1
|
Qu H, Zhao S, Li Z, Wu J, Murai T, Li Q, Wu Y, Zhang Z. Investigating the impact of schizophrenia traits on attention: the role of the theta band in a modified Posner cueing paradigm. Cereb Cortex 2024; 34:bhae274. [PMID: 38976973 DOI: 10.1093/cercor/bhae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Joint attention is an indispensable tool for daily communication. Abnormalities in joint attention may be a key reason underlying social impairment in schizophrenia spectrum disorders. In this study, we aimed to explore the attentional orientation mechanism related to schizotypal traits in a social situation. Here, we employed a Posner cueing paradigm with social attentional cues. Subjects needed to detect the location of a target that is cued by gaze and head orientation. The power in the theta frequency band was used to examine the attentional process in the schizophrenia spectrum. There were four main findings. First, a significant association was found between schizotypal traits and attention orientation in response to invalid gaze cues. Second, individuals with schizotypal traits exhibited significant activation of neural oscillations and synchrony in the theta band, which correlated with their schizotypal tendencies. Third, neural oscillations and synchrony demonstrated a synergistic effect during social tasks, particularly when processing gaze cues. Finally, the relationship between schizotypal traits and attention orientation was mediated by neural oscillations and synchrony in the theta frequency band. These findings deepen our understanding of the impact of theta activity in schizotypal traits on joint attention and offer new insights for future intervention strategies.
Collapse
Affiliation(s)
- Hongyu Qu
- School of Computer Science and Technology, Changchun University of Science and Technology, 7186 Satellite Road (South), Chaoyang District, Changchun 130022, China
| | - Shuo Zhao
- School of Psychology, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, China
| | - Zimo Li
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Qi Li
- School of Computer Science and Technology, Changchun University of Science and Technology, 7186 Satellite Road (South), Chaoyang District, Changchun 130022, China
| | - Yan Wu
- School of Computer Science and Technology, Changchun University of Science and Technology, 7186 Satellite Road (South), Chaoyang District, Changchun 130022, China
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Chen S, Töllner T, Müller HJ, Conci M. ERPs and alpha oscillations track the encoding and maintenance of object-based representations in visual working memory. Psychophysiology 2024; 61:e14557. [PMID: 38459638 DOI: 10.1111/psyp.14557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
When memorizing an integrated object such as a Kanizsa figure, the completion of parts into a coherent whole is attained by grouping processes which render a whole-object representation in visual working memory (VWM). The present study measured event-related potentials (ERPs) and oscillatory amplitudes to track these processes of encoding and representing multiple features of an object in VWM. To this end, a change detection task was performed, which required observers to memorize both the orientations and colors of six "pacman" items while inducing configurations of the pacmen that systematically varied in terms of their grouping strength. The results revealed an effect of object configuration in VWM despite physically constant visual input: change detection for both orientation and color features was more accurate with increased grouping strength. At the electrophysiological level, the lateralized ERPs and alpha activity mirrored this behavioral pattern. Perception of the orientation features gave rise to the encoding of a grouped object as reflected by the amplitudes of the Ppc. The grouped object structure, in turn, modulated attention to both orientation and color features as indicated by the enhanced N1pc and N2pc. Finally, during item retention, the representation of individual objects and the concurrent allocation of attention to these memorized objects were modulated by grouping, as reflected by variations in the CDA amplitude and a concurrent lateralized alpha suppression, respectively. These results indicate that memorizing multiple features of grouped, to-be-integrated objects involves multiple, sequential stages of processing, providing support for a hierarchical model of object representations in VWM.
Collapse
Affiliation(s)
- Siyi Chen
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Töllner
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann J Müller
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Conci
- Allgemeine und Experimentelle Psychologie, Department Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
Boudewyn MA, Erickson MA, Winsler K, Barch DM, Carter CS, Frank MJ, Gold JM, MacDonald AW, Ragland JD, Silverstein SM, Yonelinas AP, Luck SJ. Assessing Trial-by-Trial Electrophysiological and Behavioral Markers of Attentional Control and Sensory Precision in Psychotic and Mood Disorders. Schizophr Bull 2024:sbae038. [PMID: 38616053 DOI: 10.1093/schbul/sbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The current study investigated the extent to which changes in attentional control contribute to performance on a visual perceptual discrimination task, on a trial-by-trial basis in a transdiagnostic clinical sample. STUDY DESIGN Participants with schizophrenia (SZ; N = 58), bipolar disorder (N = 42), major depression disorder (N = 51), and psychiatrically healthy controls (N = 92) completed a visual perception task in which stimuli appeared briefly. The design allowed us to estimate the lapse rate and the precision of perceptual representations of the stimuli. Electroencephalograms (EEG) were recorded to examine pre-stimulus activity in the alpha band (8-13 Hz), overall and in relation to behavior performance on the task. STUDY RESULTS We found that the attention lapse rate was elevated in the SZ group compared with all other groups. We also observed group differences in pre-stimulus alpha activity, with control participants showing the highest levels of pre-stimulus alpha when averaging across trials. However, trial-by-trial analyses showed within-participant fluctuations in pre-stimulus alpha activity significantly predicted the likelihood of making an error, in all groups. Interestingly, our analysis demonstrated that aperiodic contributions to the EEG signal (which affect power estimates across frequency bands) serve as a significant predictor of behavior as well. CONCLUSIONS These results confirm the elevated attention lapse rate that has been observed in SZ, validate pre-stimulus EEG markers of attentional control and their use as a predictor of behavior on a trial-by-trial basis, and suggest that aperiodic contributions to the EEG signal are an important target for further research in this area, in addition to alpha-band activity.
