1
|
Yue S, Chen J, Duan C, Li X, Yang R, Chen M, Li Y, Song Z, Zhang Y, Liu Y. The Effect of Prolactin on Gene Expression and the Secretion of Reproductive Hormones in Ewes during the Estrus Cycle. Animals (Basel) 2024; 14:1873. [PMID: 38997985 PMCID: PMC11240556 DOI: 10.3390/ani14131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
Prolactin (PRL) plays an important role in animal follicle development and ovulation. However, its regulatory effects on the different stages of the estrus cycle in ewes are unclear. In this study, bromocriptine (BCR, PRL inhibitor) was used to study the effect of PRL on the secretion of reproductive hormones and gene expressions in order to explore its regulatory effects on the sexual cycle of ewes. Eighty healthy ewes with the same parity and similar weights were randomly assigned to the control group (C, n = 40) and the treatment group (T, n = 40, fed bromocriptine). After estrus synchronization, thirty-one ewes with overt signs of estrus were selected from each group. Six blood samples were randomly obtained by jugular venipuncture to measure the concentration of PRL, estrogen (E2), progesterone (P4), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and gonadotropin-releasing hormone (GnRH) in the proestrus, estrus, metestrus, and diestrus. At the same time, we collected the ovaries of the six ewes in vivo after anesthesia in order to detect follicle and corpus luteum (CL) counts and measure the expression of hormone-receptor and apoptosis-related genes. The results show that PRL inhibition had no significant effects on the length of the estrus cycle (p > 0.05). In proestrus, the number of large and small follicles, the levels of E2, FSH, and GnRH, and the expressions of ER, FSHR, and the apoptotic gene Caspase-3 were increased (p < 0.05); and the number of middle follicles and the expression of anti-apoptotic gene Bcl-2 were decreased (p < 0.05) in the T group. In estrus, the number of large follicles, the levels of E2 and GnRH, and the expressions of the StAR, CYP19A1, and Bcl-2 genes were increased (p < 0.05), and the number of middle follicles was decreased (p < 0.05) in the T group. In metestrus, the number of small follicles and the expression of LHR (p < 0.05) and the pro-apoptotic gene Bax were increased (p < 0.05); the number of middle follicles was decreased (p < 0.05) in the T group. In diestrus, the number of large follicles, middle follicles, and CL, the level of P4, and the expressions of PR, 3β-HSD, StAR, Caspase-3, and Bax were increased (p < 0.05); the number of small follicles and the expression of Bcl-2 were decreased (p < 0.05) in the T group. In summary, PRL inhibition can affect the secretion of reproductive hormones, the follicle count, and the gene expression during the estrus cycle. These results provide a basis for understanding the mechanisms underlying the regulation of the ewe estrus cycle by PRL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (S.Y.); (J.C.); (C.D.); (X.L.); (R.Y.); (M.C.); (Y.L.); (Z.S.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (S.Y.); (J.C.); (C.D.); (X.L.); (R.Y.); (M.C.); (Y.L.); (Z.S.)
