA, messenger RNA
- mTOR, mammalian target of rapamycin
- miRNA
- miRNA, microRNA
- t-SNE, t-distributed stochastic neighbor embedding
Collapse
Affiliation(s)
- Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Anita R Iskandar
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Remi Dulize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - David Bornand
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
34
|
Zhou H, Chen D, Xie G, Li J, Tang J, Tang L. LncRNA-mediated ceRNA network was identified as a crucial determinant of differential effects in periodontitis and periimplantitis by high-throughput sequencing. Clin Implant Dent Relat Res 2020; 22:424-450. [PMID: 32319195 DOI: 10.1111/cid.12911] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/28/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Although periimplantitis and periodontitis share similar features, particularly clinical features, they are two different diseases and should be analyzed separately. Thus far, few omics-level differences in periimplantitis and periodontitis have been reported. This study was aimed at exploring the differential effects of expression mRNAs, lncRNAs, and miRNAs in periodontitis and periimplantitis by high-throughput sequencing and competitive endogenous RNA (ceRNA) analysis. METHODS Gingival tissues of healthy individuals (HI) and periimplantitis (PI) and periodontitis (P) patients were collected and used for genome-wide sequencing. The differentially expressed genes (DEGs) were screened and visualized by R software. The functions and pathways of DEGs were analyzed using Metascape, and the ceRNA network was constructed using the Cytoscape software. Finally, gene set enrichment analysis (GSEA) was used to predict the function of key nodes in ceRNA. RESULTS AND CONCLUSION By constructing the regulated ceRNA network, six genes (FAM126B, SORL1, PRLR, CPEB2, RAP2C, and YOD1) and 16 miRNAs (hsa-miR-338-5p, hsa-miR-650, hsa-miR-9-5p, hsa-miR-1290, hsa-miR-544a, hsa-miR-3179, hsa-miR-1269a, hsa-miR-3679-5p, hsa-miR-149-5p, hsa-miR-615-3p, hsa-miR-33b-5p, hsa-miR-31-5p, hsa-miR-4639-5p, hsa-miR-204-5p, hsa-miR-5588-5p, and hsa-mir-196a-5p) were detected. Five long non-coding RNAs (lnc-CORO2B-1, lnc-MBL2-7, lnc-TRIM45-1, lnc-CHST10-2, and lnc-TNP1-6) were found to target these miRNAs in this ceRNA network. The ceRNA network based on transcriptome data revealed that FAM126B, SORL1, PRLR, CPEB2, RAP2C, and YOD1 were crucial proteins of differential effects in periodontitis and periimplantitis. The lncRNA-miRNA-mRNA interaction involved the regulation of the Hippo signaling pathway, Wnt signaling pathway, Toll-like receptor signaling pathway, NOD signaling pathway, oxidative stress, and innate immune process. These regulated pathways and biological processes may be factors contributing to the pathogenesis of periimplantitis being distinct from that of periodontitis.
Collapse
Affiliation(s)
- Hailun Zhou
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Donghui Chen
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Department of Periodontology, Stomatology Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Guifang Xie
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guilin Medical College, Guilin, China
| | - Jiaojie Li
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Jianjia Tang
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Li Tang
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| |
Collapse
|
35
|
Li J, Li L, Wang X, Xiao L. Porphyromonas gingivalis Inhibition of MicroRNA-205-5p Expression Modulates Proinflammatory Cytokines in Gingival Epithelial Cells. Biochem Genet 2020; 58:566-579. [PMID: 32303947 DOI: 10.1007/s10528-020-09957-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/11/2020] [Indexed: 01/05/2023]
Abstract
In this study, we strived to investigate the effect of miR-205-5p on JAK/STAT signaling way induced by P. gingivalis in periodontitis. Microarray analysis was conducted to find differentially expressed miRNAs in periodontitis patients. The miRNAs related to JAK/STAT signaling way were selected via DIANA TOOLS, and the targeted mRNAs of miRNAs were predicted by TargetScan. The expression of miRNAs and mRNAs, differentially expressed in periodontitis and related to JAK/STAT signaling, was detected by qRT-PCR or western blot. The relationship between miRNAs and mRNAs was confirmed by a dual luciferase assay. MiR-205-5p was downregulated and IL6ST was upregulated in periodontitis patients' clinical samples. MiR-205-5p had target binding sites of IL6ST 3' untranslated region. QRT-PCR and western blot analysis demonstrated poor expression of miR-205-5p, while IL6ST, pJAK2, p-STAT3 were extremely upregulated in gingival epithelial cells (GECs) with P. gingivalis induction. IL6ST expression in periodontitis tissue was also increased. P. gingivalis could inhibit miR-205-5p expression to activate JAK/STAT signaling in GECs and promote the occurrence and development of periodontitis.