Collapse
Affiliation(s)
- Megan A Boudewyn
- Department of Psychology, University of California, Santa Cruz, California, USA
| | - Molly A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Kurt Winsler
- Department of Psychology, University of California, Davis, California, USA
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cameron S Carter
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Michael J Frank
- Department of Cognitive, Linguistics and Psychological Sciences, Brown University, Providence, Rhode Island, USA
| | - James M Gold
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Angus W MacDonald
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Daniel Ragland
- Department of Psychology, University of California, Davis, California, USA
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrew P Yonelinas
- Department of Psychology, University of California, Davis, California, USA
| | - Steven J Luck
- Department of Psychology, University of California, Davis, California, USA
| |
Collapse
|
4
|
Lin Y, Li Q, Chen A. The causal mechanisms underlying analogical reasoning performance improvement by executive attention intervention. Hum Brain Mapp 2023; 44:3241-3253. [PMID: 36971608 PMCID: PMC10171494 DOI: 10.1002/hbm.26278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Analogical reasoning is important for human. We have found that a short executive attention intervention improved analogical reasoning performance in healthy young adults. Nevertheless, previous electrophysiological evidence was limited for comprehensively characterizing the neural mechanisms underlying the improvement. And although we hypothesized that the intervention improved active inhibitory control and attention shift first and then relation integration, it is still unclear whether there are two sequential cognitive neural activities were indeed changed during analogical reasoning. In the present study, we combined hypothesis with multivariate pattern analysis (MVPA) to explore the effects of the intervention on electrophysiology. Results showed that in the resting state after the intervention, alpha and high gamma power and the functional connectivity between the anterior and middle in the alpha band could discriminate the experimental group from the active control group, respectively. These indicated that the intervention influenced the activity of multiple bands and the interaction of frontal and parietal regions. In the analogical reasoning, alpha, theta, and gamma activities could also fulfill such discrimination, and furthermore, they were sequential (alpha first, theta, and gamma later). These results directly supported our previous hypothesis. The present study deepens our understanding about how executive attention contributes to higher-order cognition.
Collapse
|
5
|
Andrews CM, Menkes MW, Suzuki T, Lasagna CA, Chun J, O'Donnell L, Grove T, McInnis MG, Deldin PJ, Tso IF. Reduced theta-band neural oscillatory activity during affective cognitive control in bipolar I disorder. J Psychiatr Res 2023; 158:27-35. [PMID: 36549197 PMCID: PMC9898182 DOI: 10.1016/j.jpsychires.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/04/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Individuals with bipolar I disorder (BD) have difficulty inhibiting context-inappropriate responses. However, neural mechanisms of impaired cognitive control over impulsive behaviors, especially in response to emotion, are unclear. Theta-band neural oscillatory activity over midfrontal areas is thought to reflect cognitive control. The current study examined behavioral performance and theta-band activity during inhibition to affective stimuli in BD, relative to healthy control participants (HC). Sixty-seven participants with BD and 48 HC completed a Go/No-Go task with emotional face stimuli during electroencephalography (EEG) recording. Behavior was measured with reaction time, discriminability (d') and response bias (β). Time-frequency decomposition of EEG data was used to extract event-related theta-band (4-7 Hz) neural oscillatory power and inter-trial phase consistency (ITPC) over midline fronto-central areas. Behavior and theta-band activity were compared between groups, while covarying for age. Participants with BD exhibited slower response execution times on correct Go trials and reduced behavioral discrimination of emotional versus neutral faces, compared to HC. Theta-band power and ITPC were reduced in BD relative to HC. Theta-band power was higher on No-Go trials than Go trials. The magnitude of differences in theta-band activity between Go/No-Go trial types did not differ between groups. Increased theta-band power was associated with faster response execution times, greater discrimination of differing facial expressions, and stronger tendency to respond both across the full sample and within the BD group. Attenuated midline fronto-central theta-band activity may contribute to reduced cognitive control and maladaptive behavioral responding to emotional cues in individuals with BD.
