1
|
Doneddu A, Roberto S, Guicciardi M, Pazzona R, Manca A, Monni A, Fanni M, Leban B, Ghiani G, Spranger MD, Mulliri G, Crisafulli A. Hemodynamics and cerebral oxygenation during acute exercise in moderate normobaric hypoxia and with concurrent cognitive task in young healthy males. Appl Physiol Nutr Metab 2024; 49:1573-1584. [PMID: 39088843 DOI: 10.1139/apnm-2023-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
The present investigation aimed to study the cardiovascular responses and the cerebral oxygenation (Cox) during exercise in acute hypoxia and with contemporary mental stress. Fifteen physically active, healthy males (age 29.0 ± 5.9 years) completed a cardiopulmonary test on a cycle ergometer to determine the workload at their gas exchange threshold (GET). On a separate day, participants performed two randomly assigned exercise tests pedaling for 6 min at a workload corresponding to 80% of the GET: (1) during normoxia (NORMO), and (2) during acute, normobaric hypoxia at 13.5% inspired oxygen (HYPO). During the last 3 min of the exercise, they also performed a mental task (MT). Hemodynamics were assessed with impedance cardiography, and peripheral arterial oxygen saturation and Cox were continuously measured by near-infrared spectroscopy. The main results were that both in NORMO and HYPO conditions, the MT caused a significant increase in the heart rate and ventricular filling rate. Moreover, MT significantly reduced (74.8 ± 5.5 vs. 62.0 ± 5.2 A.U.) Cox, while the reaction time (RT) increased (813.3 ± 110.2 vs. 868.2 ± 118.1 ms) during the HYPO test without affecting the correctness of the answers. We conclude that in young, healthy males, adding an MT during mild intensity exercise in both normoxia and acute moderate (normobaric) hypoxia induces a similar hemodynamic response. However, MT and exercise in HYPO cause a decrease in Cox and an impairment in RT.
Collapse
Affiliation(s)
- Azzurra Doneddu
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
- International PhD in Innovation Sciences and Technologies, University of Cagliari, Italy
| | - Silvana Roberto
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Marco Guicciardi
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Riccardo Pazzona
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Andrea Manca
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Alessandra Monni
- Department of Education, Psychology and Philosophy, Faculty of Humanities, University of Cagliari, Italy
| | - Massimo Fanni
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
- International PhD in Innovation Sciences and Technologies, University of Cagliari, Italy
| | - Bruno Leban
- Department of Mechanical, Chemical and Material Engineering, Faculty of Engineering and Architecture, University of Cagliari, Italy
| | - Giovanna Ghiani
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Gabriele Mulliri
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, University of Cagliari, Italy
- International PhD in Innovation Sciences and Technologies, University of Cagliari, Italy
| |
Collapse
|
2
|
Titz A, Schneider S, Mueller J, Mayer L, Lichtblau M, Ulrich S. Symposium review: high altitude travel with pulmonary vascular disease. J Physiol 2024; 602:5505-5513. [PMID: 38780974 DOI: 10.1113/jp284585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension are the main precapillary forms of pulmonary hypertension (PH) summarized as pulmonary vascular diseases (PVD). PVDs are characterized by exertional dyspnoea and oxygen desaturation, and reduced quality of life and survival. Medical therapies improve life expectancy and physical performance of PVD patients, of whom many wish to participate in professional work and recreational activities including traveling to high altitude. The exposure to the hypobaric hypoxic environment of mountain regions incurs the risk of high altitude adverse events (AEHA) due to severe hypoxaemia exacerbating symptoms and further increase in pulmonary artery pressure, which may lead to right heart decompensation. Recent prospective and randomized trials show that altitude-induced hypoxaemia, pulmonary haemodynamic changes and impairment of exercise performance in PVD patients are in the range found in healthy people. The vast majority of optimally treated stable PVD patients who do not require long-term oxygen therapy at low altitude can tolerate short-term exposure to moderate altitudes up to 2500 m. PVD patients that reveal persistent severe resting hypoxaemia (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ <80% for >30 min) at 2500 m respond well to supplemental oxygen therapy. Although there are no accurate predictors for AEHA, PVD patients with unfavourable risk profiles at low altitude, such as higher WHO functional class, lower exercise capacity with more pronounced exercise-induced desaturation and more severely impaired haemodynamics, are at increased risk of AEHA. Therefore, doctors with experience in PVD and high-altitude medicine should counsel PVD patients before any high-altitude sojourn. This review aims to summarize recent literature and clinical recommendations about PVD patients travelling to high altitude.