| |
Collapse
|
2
|
Santos LC, Santana LR, Niella RV, Machado WM, Silva JF, Snoeck PPDN. Modulatory effect of vitamin B6 on sex hormone receptors, thyroid, and kisspeptin/kiss1r system in the uterus of pseudopregnant bitches. Reprod Domest Anim 2024; 59:e14630. [PMID: 38847348 DOI: 10.1111/rda.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 11/01/2024]
Abstract
This study evaluated whether the treatment of pseudopregnancy in bitches with vitamin B6 modulates uterine expression of receptors for progesterone (PR), oestrogen (ERα), androgen (AR), thyroid hormone (TRα) and the kisspeptin/Kiss1r system. Eighteen pseudopregnant bitches were treated for 20 days in groups receiving placebo (n = 6); cabergoline (5 μg/kg/day; n = 6); or vitamin B6 (50 mg/kg/day; n = 6). Blood was collected on the 1st day of drug administration and 120 h later to measure serum prolactin (PRL). After treatment, they were ovariohysterectomized and uterine fragments were collected for histomorphometry and immunohistochemical evaluation of PR, ERα, AR, TRα, Kiss1 and Kiss1r. After 120 h of cabergoline or vitamin B6 treatment, PRL levels were reduced in the bitches, confirming the antiprolactinemic effect of these drugs. Furthermore, regardless of treatment, the animals exhibited uterine histomorphometry consistent with dioestrus. The PR showed strong immunostaining in all regions and an increase in scores was observed for this receptor in animals treated with vitamin B6 in deep glands. In contrast, ERα and Kiss1R receptors showed weak to no immunostaining in all uterine regions and no changes between groups. Regarding AR, most animals treated with vitamin B6 showed increased trends in the deep gland and myometrium marking scores. In contrast, in both vitamin B6 and cabergoline treatments, a reduction in TRα marking scores was observed compared to the control group. In addition, on the endometrial surface, a reduction was observed in the marked area of Kiss1 after administration of cabergoline when compared to the pseudopregnant control group. These findings shed valuable insight into the use of vitamin B6 as a drug with actions similar to cabergoline in reducing PRL and uterine modulation in bitches.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Department of Biological Sciences, Electron Microscopy Center, State University of Santa Cruz, Ilheus, Brazil
| | - Larissa Rodrigues Santana
- Department of Agricultural and Environmental Sciences, Animal Reproduction Laboratory, State University of Santa Cruz, Ilheus, Brazil
| | - Raquel Vieira Niella
- Department of Agricultural and Environmental Sciences, Veterinary Hospital, State University of Santa Cruz, Ilheus, Brazil
| | - William Morais Machado
- Department of Agricultural and Environmental Sciences, Animal Reproduction Laboratory, State University of Santa Cruz, Ilheus, Brazil
| | - Juneo Freitas Silva
- Department of Biological Sciences, Electron Microscopy Center, State University of Santa Cruz, Ilheus, Brazil
| | - Paola Pereira das Neves Snoeck
- Department of Agricultural and Environmental Sciences, Animal Reproduction Laboratory, State University of Santa Cruz, Ilheus, Brazil
| |
Collapse
|
3
|
Huang J, Zhang Y, Fang L, Xi F, Tang C, Ou K, Wang C. Chronic exposure to low levels of phenanthrene induces histological damage and carcinogenic risk in the uterus of female mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22858-22869. [PMID: 38413531 DOI: 10.1007/s11356-024-32636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Phenanthrene (Phe), a polycyclic aromatic hydrocarbon with low molecular weight, is detected in the environment at high frequency. To study the toxic effects of Phe on the uterine structure and function, female Kunming mice were exposed to Phe (0.05, 0.5, 5 ng/mL) for 270 days by drinking water. Pathological alterations and their action pathways were analyzed using immunohistochemical and biomolecular technology. Phe significantly increased the percentage of blood vessel area, the number of endometrial neutrophils (indicating the occurrence of inflammation), collagen deposition (indicating fibrosis), and the percentage of Ki-67-positive cells (indicating carcinogenesis) in the uterus. Transcriptome sequencing identified differentially expressed genes that were mainly enriched in some signaling pathways, including inflammation and carcinogenesis, suggesting a carcinogenic risk in the Phe-exposed uterus. Elevated serum estrogen levels and decreased progesterone levels exhibited a disturbance of steroid hormone balance, which might be related to uterine damage. Upregulated protein levels of uterine androgen receptor and estrogen receptor α were linked to the pathological effects. Most of the effects exhibited a nonmonotonic dose response, which might be attributed to the corresponding change in the serum levels of Phe. The results suggest that exposure to low levels of Phe could exert adverse effects on the uterus.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Feifei Xi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
4
|
