1
|
Onishi Y, Uzawa A, Yasuda M, Akamine H, Ogaya E, Handa H, Ozawa Y, Kuwabara S. Elevated serum levels of IL-10 family and IL-12 family cytokines in myasthenia gravis. J Neuroimmunol 2025; 404:578621. [PMID: 40288071 DOI: 10.1016/j.jneuroim.2025.578621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/08/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND IL-10 and IL-12 family cytokines play important roles in various immunological diseases. This study identified a relationship between IL-10 and IL-12 family cytokines and the pathogenesis of myasthenia gravis (MG). METHODS We measured IL-10 and IL-12 family cytokines levels in 25 treatment-naive MG patients with acetylcholine receptor (AChR) antibodies and 28 controls and examined their relationships with clinical parameters. RESULTS Serum levels of IL-10, IL-12p40, IL-12p70, IL-20, IL-22, IL-26, IL-28A, IL-29, and IL-35 were significantly higher in MG group than in control group. Among these, IL-20, IL-26, IL-28A, and IL-29 levels decreased after immunotherapy. AChR antibody titers were negatively correlated with levels of IL-12p40, IL-22, and IL-26. Scores on the MG activities of daily living (MG-ADL) scale were negatively correlated with IL-20 levels. CONCLUSION Serum levels of IL-10 and IL-12 family cytokines were elevated in MG. In particular, IL-12p40, IL-20, IL-22, and IL-26 levels might be potential disease biomarkers in MG patients.
Collapse
Affiliation(s)
- Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan.
| | - Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Etsuko Ogaya
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Hideo Handa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Department of Neurology, Japanese Red Cross Narita Hospital, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Research Institute of Disaster Medicine, Chiba University, Japan
| |
Collapse
|
2
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Miyake S, Serizawa K, Onishi S, Katsura Y, Baba M, Kurasawa M, Tomizawa-Shinohara H, Yorozu K, Matsumoto Y, Noguchi-Sasaki M. IL-6 receptor antibody treatment improves muscle weakness in experimental autoimmune myasthenia gravis mouse model. Front Neurol 2024; 15:1356300. [PMID: 38751878 PMCID: PMC11094227 DOI: 10.3389/fneur.2024.1356300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease characterized by muscle weakness and fatigue. It is caused by pathological autoantibodies against components expressed at neuromuscular junctions, such as acetylcholine receptor (AChR). Interleukin-6 (IL-6) has been suggested to play a role in the pathogenesis of MG, and IL-6 receptor (IL-6R) antibody treatment may provide a novel therapeutic option. In this study, we investigated the effects of IL-6R antibody treatment in an experimental autoimmune MG (EAMG) mouse model. We demonstrated that IL-6R antibody treatment improved muscle weakness, reduced IgG deposition at neuromuscular junctions, and the levels of AChR autoantibodies in serum. In addition, follicular helper T cells and Th17, plasma cells in lymph nodes were lower in IL-6R antibody treated mice. Our findings suggest that IL-6R blockade may be a novel and effective therapeutic strategy for the treatment of MG.
Collapse
Affiliation(s)
- Shota Miyake
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yasuda M, Uzawa A, Ozawa Y, Kojima Y, Onishi Y, Akamine H, Kuwabara S. Serum cytokine profiles in myasthenia gravis with anti-muscle-specific kinase antibodies. J Neuroimmunol 2023; 384:578205. [PMID: 37774555 DOI: 10.1016/j.jneuroim.2023.578205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
This study measured the serum levels of of 15 cytokines in 15 patients with anti-muscle-specific kinase antibody-positive MG (MuSK-MG) using a multiplex suspension array system. Fifteen patients with non-inflammatory neurological diseases served as controls. Compared with controls, patients with MuSK-MG showed higher levels of Th1- (IFN-γ), Th2- (IL-25, IL-31, and IL-33), Th17- (IL-22), Treg-related cytokines (IL-10), and soluble CD40 ligand (sCD40L). Higher serum Th2-related cytokines (IL-25 and IL-31) levels were correlated with less MG Foundation of America (MGFA) class. These suggest that Th2-related cytokines have protective effects, whereas sCD40L and others may facilitate the disease.
Collapse
Affiliation(s)
- Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan.