Collapse
Affiliation(s)
- Carolyn M Andrews
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Margo W Menkes
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Takakuni Suzuki
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Carly A Lasagna
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Jinsoo Chun
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lisa O'Donnell
- School of Social Work, Wayne State University, Detroit, MI, USA
| | - Tyler Grove
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J Deldin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry & Behavioral Health, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Barch DM, Boudewyn MA, Carter CC, Erickson M, Frank MJ, Gold JM, Luck SJ, MacDonald AW, Ragland JD, Ranganath C, Silverstein SM, Yonelinas A. Cognitive [Computational] Neuroscience Test Reliability and Clinical Applications for Serious Mental Illness (CNTRaCS) Consortium: Progress and Future Directions. Curr Top Behav Neurosci 2022; 63:19-60. [PMID: 36173600 DOI: 10.1007/7854_2022_391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of treatments for impaired cognition in schizophrenia has been characterized as the most important challenge facing psychiatry at the beginning of the twenty-first century. The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) project was designed to build on the potential benefits of using tasks and tools from cognitive neuroscience to better understanding and treat cognitive impairments in psychosis. These benefits include: (1) the use of fine-grained tasks that measure discrete cognitive processes; (2) the ability to design tasks that distinguish between specific cognitive domain deficits and poor performance due to generalized deficits resulting from sedation, low motivation, poor test taking skills, etc.; and (3) the ability to link cognitive deficits to specific neural systems, using animal models, neuropsychology, and functional imaging. CNTRICS convened a series of meetings to identify paradigms from cognitive neuroscience that maximize these benefits and identified the steps need for translation into use in clinical populations. The Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia (CNTRaCS) Consortium was developed to help carry out these steps. CNTRaCS consists of investigators at five different sites across the country with diverse expertise relevant to a wide range of the cognitive systems identified as critical as part of CNTRICs. This work reports on the progress and current directions in the evaluation and optimization carried out by CNTRaCS of the tasks identified as part of the original CNTRICs process, as well as subsequent extensions into the Positive Valence systems domain of Research Domain Criteria (RDoC). We also describe the current focus of CNTRaCS, which involves taking a computational psychiatry approach to measuring cognitive and motivational function across the spectrum of psychosis. Specifically, the current iteration of CNTRaCS is using computational modeling to isolate parameters reflecting potentially more specific cognitive and visual processes that may provide greater interpretability in understanding shared and distinct impairments across psychiatric disorders.
Collapse
Affiliation(s)
- Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | | | | | | | | | - James M Gold
- Maryland Psychiatric Research Center, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Ahumada-Méndez F, Lucero B, Avenanti A, Saracini C, Muñoz-Quezada MT, Cortés-Rivera C, Canales-Johnson A. Affective modulation of cognitive control: A systematic review of EEG studies. Physiol Behav 2022; 249:113743. [DOI: 10.1016/j.physbeh.2022.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
|
8
|
McLoughlin G, Gyurkovics M, Palmer J, Makeig S. Midfrontal Theta Activity in Psychiatric Illness: An Index of Cognitive Vulnerabilities Across Disorders. Biol Psychiatry 2022; 91:173-182. [PMID: 34756560 DOI: 10.1016/j.biopsych.2021.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
There is an urgent need to identify the mechanisms that contribute to atypical thinking and behavior associated with psychiatric illness. Behavioral and brain measures of cognitive control are associated with a variety of psychiatric disorders and conditions as well as daily life functioning. Recognition of the importance of cognitive control in human behavior has led to intensive research into behavioral and neurobiological correlates. Oscillations in the theta band (4-8 Hz) over medial frontal recording sites are becoming increasingly established as a direct neural index of certain aspects of cognitive control. In this review, we point toward evidence that theta acts to coordinate multiple neural processes in disparate brain regions during task processing to optimize behavior. Theta-related signals in human electroencephalography include the N2, the error-related negativity, and measures of theta power in the (time-)frequency domain. We investigate how these theta signals are affected in a wide range of psychiatric conditions with known deficiencies in cognitive control: anxiety, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and substance abuse. Theta-related control signals and their temporal consistency were found to differ in most patient groups compared with healthy control subjects, suggesting fundamental deficits in reactive and proactive control. Notably, however, clinical studies directly investigating the role of theta in the coordination of goal-directed processes across different brain regions are uncommon and are encouraged in future research. A finer-grained analysis of flexible, subsecond-scale functional networks in psychiatric disorders could contribute to a dimensional understanding of psychopathology.