Collapse
Affiliation(s)
- Anna Titz
- University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | | | | | - Laura Mayer
- University Hospital of Zurich, Zurich, Switzerland
| | | | - Silvia Ulrich
- University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Titz A, Hoyos R, Ulrich S. Pulmonary vascular diseases at high altitude - is it safe to live in the mountains? Curr Opin Pulm Med 2024; 30:459-463. [PMID: 39036990 PMCID: PMC11343446 DOI: 10.1097/mcp.0000000000001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
PURPOSE OF REVIEW This review addresses the concern of the health effects associated with high-altitude living and chronic hypoxia with a focus on pulmonary hypertension. With an increasing global population residing at high altitudes, understanding these effects is crucial for public health interventions and clinical management. RECENT FINDINGS Recent literature on the long-term effects of high-altitude residence and chronic hypoxia is comprehensively summarized. Key themes include the mechanisms of hypoxic pulmonary vasoconstriction, the development of pulmonary hypertension, and challenges in distinguishing altitude-related pulmonary hypertension and classical pulmonary vascular diseases, as found at a low altitude. SUMMARY The findings emphasize the need for research in high-altitude communities to unravel the risks of pulmonary hypertension and pulmonary vascular diseases. Clinically, early and tailored management for symptomatic individuals residing at high altitudes are crucial, as well as access to advanced therapies as proposed by guidelines for pulmonary vascular disease. Moreover, identifying gaps in knowledge underscores the necessity for continued research to improve understanding and clinical outcomes in high-altitude pulmonary vascular diseases.
Collapse
Affiliation(s)
| | | | - Silvia Ulrich
- University Hospital of Zurich
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Taboni A, Fagoni N, Fontolliet T, Vinetti G, Ferretti G. Baroreflex dynamics during the rest to exercise transient in acute normobaric hypoxia in humans. Eur J Appl Physiol 2024; 124:2765-2775. [PMID: 38656378 PMCID: PMC11365845 DOI: 10.1007/s00421-024-05485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE We hypothesised that during a rest-to-exercise transient in hypoxia (H), compared to normoxia (N), (i) the initial baroreflex sensitivity (BRS) decrease would be slower and (ii) the fast heart rate (HR) and cardiac output (CO) response would have smaller amplitude (A1) due to lower vagal activity in H than N. METHODS Ten participants performed three rest-to-50 W exercise transients on a cycle-ergometer in N (ambient air) and three in H (inspired fraction of O2 = 0.11). R-to-R interval (RRi, by electrocardiography) and blood pressure profile (by photo-plethysmography) were recorded non-invasively. Analysis of the latter provided mean arterial pressure (MAP) and stroke volume (SV). CO = HR·SV. BRS was calculated by modified sequence method. RESULTS Upon exercise onset in N, MAP fell to a minimum (MAPmin) then recovered. BRS decreased immediately from 14.7 ± 3.6 at rest to 7.0 ± 3.0 ms mmHg-1 at 50 W (p < 0.01). The first BRS sequence detected at 50 W was 8.9 ± 4.8 ms mmHg-1 (p < 0.05 vs. rest). In H, MAP showed several oscillations until reaching a new steady state. BRS decreased rapidly from 10.6 ± 2.8 at rest to 2.9 ± 1.5 ms mmHg-1 at 50 W (p < 0.01), as the first BRS sequence at 50 W was 5.8 ± 2.6 ms mmHg-1 (p < 0.01 vs. rest). CO-A1 was 2.96 ± 1.51 and 2.31 ± 0.94 l min-1 in N and H, respectively (p = 0.06). HR-A1 was 7.7 ± 4.6 and 7.1 ± 5.9 min-1 in N and H, respectively (p = 0.81). CONCLUSION The immediate BRS decrease in H, coupled with similar rapid HR and CO responses, is compatible with a withdrawal of residual vagal activity in H associated with increased sympathetic drive.
Collapse
Affiliation(s)
- Anna Taboni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy.
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland.
| | - Nazzareno Fagoni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland
| | - Timothée Fontolliet
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland
| | - Giovanni Vinetti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
- Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergencies, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Zhang H, Zhang Y, Wang X, Liu J, Zhang W. Effects of different nitric oxide synthases on pulmonary and systemic hemodynamics in hypoxic stress rat model. Animal Model Exp Med 2024. [PMID: 38888011 DOI: 10.1002/ame2.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Under hypoxia, exaggerated compensatory responses may lead to acute mountain sickness. The excessive vasodilatory effect of nitric oxide (NO) can lower the hypoxic pulmonary vasoconstriction (HPV) and peripheral blood pressure. While NO is catalyzed by various nitric oxide synthase (NOS) isoforms, the regulatory roles of these types in the hemodynamics of pulmonary and systemic circulation in living hypoxic animals remain unclear. Therefore, this study aims to investigate the regulatory effects of different NOS isoforms on pulmonary and systemic circulation in hypoxic rats by employing selective NOS inhibitors and continuously monitoring hemodynamic parameters of both pulmonary and systemic circulation. METHODS Forty healthy male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group (NG-nitro-D-arginine methyl ester, D-NAME), L-NAME group (non-selective NOS inhibitor, NG-nitro-L-arginine methyl ester), AG group (inducible NOS inhibitor group, aminoguanidine), and 7-NI group (neurological NOS inhibitor, 7-nitroindazole). Hemodynamic parameters of rats were monitored for 10 min after inhibitor administration and 5 min after induction of hypoxia [15% O2, 2200 m a. sl., 582 mmHg (76.5 kPa), Xining, China] using the real-time dynamic monitoring model for pulmonary and systemic circulation hemodynamics in vivo. Serum NO concentrations and blood gas analysis were measured. RESULTS Under normoxia, mean arterial pressure and total peripheral vascular resistance were increased, and ascending aortic blood flow and serum NO concentration were decreased in the L-NAME and AG groups. During hypoxia, pulmonary arterial pressure and pulmonary vascular resistance were significantly increased in the L-NAME and AG groups. CONCLUSIONS This compensatory mechanism activated by inducible NOS and endothelial NOS effectively counteracts the pulmonary hemodynamic changes induced by hypoxic stress. It plays a crucial role in alleviating hypoxia-induced pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Huan Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Zhang
- Department of Basic Medicine, Qinghai University, Xining, Qinghai, China
