1
|
Fenemor SP, Gill ND, Driller MW, Mills B, Sella F, Beaven CM. Small Performance Effects of a Practical Mixed-Methods Cooling Strategy in Elite Team Sport Athletes. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1162-1168. [PMID: 36167423 DOI: 10.1080/02701367.2022.2125158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Purpose: The ingestion of ice slurry and application of ice towels can elicit favorable physiological, perceptual, and performance benefits when used individually; however, the combined use and effectiveness of these practical cooling strategies have not been assessed using a sport-specific performance test, based on actual match demands, in an elite team sport context. Methods: Ten non-heat acclimated elite male rugby sevens athletes undertook two cycling heat response tests (HRT) designed to be specific to the demands of rugby sevens in hot conditions (35°C, 80% rH). In a crossover design, the HRTs were conducted with (COOLING) and without (HOT) the combined use of internal (ice slushy ingestion) and external (application of ice towels to the head, neck, and face) pre- and per-cooling strategies. Physiological, perceptual, and performance variables were monitored throughout each HRT. Results: COOLING resulted in reductions in mean tympanic temperature (-0.4 ± 0.2°C; d = 1.18); mean heart rate (-5 ± 8 bpm; d = 0.53); thermal discomfort (-0.5 ± 0.9 AU; d = 0.48); and thirst sensation (-1.0 ± 1.1 AU; d = 0.61) during the HRT. COOLING also resulted in a small increase in 4-min time trial power output (by 7 ± 33 W, ~3%; d = 0.35) compared to HOT. Discussion: A combination of internal and external pre- and per-cooling strategies can result in a range of small physiological, perceptual, and performance benefits during a rugby sevens specific HRT, compared to undertaking no cooling. Practitioners should include such strategies when performing in hot conditions.
Collapse
Affiliation(s)
- S P Fenemor
- University of Waikato Adams Centre for High Performance
- High Performance Sport New Zealand
| | - N D Gill
- University of Waikato Adams Centre for High Performance
- New Zealand Rugby Union
| | | | | | - F Sella
- University of Waikato Adams Centre for High Performance
| | - C M Beaven
- University of Waikato Adams Centre for High Performance
| |
Collapse
|
2
|
James C, Rees J, Chong H, Taylor L, Beaven CM, Henderson M, Baker JS. Blood Lactate Responses of Male and Female Players Across an International Rugby Sevens Tournament. Int J Sports Physiol Perform 2023; 18:927-936. [PMID: 37597843 DOI: 10.1123/ijspp.2023-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE This study investigated within- and between-matches blood lactate (La-) responses across an international Rugby Sevens tournament (5 matches over 2 d) in male and female players. METHODS Earlobe blood samples were taken from 25 professional players around matches: before warm-up (PRE), immediately upon finishing match participation (POST), and 30 minutes postmatch (30 min). RESULTS POST [La-] (mean [SD], range) for males was 10.3 (3.2; 2.9-20.2) mmol·L-1 and for females was 9.1 (2.3; 3.4-14.6) mmol·L-1. Linear mixed-effects models revealed a decrease in POST [La-] after match 5, compared to match 1. Increased PRE [La-] was found before match 2 (+0.8 [0.6-1.1] mmol·L-1), match 3 (+0.8 [0.5-1.1] mmol·L-1), and match 5 (+0.6 [0.4-0.9] mmol·L-1) compared to match 1 (all P < .001). The [La-] remained elevated at 30 min, compared to PRE (+1.7 [1.4-2.0] mmol·L-1, P < .001), with ∼20% of values persisting >4 mmol·L-1. Higher POST was observed in males compared to females (+1.6 [0.1-3.2] mmol·L-1, P = .042); however, no differences between sexes were found across 30 min or PRE [La-]. No [La-] differences between positions (backs and forwards) were identified. CONCLUSIONS Lactate concentrations above 10 mmol·L-1 are required to effectively simulate the anaerobic demands of international Rugby Sevens matches. Practitioners are advised to individualize anaerobic training prescription due to the substantial variability observed within positional groups. Additionally, improving athletes' metabolic recovery capacity through training, nutrition, and recovery interventions may enhance physical preparation for subsequent matches within a day, where incomplete lactate clearance was observed.
Collapse
Affiliation(s)
- Carl James
- Hong Kong Sports Institute (HKSI), Hong Kong,Hong Kong
| | - James Rees
- Hong Kong Rugby Union (HKRU), Hong Kong,China
| | - Henry Chong
- Hong Kong Sports Institute (HKSI), Hong Kong,Hong Kong
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, National Centre for Sport and Exercise Medicine (NCSEM), Loughborough,United Kingdom
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Broadway, NSW,Australia
| | | | - Mitch Henderson
- School of Sport, Exercise and Rehabilitation, Faculty of Health, University of Technology Sydney (UTS), Broadway, NSW,Australia
- Human Performance Research Centre, University of Technology Sydney (UTS), Broadway, NSW,Australia
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University (HKBU), Hong Kong,China
| |
Collapse
|
3
|
Chambers SN, Boyce GA, Martínez DE, Bongers CCWG, Keith L. The contribution of physical exertion to heat-related illness and death in the Arizona borderlands. Spat Spatiotemporal Epidemiol 2023; 46:100590. [PMID: 37500227 DOI: 10.1016/j.sste.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 07/29/2023]
Abstract
Recent studies and reports suggest an increased mortality rate of undocumented border crossers (UBCs) in Arizona is the result of heat extremes and climatic change. Conversely, others have shown that deaths have occurred in cooler environments than in previous years. We hypothesized that human locomotion plays a greater role in heat-related mortality and that such events are not simply the result of exposure. To test our hypothesis, we used a postmortem geographic application of the human heat balance equation for 2,746 UBC deaths between 1990 and 2022 and performed regression and cluster analyses to assess the impacts of ambient temperature and exertion. Results demonstrate exertion having greater explaining power, suggesting that heat-related mortality among UBCs is not simply a function of extreme temperatures, but more so a result of the required physical exertion. Additionally, the power of these variables is not static but changes with place, time, and policy.
Collapse
Affiliation(s)
- Samuel N Chambers
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson AZ, USA.