Collapse
Affiliation(s)
- Gráinne McLoughlin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Máté Gyurkovics
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jason Palmer
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Scott Makeig
- Institute for Neural Computation, University of California San Diego, La Jolla, California
| |
Collapse
|
9
|
Kirschner H, Klein TA. Beyond a blunted ERN - Biobehavioral correlates of performance monitoring in schizophrenia. Neurosci Biobehav Rev 2021; 133:104504. [PMID: 34922988 DOI: 10.1016/j.neubiorev.2021.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Cognitive deficits are well documented in schizophrenia. Here, we reviewed alterations in performance monitoring as potential marker of cognitive deficits in schizophrenia. We found that performance monitoring alterations in schizophrenia are specific to early (indexed by blunted error-related negativity (ERN)) and late (reflected in blunted error positivity (Pe)) internal error processing, while external performance feedback processing in simple response feedback tasks is relatively preserved. We propose, that these performance monitoring deficits may best be interpret as one aspect of disrupted theta band (4-8 Hz) oscillations over medial frontal recordings sites. Midfrontal theta dynamics are an increasingly established direct neural index of the recruitment of cognitive control and are impaired in several clinical populations. While theta-related ERPs (the ERN) may be an easy to assess marker of cognitive deficits in schizophrenia, further work investigating the trial-by-trial dynamics of theta in both the time and time-frequency domain is needed to parse cognitive deficits in schizophrenia into finer levels of detail and evaluate theta modulation as a therapeutic tool.
Collapse
Affiliation(s)
- H Kirschner
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany.
| | - T A Klein
- Institute of Psychology, Otto-von-Guericke University, D-39106, Magdeburg, Germany; Center for Behavioral Brain Sciences, D-39106, Magdeburg, Germany.
| |
Collapse
|
10
|
Salig LK, Valdés Kroff JR, Slevc LR, Novick JM. Moving From Bilingual Traits to States: Understanding Cognition and Language Processing Through Moment-to-Moment Variation. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:487-512. [PMID: 37214629 PMCID: PMC10158593 DOI: 10.1162/nol_a_00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/16/2021] [Indexed: 05/24/2023]
Abstract
The study of how bilingualism is linked to cognitive processing, including executive functioning, has historically focused on comparing bilinguals to monolinguals across a range of tasks. These group comparisons presume to capture relatively stable cognitive traits and have revealed important insights about the architecture of the language processing system that could not have been gleaned from studying monolinguals alone. However, there are drawbacks to using a group-comparison, or Traits, approach. In this theoretical review, we outline some limitations of treating executive functions as stable traits and of treating bilinguals as a uniform group when compared to monolinguals. To build on what we have learned from group comparisons, we advocate for an emerging complementary approach to the question of cognition and bilingualism. Using an approach that compares bilinguals to themselves under different linguistic or cognitive contexts allows researchers to ask questions about how language and cognitive processes interact based on dynamically fluctuating cognitive and neural states. A States approach, which has already been used by bilingualism researchers, allows for cause-and-effect hypotheses and shifts our focus from questions of group differences to questions of how varied linguistic environments influence cognitive operations in the moment and how fluctuations in cognitive engagement impact language processing.
Collapse
Affiliation(s)
- Lauren K. Salig
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, USA
| | - Jorge R. Valdés Kroff
- Department of Spanish and Portuguese Studies, University of Florida, Gainesville, USA
| | - L. Robert Slevc
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, USA
- Department of Psychology, University of Maryland, College Park, USA
| | - Jared M. Novick
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, USA
- Department of Hearing and Speech Sciences, University of Maryland, College Park, USA
| |
Collapse
|
11
|
Zheng Y, Liu XL, Hsieh LT, Hurtado M, Wang Y, Niendam TA, Carter CS, Ranganath C, Ragland JD. Disrupted Modulation of Alpha and Low Beta Oscillations Mediates Temporal Sequence Memory Deficits in People With Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1157-1164. [PMID: 33862254 DOI: 10.1016/j.bpsc.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND People with schizophrenia (SZ) exhibit impaired episodic memory when relating objects to each other in time and space. Empirical studies and computational models suggest that low-frequency neural oscillations may be a mechanism by which the brain keeps track of temporal relationships during encoding and retrieval, with modulation of oscillatory power as sequences are learned. It is unclear whether sequence memory deficits in SZ are associated with altered neural oscillations. METHODS Using electroencephalography, this study examined neural oscillations in 51 healthy control subjects and 37 people with SZ during a temporal sequence learning task. Multiple 5-object picture sequences were presented across 4 study-test blocks in either fixed or random order. Participants answered semantic questions for each object (e.g., living/nonliving), and sequence memory was operationalized as faster responses for fixed versus random sequences. Differences in oscillatory power between fixed versus random sequences provided a neural index of temporal sequence memory. RESULTS Although both groups showed reaction time differences in late blocks (blocks 3 and 4), this evidence of sequence memory was reduced in people with SZ relative to healthy control subjects. Decreases in globally distributed prestimulus alpha (8-12 Hz) and beta 1 (13-20 Hz) power for fixed versus random sequences in late blocks were also attenuated in people with SZ relative to healthy control subjects. Moreover, changes in oscillatory power predicted individual reaction time differences and fully mediated the relationship between group and sequence memory. CONCLUSIONS Disrupted modulation of alpha and beta 1 electroencephalography oscillations is a candidate mechanism of temporal sequence memory deficits in people with SZ.