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Department of Neurology, Japanese Red Cross Narita Hospital, Japan
| | - Yuta Kojima
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan; Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
5
|
An H, Liu Y, Shu M, Chen J. Interleukin-22 facilitates the interferon-λ-mediated production of tripartite motif protein 25 to inhibit replication of duck viral hepatitis A virus type 1. Vet Res 2023; 54:53. [PMID: 37391858 PMCID: PMC10314556 DOI: 10.1186/s13567-023-01188-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023] Open
Abstract
The innate immune system provides a defense against invading pathogens by inducing various interferon (IFN)-stimulated genes (ISGs). We recently reported that tripartite motif protein 25 (TRIM25), an important ISG, was highly upregulated in duck embryo hepatocyte cells (DEFs) after infection with duck viral hepatitis A virus type 1 (DHAV-1). However, the mechanism of upregulation of TRIM25 remains unknown. Here we reported that interleukin-22 (IL-22), whose expression was highly facilitated in DEFs and various organs of 1-day-old ducklings after DHAV-1 infection, highly enhanced the IFN-λ-induced production of TRIM25. The treatment with IL-22 neutralizing antibody or the overexpression of IL-22 highly suppressed or facilitated TRIM25 expression, respectively. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) was crucial for the process of IL-22 enhancing IFN-λ-induced TRIM25 production, which was suppressed by WP1066, a novel inhibitor of STAT3 phosphorylation. The overexpression of TRIM25 in DEFs resulted in a high production of IFNs and reduced DHAV-1 replication, whereas the attenuated expression of IFNs and facilitated replication of DHAV-1 were observed in the RNAi group, implying that TRIM25 defended the organism against DHAV-1 propagation by inducing the production of IFNs. In summary, we reported that IL-22 activated the phosphorylation of STAT3 to enhance the IFN-λ-mediated TRIM25 expression and provide a defense against DHAV-1 by inducing IFN production.
Collapse
Affiliation(s)
- Hao An
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Ming Shu
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China
| | - Junhao Chen
- School of Public Health, Weifang Medical University, Weifang, 261042, Shandong, China.
| |
Collapse
|
6
|
Huda R. Inflammation and autoimmune myasthenia gravis. Front Immunol 2023; 14:1110499. [PMID: 36793733 PMCID: PMC9923104 DOI: 10.3389/fimmu.2023.1110499] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular autoimmune disorder characterized by chronic but intermittent fatigue of the eye- and general body muscles. Muscle weakness is caused primarily by the binding of an autoantibody to the acetylcholine receptors, resulting in blockage of normal neuromuscular signal transmission. Studies revealed substantial contributions of different proinflammatory or inflammatory mediators in the pathogenesis of MG. Despite these findings, compared to therapeutic approaches that target autoantibody and complements, only a few therapeutics against key inflammatory molecules have been designed or tested in MG clinical trials. Recent research focuses largely on identifying unknown molecular pathways and novel targets involved in inflammation associated with MG. A well-designed combination or adjunct treatment utilizing one or more selective and validated promising biomarkers of inflammation as a component of targeted therapy may yield better treatment outcomes. This review briefly discusses some preclinical and clinical findings of inflammation associated with MG and current therapy approaches and suggest the potential of targeting important inflammatory marker(s) along with current monoclonal antibody or antibody fragment based targeted therapies directed to a variety of cell surface receptors.
Collapse
|
7
|
Qiu C, Yang L, Liu S, Zhang C, Zhang Q, Jin Z. Interleukin-35 dampens T helper 22 phenotype shift in CD4 +CD25 +CD127 dim/- regulatory T cells in primary biliary cholangitis. Int Immunopharmacol 2023:109751. [PMID: 36697307 DOI: 10.1016/j.intimp.2023.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
The phenotype shift in regulatory T cells (Tregs) contributes to immunopathogenesis of autoimmune diseases. The current study was aimed to investigate the regulatory function of interleukin-35 (IL-35) to T helper 22 (Th22) cell phenotype shift in Tregs in primary biliary cholangitis (PBC). Fifty-five PBC patients and twenty-four controls were enrolled. CD4+CD25+CD127dim/- Tregs and Th22 cells were investigated by flow cytometry. Forkhead box P3 (FoxP3) and aryl hydrocarbon receptor (AhR) mRNA levels were assessed by real-time polymerase chain reaction. Plasma IL-10 and IL-22 levels were measured by ELISA. Purified Tregs were stimulated with exogenous IL-35, and were co-cultured with autologous CD4+CD25- T cells. Cellular proliferation and cytokine production was measured. Purified Tregs were also cultured into Th22 condition in the presence or absence of exogenous IL-35, and Th22 phenotype were assessed. PBC patients had lower levels of Treg percentage, FoxP3 mRNA, and plasma IL-10, while had higher levels of Th22 proportion, AhR mRNA, and plasma IL-22. Tregs from PBC patients showed reduced immunosuppressive activity, which presented as increased cellular proliferation, interferon-γ production and decreased IL-35/IL-10 secretion in co-culture system. Tregs shifted into Th22 phenotype in PBC patients with elevated CCR4, CCR6, and CCR10 expression as well as increased IL-22 production. IL-35 not only enhanced inhibitory function of Tregs but also suppressed phenotype shift of Tregs into Th22 phenotype in PBC patients. This process was accompanied by elevation of IL-10 and transforming growth factor-β1 secretion by Tregs from PBC patients. The present data suggested that reduced IL-35 might be insufficient to maintain Tregs function and phenotype shift from Tregs into Th22 phenotype in PBC patients.