Collapse
Affiliation(s)
- Juan Li
- Department of Stomatology, Yantai Yuhuangding Hospital, Zhifu District, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Li Li
- Department of Stomatology, Yantai Yuhuangding Hospital, Zhifu District, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Xiaoping Wang
- Department of Stomatology, Yantai Yuhuangding Hospital, Zhifu District, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Lei Xiao
- Department of Stomatology, Yantai Yuhuangding Hospital, Zhifu District, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
36
|
Interleukin 1β and Prostaglandin E2 affect expression of DNA methylating and demethylating enzymes in human gingival fibroblasts. Int Immunopharmacol 2019; 78:105920. [PMID: 31810887 DOI: 10.1016/j.intimp.2019.105920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
Periodontitis is a common chronic inflammatory condition that results in increased levels of inflammatory cytokines and inflammatory mediators. In addition to oral disease and tooth loss, it also causes low-grade systemic inflammation that contributes to development of systemic conditions including cardiovascular disease, pre-term birth, diabetes and cancer. Chronic inflammation is associated with epigenetic change, and it has been suggested that such changes can alter cell phenotypes in ways that contribute to both ongoing inflammation and development of associated pathologies. Here we show that exposure of human gingival fibroblasts to IL-1β increases expression of maintenance methyltransferase DNMT1 but decreases expression of de novo methyltransferase DNMT3a and the demethylating enzyme TET1, while exposure to PGE2 decreases expression of all three enzymes. IL-1β and PGE2 both affect global levels of DNA methylation and hydroxymethylation, as well as methylation of some specific CpG in inflammation-associated genes. The effects of IL-1β are independent of its ability to induce production of PGE2, and the effects of PGE2 on DNMT3a expression are mediated by the EP4 receptor. The finding that exposure of fibroblasts to IL-1β and PGE2 can result in altered expression of DNA methylating/demethylating enzymes and in changing patterns of DNA methylation suggests a mechanism through which inflammatory mediators might contribute to the increased risk of carcinogenesis associated with inflammation.
Collapse
|
37
|
Wu L, Yang K, Gui Y, Wang X. Nicotine-upregulated miR-30a arrests cell cycle in G1 phase by directly targeting CCNE2 in human periodontal ligament cells. Biochem Cell Biol 2019; 98:354-361. [PMID: 31689122 DOI: 10.1139/bcb-2019-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The consumption of nicotine via smoking tobacco has been reported to stimulate the occurrence and progression of periodontitis. Many studies have demonstrated that nicotine prevents the regeneration of periodontal tissues primarily by inhibiting the proliferation of human periodontal ligament (PDL) cells. However, the mechanisms underlying this process are still unclear. Therefore, we investigated whether nicotine-upregulated miR-30a inhibited the proliferation of human PDL cells by downregulating cyclin E2 (CCNE2), in vitro. Quantitative real-time PCR analysis revealed that nicotine upregulated the expression of miR-30a in human PDL cells. In addition, nicotine inhibited the proliferation of human PDL cells by inducing cell cycle arrest. To support this hypothesis, we showed that nicotine downregulated the expression of CCNE2 in human PDL cells, whereas inhibition of miR-30a restored CCNE2 expression that had been downregulated by nicotine. Furthermore, using luciferase reporter assays, we found that miR-30a directly interacts with the CCNE2 3'UTR. In conclusion, these findings indicate that nicotine-upregulated miR-30a inhibits the proliferation of human PDL cells by downregulating the expression of CCNE2.