| | | | - Daniel E Martínez
- School of Sociology, College of Social and Behavioral Sciences, The University of Arizona, Tucson AZ, USA
| | - Coen C W G Bongers
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, The Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ladd Keith
- School of Landscape Architecture and Planning, The University of Arizona, Tucson AZ, USA
| |
Collapse
|
4
|
Fernández-Lázaro D, García JF, Corchete LA, Del Valle Soto M, Santamaría G, Seco-Calvo J. Is the Cooling Vest an Ergogenic Tool for Physically Active Individuals? Assessment of Perceptual Response, Thermo-Physiological Behavior, and Sports Performance: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2023; 10:bioengineering10020132. [PMID: 36829626 PMCID: PMC9952803 DOI: 10.3390/bioengineering10020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Exercise capacity is limited by environmental heat stress because thermoregulatory systems are altered and cannot prevent the elevation of body temperature due to a complex interplay of physiological, physical, and perceptual alterations. Cooling is an effective strategy to attenuate the temperature rise. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the PEDro scale for assessing methodological quality, we systematically reviewed studies indexed in Medline, Web of Science, EMBASE, Science Direct, Sportdiscus, and Scopus, to evaluate the effects of the cooling vest (CVs) on perceptual response, physiological behavior, and sports performance in adult physical activity practitioners under heat stress conditions. Among the 711 studies identified in the search, 10 studies for the systematic review and eight for the meta-analysis met the inclusion and exclusion criteria. Overall, the use of CVs showed improvements in certain sports performance indicators, being significant (p < 0.05) in test time and substantial in peak power that could be influenced directly by the significant reduction (p < 0.05) in skin temperature and indirectly by the significant improvement (p < 0.05) in thermal and exertional perceptual responses, without the involvement of core temperature. In conclusion, the use of CVs is a cooling technique that influences perceptual response, thermo-physiological behavior, and sports performance. However, further studies are needed to elucidate the relevance of its application to CVs.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Correspondence:
| | - Juan F. García
- Department of Mechanical, Informatics and Aerospatiale Engineering, University of Leon, 24071 Leon, Spain
| | | | - Miguel Del Valle Soto
- Department of Cellular Morphology and Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Gema Santamaría
- Department of Anatomy and Radiology, Faculty of Health Sciences, Campus of Soria, University of Valladolid, 42004 Soria, Spain
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), Campus de Vegazana, University of Leon, 24071 León, Spain
- Physiology Department, Faculty of Medicine, Basque Country University, 48900 Leioa, Spain
| |
Collapse
|
5
|
Jiang D, Yu Q, Liu M, Dai J. Effects of different external cooling placements prior to and during exercise on athletic performance in the heat: A systematic review and meta-analysis. Front Physiol 2023; 13:1091228. [PMID: 36703929 PMCID: PMC9871495 DOI: 10.3389/fphys.2022.1091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Nowadays, many high-profile international sport events are often held in warm or hot environments, hence, it is inevitable for these elite athletes to be prepared for the challenges from the heat. Owing to internal cooling may cause gastrointestinal discomfort to athletes, external cooling technique seems to be a more applicable method to deal with thermal stress. Central cooling mainly refers to head, face, neck and torso cooling, can help to reduce skin temperature and relieve thermal perception. Peripheral cooling mainly refers to four limbs cooling, can help to mitigate metabolic heat from muscular contrac to effectively prevent the accumulation of body heat. Hence, we performed a meta-analysis to assess the effectiveness of different external cooling placements on athletic performance in the heat Methods: A literatures search was conducted using Web of Science, MEDLINE and SPORTDiscus until September 2022. The quality and risk of bias in the studies were independently assessed by two researchers. Results: 1,430 articles were initially identified (Web of Science = 775; MEDLINE = 358; SPORTDiscus = 271; Additional records identified through other sources = 26), 60 articles (82 experiments) met the inclusion criteria and were included in the final analysis, with overall article quality being deemed moderate. Central cooling (SMD = 0.43, 95% CI 0.27 to 0.58, p < 0.001) was most effective in improving athletic performance in the heat, followed by central and peripheral cooling (SMD = 0.38, 95% CI 0.23 to 0.54, p < 0.001), AND peripheral cooling (SMD = 0.32, 95% CI 0.07 to 0.57, p = 0.013). For the cooling-promotion effects on different sports types, the ranking order in central cooling was ETE (exercise to exhaustion), TT (time-trial), EWT (exercise within the fixed time or sets), IS (intermittent sprint); the ranking order in peripheral cooling was EWT, TT, ETE and IS; the ranking order in central and peripheral cooling was ETE, IS, EWT and TT. Conclusion: Central cooling appears to be an more effective intervention to enhance performance in hot conditions through improvements of skin temperature and thermal sensation, compared to other external cooling strategies. The enhancement effects of peripheral cooling require sufficient re-warming, otherwise it will be trivial. Although, central and peripheral cooling seems to retain advantages from central cooling, as many factors may influence the effects of peripheral cooling to offset the positive effects from central cooling, the question about whether central and peripheral cooling method is better than an isolated cooling technique is still uncertain and needs more researchs to explore it.
Collapse
Affiliation(s)
- Dongting Jiang
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Qiuyu Yu
- Sports Coaching College, Beijing Sports University, Beijing, China
- Big Ball Sports Center, Hebei Provincial Sports Bureau, Shijiazhuang, China
| | - Meng Liu
- Sports Coaching College, Beijing Sports University, Beijing, China
| | - Jinjin Dai
- Sports Coaching College, Beijing Sports University, Beijing, China
| |
Collapse
|
6
|
Heydenreich J, Koehler K, Braun H, Grosshauser M, Heseker H, Koenig D, Lampen A, Mosler S, Niess A, Schek A, Carlsohn A. Effects of internal cooling on physical performance, physiological and perceptional parameters when exercising in the heat: A systematic review with meta-analyses. Front Physiol 2023; 14:1125969. [PMID: 37113693 PMCID: PMC10126464 DOI: 10.3389/fphys.2023.1125969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Background: An elevated core temperature (Tcore) increases the risk of performance impairments and heat-related illness. Internal cooling (IC) has the potential to lower Tcore when exercising in the heat. The aim of the review was to systematically analyze the effects of IC on performance, physiological, and perceptional parameters. Methods: A systematic literature search was performed in the PubMed database on 17 December 2021. Intervention studies were included assessing the effects of IC on performance, physiological, or perceptional outcomes. Data extraction and quality assessment were conducted for the included literature. The standardized mean differences (SMD) and 95% Confidence Intervals (CI) were calculated using the inverse-variance method and a random-effects model. Results: 47 intervention studies involving 486 active subjects (13.7% female; mean age 20-42 years) were included in the meta-analysis. IC resulted in significant positive effects on time to exhaustion [SMD (95% CI) 0.40 (0.13; 0.67), p < 0.01]. IC significantly reduced Tcore [-0.19 (22120.34; -0.05), p < 0.05], sweat rate [-0.20 (-0.34; -0.06), p < 0.01], thermal sensation [-0.17 (-0.33; -0.01), p < 0.05], whereas no effects were found on skin temperature, blood lactate, and thermal comfort (p > 0.05). IC resulted in a borderline significant reduction in time trial performance [0.31 (-0.60; -0.02), p = 0.06], heart rate [-0.13 (-0.27; 0.01), p = 0.06], rate of perceived exertion [-0.16 (-0.31; -0.00), p = 0.05] and borderline increased mean power output [0.22 (0.00; 0.44), p = 0.05]. Discussion: IC has the potential to affect endurance performance and selected physiological and perceptional parameters positively. However, its effectiveness depends on the method used and the time point of administration. Future research should confirm the laboratory-based results in the field setting and involve non-endurance activities and female athletes. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022336623.
Collapse
Affiliation(s)
- Juliane Heydenreich
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Institute of Sports Sciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
- *Correspondence: Juliane Heydenreich,
| | - Karsten Koehler
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Hans Braun
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Manfred Donike Institute for Doping Analysis, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | - Mareike Grosshauser
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Olympic Center Rhineland-Palatinate/Saarland, Saarbrücken, Germany
| | - Helmut Heseker
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Institute of Nutrition, Consumption and Health, University of Paderborn, Paderborn, Germany
| | - Daniel Koenig
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Division of Sports Medicine, Exercise Physiology and Prevention, Center for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Alfonso Lampen
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Risk Assessment Strategies, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Stephanie Mosler
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Olympic Center Stuttgart, Stuttgart, Germany
| | - Andreas Niess
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Alexandra Schek
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Editorial Team of the Journal Leistungssport, German Olympic Sports Confederation, Frankfurt, Germany
| | - Anja Carlsohn
- Working Group Sports Nutrition of German Nutrition Society, Bonn, Germany
- Department of Nutrition and Home Economics, University of Applied Science Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Roberts JD, Lillis J, Pinto JM, Willmott AGB, Gautam L, Davies C, López-Samanes Á, Del Coso J, Chichger H. The Impact of a Natural Olive-Derived Phytocomplex (OliPhenolia ®) on Exercise-Induced Oxidative Stress in Healthy Adults. Nutrients 2022; 14:5156. [PMID: 36501186 PMCID: PMC9737690 DOI: 10.3390/nu14235156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
The role of natural polyphenols in reducing oxidative stress and/or supporting antioxidant mechanisms, particularly relating to exercise, is of high interest. The aim of this study was to investigate OliPhenolia® (OliP), a biodynamic and organic olive fruit water phytocomplex, rich in hydroxytyrosol (HT), for the first time within an exercise domain. HT bioavailability from OliP was assessed in fifteen healthy volunteers in a randomized, double-blind, placebo controlled cross-over design (age: 30 ± 2 yrs; body mass: 76.7 ± 3.9 kg; height: 1.77 ± 0.02 m), followed by a separate randomized, double-blinded, cohort trial investigating the short-term impact of OliP consumption (2 × 28 mL∙d−1 of OliP or placebo (PL) for 16-days) on markers of oxidative stress in twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg; 1.76 ± 0.02 m). In response to a single 28 mL OliP bolus, plasma HT peaked at 1 h (38.31 ± 4.76 ng∙mL−1), remaining significantly elevated (p < 0.001) until 4 h. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and HT were assessed at rest and immediately following exercise (50 min at ~75% V˙O2max then 10 min intermittent efforts) and at 1 and 24 h post-exercise, before and after the 16-day supplementation protocol. Plasma HT under resting conditions was not detected pre-intervention, but increased to 6.3 ± 1.6 ng·mL−1 following OliP only (p < 0.001). OliP demonstrated modest antioxidant effects based on reduced SOD activity post-exercise (p = 0.016) and at 24 h (p ≤ 0.046), and increased GSH immediately post-exercise (p = 0.009) compared with PL. No differences were reported for MDA and CAT activity in response to the exercise protocol between conditions. The phenolic compounds within OliP, including HT, may have specific antioxidant benefits supporting acute exercise recovery. Further research is warranted to explore the impact of OliP following longer-term exercise training, and clinical domains pertinent to reduced oxidative stress.