Collapse
Affiliation(s)
- Chen Qiu
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Lanlan Yang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Siqi Liu
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Chuanhui Zhang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Qian Zhang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Zhenjing Jin
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China.
| |
Collapse
|
8
|
Jiang Q, Yang G, Xiao F, Xie J, Wang S, Lu L, Cui D. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:688066. [PMID: 34295334 PMCID: PMC8290841 DOI: 10.3389/fimmu.2021.688066] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Upon antigenic stimulation, naïve CD4+T cells differentiate into different subsets and secrete various cytokines to exert biological effects. Th22 cells, a newly identified CD4+T cell subset,are distinct from the Th1, Th2 and Th17 subsets. Th22 cells secrete certain cytokines such as IL-22, IL-13 and TNF-α, but not others, such as IL-17, IL-4, or interferon-γ (IFN-γ), and they express chemokine receptors CCR4, CCR6 and CCR10. Th22 cells were initially found to play a role in skin inflammatory diseases, but recent studies have demonstrated their involvement in the development of various autoimmune diseases. Here, we review research advances in the origin, characteristics and effector mechanisms of Th22 cells, with an emphasis on the role of Th22 cells and their main effector cytokine IL-22 in the pathogenesis of autoimmune diseases. The findings presented here may facilitate the development of new therapeutic strategies for targeting these diseases.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Vilquin JT, Bayer AC, Le Panse R, Berrih-Aknin S. The Muscle Is Not a Passive Target in Myasthenia Gravis. Front Neurol 2020; 10:1343. [PMID: 31920954 PMCID: PMC6930907 DOI: 10.3389/fneur.2019.01343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by pathogenic antibodies (Ab) directed against components of the neuromuscular junction (NMJ), mainly the acetylcholine receptor (AChR). The etiological mechanisms are not totally elucidated, but they include a combination of genetic predisposition, triggering event(s), and hormonal components. MG disease is associated with defective immune regulation, chronic cell activation, inflammation, and the thymus is frequently abnormal. MG is characterized by muscle fatigability that is very invalidating and can be life-threatening when respiratory muscles are affected. MG is not cured, and symptomatic treatments with acetylcholinesterase inhibitors and immunosuppressors are life-long medications associated with severe side effects (especially glucocorticoids). While the muscle is the ultimate target of the autoimmune attack, its place and role are not thoroughly described, and this mini-review will focus on the cascade of pathophysiologic mechanisms taking place at the NMJ and its consequences on the muscle biology, function, and regeneration in myasthenic patients, at the histological, cellular, and molecular levels. The fine structure of the synaptic cleft is damaged by the Ab binding that is coupled to focal complement-dependent lysis in the case of MG with anti-AChR antibodies. Cellular and molecular reactions taking place in the muscle involve several cell types as well as soluble factors. Finally, the regenerative capacities of the MG muscle tissue may be altered. Altogether, the studies reported in this review demonstrate that the muscle is not a passive target in MG, but interacts dynamically with its environment in several ways, activating mechanisms of compensation that limit the pathogenic mechanisms of the autoantibodies.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | | | - Rozen Le Panse
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| |
Collapse
|
10
|
The association between scabies and myasthenia gravis: A nationwide population-based cohort study. J Clin Neurosci 2017; 45:115-120. [PMID: 28890037 DOI: 10.1016/j.jocn.2017.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
Scabies is an infectious inflammatory pruritic skin disease. Cytokine-mediated inflammatory processes contribute to the pathologic mechanism in scabies. Myasthenia gravis (MG) is also an autoimmune disease that is mediated by cytokines. The study aimed to investigate the association between scabies and myasthenia gravis. We conducted a nationwide population-based cohort study utilized data from the National Health Insurance Research Database (NHIRD) of Taiwan. Patients with scabies (n=5429) and control subjects without scabies (n=20,176) were enrolled. We tracked the subjects in both groups for a 7-year period to identify new onset MG. Cox regression analysis was performed to calculate the hazard ratio (HR) for MG. A total of 25,605 patients were enrolled in the study, including 5429 patients in the scabies group and 20,176 in the control group. There were 40 (0.7%) patients from the scabies group and 84 (0.4%) subjects from the control group who were newly diagnosed with MG during the 7-year follow-up period. The scabies patients had a significantly increased risk of MG, with an adjusted HR of 1.27 (95% confidence interval [CI] 1.01-1.89). As such, prompt diagnosis and treatment of scabies may decrease the risk of subsequent MG.