Collapse
Affiliation(s)
- Lizheng Wu
- Department of Stomatology, Characteristic Medical Center of the Chinese people's Armed Police Force, Tianjin, China.,State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kuan Yang
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University
| | - Yajie Gui
- Department of Stomatology, Characteristic Medical Center of the Chinese people's Armed Police Force, Tianjin, China
| | - Xiaojing Wang
- State Key Laboratory of Military Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
38
|
Acharya A, Li S, Liu X, Pelekos G, Ziebolz D, Mattheos N. Biological links in periodontitis and rheumatoid arthritis: Discovery via text‐mining PubMed abstracts. J Periodontal Res 2018; 54:318-328. [DOI: 10.1111/jre.12632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Aneesha Acharya
- Faculty of DentistryThe University of Hong Kong Sai Yin Pun Hong Kong
- Department of PeriodontologyDr. D.Y. Patil Vidyapeeth Pune India
| | - Simin Li
- Department of Cariology, Endodontology, and PeriodontologyUniversity Leipzig Liebigstr Germany
| | - Xiangqiong Liu
- Shanghai Genomap Technologies Shanghai China
- College of Bioinformatics Science and TechnologyHarbin Medical University Harbin China
| | - George Pelekos
- Faculty of DentistryThe University of Hong Kong Sai Yin Pun Hong Kong
| | - Dirk Ziebolz
- Department of Cariology, Endodontology, and PeriodontologyUniversity Leipzig Liebigstr Germany
| | - Nikos Mattheos
- Faculty of DentistryThe University of Hong Kong Sai Yin Pun Hong Kong
| |
Collapse
|
39
|
Amaral SA, Pereira TSF, Brito JAR, Cortelli SC, Cortelli JR, Gomez RS, Costa FO, Miranda Cota LO. Comparison of miRNA expression profiles in individuals with chronic or aggressive periodontitis. Oral Dis 2018; 25:561-568. [PMID: 30350903 DOI: 10.1111/odi.12994] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) may play an important role in inflammatory response. However, the involvement of miRNAs in the pathogenesis of periodontitis is unclear. The present study aimed to compare the miRNA expression profiles in individuals with chronic (CP) or aggressive (AP) periodontitis. MATERIALS AND METHODS Eighteen non-smoker individuals (CP = 9 and AP = 9) without any history of systemic diseases or previous periodontal therapies were selected at the Clinics of Periodontology from the Federal University of Minas Gerais. Gingival tissue samples were collected during the initial periodontal therapy. miRNAs were isolated, and expression patterns of 754 miRNAs were assessed with a quantitative miRNA PCR array. miRNAs expression profiles were compared between CP and AP groups. RESULTS There were no differences observed in the miRNAs expression profiles between CP and AP (p > 0.05). According to the microarray analyses, the most expressed miRNAs in both groups were hsa-miR-1274b, hsa-let-7b-5p, hsa-miR-24-3p, hsa-miR-19b-3p, hsa-miR-720, hsa-miR-126-3p, hsa-miR-17-3p and hsa-miR-21-3p. CONCLUSION Findings suggested no differences in miRNAs expression profiles between chronic and aggressive forms of periodontitis. The overexpression of specific miRNAs could provide insights into the pathogenesis of both forms of the disease.