de Jesus Nascimento AE, Santos LC, Santos BR, Santos EO, Cunha MCDSG, Snoeck PPDN, de Lavor MSL, Silva JF. Spatial and temporal expression profile of sex steroid receptors and antioxidant enzymes in the maternal-fetal interface of domestic cats. Theriogenology 2023; 210:234-243. [PMID: 37542738 DOI: 10.1016/j.theriogenology.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Sex steroids and antioxidant enzymes modulate uterine and placental physiology. Failures in the expression, signaling, and/or secretion of these mediators are associated with female infertility and gestational problems. However, there is no data on the expression profile of receptors for sex steroids and antioxidant enzymes in the maternal-fetal interface of domestic cats. Uterus and placenta samples from non-pregnant diestrus cats and cats in mid- and late pregnancy were used to analyze the protein and gene expression of the receptors for estrogen alpha (ERα), progesterone (PR), and androgen (AR) and the antioxidant enzymes superoxide dismutase 1 (SOD1), catalase, and glutathione peroxidase 1 (GPX1) by immunohistochemistry and qPCR. Higher uterine expression of ERα, Pr, and Sod1 was observed in the pregnant cats, especially in mid-pregnancy, compared to non-pregnant diestrus cats, as well as reduced endometrial catalase immunostaining. In the placenta, the mRNA expression of Erα, Pr, Ar, and Gpx1 was higher in late pregnancy in relation to mid-pregnancy. Moreover, weak or no placental expression was observed for catalase in mid- and late pregnancy, while strong immunostaining was observed for AR in trophoblasts and decidual cells in mid-pregnancy. The findings of this study demonstrated that pregnancy in female cats increases the uterine expression of sex steroid receptors and antioxidant enzymes, and that the placental expression of these mediators varies according to gestational age.
Collapse
Affiliation(s)
- Acácia Eduarda de Jesus Nascimento
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Maria Clara da Silva Galrão Cunha
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Paola Pereira das Neves Snoeck
- Hospital Veterinário, Departamento de Ciências Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Mário Sérgio Lima de Lavor
- Hospital Veterinário, Departamento de Ciências Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil.
| |
Collapse
|
5
|
Liang Y, Chen X, Yin J, Liu X, Liu S, Sun W, Wang X, Yao H, Xiao L. Dihydrotestosterone mediates the inflammation effect under lipopolysaccharides in bovine endometrial epithelial cells via AR blockading TLR4/MyD88 signaling pathway. Anim Reprod Sci 2023; 255:107292. [PMID: 37406563 DOI: 10.1016/j.anireprosci.2023.107292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Dihydrotestosterone (DHT) is a potent nonaromatizable 5α-reduced androgen with both positive and negative effect on inflammation process. However, it remains unknown whether DHT can regulate Lipopolysaccharides (LPS)-induced inflammation in bovine endometrial epithelial cells (bEECs). Here, we demonstrated that the DHT biosynthesis ability and androgen receptors (AR) expression is defective in bovine endometrial with endometritis, which aggravates endometrial inflammation. In vitro study, we established a LPS-induced inflammation model in bEECs, and found that DHT inhibited the TLR4 and MyD88 protein as well as TNF-α, IL-1β, and IL-6 mRNA of bEECs in a dose-dependent manner. Moreover, the anti-inflammation effect of DHT was blocked by AR inhibitor flutamide. Together, we demonstrated that supplementing DHT can alleviate the inflammation response of bEECs caused by LPS, which is associated with AR regulating the inhibition of TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Yixuan Liang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xingyi Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jie Yin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xinyi Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Shiwei Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wanxu Sun
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
6
|
Nascimento AEDJ, Santos LC, Santos BR, Santos EO, Cunha MCDSG, Snoeck PPDN, de Lavor MSL, Silva JF. Estrogen and progesterone receptors and antioxidant enzymes are expressed differently in the uterus of domestic cats during the estrous cycle. Theriogenology 2023; 203:1-10. [PMID: 36947924 DOI: 10.1016/j.theriogenology.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Sex steroids and antioxidant enzymes are important in female sexual development and adequate modulation of the estrous cycle, pregnancy, and fetal development. Therefore, modifications in its signaling or expression in the genital system are associated with reproductive dysfunctions. However, the spatial-temporal expression profile of receptors for sex steroids and antioxidant enzymes in the uterus of domestic cats throughout the estrous cycle needs to be studied. Cats in proestrus/estrus (N = 6), diestrus, (N = 7), and anestrus (N = 6) were used to evaluate the uterine expression of estrogen alpha (ERα), progesterone (PR), and androgen (AR) receptors and of the antioxidant enzymes superoxide dismutase 1 (SOD1), catalase and glutathione peroxidase 1 (GPX1) by immunohistochemistry and qPCR. The uterus of cats in diestrus showed lower protein and mRNA expression of ERα and PR compared to proestrus/estrus and anestrus, mainly in the luminal and glandular epithelium and myometrium, different from catalase and SOD1, which showed higher expression in diestrus in relation to other phases of the cycle. GPX1, on the other hand, showed lower uterine gene expression in diestrus compared to proestrus/estrus and anestrus. No significant differences in AR expression were observed. In conclusion, ERα and PR sex steroid receptors and antioxidant enzymes are expressed differently in the uterus of domestic cats during the estrous cycle.