Collapse
|
11
|
Hong Y, Skeie GO, Zisimopoulou P, Karagiorgou K, Tzartos SJ, Gao X, Yue YX, Romi F, Zhang X, Li HF, Gilhus NE. Juvenile-onset myasthenia gravis: autoantibody status, clinical characteristics and genetic polymorphisms. J Neurol 2017; 264:955-962. [PMID: 28364296 DOI: 10.1007/s00415-017-8478-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/10/2023]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder mediated by antibodies against proteins at the neuromuscular junction. Juvenile-onset MG (JMG) has been reported to have special characteristics. It is still unclear whether there are any pathogenic and genetic differences between juvenile and adult MG. In this study, we evaluated the clinical characteristics, autoantibody status (antibodies against AChR, MuSK, LRP4, titin and RyR) and genetic susceptibility (CHRNA1, CTLA4 and AIRE) in 114 Chinese JMG patients, and compared with 207 young adult MG patients (onset age 18-40 years). JMG patients were classified into two subgroups: the very early onset group (<8 years) and puberty onset group (8-18 years). The very early onset MG patients had a higher proportion of ocular MG and thymus hyperplasia, compared with puberty onset MG and young adult MG (P < 0.05). AChR antibodies were found in majority of JMG patients and were associated with more severe disease (P < 0.05), while other antibodies were rare in JMG. Moreover, the very early onset MG had a more prominent genetic predisposition than puberty and adult MG, affecting the susceptible genes CHRNA1 and CTLA4. JMG has the same pathogenic background as adult MG, but has typical clinical features and a prominent genetic predisposition in very early onset patients (<8 years). Specific therapeutic considerations are needed.
Collapse
Affiliation(s)
- Yu Hong
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Geir Olve Skeie
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | | | - Katerina Karagiorgou
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Tzartos NeuroDiagnostics, Athens, Greece
| | - Socrates J Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Tzartos NeuroDiagnostics, Athens, Greece
| | - Xiang Gao
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yao-Xian Yue
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Fredrik Romi
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Xu Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai-Feng Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
12
|
Increased expression of P2X7 receptor in peripheral blood mononuclear cells correlates with clinical severity and serum levels of Th17-related cytokines in patients with myasthenia gravis. Clin Neurol Neurosurg 2017; 157:88-94. [PMID: 28458152 DOI: 10.1016/j.clineuro.2017.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 04/08/2017] [Accepted: 04/15/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES P2X7R is a well-documented activator of innate and adaptive immune responses. We aimed to measure the expression levels of P2X7R in peripheral blood mononuclear cells (PBMCs) from patients with myasthenia gravis (MG) and to investigate whether the expression of P2X7R is associated with pathogenesis of MG. PATIENTS AND METHODS A total of 32 patients with MG (12 generalized MG (GMG) and 20 Ocular MG (OMG) and 22 healthy donors were recruited in this study. The quantitative MG score was used to evaluate the clinical severity. Real-time PCR and western blot were used to measure the levels of P2X7R expressed in PBMCs. Serum Th17-related cytokines (IL-1β, IL-6, IL-17 and IL-21) were tested by ELISA. PBMCs from MG patients were purified and challenged by LPS with or without a selective P2X7R inhibitor (BBG). RESULTS Our results showed that the expression of P2X7R mRNA and protein in PBMCs was increased in MG patients compared with healthy controls, with higher expression in generalized patients (GMG) than in ocular patients (OMG). In addition, P2X7R expression presents a significantly positive correlation with clinical severity and serum levels of IL-1β, IL-6, IL-17 and IL-21 in MG. In cultured MG PBMC, LPS challenge led to up-regulated P2X7R expression accompanied with increased production of IL-1β, IL-6, IL-17 and IL-21. Importantly, P2X7R blockade with BBG significantly attenuates the LPS-induced production of cytokines. CONCLUSION P2X7R expression was up-regulated in MG and LPS-P2X7R axis may be involved in the pathogenesis of MG by promoting Th17 immune response.