Collapse
Affiliation(s)
- Sérgio Antonucci Amaral
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaís Santos Fontes Pereira
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Artur Ricieri Brito
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sheila Cavalca Cortelli
- Department of Dentistry, Periodontics Research Division, University of Taubaté, Taubaté, São Paulo, Brazil
| | - José Roberto Cortelli
- Department of Dentistry, Periodontics Research Division, University of Taubaté, Taubaté, São Paulo, Brazil
| | - Ricardo Santigo Gomez
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Oliveira Costa
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís Otávio Miranda Cota
- Department of Dental Clinics, Oral Pathology, and Oral Surgery, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
40
|
Peyyala R, Emecen-Huja P, Ebersole JL. Environmental lead effects on gene expression in oral epithelial cells. J Periodontal Res 2018; 53:961-971. [PMID: 30152021 DOI: 10.1111/jre.12594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/20/2018] [Accepted: 07/04/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Host responses in periodontitis span a range of local and emigrating cell types and biomolecules. Accumulating evidence regarding the expression of this disease across the population suggests some component of genetic variation that controls onset and severity of disease, in concert with the qualitative and quantitative parameters of the oral microbiome at sites of disease. However, there remains little information regarding the capacity of accruing environmental stressors or modifiers over a lifespan at both the host genetic and microbial ecology levels to understand fully the population variation in disease. This study evaluated the impact of environmental lead exposure on the responses of oral epithelial cells to challenge with a model pathogenic oral biofilm. METHODS AND RESULTS Using NanoString technology to quantify gene expression profiles of an array of 511 host response-associated genes in the epithelial cells, we identified an interesting primary panel of basal responses of the cells with numerous genes not previously considered as major response markers for epithelial cells, eg, interleukin (IL)-32, CTNNB1, CD59, MIF, CD44 and CD99. Even high levels of environment lead had little effect on these constitutive responses. Challenge of the cells with the biofilms (Streptococcus gordonii/Fusobacterium nucleatum/Porphyromonas gingivalis) resulted in significant increases in an array of host immune-related genes (134 of 511). The greatest magnitude in differential expression was observed with many genes not previously described as major response genes in epithelial cells, including IL-32, CD44, NFKBIA, CTSC, TNFAIP3, IL-1A, IL-1B, IL-8 and CCL20. The effects of environmental lead on responses to the biofilms were mixed, although levels of IL-8, CCL20 and CD70 were significantly decreased at lead concentrations of 1 and/or 5 μmol/L. CONCLUSION The results provided new information on a portfolio of genes expressed by oral epithelial cells, targeted substantial increases in an array of immune-related genes post-biofilm challenge, and a focused impact of environmental lead on these induced responses.
Collapse
Affiliation(s)
- Rebecca Peyyala
- Center for Oral Health Research and Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| | - Pinar Emecen-Huja
- Center for Oral Health Research and Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Ebersole
- Center for Oral Health Research and Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
41
|
Abstract
This volume of Periodontology 2000 represents the 25th anniversary of the Journal, and uses the occasion to assess important advancements in periodontology over the past quarter-century as well as the hurdles that remain. Periodontitis is defined by pathologic loss of the periodontal ligament and alveolar bone. The disease involves complex dynamic interactions among active herpesviruses, specific bacterial pathogens and destructive immune responses. Periodontal diagnostics is currently based on clinical rather than etiologic criteria, and provides limited therapeutic guidance. Periodontal causative treatment consists of scaling, antiseptic rinses and occasionally systemic antibiotics, and surgical intervention has been de-emphasized, except perhaps for the most advanced types of periodontitis. Plastic surgical therapy includes soft-tissue grafting to cover exposed root surfaces and bone grafting to provide support for implants. Dental implants are used to replace severely diseased or missing teeth, but implant overuse is of concern. The utility of laser treatment for periodontitis remains unresolved. Host modulation and risk-factor modification therapies may benefit select patient groups. Patient self-care is a critical part of periodontal health care, and twice-weekly oral rinsing with 0.10-0.25% sodium hypochlorite constitutes a valuable adjunct to conventional anti-plaque and anti-gingivitis treatments. A link between periodontal herpesviruses and systemic diseases is a strong biological plausibility. In summary, research during the past 25 years has significantly changed our concepts of periodontitis pathobiology and has produced more-effective and less-costly therapeutic options.