Collapse
Affiliation(s)
- Yicong Zheng
- Center for Neuroscience, University of California, Davis, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| | - Xiaonan L Liu
- Center for Neuroscience, University of California, Davis, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| | - Liang-Tien Hsieh
- Department of Psychology, University of California, Berkeley, Berkeley, California; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Mitzi Hurtado
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Yan Wang
- Department of Psychology, University of California, Davis, Davis, California
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cameron S Carter
- Department of Psychology, University of California, Davis, Davis, California; Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| | - J Daniel Ragland
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California.
| |
Collapse
|
12
|
Conflict Processing in Schizophrenia: Dissociable neural mechanisms revealed by the N2 and frontal midline theta. Neuropsychologia 2021; 155:107791. [PMID: 33610613 DOI: 10.1016/j.neuropsychologia.2021.107791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Deficits in executive control have long been regarded as one of the hallmark cognitive characteristics in people with schizophrenia (SZ), and current neurocognitive models of SZ generally regard the dysfunctional anterior cingulate cortex (ACC) as the possible neural mechanism. This however, contrasts with recent studies showing that conflict processing, a key component of executive functions that relies on ACC, remains relatively intact in SZ. The current study aimed to investigate this issue through two well-known electrophysiological signatures of conflict processing that have been suggested to originate from ACC, i.e., the N2 component of event-related potentials (ERPs) and frontal midline theta (FMθ) oscillations. We recorded 64-channel scalp electroencephalography from 29 SZ (17 women; mean age: 30.4 years) and 31 healthy control subjects (HC; 17 women; mean age: 29.1 years) performing a modified flanker task. Behavioral data revealed no significant differences in flanker conflict effects (lower accuracy and longer reaction times in incongruent trials than in congruent trials) between HC and SZ. Trial-averaged ERP and spectral analysis suggested that both N2 and FMθ were significantly impaired in SZ relative to HC. Furthermore, by sorting incongruent trials according to their reaction times within individual subjects, we found that the trial-by-trial modulation of N2 (larger amplitude and longer latency in slower trials) which was observed and localized in ACC for HC was totally absent for SZ. By contrast, the trial-by-trial modulation of FMθ (larger power in slower trials) was observed and localized in ACC for both groups, despite a smaller magnitude in SZ, which suggested that FMθ, not N2, might serve as the neural substrate of conflict processing in SZ. Taken together, our results enrich the current neurocognitive models of SZ by revealing dissociable neural responses between N2 and FMθ during conflict processing in SZ.
Collapse
|
13
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Mucci A. EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic Review. Front Psychiatry 2021; 12:653642. [PMID: 34017273 PMCID: PMC8129021 DOI: 10.3389/fpsyt.2021.653642] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Electrophysiological (EEG) abnormalities in subjects with schizophrenia have been largely reported. In the last decades, research has shifted to the identification of electrophysiological alterations in the prodromal and early phases of the disorder, focusing on the prediction of clinical and functional outcome. The identification of neuronal aberrations in subjects with a first episode of psychosis (FEP) and in those at ultra high-risk (UHR) or clinical high-risk (CHR) to develop a psychosis is crucial to implement adequate interventions, reduce the rate of transition to psychosis, as well as the risk of irreversible functioning impairment. The aim of the review is to provide an up-to-date synthesis of the electrophysiological findings in the at-risk mental state and early stages of schizophrenia. Methods: A systematic review of English articles using Pubmed, Scopus, and PsychINFO was undertaken in July 2020. Additional studies were identified by hand-search. Electrophysiological studies that included at least one group of FEP or subjects at risk to develop psychosis, compared to healthy controls (HCs), were considered. The heterogeneity of the studies prevented a quantitative synthesis. Results: Out of 319 records screened, 133 studies were included in a final qualitative synthesis. Included studies were mainly carried out using frequency analysis, microstates and event-related potentials. The most common findings included an increase in delta and gamma power, an impairment in sensory gating assessed through P50 and N100 and a reduction of Mismatch Negativity and P300 amplitude in at-risk mental state and early stages of schizophrenia. Progressive changes in some of these electrophysiological measures were associated with transition to psychosis and disease course. Heterogeneous data have been reported for indices evaluating synchrony, connectivity, and evoked-responses in different frequency bands. Conclusions: Multiple EEG-indices were altered during at-risk mental state and early stages of schizophrenia, supporting the hypothesis that cerebral network dysfunctions appear already before the onset of the disorder. Some of these alterations demonstrated association with transition to psychosis or poor functional outcome. However, heterogeneity in subjects' inclusion criteria, clinical measures and electrophysiological methods prevents drawing solid conclusions. Large prospective studies are needed to consolidate findings concerning electrophysiological markers of clinical and functional outcome.