| | - Xiaojun Wang
- Department of Basic Medicine, Qinghai University, Xining, Qinghai, China
| | - Jie Liu
- Department of Pathology, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai, China
- Department of Basic Medicine, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
6
|
Kell DB, Khan MA, Kane B, Lip GYH, Pretorius E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. J Pers Med 2024; 14:170. [PMID: 38392604 PMCID: PMC10890060 DOI: 10.3390/jpm14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, 'fibrinaloid' microclots. We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body's exaggerated 'physiological' response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term 'fatigue'. Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Muhammed Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester M23 9LT, UK;
| | - Binita Kane
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Manchester University Foundation Trust and School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
7
|
Chen Y, Zhang X, Ye Q, Zhang X, Cao N, Li SY, Yu J, Zhao ST, Zhang J, Xu XM, Shi YK, Yang LX. Machine learning-based prediction model for myocardial ischemia under high altitude exposure: a cohort study. Sci Rep 2024; 14:686. [PMID: 38182722 PMCID: PMC10770400 DOI: 10.1038/s41598-024-51202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
High altitude exposure increases the risk of myocardial ischemia (MI) and subsequent cardiovascular death. Machine learning techniques have been used to develop cardiovascular disease prediction models, but no reports exist for high altitude induced myocardial ischemia. Our objective was to establish a machine learning-based MI prediction model and identify key risk factors. Using a prospective cohort study, a predictive model was developed and validated for high-altitude MI. We consolidated the health examination and self-reported electronic questionnaire data (collected between January and June 2022 in 920th Joint Logistic Support Force Hospital of china) of soldiers undergoing high-altitude training, along with the health examination and second self-reported electronic questionnaire data (collected between December 2022 and January 2023) subsequent to their completion on the plateau, into a unified dataset. Participants were subsequently allocated to either the training or test dataset in a 3:1 ratio using random assignment. A predictive model based on clinical features, physical examination, and laboratory results was designed using the training dataset, and the model's performance was evaluated using the area under the receiver operating characteristic curve score (AUC) in the test dataset. Using the training dataset (n = 2141), we developed a myocardial ischemia prediction model with high accuracy (AUC = 0.86) when validated on the test dataset (n = 714). The model was based on five laboratory results: Eosinophils percentage (Eos.Per), Globulin (G), Ca, Glucose (GLU), and Aspartate aminotransferase (AST). Our concise and accurate high-altitude myocardial ischemia incidence prediction model, based on five laboratory results, may be used to identify risks in advance and help individuals and groups prepare before entering high-altitude areas. Further external validation, including female and different age groups, is necessary.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Xin Zhang
- Department of Pulmonary and Critical Care Medicine, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Qing Ye
- Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Zhang
- Department of Radiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Ning Cao
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Shao-Ying Li
- Department of Pulmonary and Critical Care Medicine, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Jie Yu
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Sheng-Tao Zhao
- Department of Pulmonary and Critical Care Medicine, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Juan Zhang
- Department of Pulmonary and Critical Care Medicine, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Xin-Ming Xu
- Department of Quality Control, 920th Hospital of Joint Logistics Support Force, PLA, No. 212 Daguan Rd, Kunming, 650032, Yunnan, China.
| | - Yan-Kun Shi
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China.
| | - Li-Xia Yang
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China.
| |
Collapse
|
8
|
Das A, Azarudheen S, Chandrasekaran B, Fernandes S, Davis F. The plausible effects of wearing face masks on sports performance - A scoping review. Sci Sports 2023; 38:S0765-1597(23)00133-8. [PMID: 38620146 PMCID: PMC10300654 DOI: 10.1016/j.scispo.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 12/29/2022] [Indexed: 04/17/2024]
Abstract
Objectives The objectives of this scoping review are to discuss, firstly, the positive aspects of wearing face masks during training (such as a barrier to COVID-19 transmission, air pollutant exposure, and adding load on respiratory resistance flow); secondly, the negative aspects (adverse effects on body temperature and hypoxia risks); and thirdly, the training responses of wearing face masks on aerobic and anaerobic performance. News Besides social distancing and hand hygiene, wearing a face mask is proposed to be the prime advocacy for virus containment. During the period of high risk of contamination, the return to sport guidelines proposed by international and national sport federations included wearing face masks during training sessions. However, it is necessary to discuss the pros and cons of wearing face masks during exercise. Prospects Although it was essential to wear a face mask during exercise or sport-specific training, there is conflicting evidence on the implications of the use of face masks on physical, physiological as well as psychological well-being or performance. Based on the conflicting empirical findings and anecdotal evidence, certain recommendations have been made for adequate use of face masks during exercise; both to break the chain of transmission and prevent the physiological compromise expected from wearing face masks during exercise. The present review can help stakeholders balance sport guidelines in the event of a respiratory virus pandemic with athlete safety. Conclusion Conflicting evidence of mechanistic links between the dose of exercise and the possible adverse effects associated with exercising with face masks is available. Adequately powered studies with strong methodological quality on appropriate selection of masks and usage based on the intensity, duration, and type of sport, age, and gender is needed now for the stakeholders to make informed decisions with respect to exercising with face masks.