Collapse
|
42
|
Li S, Liu X, Li H, Pan H, Acharya A, Deng Y, Yu Y, Haak R, Schmidt J, Schmalz G, Ziebolz D. Integrated analysis of long noncoding RNA-associated competing endogenous RNA network in periodontitis. J Periodontal Res 2018. [PMID: 29516510 DOI: 10.1111/jre.12539] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Long noncoding RNAs (lncRNAs) play critical and complex roles in regulating various biological processes of periodontitis. This bioinformatic study aims to construct a putative competing endogenous RNA (ceRNA) network by integrating lncRNA, miRNA and mRNA expression, based on high-throughput RNA sequencing and microarray data about periodontitis. MATERIAL AND METHODS Data from 1 miRNA and 3 mRNA expression profiles were obtained to construct the lncRNA-associated ceRNA network. Gene Ontology enrichment analysis and pathway analysis were performed using the Gene Ontology website and Kyoto Encyclopedia of Genes and Genomes. A protein-protein interaction network was constructed based on the Search Tool for the retrieval of Interacting Genes/Proteins. Transcription factors (TFs) of differentially expressed genes were identified based on TRANSFAC database and then a regulatory network was constructed. RESULTS Through constructing the dysregulated ceRNA network, 6 genes (HSPA4L, PANK3, YOD1, CTNNBIP1, EVI2B, ITGAL) and 3 miRNAs (miR-125a-3p, miR-200a, miR-142-3p) were detected. Three lncRNAs (MALAT1, TUG1, FGD5-AS1) were found to target both miR-125a-3p and miR-142-3p in this ceRNA network. Protein-protein interaction network analysis identified several hub genes, including VCAM1, ITGA4, UBC, LYN and SSX2IP. Three pathways (cytokine-cytokine receptor, cell adhesion molecules, chemokine signaling pathway) were identified to be overlapping results with the previous bioinformatics studies in periodontitis. Moreover, 2 TFs including FOS and EGR were identified to be involved in the regulatory network of the differentially expressed genes-TFs in periodontitis. CONCLUSION These findings suggest that 6 mRNAs (HSPA4L, PANK3, YOD1, CTNNBIP1, EVI2B, ITGAL), 3 miRNAs (hsa-miR-125a-3p, hsa-miR-200a, hsa-miR-142-3p) and 3 lncRNAs (MALAT1, TUG1, FGD5-AS1) might be involved in the lncRNA-associated ceRNA network of periodontitis. This study sought to illuminate further the genetic and epigenetic mechanisms of periodontitis through constructing an lncRNA-associated ceRNA network.