Collapse
Affiliation(s)
- Acácia Eduarda de Jesus Nascimento
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Maria Clara da Silva Galrão Cunha
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Paola Pereira das Neves Snoeck
- Hospital Veterinário, Departamento de Ciências Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Mário Sérgio Lima de Lavor
- Hospital Veterinário, Departamento de Ciências Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900, Ilhéus, Brazil.
| |
Collapse
|
7
|
Subacute Ruminal Acidosis as a Potential Factor that Induces Endometrium Injury in Sheep. Int J Mol Sci 2023; 24:ijms24021192. [PMID: 36674716 PMCID: PMC9861559 DOI: 10.3390/ijms24021192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The demand for economic benefits has led to an increase in the proportion of high-concentrate (HC) feed in the ruminant diet, resulting in an increased incidence of subacute ruminal acidosis (SARA). During SARA, a high concentration of lipopolysaccharide (LPS) translocated in the rumen induces a systemic inflammatory response. Inflammatory diseases, such as endometritis and mastitis, are often associated with SARA; however, in sheep, the mechanism of the effect of SARA on the endometrium has rarely been reported. Therefore, the aim of this study was to investigate, for the first time, the influence of LPS translocation on endometrial tight junctions (TJs) during SARA in sheep. The results showed that LPS and TNFα levels in the ruminal fluid, serum, and endometrial tissue supernatant during SARA increased, transcription levels of TLR4, NFκB, and TNFα in the endometrium increased, the protein expression level of claudin-1 in the endometrium increased, and the protein expression level of occludin decreased. 17β-estradiol (E2) inhibits claudin-1 protein expression and promotes occludin expression, and progesterone (P4) promotes claudin-1 protein expression and inhibits occludin protein expression. E2 and P4 regulate claudin-1 and occludin protein expression through their receptor pathways. Here, we found that LPS hindered the regulatory effect of E2 and P4 on endometrial TJs by inhibiting their receptor expression. The results of this study indicate that HC feeding can cause SARA-induced LPS translocation in sheep, increase susceptibility to systemic inflammation, induce the endometrial inflammatory response, and cause endometrial epithelial TJ damage directly and/or by obstructing E2 and P4 function. LPS translocation caused by SARA has also been suggested to induce an endometrial inflammatory response, resulting in endometrial epithelial barrier damage and physiological dysfunction, which seriously affects ruminant production. Therefore, this study provides new evidence that SARA is a potential factor that induces systemic inflammation in ruminants. It provides theoretical support for research on the prevention of endometritis in ruminants.