Collapse
Affiliation(s)
- A Das
- Department of Sports Science and Yoga, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math, Howrah, West Bengal, India
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - S Azarudheen
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Center for Sports Science, Medicine and Research, Manipal Academy of Higher Education, Manipal, India
| | - B Chandrasekaran
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Center for Sports Science, Medicine and Research, Manipal Academy of Higher Education, Manipal, India
| | - S Fernandes
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Center for Sports Science, Medicine and Research, Manipal Academy of Higher Education, Manipal, India
| | - F Davis
- Department of Exercise and Sports Sciences, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
- Center for Sports Science, Medicine and Research, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
Samaja M, Ottolenghi S. The Oxygen Cascade from Atmosphere to Mitochondria as a Tool to Understand the (Mal)adaptation to Hypoxia. Int J Mol Sci 2023; 24:ijms24043670. [PMID: 36835089 PMCID: PMC9960749 DOI: 10.3390/ijms24043670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypoxia is a life-threatening challenge for about 1% of the world population, as well as a contributor to high morbidity and mortality scores in patients affected by various cardiopulmonary, hematological, and circulatory diseases. However, the adaptation to hypoxia represents a failure for a relevant portion of the cases as the pathways of potential adaptation often conflict with well-being and generate diseases that in certain areas of the world still afflict up to one-third of the populations living at altitude. To help understand the mechanisms of adaptation and maladaptation, this review examines the various steps of the oxygen cascade from the atmosphere to the mitochondria distinguishing the patterns related to physiological (i.e., due to altitude) and pathological (i.e., due to a pre-existing disease) hypoxia. The aim is to assess the ability of humans to adapt to hypoxia in a multidisciplinary approach that correlates the function of genes, molecules, and cells with the physiologic and pathological outcomes. We conclude that, in most cases, it is not hypoxia by itself that generates diseases, but rather the attempts to adapt to the hypoxia condition. This underlies the paradigm shift that when adaptation to hypoxia becomes excessive, it translates into maladaptation.
Collapse
Affiliation(s)
- Michele Samaja
- MAGI GROUP, San Felice del Benaco, 25010 Brescia, Italy
- Correspondence:
| | - Sara Ottolenghi
- School of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, Italy
| |
Collapse
|
10
|
Theunissen S, Balestra C, Bolognési S, Borgers G, Vissenaeken D, Obeid G, Germonpré P, Honoré PM, De Bels D. Effects of Acute Hypobaric Hypoxia Exposure on Cardiovascular Function in Unacclimatized Healthy Subjects: A "Rapid Ascent" Hypobaric Chamber Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095394. [PMID: 35564787 PMCID: PMC9102089 DOI: 10.3390/ijerph19095394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Background: This study aimed to observe the effects of a fast acute ascent to simulated high altitudes on cardiovascular function both in the main arteries and in peripheral circulation. Methods: We examined 17 healthy volunteers, between 18 and 50 years old, at sea level, at 3842 m of hypobaric hypoxia and after return to sea level. Cardiac output (CO) was measured with Doppler transthoracic echocardiography. Oxygen delivery was estimated as the product of CO and peripheral oxygen saturation (SpO2). The brachial artery’s flow-mediated dilation (FMD) was measured with the ultrasound method. Post-occlusion reactive hyperemia (PORH) was assessed by digital plethysmography. Results: During altitude stay, peripheral oxygen saturation decreased (84.9 ± 4.2% of pre-ascent values; p < 0.001). None of the volunteers presented any hypoxia-related symptoms. Nevertheless, an increase in cardiac output (143.2 ± 36.2% of pre-ascent values, p < 0.001) and oxygen delivery index (120.6 ± 28.4% of pre-ascent values; p > 0.05) was observed. FMD decreased (97.3 ± 4.5% of pre-ascent values; p < 0.05) and PORH did not change throughout the whole experiment. Τhe observed changes disappeared after return to sea level, and normoxia re-ensued. Conclusions: Acute exposure to hypobaric hypoxia resulted in decreased oxygen saturation and increased compensatory heart rate, cardiac output and oxygen delivery. Pre-occlusion vascular diameters increase probably due to the reduction in systemic vascular resistance preventing flow-mediated dilation from increasing. Mean Arterial Pressure possibly decrease for the same reason without altering post-occlusive reactive hyperemia throughout the whole experiment, which shows that compensation mechanisms that increase oxygen delivery are effective.