Collapse
Affiliation(s)
- S Li
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - X Liu
- Shanghai Genomap Technologies, Yangpu District, Shanghai, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - H Li
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - H Pan
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - A Acharya
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China.,Dr D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth, Pimpri, Pune, India
| | - Y Deng
- Shanghai Genomap Technologies, Yangpu District, Shanghai, China
| | - Y Yu
- Department of Periodontology, The Stomatology Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - R Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - J Schmidt
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - G Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - D Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Venugopal P, Lavu V, Rao SR, Venkatesan V. Association of microRNA-125a and microRNA-499a polymorphisms in chronic periodontitis in a sample south Indian population: A hospital-based genetic association study. Gene 2017; 631:10-15. [DOI: 10.1016/j.gene.2017.07.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022]
|
44
|
Olsen I, Singhrao SK, Osmundsen H. Periodontitis, pathogenesis and progression: miRNA-mediated cellular responses to Porphyromonas gingivalis. J Oral Microbiol 2017; 9:1333396. [PMID: 28748037 PMCID: PMC5508365 DOI: 10.1080/20002297.2017.1333396] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/15/2017] [Indexed: 12/25/2022] Open
Abstract
Porphyromonas gingivalis is considered a keystone pathogen in periodontitis, a disease typically driven by dysbiosis of oral inflammophilic polymicrobial pathobionts. To combat infectious agents, the natural defense response of the host is to switch on inflammatory signaling cascades, whereby microRNA (miRNA) species serve as alternative genetic inhibitory transcriptional endpoints. miRNA profiles from diseased sites differ from those detected in disease-free tissues. miRNA profiles could therefore be harnessed as potential diagnostic/prognostic tools. The regulatory role of some miRNA species (miRNA-128, miRNA-146, miRNA-203, and miRNA-584) in the innate immune system suggests these molecular signatures also have potential in therapy. P. gingivalis–associated miRNAs are likely to influence the innate immune response, whereas its lipopolysaccharide may affect the nature of host miRNAs and their mRNA targets. This mini review discusses miRNA-dependent transcriptional and regulatory phenomena ensuing immune signaling cascade switch-on with development and progression of periodontitis initiated by P. gingivalis exposure.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K Singhrao
- Dementia & Neurodegeneration Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Harald Osmundsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Portland cement induces human periodontal ligament cells to differentiate by upregulating miR-146a. J Formos Med Assoc 2017; 117:308-315. [PMID: 28528141 DOI: 10.1016/j.jfma.2017.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/PURPOSE Bioaggregates such as Portland cement (PC) can be an economical alternative for mineral trioxide aggregate (MTA) with additional benefit of less discoloration. MTA has been known to induce differentiations of several dental cells. MicroRNAs are important regulators of biological processes, including differentiation, physiologic homeostasis, and disease progression. This study is to explore how PC enhances the differentiation of periodontal ligament (PDL) cells in microRNAs level. METHODS PDL cells were cultured in a regular PC- or MTA-conditioned medium or an osteoinduction medium (OIM). Alizarin red staining was used to evaluate the extent of mineralization. Transfection of microRNA mimics induced exogenous miR-31 and miR-146a expression. The expression of microRNAs and differentiation markers was assayed using reverse-transcriptase polymerase chain reaction. RESULTS PC enhanced the mineralization of PDL cells in a dose-dependent manner in the OIM. Exogenous miR-31 and miR-146a expression upregulated alkaline phosphatase (ALP), bone morphogenic protein (BMP), and dentin matrix protein 1 (DMP1) expression. However, miR-31 and miR-146a modulates cementum protein 1 (CEMP1) expression in different ways. PC also enhanced ALP and BMP but attenuated CEMP1 in the OIM. Although the OIM or PC treatment upregulated miR-21, miR-29b, and miR-146a, only miR-146a was able to be induced by PC in combination with OIM. CONCLUSION This study demonstrated that PC enhances the differentiation of PDL cells, especially osteogenic through miR-146a upregulation. In order to control the ankylosis after regenerative endodontics with the usage of bioaggregates, further investigations to explore these differentiation mechanisms in the miRNA level may be needed.
Collapse
|
46
|
Identification and Characterization of MicroRNA Differentially Expressed in Macrophages Exposed to Porphyromonas gingivalis Infection. Infect Immun 2017; 85:IAI.00771-16. [PMID: 28069815 DOI: 10.1128/iai.00771-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert any innate immune response. In this study we analyzed, using microarray analysis, the bacterial modulation of miRNAs in bone marrow-derived macrophages (BMMs) in which activity was induced by infection with Porphyromonas gingivalis The expression of several miRNAs was modulated 3 h postinfection (at a multiplicity of infection of 25). A bioinformatic analysis was performed to further identify pathways related to the innate immune host response under the influence of selected miRNAs. To assess the effects of the miRNAs identified on cytokine secretion (tumor necrosis factor alpha [TNF-α] and interleukin-10 [IL-10]), BMMs were transfected with selected miRNA mimics and inhibitors. Transfection with mmu-miR-155 and mmu-miR-2137 did not modify TNF-α secretion, while their inhibitors increased it. Inhibitors of mmu-miR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory factor IL-10. In P. gingivalis-infected BMMs, mmu-miR-155-5p significantly decreased TNF-α secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a mouse model of P. gingivalis-induced calvarial bone resorption, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatory cell infiltration, osteoclast activity, and bone loss. Bioinformatic analysis demonstrated that pathways related to cytokine- and chemokine-related pathways but also osteoclast differentiation may be involved in the effects observed. This study contributes further to our understanding of P. gingivalis-induced modulation of miRNAs and their physiological effects. It highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by P. gingivalis infection.