Collapse
|
8
|
Abdelnaby EA, Yasin NAE, Abouelela YS, Rashad E, Daghash SM, El-Sherbiny HR. Ovarian, uterine, and luteal vascular perfusions during follicular and luteal phases in the adult cyclic female rabbits with special orientation to their histological detection of hormone receptor. BMC Vet Res 2022; 18:301. [PMID: 35927671 PMCID: PMC9351104 DOI: 10.1186/s12917-022-03390-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023] Open
Abstract
Understanding the does reproductive hemodynamic changes during the estrous cycle is crucial for improving reproductive competence and fertility potential in this species. The objective of this study is to investigate the hemodynamic variations in ovarian (OA) and uterine (UA) arteries, histological and morphometric changes in ovarian and uterine tissues throughout the follicular (FP) and luteal (LP) phases in rabbits and determine estrogen (ER), progesterone (PR) receptors, and vascular endothelial growth factor (VEGF) distributions using immunohistochemistry.Fourteen adults pluriparous New Zealand rabbits were divided into rabbits at the FP (Day - 1; n = 7) and those at the LP (Day 9; n = 7). Animals were subjected to Doppler, hormonal (estrogen [E2], progesterone [P4], insulin-like growth factor [ILGF], and VEGF), histological, and immunohistochemical analyses. In LP, OA Doppler indices were significantly increased, whereas peak systolic velocity (PSV) was decreased compared with that in FP. UA Doppler indices were significantly decreased in the LP, whereas PSV was increased (P < 0.05). E2 levels were increased in the FP, whereas P4 levels were increased in the LP. The morphometric analysis of uterine tissues during the LP revealed an increase in the mean uterine endometrium length, endometrial connective tissue area percentage (%), endometrial glands number, myometrial area (%) and thickness. Furthermore, ovarian follicles and corpus luteum (CL) displayed strong positive immunoreactivity for ER, PR, and VEGF-A during both phases. The ovarian sections displayed a substantial (P < 0.05) increase in the area % of VEGF-A in the ovarian follicles during FP while in the CL during LP. Conversely, area percentage of VEGF-A immunoreactivity in the uterine luminal and glandular epithelia during the FP and LP revealed no differences. However, the number of VEGF-A-stained blood capillaries revealed an increase during LP than FP. In conclusion, this study demonstrated for the first time the changes in both ovarian and uterine arteries during two different phases of the rabbit cycle in relation to the histo-morphometric analysis and distribution of ER, PR, and VEGF-A, which regulate uterine functions that play a role in reproduction.
Collapse
Affiliation(s)
- Elshymaa A Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yara S Abouelela
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Samer M Daghash
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossam R El-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
9
|
Zeng J, Ge W, Duan H, Lv J, Ding Z, Wang W, Zhang Y, Zhao X, Hu J. Effect of dihydrotestosterone on melatonin secretion and the expression of melatonin receptors and apoptosis-related factors in sheep epididymides. Reprod Domest Anim 2022; 57:1244-1254. [PMID: 35775862 DOI: 10.1111/rda.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/28/2022] [Indexed: 12/01/2022]
Abstract
Melatonin (MEL) is involved in homeostasis of the epididymis lumen environment. Dihydrotestosterone (DHT) partakes in the development of gonads and organs in male animals. However, whether MEL secretion, the expression of its receptors, MT1 and MT2, and sheep epididymal epithelial cell apoptosis is regulated by DHT remains unclear. In this study, we used immunohistochemical staining to detect the distribution patterns of DHT synthetases [5α-reductase (5α-red)] and its androgen receptor (AR) in sheep epididymides. 5α-red1, 5α-red2, and AR were positively expressed in sperm, epididymal epithelial cells, and the smooth muscle cells of the caput, corpus, and cauda regions of the epididymis. DHT concentration and the expression levels of 5α-red and AR in the caput, corpus, and cauda regions were measured by enzyme-linked immunosorbent assay, liquid chromatography-mass spectrometry, real-time quantitative polymerase chain reaction, and western blot analysis. DHT concentration in the caput was significantly higher than those in corpus and cauda, probably because of the high expression of 5α-red2 in the caput and secretion and transport of DHT by the testicles. DHT inhibited MEL secretion, the expression of its membrane receptors, and MEL synthetases in cultured sheep epididymal epithelial cells in vitro. In addition, the Bax/Bcl-2 ratio, ACT CASP3, and caspase-3 mRNA expression were also decreased. The decreasing effect was partially reversed after flutamide treatment. Therefore, DHT regulates sheep epididymal function by influencing MEL expression and apoptosis-related factors. This study provides basic data for further research on the reproductive physiology of male animals.