Collapse
Affiliation(s)
- Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Joseph Lillis
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Jorge Marques Pinto
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Ashley G. B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Lata Gautam
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Christopher Davies
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Álvaro López-Samanes
- Exercise Physiology Group, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
| | - Havovi Chichger
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| |
Collapse
|
8
|
Wen M, Liu G, Li W, Xie T, Zhang Y, Qin F, Zhao J. Effects of mixed-cooling strategies on executive functions in simulated tennis in hot and humid conditions. Front Physiol 2022; 13:1008710. [PMID: 36388113 PMCID: PMC9663926 DOI: 10.3389/fphys.2022.1008710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
This study aimed to investigate the effects of mixed-cooling strategies, which combines external (cooling vest + neck cooled collar) and internal cooling (cold sports drink ingestion) on measures of executive function during simulated tennis in hot/humid conditions. In a counterbalanced design (randomised order), eight males undertook two trials [one with the mixed-cooling strategy, (MCOOL condition) and another without (CON condition)] in a climate chamber (36.5°C, 50% relative humidity). All subjects completed an intermittent treadmill protocol simulating a three-set tennis match with a 90-second break during odd-numbered games and 120-second breaks between sets, in accordance with the activity profile and International Tennis Federation rules. The mixed-cooling strategies were adopted before test and break time during the simulated tennis match. Stroop task, 2-back task, More-odd shifting task, gastrointestinal temperature (Tgi), skin temperature, blood lactic acid (BLA), heart rate, urine specific gravity (USG), sweat rate (SR), thermal sensation (TS) and perceived exertion (RPE) were measured. Results showed that the mean exercise time was longer in the MCOOL condition than in the CON condition. The SR was greater in CON trial compared with that in MCOOL trial. Results of two-way analysis of variance with repeated measures revealed that time×condition interactions were significant in BLA, Stroop response time, and switch cost of the more-odd shifting task. There were main effects of condition for Tgi, HR, TS, RPE, BLA, Stroop response time, and switch cost of the more-odd shifting task. In a hot/wet environment, pre- and intermittent mixed-cooling strategies can significantly improve exercise time and measures of executive function of tennis players in a simulated tennis match.
Collapse
Affiliation(s)
- Minglang Wen
- School of Physical Education, Jinan University, Guangzhou, China
- School of Economics, Jinan University, Guangzhou, China
| | - Guozheng Liu
- School of Physical Education, Jinan University, Guangzhou, China
| | - Wencan Li
- School of Physical Education, Jinan University, Guangzhou, China
| | - Tao Xie
- School of Physical Education, Jinan University, Guangzhou, China
| | - Yukun Zhang
- School of Physical Education, Jinan University, Guangzhou, China
| | - Fei Qin
- School of Physical Education, Jinan University, Guangzhou, China
- China Institute of Sport Science, Beijing, China
- Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, China
- *Correspondence: Fei Qin, ; Jiexiu Zhao,
| | - Jiexiu Zhao
- China Institute of Sport Science, Beijing, China
- *Correspondence: Fei Qin, ; Jiexiu Zhao,
| |
Collapse
|
9
|
Roriz M, Brito P, Teixeira FJ, Brito J, Teixeira VH. Performance effects of internal pre- and per-cooling across different exercise and environmental conditions: A systematic review. Front Nutr 2022; 9:959516. [PMID: 36337635 PMCID: PMC9632747 DOI: 10.3389/fnut.2022.959516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise in a hot and humid environment may endanger athlete's health and affect physical performance. This systematic review aimed to examine whether internal administration of ice, cold beverages or menthol solutions may be beneficial for physical performance when exercising in different environmental conditions and sports backgrounds. A systematic search was performed in PubMed, Web of Science, Scopus and SPORTDiscus databases, from inception to April 2022, to identify studies meeting the following inclusion criteria: healthy male and female physically active individuals or athletes (aged ≥18 years); an intervention consisting in the internal administration (i.e., ingestion or mouth rinse) of ice slush, ice slurry or crushed ice and/or cold beverages and/or menthol solutions before and/or during exercise; a randomized crossover design with a control or placebo condition; the report of at least one physical performance outcome; and to be written in English. Our search retrieved 2,714 articles in total; after selection, 43 studies were considered, including 472 participants, 408 men and 64 women, aged 18-42 years, with a VO2max ranging from 46.2 to 67.2 mL⋅kg-1⋅min-1. Average ambient temperature and relative humidity during the exercise tasks were 32.4 ± 3.5°C (ranging from 22°C to 38°C) and 50.8 ± 13.4% (varying from 20.0% to 80.0%), respectively. Across the 43 studies, 7 exclusively included a menthol solution mouth rinse, 30 exclusively involved ice slurry/ice slush/crushed ice/cold beverages intake, and 6 examined both the effect of thermal and non-thermal internal techniques in the same protocol. Rinsing a menthol solution (0.01%) improved physical performance during continuous endurance exercise in the heat. Conversely, the ingestion of ice or cold beverages did not seem to consistently increase performance, being more likely to improve performance in continuous endurance trials, especially when consumed during exercises. Co-administration of menthol with or within ice beverages seems to exert a synergistic effect by improving physical performance. Even in environmental conditions that are not extreme, internal cooling strategies may have an ergogenic effect. Further studies exploring both intermittent and outdoor exercise protocols, involving elite male and female athletes and performed under not extreme environmental conditions are warranted. Systematic review registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021268197], identifier [CRD42021268197].