Collapse
Affiliation(s)
- Sigrid Theunissen
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium;
- Correspondence: (S.T.); (C.B.)
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium;
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Correspondence: (S.T.); (C.B.)
| | - Sébastien Bolognési
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium;
| | - Guy Borgers
- Hypobaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium; (G.B.); (D.V.)
| | - Dirk Vissenaeken
- Hypobaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium; (G.B.); (D.V.)
| | - Georges Obeid
- Military Hospital Queen Elizabeth, 1120 Brussels, Belgium; (G.O.); (P.G.)
| | - Peter Germonpré
- Military Hospital Queen Elizabeth, 1120 Brussels, Belgium; (G.O.); (P.G.)
| | - Patrick M. Honoré
- Department of Intensive Care Medicine, CHU-Brugmann, 1020 Brussels, Belgium; (P.M.H.); (D.D.B.)
| | - David De Bels
- Department of Intensive Care Medicine, CHU-Brugmann, 1020 Brussels, Belgium; (P.M.H.); (D.D.B.)
| |
Collapse
|
11
|
Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084558. [PMID: 35457425 PMCID: PMC9027900 DOI: 10.3390/ijerph19084558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/02/2023]
Abstract
Hemodynamic changes during exercise in acute hypoxia (AH) have not been completely elucidated. The present study aimed to investigate hemodynamics during an acute bout of mild, dynamic exercise during moderate normobaric AH. Twenty-two physically active, healthy males (average age; range 23–40 years) completed a cardiopulmonary test on a cycle ergometer to determine their maximum workload (Wmax). On separate days, participants performed two randomly assigned exercise tests (three minutes pedaling at 30% of Wmax): (1) during normoxia (NORMO), and (2) during normobaric AH at 13.5% inspired oxygen (HYPO). Hemodynamics were assessed with impedance cardiography, and peripheral arterial oxygen saturation (SatO2) and cerebral oxygenation (Cox) were measured by near-infrared spectroscopy. Hemodynamic responses (heart rate, stroke volume, cardiac output, mean arterial blood pressure, ventricular emptying rate, and ventricular filling rate) were not any different between NORMO and HYPO. However, the HYPO test significantly reduced both SatO2 (96.6 ± 3.3 vs. 83.0 ± 4.5%) and Cox (71.0 ± 6.6 vs. 62.8 ± 7.4 A.U.) when compared to the NORMO test. We conclude that an acute bout of mild exercise during acute moderate normobaric hypoxia does not induce significant changes in hemodynamics, although it can cause significant reductions in SatO2 and Cox.
Collapse
|
12
|
Finn HT, Bogdanovski O, Hudson AL, McCaughey EJ, Crawford MR, Taylor JL, Butler JE, Gandevia SC. The effect of acute intermittent hypoxia on human limb motoneurone output. Exp Physiol 2022; 107:615-630. [PMID: 35338753 DOI: 10.1113/ep090099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does a single session of repeated bouts of acute intermittent hypoxic breathing enhance the motoneuronal output of the limb muscles of healthy able-bodied participants? What is the main finding and its importance? Compared to breathing room air, there were some increases in motoneuronal output following acute intermittent hypoxia, but the increases were variable across participants, in time after the intervention and depended on which neurophysiological measure was checked. ABSTRACT Acute intermittent hypoxia (AIH) induces persistent increases in output from rat phrenic motoneurones. Studies in people with spinal cord injury suggest AIH improves limb performance, perhaps via postsynaptic changes at cortico-motoneuronal synapses. We assessed whether limb motoneurone output in response to reflex and descending synaptic activation is facilitated after one session of AIH in healthy able-bodied volunteers. Fourteen participants completed two experimental days, either AIH or a sham intervention (randomised crossover design). We measured H-reflex recruitment curves and homosynaptic post-activation depression (HPAD) of the H reflex in soleus, and motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) and their recruitment curves, in first dorsal interosseous. All measurements were performed at rest and occurred at baseline, 0, 20, 40, and 60 minutes post-intervention. The intervention was 30 minutes of either normoxia (sham, FiO2 ≈ 0.21) or AIH (alternate 1-minute hypoxia [FiO2 ≈ 0.09], 1-minute normoxia). After AIH the H-reflex recruitment curve shifted leftward. Lower stimulation intensities were needed to evoke 5%, 50%, and 99% of the maximal H reflex at 40 and 60 minutes after AIH (P<0.04). The maximal H reflex, recruitment slope and HPAD, were unchanged after AIH. MEPs evoked by constant intensity TMS were larger 40 minutes after AIH (P = 0.027). There was no change in MEP recruitment or the maximal MEP. In conclusion, some measures of the evoked responses from limb motoneurones increased after a single AIH session, but only at discrete time points. It is unclear to what extent these changes alter functional performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Harrison T Finn
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| | - Oliver Bogdanovski