Collapse
Affiliation(s)
- Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Wenbo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
10
|
Ren B, Zhu Y. A New Perspective on Thyroid Hormones: Crosstalk with Reproductive Hormones in Females. Int J Mol Sci 2022; 23:ijms23052708. [PMID: 35269847 PMCID: PMC8911152 DOI: 10.3390/ijms23052708] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that thyroid hormones (THs) are vital for female reproductive system homeostasis. THs regulate the reproductive functions through thyroid hormone receptors (THRs)-mediated genomic- and integrin-receptor-associated nongenomic mechanisms, depending on TH ligand status and DNA level, as well as transcription and extra-nuclear signaling transduction activities. These processes involve the binding of THs to intracellular THRs and steroid hormone receptors or membrane receptors and the recruitment of hormone-response elements. In addition, THs and other reproductive hormones can activate common signaling pathways due to their structural similarity and shared DNA consensus sequences among thyroid, peptide, and protein hormones and their receptors, thus constituting a complex and reciprocal interaction network. Moreover, THs not only indirectly affect the synthesis, secretion, and action of reproductive hormones, but are also regulated by these hormones at the same time. This crosstalk may be one of the pivotal factors regulating female reproductive behavior and hormone-related diseases, including tumors. Elucidating the interaction mechanism among the aforementioned hormones will contribute to apprehending the etiology of female reproductive diseases, shedding new light on the treatment of gynecological disorders.
Collapse
Affiliation(s)
- Bingtao Ren
- School of Pharmacy, Fudan University, Shanghai 200032, China;
| | - Yan Zhu
- Laboratory of Reproductive Pharmacology, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-21-64438416
| |
Collapse
|
11
|
Bedir Ö, Gram A, Dorsam ST, Grazul-Bilska AT, Kowalewski MP. Plane of nutrition and FSH-induced superovulation affect the expression of steroid hormone receptors and growth factors in caruncular tissue of non-pregnant sheep. Domest Anim Endocrinol 2022; 78:106683. [PMID: 34688215 DOI: 10.1016/j.domaniend.2021.106683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/03/2022]
Abstract
Implantation is a critical step in the establishment of pregnancy and an important part of embryo-maternal contact. Uterine receptivity can be affected by changes in body condition and the maternal endocrine milieu, including those caused by the use of exogenous gonadotropins in controlled ovarian hyperstimulation to induce the development of multiple follicles. This study demonstrates the effects of FSH-mediated ovarian hyperstimulation on the caruncles of ewes under various feeding regimes. Sheep were classified into 3 categories: control fed (CF), overfed (OF), or underfed (UF). In each group, animals were superovulated with FSH or injected with a saline solution (non-treated control). Uterine caruncles were collected at the early (d 5) and mid-luteal phase (d 10) of the estrous cycle. The transcript levels of steroid hormone receptors (ESR1, ESR2, PGR) and growth factors (IGF1, IGF2, VEGFA) were investigated and their expression localized by immunohistochemical staining. As for the main findings, day of the estrous cycle affected expression of ESR1, IGF1 and IGF2, but not of ESR2, PGR and VEGFA; both feeding and superovulation had modulatory effects, with feeding (UF/OF) stimulating expression of all genes studied, and superovulation altering expression of some genes, eg IGF1, PGR and ESR1 and ESR2, in CF animals. Similarly, feeding (UF/OF) altered responsiveness to superovulation for PGR on d 5 and ESR1/ESR2 on d 5 and/or 10. Our data emphasize possible effects of dietary and/or hormonal stimuli on uterine physiology, which may affect pregnancy outcomes by disrupting uterine functionality.