Collapse
Affiliation(s)
- Maria Roriz
- Faculty of Nutrition and Food Sciences, University of Porto (FCNAUP), Porto, Portugal
- Futebol Clube do Porto, Porto, Portugal
| | - Pedro Brito
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, ISMAI, Maia, Portugal
| | - Filipe J. Teixeira
- Interdisciplinary Center for the Study of Human Performance (CIPER), Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz-Quebrada, Portugal
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, Barcarena, Portugal
- Bettery Lifelab, Bettery S.A., Lisbon, Portugal
| | - João Brito
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
| | - Vitor Hugo Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto (FCNAUP), Porto, Portugal
- Futebol Clube do Porto, Porto, Portugal
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
10
|
Kujawski S, Słomko J, Godlewska BR, Cudnoch-Jędrzejewska A, Murovska M, Newton JL, Sokołowski Ł, Zalewski P. Combination of whole body cryotherapy with static stretching exercises reduces fatigue and improves functioning of the autonomic nervous system in Chronic Fatigue Syndrome. J Transl Med 2022; 20:273. [PMID: 35715857 PMCID: PMC9204866 DOI: 10.1186/s12967-022-03460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the tolerability and effect of static stretching (SS) and whole body cryotherapy (WBC) upon fatigue, daytime sleepiness, cognitive functioning and objective and subjective autonomic nervous system functioning in those with Chronic Fatigue Syndrome (CFS) compared to a control population. METHODS Thirty-two CFS and eighteen healthy controls (HC) participated in 2 weeks of a SS + WBC programme. This programme was composed of five sessions per week, 10 sessions in total. RESULTS A significant decrease in fatigue was noted in the CFS group in response to SS + WBC. Some domains of cognitive functioning (speed of processing visual information and set-shifting) also improved in response to SS + WBC in both CFS and HC groups. Our study has confirmed that WBC is well tolerated by those with CFS and leads to symptomatic improvements associated with changes in cardiovascular and autonomic function. CONCLUSIONS Given the preliminary data showing the beneficial effect of cryotherapy, its relative ease of application, good tolerability, and proven safety, therapy with cold exposure appears to be an approach worth attention. Further studies of cryotherapy as a potential treatment in CFS is important in the light of the lack of effective therapeutic options for these common and often disabling symptoms.
Collapse
Affiliation(s)
- Sławomir Kujawski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, 85-077, Bydgoszcz, Poland.
| | - Joanna Słomko
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, 85-077, Bydgoszcz, Poland
| | | | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Warsaw Medical University, 1b Banacha Street, 02-097, Warsaw, Poland
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradinš University, Riga, 1067, Latvia
| | - Julia L Newton
- Population Health Sciences Institute, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Łukasz Sokołowski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, 85-077, Bydgoszcz, Poland
| | - Paweł Zalewski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Świętojańska 20, 85-077, Bydgoszcz, Poland.,Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Warsaw Medical University, 1b Banacha Street, 02-097, Warsaw, Poland
| |
Collapse
|
11
|
Bayne F, Racinais S, Mileva KN, Hunter S, Gaoua N. The Type of Per-Cooling Strategies Currently Employed by Competitive and Professional Cyclists-Triathletes During Training and Competition Are Condition (Dry vs. Humid) Dependant. Front Sports Act Living 2022; 4:845427. [PMID: 35694320 PMCID: PMC9174669 DOI: 10.3389/fspor.2022.845427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate cooling strategies employed by athletes (cyclists-triathletes) during training and competition in hot and dry (HD) and hot and humid (HH) conditions. Methods Thirty-five athletes completed an online questionnaire on the type, timing, and justification of cooling strategies employed during past training and/or competitions in HD and HH conditions. In addition, 3 athletes also completed a one-to-one follow-up interview. Results Comparisons between strategies employed in all conditions were based on N = 14 (40%). Cold-water pouring was the most employed (N = 4; 21%) strategy during training and/or competing in hot conditions. The timing of the strategies employed was based on pitstops only (N = 7; 50%). The justification for strategies employed was based on trial and error (N = 9, 42.85%: N = 10, 47.61%). All athletes rated strategies employed as 1 (“not effective for minimising performance impairments and heat-related illnesses”). Comparisons between HD and HH were based on N = 21 (60%), who employed different strategies based on condition. Cold-water ingestion was the most employed (N = 9, 43%) strategy in HD, whereas a combination of cold-water ingestion and pouring was the most employed (N = 9, 43%) strategy in HH. The timing of strategies employed in the HD split was pre-planned by distance but was modified based on how athletes felt during (N = 8, 38%), and pre-planned by distance and pit stops (N = 8, 38%). The timing of strategies employed in HH was pre-planned based on distance and how athletes felt during (N = 9, 42%). About 57% (N = 12) of the 60% (N = 21) perceived effectiveness in HD and HH as 3 (“Sometimes effective and sometimes not effective”), whereas 43% (N = 9) of the 60% (N = 21) perceived effectiveness in HD and HH as 4 (“Effective for minimising performance impairments”). Conclusion Cold-water ingestion is the preferred strategy by athletes in HD compared to a combination of cold-water ingestion and pouring in HH conditions. All strategies were pre-planned and trialled based on distance and how athletes felt during training and/or competition. These strategies were perceived as effective for minimising performance impairments, but not heat-related illnesses. Future studies should evaluate the effectiveness of these cooling strategies on performance and thermoregulatory responses in HD and HH conditions.
Collapse
Affiliation(s)
- Freya Bayne
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
- *Correspondence: Freya Bayne
| | | | - Katya N. Mileva
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Steve Hunter
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Nadia Gaoua
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
12
|
James CA, Willmott AG, Dhawan A, Stewart C, Gibson OR. Increased air temperature decreases high-speed, but not total distance, in international field hockey. Temperature (Austin) 2021; 9:357-372. [PMCID: PMC9629124 DOI: 10.1080/23328940.2021.1997535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study investigated the effect of heat stress on locomotor activity within international field hockey at team, positional and playing-quarter levels. Analysis was conducted on 71 matches played by the Malaysia national men’s team against 24 opponents. Fixtures were assigned to match conditions, based on air temperature [COOL (14 ± 3°C), WARM (24 ± 1°C), HOT (27 ± 1°C), or VHOT (32 ± 2°C), p < 0.001]. Relationships between locomotor metrics and air temperature (AIR), absolute and relative humidity, and wet bulb globe temperature (WBGT) were investigated further using correlation and regression analyses. Increased AIR and WBGT revealed similar correlations (p < 0.01) with intensity metrics; high-speed running (AIR r = −0.51, WBGT r = −0.45), average speed (AIR r = −0.48, WBGT r = −0.46), decelerations (AIR r = −0.41, WBGT r = −0.41), sprinting efforts (AIR r = −0.40, WBGT r = −0.36), and sprinting distance (AIR r = −0.37, WBGT r = −0.29). In comparison to COOL, HOT, and VHOT matches demonstrated reduced high-speed running intensity (−14–17%; p < 0.001), average speed (−5-6%; p < 0.001), sprinting efforts (−17%; p = 0.010) and decelerations per min (−12%; p = 0.008). Interactions were found between match conditions and playing quarter for average speed (+4-7%; p = 0.002) and sprinting distance (+16-36%; p < 0.001), both of which were higher in the fourth quarter in COOL versus WARM, HOT and VHOT. There was an interaction for “low-speed” (p < 0.001), but not for “high-speed” running (p = 0.076) demonstrating the modulating effect of air temperature (particularly >25°C) on pacing within international hockey. These are the first data demonstrating the effect of air temperature on locomotor activity within international men’s hockey, notably that increased air temperature impairs high-intensity activities by 5–15%. Higher air temperatures compromise high-speed running distances between matches in hockey.