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anna L Hudson
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Euan J McCaughey
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Janet L Taylor
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,Edith Cowan University, Perth, WA, 6027, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Joyce W, Wang T. Regulation of heart rate in vertebrates during hypoxia: A comparative overview. Acta Physiol (Oxf) 2022; 234:e13779. [PMID: 34995393 DOI: 10.1111/apha.13779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022]
Abstract
Acute exposure to low oxygen (hypoxia) places conflicting demands on the heart. Whilst an increase in heart rate (tachycardia) may compensate systemic oxygen delivery as arterial oxygenation falls, the heart itself is an energetically expensive organ that may benefit from slowing (bradycardia) to reduce work when oxygen is limited. Both strategies are apparent in vertebrates, with tetrapods (mammals, birds, reptiles, and amphibians) classically exhibiting hypoxic tachycardia and fishes displaying characteristic hypoxic bradycardia. With a richer understanding of the ontogeny and evolution of the responses, however, we see similarities in the underlying mechanisms between vertebrate groups. For example, in adult mammals, primary bradycardia results from the hypoxic stimulation of carotid body chemoreceptors that are overwhelmed by mechano-sensory feedback from the lung associated with hyperpnoea. Fish-like bradycardia prevails in the mammalian foetus (which, at this stage, is incapable of pulmonary ventilation), and in fish and foetus alike, the bradycardia ensues despite an elevation of circulating catecholamines. In both cases, the reduced heart rate may primarily serve to protect the heart. Thus, the comparative perspective offers fundamental insight into how and why different vertebrates regulate heart rate in different ways during periods of hypoxia.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology—Zoophysiology Aarhus University Aarhus C Denmark
| | - Tobias Wang
- Department of Biology—Zoophysiology Aarhus University Aarhus C Denmark
| |
Collapse
|
14
|
Wang H, Sun B, Li X, Wang Y, Yang Z. Clinical analysis of severe COVID-19 patients. Technol Health Care 2022; 30:225-234. [PMID: 35124599 PMCID: PMC9028659 DOI: 10.3233/thc-228021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND: Patients with unexplained pneumonia appeared in Wuhan, Hubei Province at the end of 2019. OBJECTIVE: To analyze the clinical data of patients with severe COVID-19. METHODS: Medical records of 28 severe patients admitted to the intensive care unit of Wuhan Xinzhou District People’s Hospital were collected from January 31 to March 17. RESULTS: The mortality rate of severe patients in our study was 39.3%. There were statistically significant differences in age, admission systolic blood pressure, lymphocyte count, albumin, total bilirubin, and lactate dehydrogenase between the death group and the survival group (P< 0.05). There were statistically significant differences in APACHE II, CURB-65, SOFA, respiratory frequency, systolic pressure, platelet, procalcitonin, albumin, creatinine, creatine kinase isoenzyme, lactate dehydrogenase, chloride ion, prothrombin time, international normalized ratio, arterial partial pressure of oxygen, and FiO2 at ICU between the death group and the survival group (P< 0.05). CONCLUSIONS: Fever and cough are the main symptoms, which is useful for predicting the prognosis to dynamically measure the APACHE II, CURB-65, SOFA, respiratory frequency, lymphocyte count, platelet, lactate dehydrogenase, and coagulation tests. The drugs that protect the liver and heart may improve the survival rate of patients with severe COVID-19.
Collapse
Affiliation(s)
- Hao Wang
- Intensive Care Unit, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Bin Sun
- Intensive Care Unit, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Xiayuan Li
- Intensive Care Unit, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Yun Wang
- Digestive System Department, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Zhengping Yang
- Intensive Care Unit, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| |
Collapse
|
15
|
Webb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC. Influence of High Hemoglobin-Oxygen Affinity on Humans During Hypoxia. Front Physiol 2022; 12:763933. [PMID: 35095551 PMCID: PMC8795792 DOI: 10.3389/fphys.2021.763933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen A. Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Chad C. Wiggins,
| |
Collapse
|
16
|
Sex Differences in Orthostatic Tolerance Are Mainly Explained by Blood Volume and Oxygen Carrying Capacity. Crit Care Explor 2022; 4:e0608. [PMID: 35018347 PMCID: PMC8735745 DOI: 10.1097/cce.0000000000000608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Supplemental Digital Content is available in the text. The reduced orthostatic tolerance (OT) that is characteristic of the female sex may be explained by multiple phenotypic differences between sexes. This study aimed to elucidate the mechanistic role of blood volume (BV) and oxygen carrying capacity on sex differences in OT.