Collapse
|
13
|
Motobayashi M, Nishimura T, Nakazawa Y, Inaba Y. Analysis of Serum Cytokine Profiles in Childhood-Onset Ocular Myasthenia Gravis. Pediatr Neurol 2017; 69:e3-e4. [PMID: 28222955 DOI: 10.1016/j.pediatrneurol.2017.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Mitsuo Motobayashi
- Division of Neonatology, Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan; Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Takafumi Nishimura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Inaba
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
14
|
Ryba-Stanisławowska M, Werner P, Brandt A, Myśliwiec M, Myśliwska J. Th9 and Th22 immune response in young patients with type 1 diabetes. Immunol Res 2016; 64:730-5. [PMID: 26659093 DOI: 10.1007/s12026-015-8765-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Th17, Th22 and Th9 are recently discovered effector populations that may contribute to the pathogenesis of autoimmune and inflammatory diseases. The presented study aimed to investigate the link between Th22 and Th9 subsets in type 1 diabetes, as this disease involves different subsets of CD4+ T lymphocytes. The study groups consisted of 23 patients with type 1 diabetes and 11 healthy individuals. All subjects had CD4+IL-22 Th22 and CD4+IL-9 Th9 lymphocytes investigated by flow cytometry. In addition, the plasma concentrations of IL-22 as well as IL-9 were analyzed. Our study demonstrated that Th9 and Th22 cell counts as well as their plasma cytokines were upregulated in patients with type 1 and correlated with HbA1c and CRP values. Taking these all into account, one can conclude that Th22 and Th9 lymphocyte activities may contribute to chronic, low-level inflammation that is considered an integral part of type 1 diabetes.
Collapse
Affiliation(s)
| | - Paulina Werner
- Department of Immunology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Agnieszka Brandt
- Clinic of Pediatrics, Department of Diabetology and Endocrinology, Medical University of Gdańsk, 80-211, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Clinic of Pediatrics, Department of Diabetology and Endocrinology, Medical University of Gdańsk, 80-211, Gdańsk, Poland
| | - Jolanta Myśliwska
- Department of Immunology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
15
|
Changes in inflammatory cytokine networks in myasthenia gravis. Sci Rep 2016; 6:25886. [PMID: 27172995 PMCID: PMC4865732 DOI: 10.1038/srep25886] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/22/2016] [Indexed: 01/21/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmunological inflammatory disorder of the neuromuscular junction. Inflammation could be a key player for understanding the pathogenesis of MG. We measured the serum levels of 24 inflammatory cytokines in 43 patients with anti-acetylcholine receptor antibody-positive MG and 25 healthy controls. In patients with MG, serum levels of a proliferation-inducing ligand (APRIL), IL-19, IL-20, IL-28A and IL-35 were significantly increased as compared with controls (p < 0.05). Among them, IL-20, IL-28A and IL-35 were significantly decreased after treatment (p < 0.05). In clinical subtype analyses, APRIL and IL-20 were increased in patients with late-onset MG and IL-28A levels were increased in patients with thymoma-associated MG compared with healthy controls (p < 0.01). The results of the present study demonstrate both anti-inflammatory and inflammatory cytokines are upregulated in MG, reflecting the importance of cytokine-mediated inflammation and its regulation in MG pathophysiology.