Collapse
Affiliation(s)
- Carl A James
- Institut Sukan Negara (National Sports Institute), National Sports Complex, Kuala Lumpur, Malaysia
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Ashley G.B. Willmott
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | | | - Craig Stewart
- CS Performance, Clontarf Hockey Club, Dublin, Ireland
| | - Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
13
|
Walter E, W Watt P, Gibson OR, Wilmott AGB, Mitchell D, Moreton R, Maxwell NS. Exercise hyperthermia induces greater changes in gastrointestinal permeability than equivalent passive hyperthermia. Physiol Rep 2021; 9:e14945. [PMID: 34409760 PMCID: PMC8374382 DOI: 10.14814/phy2.14945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 01/09/2023] Open
Abstract
Hyperthermia and exertional heat illness increase gastrointestinal (GI) permeability, although whether the latter is only via hyperthermia is unclear. The aim of this pilot study was to determine whether different changes in GI permeability, characterized by an increased plasma lactulose:rhamnose concentration ratio ([L:R]), occurred in exercise hyperthermia in comparison to equivalent passive hyperthermia. Six healthy adult male participants (age 25 ± 5 years, mass 77.0 ± 6.7 kg, height 181 ± 6 cm, peak oxygen uptake [ V · O 2 peak ] 48 ± 8 ml.kg-1 .min-1 ) underwent exercise under hot conditions (Ex-Heat) and passive heating during hot water immersion (HWI). Heart rate (HR), rectal temperature (TCORE ), rating of perceived exertion (RPE), and whole-body sweat loss (WBSL) were recorded throughout the trials. The L:R ratio, peak HR, change in HR, and change in RPE were higher in Ex-Heat than HWI, despite no differences in trial duration, peak core temperature or WBSL. L:R was strongly correlated (p < 0.05) with HR peak (r = 0.626) and change in HR (r = 0.615) but no other variable. The greater L:R in Ex-Heat, despite equal TCORE responses to HWI, indicates that increased cardiovascular strain occurred during exercise, and exacerbates hyperthermia-induced GI permeability at the same absolute temperature.
Collapse
Affiliation(s)
- Edward Walter
- Department of Intensive CareRoyal Surrey County HospitalGuildfordUK
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| | - Peter W Watt
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER)Division of Sport, Health and Exercise SciencesCollege of Health, Medicine, and Life SciencesBrunel University LondonUxbridgeUK
| | - Ashley G. B. Wilmott
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
- Cambridge Centre for Sport and Exercise Sciences (CCSES)School of Psychology and Sport ScienceAnglia Ruskin UniversityCambridgeUK
| | - Dominic Mitchell
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| | - Robert Moreton
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| | - Neil S. Maxwell
- Environmental Extremes Lab, Sport and Exercise Science and Medicine Research and Enterprise GroupUniversity of BrightonEastbourneEast SussexUK
| |
Collapse
|
14
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Xu M, Wu Z, Dong Y, Qu C, Xu Y, Qin F, Wang Z, Nassis GP, Zhao J. A Mixed-Method Approach of Pre-Cooling Enhances High-Intensity Running Performance in the Heat. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:26-34. [PMID: 33707983 DOI: 10.52082/jssm.2021.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
We investigated whether single or combined methods of pre-cooling could affect high-intensity exercise performance in a hot environment. Seven male athletes were subjected to four experimental conditions for 30 min in a randomised order. The four experimental conditions were: 1) wearing a vest cooled to a temperature of 4 ℃ (Vest), 2) consuming a beverage cooled to a temperature of 4 ℃ (Beverage), 3) simultaneous usage of vest and consumption of beverage (Mix), and 4) the control trial without pre-cooling (CON). Following those experimental conditions, they exercised at a speed of 80% VO2max until exhaustion in the heat (38.1 ± 0.6 ℃, 55.3 ± 0.3% RH). Heart rate (HR), rectal temperature (Tcore), skin temperature (Tskin), sweat loss (SL), urine specific gravity (USG), levels of sodium (Na+) and potassium (K+), rating of perceived exertion (RPE), thermal sensation (TS), and levels of blood lactic acid ([Bla]) were monitored. Performance was improved using the mixed pre-cooling strategy (648.43 ± 77.53 s, p = 0.016) compared to CON (509.14 ± 54.57 s). Tcore after pre-cooling was not different (Mix: 37.01 ± 0.27 ℃, Vest: 37.19 ± 0.33 ℃, Beverage: 37.03 ± 0.35 ℃) in all cooling conditions compared to those of CON (37.31 ±0.29 ℃). A similar Tcore values was achieved at exhaustion in all trials (from 38.10 ℃ to 39.00 ℃). No difference in the level of USG was observed between the conditions. Our findings suggest that pre-cooling with a combination of cold vest usage and cold fluid intake can improve performance in the heat.
Collapse
Affiliation(s)
- Minxiao Xu
- School of Kinesiology, Shanghai University of Sports, Shanghai, China.,Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Zhaozhao Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.,Physical Education Department, Northwest University, Xi'an, China
| | - Yanan Dong
- Beijing Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.,School of Sport Science, Beijing Sport University, Beijing, China
| | - Yaoduo Xu
- Physical Education Department, Northwestern Poly-technical University, Xi'an, China
| | - Fei Qin
- Exercise Biological Center, China Institute of Sport Science, Beijing, China.,School of Physical Education, Jinan University, Guangzhou, China
| | - Zhongwei Wang
- School of Kinesiology, Shanghai University of Sports, Shanghai, China.,Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - George P Nassis
- Physical Education Department-(CEDU), United Arab Emirates University, Abu Dhabi, United Arab Emirates.,Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Jiexiu Zhao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
16
|
Waldock KAM, Hayes M, Watt PW, Maxwell NS. The elderly's physiological and perceptual responses to cooling during simulated activities of daily living in UK summer climatic conditions. Public Health 2021; 193:1-9. [PMID: 33662760 DOI: 10.1016/j.puhe.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/16/2020] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The elderly are the most at-risk population for heat-related illness and mortality during the periods of hot weather. However, evidence-based elderly-specific cooling strategies to prevent heat-illness are limited. The aim of this investigation was to quantify the elderly's physiological and perceptual responses to cooling through cold water ingestion (COLD) or an L-menthol mouth rinse (MENT) during simulated activities of daily living in UK summer climatic conditions. STUDY DESIGN Randomised, controlled repeated measures research design. METHODS A total of ten participants (men n = 7, women n = 3: age; 69 ± 3 yrs, height; 168 ± 10 cm, body mass; 68.88 ± 13.72 kg) completed one preliminary and three experimental trials; control (CON), COLD and MENT. Experimental trials consisted of 40 min rest followed by 30 min of cycling exercise at 6 metabolic equivalents and a 6-min walk test (6MWT), within a 35 °C, 50% relative humidity environment. Experimental interventions (every 10 min); cold water (4 °C) ingestion (total of 1.5L) or menthol (5 ml mouth swill for 5 s, menthol concentration of 0.01%). RESULTS Peak rectal temperature (Tre) was significantly (P < 0.05) lower in COLD compared with CON (-0.34 ± 0.16 °C) and MENT (-0.36 ± 0.20 °C). End exercise heart rate (HR) decreased in COLD compared with CON (-7 ± 9 b min-1) and MENT (-6 ± 7 b min-1). There was no difference in end exercise thermal sensation (TS) (CON; 6.1 ± 0.4, COLD; 6.0 ± 0.4, MENT; 6.4 ± 0.6) or thermal comfort (TC) (CON; 4 ± 1, COLD; 4 ± 1, MENT; 4 ± 1) between trials. The participants walked significantly further during the COLD 6MWT compared with CON (40 m ± 40 m) and MENT (40 m ± 30 m). There was reduced physiological strain in the COLD 6MWT compared with CON (Tre; -0.21 ± 0.24 °C, HR; -7 ± 8 b min-1) and MENT (Tre; -0.23 ± 0.24 °C, HR; -4 ± 7 b min-1). CONCLUSION The elderly have reduced physiological strain (Tre and HR) during activities of daily living and a 6MWT in hot UK climatic conditions, when they drink cold water. Furthermore, the elderly's perception (TS and TC) of the hot environment did not differ from CON at the end of exercise with COLD or MENT interventions. Menthol provided neither perceptual benefit to exercise in the heat nor functional gain. The TS data indicate that elderly may be at increased risk of heat illness, due to not feeling hot and uncomfortable enough to implement physiological strain reducing strategies such as cold-water ingestion.