Collapse
|
17
|
Pühringer R, Gatterer H, Berger M, Said M, Faulhaber M, Burtscher M. Does Moderate Altitude Affect VO 2max in Acclimatized Mountain Guides? High Alt Med Biol 2021; 23:37-42. [PMID: 34939827 DOI: 10.1089/ham.2021.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pühringer, Reinhard, Hannes Gatterer, Martin Berger, Michael Said, Martin Faulhaber, and Martin Burtscher. Does moderate altitude affect VO2max in acclimatized mountain guides? High Alt Med Biol 00:000-000, 2021. Background: Altitude exposure reduces maximal oxygen uptake (VO2max). Usually, the reduction is not restored with acclimatization (at least at altitudes above 2,500 m) and is more pronounced in highly trained athletes compared to nonathletes. It still remains to be elucidated whether these also apply for well-acclimatized individuals (i.e., mountain guides) acutely exposed to moderate altitude (i.e., 2,000 m). Methods: A total of 128 acclimatized male mountain guides of the Austrian armed forces (42.2 ± 7.0 years, 177.8 ± 5.6 cm, 77.2 ± 7.0 kg) of different fitness levels performed 2 incremental cycle ergometer tests 1 week apart, one at low (600 m) and one at moderate altitude (2,000 m). Oxygen uptake, heart rate (HR), and lactate concentration were measured during the tests. Results: In acclimatized mountain guides, lower baseline VO2max levels were associated with better preservation of VO2max at moderate altitude compared to higher levels. At moderate altitude, physiological responses (HR and blood lactate at 100 W) at a submaximal exercise intensity of 100 W remained unchanged or were even slightly reduced in both groups. Conclusions: Long-term acclimatization to moderate altitude may prevent the VO2max decline at a moderate altitude of 2,000 m particularly in subjects with lower VO2max levels, that is, below the 80th percentile (for age and sex). In people with higher fitness levels, VO2max may still be negatively affected. These results are of practical relevance, for example, for workers, athletes, ski and mountain guides, military staff, or rescue staff who regularly or continuously have to perform at moderate altitude.
Collapse
Affiliation(s)
- Reinhard Pühringer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Martin Berger
- Department of Medicine, Military Hospital Innsbruck, Innsbruck, Austria
| | - Michael Said
- Department of Medicine, Military Hospital Innsbruck, Innsbruck, Austria
| | - Martin Faulhaber
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| |
Collapse
|
18
|
Berthelsen LF, van Diepen S, Steele AR, Vanden Berg ER, Bird J, Thrall S, Skalk A, Byman B, Pentz B, Wilson RJA, Jendzjowsky NG, Day TA, Steinback CD. Duration at high altitude influences the onset of arrhythmogenesis during apnea. Eur J Appl Physiol 2021; 122:475-487. [PMID: 34800158 DOI: 10.1007/s00421-021-04842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Autonomic control of the heart is balanced by sympathetic and parasympathetic inputs. Excitation of both sympathetic and parasympathetic systems occurs concurrently during certain perturbations such as hypoxia, which stimulate carotid chemoreflex to drive ventilation. It is well established that the chemoreflex becomes sensitized throughout hypoxic exposure; however, whether progressive sensitization alters cardiac autonomic activity remains unknown. We sought to determine the duration of hypoxic exposure at high altitude necessary to unmask cardiac arrhythmias during instances of voluntary apnea. METHODS Measurements of steady-state chemoreflex drive (SS-CD), continuous electrocardiogram (ECG) and SpO2 (pulse oximetry) were collected in 22 participants on 1 day at low altitude (1045 m) and over eight consecutive days at high-altitude (3800 m). SS-CD was quantified as ventilation (L/min) over stimulus index (PETCO2/SpO2). RESULTS Bradycardia during apnea was greater at high altitude compared to low altitude for all days (p < 0.001). Cardiac arrhythmias occurred during apnea each day but became most prevalent (> 50%) following Day 5 at high altitude. Changes in saturation during apnea and apnea duration did not affect the magnitude of bradycardia during apnea (ANCOVA; saturation, p = 0.15 and apnea duration, p = 0.988). Interestingly, the magnitude of bradycardia was correlated with the incidence of arrhythmia per day (r = 0.8; p = 0.004). CONCLUSION Our findings suggest that persistent hypoxia gradually increases vagal tone with time, indicated by augmented bradycardia during apnea and progressively increased the incidence of arrhythmia at high altitude.
Collapse
Affiliation(s)
- Lindsey F Berthelsen
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada
| | - Sean van Diepen
- Faculty of Medicine and Dentistry, Department of Critical Care and Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Andrew R Steele
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada
| | - Emily R Vanden Berg
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada
| | - Jordan Bird
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Scott Thrall
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada.,Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Alexandra Skalk
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Britta Byman
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Brandon Pentz
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Nicholas G Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, CA, USA
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 1-059A Li Ka Shing Centre for Health Research Innovation, 8602-112 St, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
19
|
Doutreleau S. [Physiological and pathological responses to altitude]. Rev Mal Respir 2021; 38:1013-1024. [PMID: 34782179 DOI: 10.1016/j.rmr.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/28/2020] [Indexed: 11/27/2022]
Abstract
Hypobaric hypoxia, the hallmark of a high altitude environment, has important physiological effects on both the cardiovascular and respiratory systems in order to maintain a balance between oxygen demand and supply. This dynamic of acclimatization is influenced both by the level of altitude and the speed of progression, but is also very individual with a wide spectrum of responses and sensitivities. This wide range of responses is associated with nonspecific symptoms characterising acute mountain sickness and high-altitude cerebral or pulmonary oedema. This article reviews the current knowledge about both the acclimatization processes and specific diseases of high-altitude.