Collapse
Affiliation(s)
- Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Francesco Brando
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Giuliani
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
14
|
Hsu NS, Kuchinsky SE, Novick JM. Direct impact of cognitive control on sentence processing and comprehension. LANGUAGE, COGNITION AND NEUROSCIENCE 2020; 36:211-239. [PMID: 39035844 PMCID: PMC11258758 DOI: 10.1080/23273798.2020.1836379] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/02/2020] [Indexed: 07/23/2024]
Abstract
Incremental language processing means that listeners confront temporary ambiguity about how to structure the input, which can generate misinterpretations. In four "visual-world" experiments, we tested whether engaging cognitive control - which detects and resolves conflict - assists revision during comprehension. We recorded listeners' eye-movements and actions while following instructions that were ripe for misanalysis. In Experiments 1 and 3, sentences followed trials from a nonverbal conflict task that manipulated cognitive-control engagement, to test its impact on the ability to revise. To isolate conflict-driven effects of cognitive-control on comprehension, we manipulated attention in a non-conflict task in Experiments 2 and 4. We observed fewer comprehension errors, and earlier revision, when cognitive control (more than attention) was elicited on an immediately preceding trial. These results extend previous correlations between cognitive control and language processing by revealing the influence of domain-general cognitive-control engagement on the temporal unfolding of error-revision processes during language comprehension.
Collapse
Affiliation(s)
- Nina S. Hsu
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Stefanie E. Kuchinsky
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jared M. Novick
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
15
|
Murphy J, Devue C, Corballis PM, Grimshaw GM. Proactive Control of Emotional Distraction: Evidence From EEG Alpha Suppression. Front Hum Neurosci 2020; 14:318. [PMID: 33013338 PMCID: PMC7461792 DOI: 10.3389/fnhum.2020.00318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Biased attention towards emotional stimuli is adaptive, as it facilitates responses to important threats and rewards. An unfortunate consequence is that emotional stimuli can become potent distractors when they are irrelevant to current goals. How can this distraction be overcome despite the bias to attend to emotional stimuli? Recent studies show that distraction by irrelevant flankers is reduced when distractor frequency is high, even if they are emotional. A parsimonious explanation is that the expectation of frequent distractors promotes the use of proactive control, whereby attentional control settings can be altered to minimize distraction before it occurs. It is difficult, however, to infer proactive control on the basis of behavioral data alone. We therefore measured neural indices of proactive control while participants performed a target-detection task in which irrelevant peripheral distractors (either emotional or neutral) could appear either frequently (on 75% of trials) or rarely (on 25% of trials). We measured alpha power during the pre-stimulus period to assess proactive control and during the post-stimulus period to determine the consequences of control for subsequent processing. Pre-stimulus alpha power was tonically suppressed in the high, compared to low, distractor frequency condition, regardless of expected distractor valence, indicating sustained use of proactive control. In contrast, post-stimulus alpha suppression was reduced in the high-frequency condition, suggesting that proactive control reduced the need for post-stimulus adjustments. Our findings indicate that a sustained proactive control strategy accounts for the reduction in both emotional and non-emotional distraction when distractors are expected to appear frequently.
Collapse
Affiliation(s)
- Justin Murphy
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Christel Devue
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Paul M. Corballis
- School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Gina M. Grimshaw
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
16
|
Liu XL, Ranganath C, Hsieh LT, Hurtado M, Niendam TA, Lesh TA, Carter CS, Ragland JD. Task-specific Disruptions in Theta Oscillations during Working Memory for Temporal Order in People with Schizophrenia. J Cogn Neurosci 2020; 32:2117-2130. [PMID: 32573383 DOI: 10.1162/jocn_a_01598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Prior studies demonstrated that neural oscillations are enhanced during working memory (WM) maintenance and that this activity can predict behavioral performance in healthy individuals. However, it is unclear whether the relationship holds for people with WM deficits. People with schizophrenia have marked WM deficits, and such deficits are most prominent when patients are required to process relationships between items, such as temporal order. Here, we used EEG to compare the relationship between oscillatory activity and WM performance in patients and controls. EEG was recorded as participants performed tasks requiring maintenance of complex objects ("Item") or the temporal order of objects ("Order"). In addition to testing for group differences, we examined individual differences in EEG power and WM performance across groups. Behavioral results demonstrated that patients showed impaired performance on both Item and Order trials. EEG analyses revealed that patients showed an overall reduction in alpha power, but the relationship between alpha activity and performance was preserved. In contrast, patients showed a reduction in theta power specific to Order trials, and theta power could predict performance on Order trials in controls, but not in patients. These findings demonstrate that WM impairments in patients may reflect two different processes: a general deficit in alpha oscillations and a specific deficit in theta oscillations when temporal order information must be maintained. At a broader level, the results highlight the value of characterizing brain-behavior relationships, by demonstrating that the relationship between neural oscillations and WM performance can be fundamentally disrupted in those with WM deficits.