Collapse
|
47
|
Venugopal P, Lavu V, RangaRao S, Venkatesan V. Evaluation of a Panel of Single-Nucleotide Polymorphisms in miR-146a and miR-196a2 Genomic Regions in Patients with Chronic Periodontitis. Genet Test Mol Biomarkers 2017; 21:228-235. [PMID: 28384038 DOI: 10.1089/gtmb.2016.0358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Periodontitis is an inflammatory disease caused by bacterial triggering of the host immune-inflammatory response, which in turn is regulated by microRNAs (miRNA). Polymorphisms in the miRNA pathways affect the expression of several target genes such as tumor necrosis factor-α and interleukins, which are associated with progression of disease. OBJECTIVE The objective of this study was to identify the association between the MiR-146a single nucleotide polymorphisms (SNPs) (rs2910164, rs57095329, and rs73318382), the MiR-196a2 (rs11614913) SNP and chronic periodontitis. METHODS Genotyping was performed for the MiR-146a (rs2910164, rs57095329, and rs73318382) and the MiR-196a2 (rs11614913) polymorphisms in 180 healthy controls and 190 cases of chronic periodontitis by the direct Sanger sequencing technique. The strength of the association between the polymorphisms and chronic periodontitis was evaluated using logistic regression analysis. Haplotype and linkage analyses among the polymorphisms was performed. Multifactorial dimensionality reduction was performed to determine epistatic interaction among the polymorphisms. RESULTS The MiR-196a2 polymorphism revealed a significant inverse association with chronic periodontitis. Haplotype analysis of MiR-146a and MiR-196a2 polymorphisms revealed 13 different combinations, of which 5 were found to have an inverse association with chronic periodontitis. CONCLUSION The present study has demonstrated a significant inverse association of MiR-196a2 polymorphism with chronic periodontitis.
Collapse
Affiliation(s)
- Priyanka Venugopal
- 1 Department of Human Genetics, Sri Ramachandra University , Chennai, India
| | - Vamsi Lavu
- 2 Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| | - Suresh RangaRao
- 2 Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| | | |
Collapse
|
48
|
Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000 2017; 69:7-17. [PMID: 26252398 DOI: 10.1111/prd.12104] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 12/14/2022]
Abstract
The past decade of basic research in periodontology has driven radical changes in our understanding and perceptions of the pathogenic processes that drive periodontal tissue destruction. The core elements of the classical model of disease pathogenesis, developed by Page & Kornman in 1997, remain pertinent today; however, our understanding of the dynamic interactions between the various microbial and host factors has changed significantly. The molecular era has unraveled aspects of genetics, epigenetics, lifestyle and environmental factors that, in combination, influence biofilm composition and the host's inflammatory immune response, creating a heterogenic biological phenotype that we label as 'periodontitis'. In this volume of Periodontology 2000, experts in their respective fields discuss these emerging concepts, such as a health-promoting biofilm being essential for periodontal stability, involving a true symbiosis between resident microbial species and each other and also with the host response to that biofilm. Rather like the gut microbiome, changes in the local environment, which may include inflammatory response mediators or viruses, conspire to drive dysbiosis and create a biofilm that supports pathogenic species capable of propagating disease. The host response is now recognized as the major contributor to periodontal tissue damage in what becomes a dysfunctional, poorly targeted and nonresolving inflammation that only serves to nourish and sustain the dysbiosis. The role of epithelial cells in signaling to the immune system is becoming clearer, as is the role of dendritic cells as transporters of periodontal