Collapse
Affiliation(s)
- K A M Waldock
- Army Health and Performance Research, Andover, United Kingdom; Environmental Extremes Laboratory, University of Brighton, Eastbourne, United Kingdom.
| | - M Hayes
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, United Kingdom
| | - P W Watt
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, United Kingdom
| | - N S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, United Kingdom
| |
Collapse
|
17
|
Keller S, Kohne S, Bloch W, Schumann M. Comparison of two different cooling systems in alleviating thermal and physiological strain during prolonged exercise in the heat. ERGONOMICS 2021; 64:129-138. [PMID: 32893741 DOI: 10.1080/00140139.2020.1818835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This study compared the efficacy of an ice vest comprising of water (WATER) or a water-carbon (CARBON) emulsion on thermophysiological responses to strenuous exercise in the heat. Twelve male cyclists completed three 50-minute constant workload trials (55% of peak power output, ambient temperature 30.4 ± 0.6°C) with WATER, CARBON, and without ice vest (CONTROL), respectively. The increase in core body temperature (Tcore) was lower in WATER at 40 (-0.49 ± 0.34 °C) and 50 minutes (-0.48 ± 0.48 °C) and in CARBON at 30 (-0.41 ± 0.48 °C), 40 (-0.54 ± 0.51 °C), and 50 minutes (-0.67 ± 0.62 °C) as compared to CONTROL (p < 0.05, ES > 0.8). While heart rate and blood lactate kinetics did not differ between the conditions, statistical main effects in favour of both WATER and CARBON were found for thermal sensation (condition p < 0.001 and interaction p < 0.01) and rating of perceived exertion (condition p < 0.05). Per-cooling with CARBON and WATER similarly reduced Tcore but not physiological strain during prolonged exercise in the heat. Practitioner Summary: Exercise in the heat is characterised by increases in thermophysiological strain. Both per-cooling with a novel carbon-based and a conventional water-based ice vest were shown to reduce core temperature significantly. However, due to its lower mass, the carbon-based system may be recommended especially for weight-bearing sports.
Collapse
Affiliation(s)
- Sebastian Keller
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Simon Kohne
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Moritz Schumann
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
18
|
Nakamura D, Muraishi K, Hasegawa H, Yasumatsu M, Takahashi H. Effect of a cooling strategy combining forearm water immersion and a low dose of ice slurry ingestion on physiological response and subsequent exercise performance in the heat. J Therm Biol 2020; 89:102530. [DOI: 10.1016/j.jtherbio.2020.102530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
|
19
|
Douzi W, Dupuy O, Theurot D, Smolander J, Dugué B. Per-Cooling (Using Cooling Systems during Physical Exercise) Enhances Physical and Cognitive Performances in Hot Environments. A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1031. [PMID: 32041228 PMCID: PMC7036802 DOI: 10.3390/ijerph17031031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
There are many important sport events that are organized in environments with a very hot ambient temperature (Summer Olympics, FIFA World Cup, Tour de France, etc.) and in hot locations (e.g., Qatar). Additionally, in the context of global warming and heat wave periods, athletes are often subjected to hot ambient temperatures. It is known that exercising in the heat induces disturbances that may provoke premature fatigue and negatively affects overall performance in both endurance and high intensity exercises. Deterioration in several cognitive functions may also occur, and individuals may be at risk for heat illnesses. To train, perform, work and recover and in a safe and effective way, cooling strategies have been proposed and have been routinely applied before, during and after exercise. However, there is a limited understanding of the influences of per-cooling on performance, and it is the subject of the present review. This work examines the influences of per-cooling of different areas of the body on performance in terms of intense short-term exercises ("anaerobic" exercises), endurance exercises ("aerobic" exercises), and cognitive functioning and provides detailed strategies that can be applied when individuals train and/or perform in high ambient temperatures.
Collapse
Affiliation(s)
| | | | | | | | - Benoit Dugué
- University of Poitiers, Laboratoire Mobilité Vieillissement Exercice (MOVE)-EA6314, Faculty of Sport Sciences, 8 Allée Jean Monnet, 86000 Poitiers, France; (W.D.); (O.D.); (D.T.); (J.S.)
| |
Collapse
|
20
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
21
|
Alhadad SB, Tan PMS, Lee JKW. Efficacy of Heat Mitigation Strategies on Core Temperature and Endurance Exercise: A Meta-Analysis. Front Physiol 2019; 10:71. [PMID: 30842739 PMCID: PMC6391927 DOI: 10.3389/fphys.2019.00071] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/21/2019] [Indexed: 11/26/2022] Open
Abstract
Background: A majority of high profile international sporting events, including the coming 2020 Tokyo Olympics, are held in warm and humid conditions. When exercising in the heat, the rapid rise of body core temperature (Tc) often results in an impairment of exercise capacity and performance. As such, heat mitigation strategies such as aerobic fitness (AF), heat acclimation/acclimatization (HA), pre-exercise cooling (PC) and fluid ingestion (FI) can be introduced to counteract the debilitating effects of heat strain. We performed a meta-analysis to evaluate the effectiveness of these mitigation strategies using magnitude-based inferences. Methods: A computer-based literature search was performed up to 24 July 2018 using the electronic databases: PubMed, SPORTDiscus and Google Scholar. After applying a set of inclusion and exclusion criteria, a total of 118 studies were selected for evaluation. Each study was assessed according to the intervention's ability to lower Tc before exercise, attenuate the rise of Tc during exercise, extend Tc at the end of exercise and improve endurance. Weighted averages of Hedges' g were calculated for each strategy. Results: PC (g = 1.01) was most effective in lowering Tc before exercise, followed by HA (g = 0.72), AF (g = 0.65), and FI (g = 0.11). FI (g = 0.70) was most effective in attenuating the rate of rise of Tc, followed by HA (g = 0.35), AF (g = −0.03) and PC (g = −0.46). In extending Tc at the end of exercise, AF (g = 1.11) was most influential, followed by HA (g = −0.28), PC (g = −0.29) and FI (g = −0.50). In combination, AF (g = 0.45) was most effective at favorably altering Tc, followed by HA (g = 0.42), PC (g = 0.11) and FI (g = 0.09). AF (1.01) was also found to be most effective in improving endurance, followed by HA (0.19), FI (−0.16) and PC (−0.20). Conclusion: AF was found to be the most effective in terms of a strategy's ability to favorably alter Tc, followed by HA, PC and lastly, FI. Interestingly, a similar ranking was observed in improving endurance, with AF being the most effective, followed by HA, FI, and PC. Knowledge gained from this meta-analysis will be useful in allowing athletes, coaches and sport scientists to make informed decisions when employing heat mitigation strategies during competitions in hot environments.