Collapse
|
16
|
Xie Y, Li HF, Jiang B, Li Y, Kaminski HJ, Kusner LL. Elevated plasma interleukin-17A in a subgroup of Myasthenia Gravis patients. Cytokine 2015; 78:44-6. [PMID: 26618234 DOI: 10.1016/j.cyto.2015.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/08/2015] [Accepted: 06/20/2015] [Indexed: 01/10/2023]
Abstract
To better define the role of IL-17A in myasthenia gravis (MG), we assessed plasma concentrations in 69 adult patients with MG prior to initiation of immunosuppression and monitored their clinical course for the subsequent 2years with quantitative MG scores (QMGS) and Osserman classification. IL-17A was higher among patients than healthy control subjects. Early-onset women without thymoma had greater elevations of IL-17A. Logistic regression analysis indicated that the absence of thymoma rather than women gender or early-onset was the significant determinant associated with IL-17A elevation. Elevated IL-17A levels were associated with more severe MG. In summary, IL-17A has role in the pathogenesis of a subgroup of patients with early-onset women with MG with greater disease severity who are most likely to have thymic hyperplasia. This subgroup may be a target for IL-17 treatments, which are under development.
Collapse
Affiliation(s)
- Yanchen Xie
- Department of Neurology, The George Washington University, Washington, DC, USA; Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hai-feng Li
- Myasthenia Gravis Center and Department of Neurology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, China.
| | - Bin Jiang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yao Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Henry J Kaminski
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA; Department of Neurology, The George Washington University, Washington, DC, USA.
| | - Linda L Kusner
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA; Department of Neurology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
17
|
TIPE2 Play a Negative Role in TLR4-Mediated Autoimmune T Helper 17 Cell Responses in Patients with Myasthenia Gravis. J Neuroimmune Pharmacol 2015; 10:635-44. [PMID: 26500105 DOI: 10.1007/s11481-015-9638-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/18/2015] [Indexed: 02/01/2023]
|
18
|
Xin N, Namaka MP, Dou C, Zhang Y. Exploring the role of interleukin-22 in neurological and autoimmune disorders. Int Immunopharmacol 2015; 28:1076-83. [PMID: 26311525 DOI: 10.1016/j.intimp.2015.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 cytokine family that has recently gained attention in regard to its recognized pathogenic role in neurological and autoimmune disorders. The pathological involvement of IL-22 has been linked to Th17 cells that are involved in its production. Its biological activity results from its ability to bind to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1) and IL-10R2. Emerging evidence has identified IL-22 involvement in neurological diseases and autoimmune disorders such as Guillain-Barré Syndrome (GBS), multiple sclerosis (MS), Alzheimer's disease (AD), encephalitis, inflammatory myopathies, myasthenia gravis (MG), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS), psoriasis and Crohn's disease (CD). However, the biological activity of IL-22 is variable resulting in protective or pathogenic effects in different disease states. As such, the development of therapeutic targeting strategies to modify the biological activity of IL-22 is being explored as a promising interventional approach to treat neurological and autoimmune diseases.
Collapse
Affiliation(s)
- Ning Xin
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province 215021, China
| | - Michael Peter Namaka
- College of Pharmacy and Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Changxin Dou
- Department of Neurology, Shouguang People's Hospital, Shouguang, Shandong, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
19
|
Zhang Y, Guo M, Xin N, Shao Z, Zhang X, Zhang Y, Chen J, Zheng S, Fu L, Wang Y, Zhou D, Chen H, Huang Y, Dong R, Xiao C, Liu Y, Geng D. Decreased microRNA miR-181c expression in peripheral blood mononuclear cells correlates with elevated serum levels of IL-7 and IL-17 in patients with myasthenia gravis. Clin Exp Med 2015; 16:413-21. [PMID: 25962782 DOI: 10.1007/s10238-015-0358-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/05/2015] [Indexed: 11/30/2022]
Abstract
miR-181c is a newly identified negative regulator of immune cell activation. In this study, we aimed to investigate the expression and functional role of miR-181c in myasthenia gravis (MG). miR-181c showed significant downregulation in peripheral blood mononuclear cells (PBMCs) from MG patients compared with healthy controls, with lower expression in generalized patients than in ocular ones. MG patients also had increased serum IL-7 and IL-17 levels. Additionally, serum IL-7 level presents a positive correlation with the serum IL-17 level. miR-181c levels were negatively correlated with serum levels of IL-7 and IL-17 in either generalized patients or ocular patients. A luciferase reporter assay revealed that miR-181c could directly bind to the 3'-UTR of interleukin-7. Forced expression of miR-181c led to decreased IL-7 and IL-17 release in cultured PBMCs, while depletion of miR-181c increased the secretion of these two proinflammatory cytokines. The results from our study suggested for the first time that miR-181c was able to negatively regulate the production of proinflammatory cytokines IL-7 and IL-17 in MG patients, and it is a novel potential therapeutic target for MG.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Mingfeng Guo