Collapse
Affiliation(s)
- Özlem Bedir
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38280 Kayseri, Turkey.
| | - Sheri T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
12
|
Regulation of uterine function during estrous cycle, anestrus phase and pregnancy by steroids in red deer (Cervus elaphus L.). Sci Rep 2021; 11:20109. [PMID: 34635709 PMCID: PMC8505504 DOI: 10.1038/s41598-021-99601-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022] Open
Abstract
Steroid synthesis and production in ruminant uterus is not obvious, especially in seasonally reproduced. We compared steroid production by investigating enzymes involved in red deer uterine steroid metabolism in reproductive seasons. Blood and uteri (endometrium and myometrium) were collected post mortem from hinds on 4th day (N = 8), 13th day of the cycle (N = 8), anestrus (N = 8) and pregnancy (N = 8). The expression of cytochrome P450 aromatase (P450), 3 -beta-hydroxysteroid dehydrogenase (3β-HSD), 17 -beta-hydroxysteroid dehydrogenase (17β-HSD), aldo-keto reductase family 1 C1 (AKR1C1), estrogen receptor alpha (ERα), and progesterone receptors (PRs), were analyzed using real-time-PCR and Western Blotting. Plasma samples were assayed for 17-beta-estradiol (E2), progesterone (P4), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T4) concentrations by EIA. Hinds at the beginning of the estrous cycle, mainly in endometrium, were characterized by a high mRNA expression of 3β-HSD, AKR1C1, PRs and ERα, contrary to the expression in myometrium during pregnancy (P < 0.05). For P4, E2, and FSH, concentration was the highest during the 13th day of the estrous cycle (P < 0.05). Uterine steroid production and output in hinds as a representative seasonally reproduced ruminant occurred mainly during the estrous cycle and sustained in anestrus.
Collapse
|
13
|
Ibrahim MAA, Sadek MT, Sharaf Eldin HEM. Role of pomegranate extract in restoring endometrial androgen receptor expression, proliferation, and pinopodes in a rat model of polycystic ovary syndrome. Morphologie 2021; 106:145-154. [PMID: 34023214 DOI: 10.1016/j.morpho.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a multifactorial hormonal disorder accompanied by impairment of endometrial function and structure. Pomegranate is recognized for its role in normalizing the female sex hormones in PCOS with little known about its effect on the accompanying endometrial histological alterations. AIM OF THE WORK To assess the possible ameliorative role of pomegranate juice extract (PJE) on endometrial injury in a rat model of PCOS. MATERIAL AND METHODS Forty adult albino rats were equally divided into 4 groups; control, PJE-treated (400mg/kg/day for 3 weeks), letrozole-treated (PCOS) (1mg/kg/day for 3 weeks), and PJE & PCOS groups. Serum Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), testosterone, estradiol, and tissue malondialdehyde (MDA) were assayed. Uterine samples were processed for histological staining with hematoxylin & eosin and Masson's trichrome stains, Ki67 and androgen receptor immunohistochemical staining, and scanning electron microscopy. RESULTS PCOS group revealed a significant increase in serum FSH, LH, testosterone, estradiol, and tissue MDA. Uterine sections depicted various histological alterations in the endometrium with signs of inflammation. A significant increase in the endometrial collagen fiber content, as well as a significant upregulation in Ki67 and androgen receptor immunohistochemical expression were detected. Scanning electron microscopy showed a significant decrease in the mean number of pinopodes. Concomitant administration of PJE efficiently restored the studied biochemical, histological, and immunohistochemical parameters. CONCLUSION PJE ameliorated PCOS accompanying endometrial histological alterations through its antioxidant, anti-inflammatory, anti-fibrotic, anti-proliferative, and anti-androgenic effects most probably due to its polyphenols content.
Collapse
Affiliation(s)
- M A A Ibrahim
- Histology and Cell Biology department, Faculty of Medicine, Tanta University, 31527 Tanta, Egypt.
| | - M T Sadek
- Histology and Cell Biology department, Faculty of Medicine, Tanta University, 31527 Tanta, Egypt
| | - H E M Sharaf Eldin
- Histology and Cell Biology department, Faculty of Medicine, Tanta University, 31527 Tanta, Egypt
| |
Collapse
|