Collapse
Affiliation(s)
- Sharifah Badriyah Alhadad
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Pearl M S Tan
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Jason K W Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
James CA, Richardson AJ, Watt PW, Willmott AGB, Gibson OR, Maxwell NS. Short-Term Heat Acclimation and Precooling, Independently and Combined, Improve 5-km Time Trial Performance in the Heat. J Strength Cond Res 2018; 32:1366-1375. [PMID: 28486332 DOI: 10.1519/jsc.0000000000001979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
James, CA, Richardson, AJ, Watt, PW, Willmott, AGB, Gibson, OR, and Maxwell, NS. Short-term heat acclimation and precooling, independently and combined, improve 5-km time trial performance in the heat. J Strength Cond Res 32(5): 1366-1375, 2018-Following heat acclimation (HA), endurance running performance remains impaired in hot vs. temperate conditions. Combining HA with precooling (PC) demonstrates no additive benefit in intermittent sprint, or continuous cycling exercise protocols, during which heat strain may be less severe compared to endurance running. This study investigated the effect of short-term HA (STHA) combined with mixed methods PC, on endurance running performance and directly compared PC and HA. Nine amateur trained runners completed 5-km treadmill time trials (TTs) in the heat (32° C, 60% relative humidity) under 4 conditions; no intervention (CON), PC, short-term HA (5 days-HA) and STHA with PC (HA + PC). Mean (±SD) performance times were; CON 1,476 (173) seconds, PC 1,421 (146) seconds, HA 1,378 (116) seconds and HA + PC 1,373 (121) seconds. This equated to the following improvements versus CON; PC -3.7%, HA -6.6% and HA + PC -7.0%. Statistical differences were only observed between HA and CON (p = 0.004, d = 0.68, 95% CI [-0.27 to 1.63]) however, similar effect sizes were observed for HA + PC vs. CON (d = 0.70, 95% CI [-0.25 to 1.65]), with smaller effects between PC vs. CON (d = 0.34, 95% CI [-0.59 to 1.27]), HA vs. PC (d = 0.33, 95% CI [-0.60 to 1.26]) and HA + PC vs. PC (d = 0.36, 95% CI [-0.57 to 1.29]). Pilot testing revealed a TT typical error of 16 seconds (1.2%). Precooling offered no further benefit to performance in the acclimated individual, despite modest alleviation of physiological strain. Maintenance of running speed in HA + PC, despite reduced physiological strain, may indicate an inappropriate pacing strategy therefore, further familiarization is recommended to optimize a combined strategy. Finally, these data indicate HA, achieved through cycle training, yields a larger ergogenic effect than PC on 5-km running performance in the heat, although PC remains beneficial when HA is not possible.
Collapse
Affiliation(s)
- Carl A James
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom.,National Sports Institute, Kompleks Sukan Negara, Kuala Lumpur, Malaysia
| | - Alan J Richardson
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | - Peter W Watt
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | - Ashley G B Willmott
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | - Oliver R Gibson
- Center for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, London, United Kingdom
| | - Neil S Maxwell
- Environmental Extremes Laboratory, Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| |
Collapse
|
23
|
Watkins ER, Hayes M, Watt P, Richardson AJ. Practical pre-cooling methods for occupational heat exposure. APPLIED ERGONOMICS 2018; 70:26-33. [PMID: 29866317 DOI: 10.1016/j.apergo.2018.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/12/2018] [Accepted: 01/27/2018] [Indexed: 05/04/2023]
Abstract
This study aimed to identify a pre-cooling method to reduce the physiological and perceptual strain, and the inflammatory response, experienced by individuals who wear personal protective equipment. Eleven males (age 20 ± 2 years, weight 75.8 ± 9.3 kg, height 177.1 ± 5.0 cm) completed 15min pre-cooling (phase change vest [PCV], forearm cooling [ARM], ice slurry consumption [ICE], or a no cooling control [CON]) and 45min intermittent walk (4 km h-1, 1% gradient) in 49.5 ± 0.6 °C and 15.4 ± 1.0% RH, whilst wearing firefighter ensemble. ICE reduced rectal temperature (Tre) before heat exposure compared to CON (ΔTre: 0.24 ± 0.09 °C, p < 0.001, d = 0.38) and during exercise compared to CON, ARM, and PCV (p = 0.026, ηp2 = 0.145). Thermal sensation was reduced in ICE and ARM vs. CON (p = 0.018, ηp2 = 0.150). Interleukin-6 was not affected by pre-cooling (p = 0.648, ηp2 = 0.032). It is recommended that those wearing protective equipment consume 500 ml of ice slurry 15min prior to work to reduce physiological and perceptual strain.
Collapse
Affiliation(s)
- Emily R Watkins
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin Laboratories, Eastbourne, UK.
| | - Mark Hayes
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin Laboratories, Eastbourne, UK
| | - Peter Watt
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin Laboratories, Eastbourne, UK
| | - Alan J Richardson
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin Laboratories, Eastbourne, UK
| |
Collapse
|
24
|
Maley MJ, Minett GM, Bach AJE, Zietek SA, Stewart KL, Stewart IB. Internal and external cooling methods and their effect on body temperature, thermal perception and dexterity. PLoS One 2018; 13:e0191416. [PMID: 29357373 PMCID: PMC5777660 DOI: 10.1371/journal.pone.0191416] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/04/2018] [Indexed: 12/19/2022] Open
Abstract
Objective The present study aimed to compare a range of cooling methods possibly utilised by occupational workers, focusing on their effect on body temperature, perception and manual dexterity. Methods Ten male participants completed eight trials involving 30 min of seated rest followed by 30 min of cooling or control of no cooling (CON) (34°C, 58% relative humidity). The cooling methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14°C (CV14), evaporative cooling vest (CVEV), arm immersion in 10°C water (AI), portable water-perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately before and after cooling, participants were assessed for fine (Purdue pegboard task) and gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as thermal sensation and comfort, were monitored throughout. Results Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All externally applied cooling methods reduced skin temperature (P<0.05), though CV0 resulted in the lowest skin temperature versus other cooling methods. Participants felt cooler with CV0, CV14, WPS, AI and SL (P<0.05). AI significantly impaired Purdue pegboard performance (P = 0.001), but did not affect grip or pinch strength (P>0.05). Conclusion The present study observed that ice ingestion or ice applied to the skin produced the greatest effect on rectal and skin temperature, respectively. AI should not be utilised if workers require subsequent fine manual dexterity. These results will help inform future studies investigating appropriate pre-cooling methods for the occupational worker.
Collapse
Affiliation(s)
- Matthew J. Maley
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
- * E-mail:
| | - Geoffrey M. Minett
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Aaron J. E. Bach
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Stephanie A. Zietek
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kelly L. Stewart
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | - Ian B. Stewart
- Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
25
|
Imai D, Takeda R, Suzuki A, Naghavi N, Yamashina Y, Ota A, Matsumura S, Yokoyama H, Miyagawa T, Okazaki K. Effects of skin surface cooling before exercise on lactate accumulation in cool environment. Eur J Appl Physiol 2018; 118:551-562. [PMID: 29299665 DOI: 10.1007/s00421-017-3797-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE We assessed whether plasma lactate accumulation increased and the lactate threshold (LT) declined when the skin temperature was lowered by whole body skin surface cooling before exercise in cool, but not temperate, conditions, and whether the lowered LT was associated with sympathetic activation or lowered plasma volume (PV) by cold-induced diuresis. METHODS Ten healthy subjects performed a graded maximal cycling exercise after pre-conditioning under three different conditions for 60 min. Ambient temperature (using an artificial climatic chamber) and water temperature in a water-perfusion suit controlled at 25 and 34 °C in temperate-neutral (Temp-Neut); 25 and 10 °C in temperate-cool (Temp-Cool); and at 10 and 10 °C in cool-cool (Cool-Cool) conditions, respectively. Esophageal (Tes) and skin temperatures were measured; plasma lactate ([Lac]p) and noradrenaline concentrations ([Norad]p), and relative change in PV (%ΔPV) were determined before and after pre-conditioning and during exercise, and LT was determined. RESULTS After pre-conditioning, Tes was not different among trials, whereas the mean skin temperature was lower in Cool-Cool and Temp-Cool than in Temp-Neut (P < 0.001). During exercise, [Lac]p and [Norad]p were higher (P = 0.009 and P < 0.001, respectively) and LT was lower (P = 0.013) in Cool-Cool than in the other trials. The %ΔPV was not different among trials. LT was correlated with [Norad]p during exercise (R = 0.50, P = 0.005). CONCLUSIONS Whole body skin surface cooling before exercise increases lactate accumulation and decreases LT with sympathetic activation when exercise is performed in a cool, but not in a temperate, environment.