- Department of Emergency Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Ning Xin
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Zhen Shao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiuying Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yanyan Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jing Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shuangshuang Zheng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Linlin Fu
- Department of Pathogenic Biology and Lab of Infection and Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - YuZhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Dongmei Zhou
- Department of Pathogenic Biology and Lab of Infection and Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yan Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Ruiguo Dong
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Chenghua Xiao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yonghai Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
20
|
Motobayashi M, Inaba Y, Nishimura T, Kobayashi N, Nakazawa Y, Koike K. An increase in circulating B cell-activating factor in childhood-onset ocular myasthenia gravis. Pediatr Neurol 2015; 52:404-9. [PMID: 25661289 DOI: 10.1016/j.pediatrneurol.2014.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Myasthenia gravis is a B cell-mediated autoimmune disorder. The pathophysiology of childhood-onset ocular myasthenia gravis remains unclear. We investigated serum B cell-activating factor levels and other immunological parameters in child patients with ocular myasthenia gravis. METHODS Blood samples were obtained from 9 children with ocular myasthenia gravis and 20 age-matched controls. We assayed serum concentrations of B cell-activating factor, anti-acetylcholine receptor antibody titers, 7 types of cytokines (interleukins-2, -4, -6, -10, and -17A; interferon-γ; tumor necrosis factor-α) as well as the percentages of peripheral blood CD4+, CD8+, and CD19+ cells. RESULTS Serum B cell-activating factor levels were significantly higher before immunosuppressive therapy in patients with childhood-onset ocular myasthenia gravis than in controls and decreased after immunosuppressive therapy. A significant positive correlation was observed between serum B cell-activating factor levels and anti-acetylcholine receptor antibody titers in patients with myasthenia gravis. Serum B cell-activating factor concentrations did not correlate with the percentages of CD4+, CD8+, and CD19+ cells or the CD4+/CD8+ ratio. No significant differences were observed in the levels of the 7 different types of cytokines examined, including interleukin-17A, between preimmunosuppressive therapy myasthenia gravis patients and controls. CONCLUSIONS Circulating B cell-activating factor may play a key role in the pathophysiology of childhood-onset ocular myasthenia gravis.
Collapse
Affiliation(s)
- Mitsuo Motobayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Inaba
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Takafumi Nishimura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Norimoto Kobayashi
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
21
|
Uzawa A, Kawaguchi N, Himuro K, Kanai T, Kuwabara S. Serum cytokine and chemokine profiles in patients with myasthenia gravis. Clin Exp Immunol 2014; 176:232-7. [PMID: 24666229 DOI: 10.1111/cei.12272] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2014] [Indexed: 11/27/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune-mediated inflammatory disease of the neuromuscular junction. Previous studies of animal MG models have suggested important roles of cytokines in MG pathogenesis, but adequate studies on cytokines in human MG are lacking. Using a multiplex suspension array system, we measured the serum levels of 27 cytokines/chemokines in 47 anti-acetylcholine receptor antibody-positive patients with MG and 20 normal controls (NC) to investigate the contribution of cytokines/chemokines toward MG pathogenesis. Correlations between clinical parameters and cytokine/chemokine levels in patients with MG were also examined. The serum levels of interleukin (IL)-15 (mean ± standard deviation: 6·85 ± 6·97 pg/ml) and vascular endothelial growth factor (VEGF) (96·21 ± 71·60 pg/ml) significantly increased, whereas IL-4 levels (3·57 ± 0·86 pg/ml) decreased in patients with MG compared with NC (IL-15: 4·42 ± 1·55 pg/ml; VEGF: 63·51 ± 32·95 pg/ml; IL-4: 4·15 ± 0·81 pg/ml, P < 0·05). In addition, eight cytokines (IL-4, IL-8, IL-15, eotaxin, macrophage inflammatory protein-1α, macrophage inflammatory protein-1β, VEGF and IL-1b) were significantly changed among MG patients with thymoma, MG patients without thymoma and NC (P < 0·05). Some cytokines, such as IL-4, IL-15, and VEGF, may play roles in the pathogenesis of MG.
Collapse
Affiliation(s)
- A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | |
Collapse
|