pathogens to distant sites within the body, namely metastatic infection. The involvement of nontraditional immune cells, such as natural killer cells, is being recognized, and the simple balance between T-helper 1- and T-helper 2-type T-cell populations has become less clear with the emergence of T-regulatory cells, T-helper 17 cells and follicular helper cells. The dominance of the neutrophil has emerged, not only as a potential destructor when poorly regulated but as an equally unpredictable effector cell for specific B-cell immunity. The latter has emerged, in part, from the realization that neutrophils live for 5.4 days in the circulation, rather than for 24 h, and are also schizophrenic in nature, being powerful synthesizers of proinflammatory cytokines but also responding to prostaglandin signals to trigger a switch to a pro-resolving phenotype that appears capable of regenerating the structure and function of healthy tissue. Key to these outcomes are the molecular signaling pathways that dominate at any one time, but even these are influenced by microRNAs capable of 'silencing' certain inflammatory genes. This volume of Periodontology 2000 tries to draw these complex new learnings into a contemporary model of disease pathogenesis, in which inflammation and dysbiosis impact upon whether the outcome is driven toward acute resolution and stability, chronic resolution and repair, or failed resolution and ongoing periodontal tissue destruction.
Collapse
|
49
|
Meurman JH. Genetic regulation of inflammation - micro-RNA revolution? Oral Dis 2017; 23:1-2. [DOI: 10.1111/odi.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- JH Meurman
- Department of Oral and Maxillofacial Diseases; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
50
|
Interplay of Toll-Like Receptor 9, Myeloid Cells, and Deubiquitinase A20 in Periodontal Inflammation. Infect Immun 2016; 85:IAI.00814-16. [PMID: 27849177 DOI: 10.1128/iai.00814-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/02/2016] [Indexed: 01/18/2023] Open
Abstract
Toll-like receptor 9 (TLR9)-deficient (TLR9-/-) mice are resistant to periodontitis, a disease characterized by a dysbiotic microbiota and deregulated immune response and resulting in tooth loss and various systemic conditions. However, the mechanisms and biological pathways by which TLR9 instigates periodontal inflammation are yet to be identified. In a ligature-induced model of periodontitis, we demonstrate that TLR9-/- mice exhibited significantly less alveolar bone loss than their wild-type (WT) counterparts. Consistent with the disease phenotype, gingival tissues showed significantly more inflammatory cell infiltration in the WT ligated but not in the TLR9-/- ligated mice compared to the unligated controls. The peritoneal infection model using Porphyromonas gingivalis, a keystone pathogen for periodontitis, revealed reduced neutrophils in TLR9-/- mice on day 1 postinfection compared to the levels in WT mice. Transcriptomics analyses showed increased expression of A20 (tumor necrosis factor alpha [TNF-α]-induced protein 3 [TNFAIP3]), an inhibitor of the NF-κB pathway and a negative regulator of TLR signaling, in ligated TLR9-/- mouse gingival tissues compared to its expression in the WT. Ex vivo, TLR9-/- bone marrow-derived macrophages produced more A20 than WT cells following P. gingivalis challenge. Clinically, A20 was modestly upregulated in human gingival tissue specimens from chronic periodontitis patients, further confirming the biological relevance of A20 in periodontal inflammation. We conclude that TLR9 modulates periodontal disease progression at both the cellular and molecular level and identify A20 as a novel downstream signaling molecule in the course of periodontal inflammation. Understanding the regulation of the TLR9 signaling pathway and the involvement of A20 as a limiting factor of inflammation will uncover alternative therapeutic targets to treat periodontitis and other chronic inflammatory diseases.
Collapse
|