Collapse
Affiliation(s)
- Daiki Imai
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.,Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Ryosuke Takeda
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Akina Suzuki
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Nooshin Naghavi
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Yoshihiro Yamashina
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Akemi Ota
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Shinya Matsumura
- Research Area of Sports Physiology, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Hisayo Yokoyama
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.,Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Toshiaki Miyagawa
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.,Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Kazunobu Okazaki
- Research Center for Urban Health and Sports, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan. .,Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.
| |
Collapse
|
26
|
Choo HC, Nosaka K, Peiffer JJ, Ihsan M, Abbiss CR. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis. Eur J Sport Sci 2017; 18:170-181. [DOI: 10.1080/17461391.2017.1405077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hui C. Choo
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, Australia
| | - Jeremiah J. Peiffer
- School of Psychology and Exercise Science, Murdoch University, 90 South St, Murdoch, WA, Australia
| | - Mohammed Ihsan
- Athlete Health and Performance Research Centre, ASPETAR – Qatar Orthopaedic and Sports Medicine Hospital, P.O. Box 29222, Doha, Qatar
| | - Chris R. Abbiss
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, Australia
| |
Collapse
|
27
|
Takeshima K, Onitsuka S, Xinyan Z, Hasegawa H. Effect of the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. J Therm Biol 2017; 65:26-31. [PMID: 28343572 DOI: 10.1016/j.jtherbio.2017.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/30/2022]
Abstract
It has been demonstrated that precooling with ice slurry ingestion enhances endurance exercise capacity in the heat. However, no studies have yet evaluated the optimal timing of ice slurry ingestion for precooling. This study aimed to investigate the effects of varying the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Ten active male participants completed 3 experimental cycling trials to exhaustion at 55% peak power output (PPO) after 15min of warm-up at 30% PPO at 30°C and 80% relative humidity. Three experimental conditions were set: no ice slurry ingestion (CON), pre-warm-up ice slurry ingestion (-1°C; 7.5gkg-1) (PRE), and post-warm-up ice slurry ingestion (POST). Rectal and mean skin temperatures at the beginning of exercise in the POST condition (37.1±0.2°C, 33.8±0.9°C, respectively) were lower than those in the CON (37.5±0.3°C; P<0.001, 34.8±0.8°C; P<0.01, respectively) and PRE (37.4±0.2°C; P<0.01, 34.6±0.7°C; P<0.01, respectively) conditions. These reductions increased heat storage capacity and resulted in improved exercise capacity in the POST condition (60.2±8.7min) compared to that in the CON (52.0±11.9min; effect size [ES]=0.78) and PRE (56.9±10.4min; ES=0.34) conditions. Ice slurry ingestion after warm-up effectively reduced both rectal and skin temperatures and increased cycling time to exhaustion in a warm environment. Timing ice slurry ingestion to occur after warm-up may be effective for precooling in a warm environment.
Collapse
Affiliation(s)
- Keisuke Takeshima
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Japan
| | - Sumire Onitsuka
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Japan
| | - Zheng Xinyan
- Department of Sport Science, Shanghai University of Sport, Shanghai, China
| | - Hiroshi Hasegawa
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Japan.
| |
Collapse
|
28
|
Bongers CCWG, Hopman MTE, Eijsvogels TMH. Cooling interventions for athletes: An overview of effectiveness, physiological mechanisms, and practical considerations. Temperature (Austin) 2017; 4:60-78. [PMID: 28349095 PMCID: PMC5356217 DOI: 10.1080/23328940.2016.1277003] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 02/08/2023] Open
Abstract
Exercise-induced increases in core body temperature could negative impact performance and may lead to development of heat-related illnesses. The use of cooling techniques prior (pre-cooling), during (per-cooling) or directly after (post-cooling) exercise may limit the increase in core body temperature and therefore improve exercise performance. The aim of the present review is to provide a comprehensive overview of current scientific knowledge in the field of pre-cooling, per-cooling and post-cooling. Based on existing studies, we will discuss 1) the effectiveness of cooling interventions, 2) the underlying physiological mechanisms and 3) practical considerations regarding the use of different cooling techniques. Furthermore, we tried to identify the optimal cooling technique and compared whether cooling-induced performance benefits are different between cool, moderate and hot ambient conditions. This article provides researchers, physicians, athletes and coaches with important information regarding the implementation of cooling techniques to maintain exercise performance and to successfully compete in thermally stressful conditions.
Collapse
Affiliation(s)
- Coen C W G Bongers
- Radboud Institute of Health Sciences, Radboud university medical center, Department of Physiology , Nijmegen, The Netherlands
| | - Maria T E Hopman
- Radboud Institute of Health Sciences, Radboud university medical center, Department of Physiology , Nijmegen, The Netherlands
| | - Thijs M H Eijsvogels
- Radboud Institute of Health Sciences, Radboud university medical center, Department of Physiology, Nijmegen, The Netherlands; Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
29
|
James CA, Willmott AGB, Richardson AJ, Watt PW, Maxwell NS. Ischaemic preconditioning does not alter the determinants of endurance running performance in the heat. Eur J Appl Physiol 2016; 116:1735-45. [PMID: 27406142 DOI: 10.1007/s00421-016-3430-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE Ischaemic preconditioning (IP) has been shown to be ergogenic for endurance performance in normothermic conditions and alleviate physiological strain under hypoxia, potentially through haemodynamic and/or metabolic mechanisms. Exertional hyperthermia is characterised by competition for blood flow between the muscles and skin, an enhanced metabolic strain and impaired endurance performance. This study investigated the effect of IP on the determinants of endurance performance, through an incremental exercise test in the heat. METHOD Eleven males completed two graded exercise tests in the heat (32 °C, 62 % RH) until volitional exhaustion, preceded by IP (4 × 5 min 220 mmHg bilateral upper leg occlusion) or a control (CON) condition (4 × 5-min 50 mmHg bilateral). RESULT IP did not improve running speeds at fixed blood lactate concentrations of 2 and 4 mMol L(-1) (p = 0.828), or affect blood glucose concentration throughout the trial [mean (±SD); CON 5.03 (0.94) mMol L(-1), IP 5.47 (1.38) mMol L(-1), p = 0.260). There was no difference in [Formula: see text]O2max [CON 55.5 (3.7) mL kg(-1) min(-1), IP 56.0 (2.6) mL kg(-1) min(-1), p = 0.436], average running economy [CON 222.3 (18.0) mL kg(-1) km(-1), IP 218.9 (16.5) mL kg(-1) km(-1), p = 0.125], or total running time during graded exercise [CON 347 (42) s, IP 379 (68) s, p = 0.166]. The IP procedure did not change muscle temperature [CON ∆ = 0.55 (0.57) °C, IP ∆ = 0.78 (0.85) °C, p = 0.568], but did reduce T CORE during exercise (~-0.1 °C, p = 0.001). CONCLUSION The novel application of IP prior to exercise in the heat does not enhance the determinants of endurance performance. For events where IP appears ergogenic, muscle warming strategies are unnecessary as IP does not influence deep muscle temperature.
Collapse
Affiliation(s)
- Carl A James
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin Laboratories, Denton Road, Eastbourne, BN20 7SN, UK.
| | - Ashley G B Willmott
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin Laboratories, Denton Road, Eastbourne, BN20 7SN, UK
| | - Alan J Richardson
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin Laboratories, Denton Road, Eastbourne, BN20 7SN, UK
| | - Peter W Watt
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin Laboratories, Denton Road, Eastbourne, BN20 7SN, UK
| | - Neil S Maxwell
- Environmental Extremes Laboratory, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Welkin Laboratories, Denton Road, Eastbourne, BN20 7SN, UK
| |
Collapse
|
30
|
Naito T, Ogaki T. Pre-cooling with intermittent ice ingestion lowers the core temperature in a hot environment as compared with the ingestion of a single bolus. J Therm Biol 2016; 59:13-7. [DOI: 10.1016/j.jtherbio.2016.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
|
31
|
Lee JK, Kenefick RW, Cheuvront SN. Novel Cooling Strategies for Military Training and Operations. J Strength Cond Res 2015; 29 Suppl 11:S77-81. [DOI: 10.1519/jsc.0000000000001086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|