Collapse
|
17
|
Banich MT. Emerging themes in cognitive control: Commentary on the special issue of Psychophysiology entitled "Dynamics of Cognitive Control: A View Across Methodologies". Psychophysiology 2019; 55. [PMID: 29436040 DOI: 10.1111/psyp.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Marie T Banich
- Institute of Cognitive Science and Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
18
|
Cross-diagnostic analysis of cognitive control in mental illness: Insights from the CNTRACS consortium. Schizophr Res 2019; 208:377-383. [PMID: 30704863 PMCID: PMC6544491 DOI: 10.1016/j.schres.2019.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 12/17/2018] [Accepted: 01/17/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND In recent years, psychiatry research has increasingly focused on understanding mental illnesses from a cross-diagnostic, dimensional perspective in order to better align their neurocognitive features with underlying neurobiological mechanisms. In this multi-site study, we examined two measures of cognitive control (d-prime context and lapsing rate) during the Dot Probe Expectancy (DPX) version of the AX-Continuous Performance Task in patients with either schizophrenia (SZ), schizoaffective disorder (SZ-A), or Type I bipolar disorder (BD) as well as healthy control (HC) subjects. We hypothesized significantly lower d-prime context and higher lapsing rate in SZ and SZ-A patients and intermediate levels in BD patients relative to HC. METHODS 72 HC, 84 SZ, 77 SZ-A, and 58 BD patients (ages 18-56) were included in the final study sample. RESULTS Significant main effects of diagnosis were observed on d-prime context (F(3,279) = 9.59, p < 0.001) and lapsing (F(3,279) = 8.08, p < 0.001). A priori linear contrasts suggesting intermediate dysfunction in BD patients were significant (p < 0.001), although post-hoc tests showed the BD group was only significantly different from HC on d-prime context. Group results for d-prime context remained significant after covarying for lapsing rate. Primary behavioral measures were associated with mania and disorganization symptoms as well as everyday functioning. CONCLUSIONS These findings suggest a continuum of dysfunction in cognitive control (particularly d-prime context) across diagnostic categories in psychiatric illness. These results further suggest that lapsing and d-prime context, while related, make unique contributions towards explaining deficits in cognitive control in these disorders.
Collapse
|
19
|
Jang KI, Oh J, Jung W, Lee S, Kim S, Huh S, Lee SH, Chae JH. Unsuccessful reduction of high-frequency alpha activity during cognitive activation in schizophrenia. Psychiatry Clin Neurosci 2019; 73:132-139. [PMID: 30628145 DOI: 10.1111/pcn.12818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022]
Abstract
AIMS Electroencephalogram (EEG) alpha activity during resting state reflects the 'readiness' of an individual to respond to the environment; this includes the performance of cognitive processes. Alpha activity is reported to be attenuated in schizophrenia (SCZ). Understanding the interaction between alpha activity during rest and when cognitively engaged may provide insights into the neural circuitry, which is dysfunctional in SCZ. This study investigated the changes of alpha activity between resting state and cognitive engagement in SCZ patients. METHODS Thirty-four SCZ patients and 29 healthy controls (HC) were recruited. EEG was performed in the resting state and during an auditory P300 task. All experimental procedures followed the relevant institutional guidelines and regulations. RESULTS In SCZ, high-frequency alpha activity was reduced in the resting state. High-frequency alpha source density was decreased in both the resting-state and a P300 task condition in patients, compared to HC. HC, but not SCZ patients, showed a reduction in high-frequency alpha source density during the P300 task compared to the resting state. The negative correlation between high-frequency alpha source density in the resting state and positive symptoms was significant. CONCLUSIONS High-frequency alpha activity in SCZ patients and its unsuccessful reduction during cognitive processing may be biological markers of SCZ.
Collapse
Affiliation(s)
- Kuk-In Jang
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea.,Institute of Biomedical Industry, Catholic University of Korea, Seoul, South Korea.,Department of Psychiatry, Emotion Research Laboratory, Catholic University of Korea, Seoul, South Korea.,Department of Psychiatry, Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea
| | - Jihoon Oh
- Department of Psychiatry, Emotion Research Laboratory, Catholic University of Korea, Seoul, South Korea.,Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Wookyoung Jung
- Department of Psychology, Keimyung University, Daegu, South Korea
| | - Sangmin Lee
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea.,Institute of Biomedical Industry, Catholic University of Korea, Seoul, South Korea.,Department of Psychiatry, Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea
| | - Sungkean Kim
- Department of Psychiatry, Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Seung Huh
- Department of Psychiatry, Emotion Research Laboratory, Catholic University of Korea, Seoul, South Korea.,Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Seung-Hwan Lee
- Department of Psychiatry, Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, South Korea.,Department of Psychiatry, Ilsan Paik Hospital, Inje University, Goyang, South Korea
| | - Jeong-Ho Chae
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul, South Korea.,Institute of Biomedical Industry, Catholic University of Korea, Seoul, South Korea.,Department of Psychiatry, Emotion Research Laboratory, Catholic University of Korea, Seoul, South Korea.,Department of Psychiatry, College of Medicine, Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
20
|
Ryman SG, Cavanagh JF, Wertz CJ, Shaff NA, Dodd AB, Stevens B, Ling J, Yeo RA, Hanlon FM, Bustillo J, Stromberg SF, Lin DS, Abrams S, Mayer AR. Impaired Midline Theta Power and Connectivity During Proactive Cognitive Control in Schizophrenia. Biol Psychiatry 2018; 84:675-683. [PMID: 29921417 PMCID: PMC7654098 DOI: 10.1016/j.biopsych.2018.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Disrupted proactive cognitive control, a form of early selection and active goal maintenance, is hypothesized to underlie the broad cognitive deficits observed in patients with schizophrenia (SPs). Current research suggests that the disrupted activation within and connectivity between regions of the cognitive control network contribute to disrupted proactive cognitive control; however, no study has examined these mechanisms using an AX Continuous Performance Test task in schizophrenia. METHODS Twenty-six SPs (17 male subjects; mean age 34.46 ± 8.77 years) and 28 healthy control participants (HCs; 16 male subjects; mean age 31.43 ± 7.23 years) underwent an electroencephalogram while performing the AX Continuous Performance Test. To examine the extent of activation and level of connectivity within the cognitive control network, power, intertrial phase clustering, and intersite phase clustering metrics were calculated and analyzed. RESULTS SPs exhibited expected general decrements in behavioral performance relative to HCs and a more selective deficit in conditions requiring proactive cognitive control. Additionally, SPs exhibited deficits in midline theta power and connectivity during proactive cognitive control trials. Specifically, HCs exhibited significantly greater theta power for B cues relative to A cues, whereas SPs exhibited no significant differences between A- and B-cue theta power. Additionally, differential theta connectivity patterns were observed in SPs and HCs. Behavioral measures of proactive cognitive control predicted functional outcomes in SPs. CONCLUSIONS This study suggests that low-frequency midline theta activity is selectively disrupted during proactive cognitive control in SPs. The disrupted midline theta activity may reflect a failure of SPs to proactively recruit cognitive control processes.
Collapse
|
21
|
Boudewyn MA, Carter CS. Evolving Concepts in Brain Oscillations and Cognitive Control in Schizophrenia. Biol Psychiatry 2018; 84:632-633. [PMID: 30297022 DOI: 10.1016/j.biopsych.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Megan A Boudewyn
- Department of Psychology, University of California, Davis, Davis, California.
| | - Cameron S Carter
- Department of Psychology, University of California, Davis, Davis, California
| |
Collapse
|
22
|
Karayanidis F, Gratton G, Fabiani M. Dynamics of cognitive control: A view across methodologies. Psychophysiology 2018; 55. [PMID: 29436041 DOI: 10.1111/psyp.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Frini Karayanidis
- School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Gabriele Gratton
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Monica Fabiani
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
23
|
Gratton C, Sun H, Petersen SE. Control networks and hubs. Psychophysiology 2017; 55. [PMID: 29193146 DOI: 10.1111/psyp.13032] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/28/2017] [Accepted: 10/28/2017] [Indexed: 01/06/2023]
Abstract
Executive control functions are associated with frontal, parietal, cingulate, and insular brain regions that interact through distributed large-scale networks. Here, we discuss how fMRI functional connectivity can shed light on the organization of control networks and how they interact with other parts of the brain. In the first section of our review, we present convergent evidence from fMRI functional connectivity, activation, and lesion studies that there are multiple dissociable control networks in the brain with distinct functional properties. In the second section, we discuss how graph theoretical concepts can help illuminate the mechanisms by which control networks interact with other brain regions to carry out goal-directed functions, focusing on the role of specialized hub regions for mediating cross-network interactions. Again, we use a combination of functional connectivity, lesion, and task activation studies to bolster this claim. We conclude that a large-scale network perspective provides important neurobiological constraints on the neural underpinnings of executive control, which will guide future basic and translational research into executive function and its disruption in disease.
Collapse
Affiliation(s)
- Caterina Gratton
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Haoxin Sun
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Steven E Petersen
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Psychology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurological Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Gratton G, Cooper P, Fabiani M, Carter CS, Karayanidis F. Dynamics of cognitive control: Theoretical bases, paradigms, and a view for the future. Psychophysiology 2017; 55. [DOI: 10.1111/psyp.13016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Gabriele Gratton
- Department of Psychology and Beckman InstituteUniversity of Illinois at Urbana‐ChampaignUrbana Illinois USA
| | - Patrick Cooper
- School of PsychologyUniversity of NewcastleNewcastle New South Wales Australia
| | - Monica Fabiani
- Department of Psychology and Beckman InstituteUniversity of Illinois at Urbana‐ChampaignUrbana Illinois USA
| | - Cameron S. Carter
- Departments of Psychiatry and PsychologyUniversity of California–DavisDavis California USA
| | - Frini Karayanidis
- School of PsychologyUniversity of NewcastleNewcastle New South Wales Australia
| |
Collapse
|