Collapse
Affiliation(s)
- S Doutreleau
- Inserm, UM sports et pathologies, laboratoire HP2, CHU Grenoble-Alpes, université Grenoble Alpes, EXALT - centre d'expertise sur l'altitude, 38000 Grenoble, France.
| |
Collapse
|
20
|
Nordine M, Treskatsch S, Habazettl H, Gunga HC, Brauns K, Dosel P, Petricek J, Opatz O. Orthostatic Resiliency During Successive Hypoxic, Hypoxic Orthostatic Challenge: Successful vs. Unsuccessful Cardiovascular and Oxygenation Strategies. Front Physiol 2021; 12:712422. [PMID: 34776997 PMCID: PMC8578448 DOI: 10.3389/fphys.2021.712422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Rapid environmental changes, such as successive hypoxic-hypoxic orthostatic challenges (SHHOC) occur in the aerospace environment, and the ability to remain orthostatically resilient (OR) relies upon orchestration of physiological counter-responses. Counter-responses adjusting for hypoxia may conflict with orthostatic responses, and a misorchestration can lead to orthostatic intolerance (OI). The goal of this study was to pinpoint specific cardiovascular and oxygenation factors associated with OR during a simulated SHHOC. Methods: Thirty one men underwent a simulated SHHOC consisting of baseline (P0), normobaric hypoxia (Fi02 = 12%, P1), and max 60 s of hypoxic lower body negative pressure (LBNP, P2). Alongside anthropometric variables, non-invasive cardiovascular, central and peripheral tissue oxygenation parameters, were recorded. OI was defined as hemodynamic collapse during SHHOC. Comparison of anthropometric, cardiovascular, and oxygenation parameters between OR and OI was performed via Student’s t-test. Within groups, a repeated measures ANOVA test with Holm-Sidak post hoc test was performed. Performance diagnostics were performed to assess factors associated with OR/OI (sensitivity, specificity, positive predictive value PPV, and odd’s ratio OR). Results: Only 9/31 were OR, and 22/31 were OI. OR had significantly greater body mass index (BMI), weight, peripheral Sp02, longer R-R Interval (RRI) and lower heart rate (HR) at P0. During P1 OR exhibited significantly higher cardiac index (CI), stroke volume index (SVI), and lower systemic vascular resistance index (SVRI) than OI. Both groups exhibited a significant decrease in cerebral oxygenation (TOIc) with an increase in cerebral deoxygenated hemoglobin (dHbc), while the OI group showed a significant decrease in cerebral oxygenated hemoglobin (02Hbc) and peripheral oxygenation (TOIp) with an increase in peripheral deoxygenated hemoglobin (dHbp). During P2, OR maintained significantly greater CI, systolic, mean, and diastolic pressure (SAP, MAP, DAP), with a shortened RRI compared to the OI group, while central and peripheral oxygenation were not different. Body weight and BMI both showed high sensitivity (0.95), low specificity (0.33), a PPV of 0.78, with an OR of 0.92, and 0.61. P0 RRI showed a sensitivity of 0.95, specificity of 0.22, PPV 0.75, and OR of 0.99. Delta SVI had the highest performance diagnostics during P1 (sensitivity 0.91, specificity 0.44, PPV 0.79, and OR 0.8). Delta SAP had the highest overall performance diagnostics for P2 (sensitivity 0.95, specificity 0.67, PPV 0.87, and OR 0.9). Discussion: Maintaining OR during SHHOC is reliant upon greater BMI, body weight, longer RRI, and lower HR at baseline, while increasing CI and SVI, minimizing peripheral 02 utilization and decreasing SVRI during hypoxia. During hypoxic LBNP, the ability to remain OR is dependent upon maintaining SAP, via CI increases rather than SVRI. Cerebral oxygenation parameters, beyond 02Hbc during P1 did not differ between groups, suggesting that the during acute hypoxia, an increase in cerebral 02 consumption, coupled with increased peripheral 02 utilization does seem to play a role in OI risk during SHHOC. However, cardiovascular factors such as SVI are of more value in assessing OR/OI risk. The results can be used to implement effective aerospace crew physiological monitoring strategies.
Collapse
Affiliation(s)
- Michael Nordine
- Department of Anaesthesiology and Intensive Care Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helmut Habazettl
- Center for Space Medicine and Extreme Environments Berlin, Berlin Institute of Health, Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanns-Christian Gunga
- Center for Space Medicine and Extreme Environments Berlin, Berlin Institute of Health, Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharins Brauns
- Center for Space Medicine and Extreme Environments Berlin, Berlin Institute of Health, Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petr Dosel
- Military University Hospital, Institute of Aviation Medicine, Prague, Czechia
| | - Jan Petricek
- Military University Hospital, Institute of Aviation Medicine, Prague, Czechia
| | - Oliver Opatz
- Center for Space Medicine and Extreme Environments Berlin, Berlin Institute of Health, Institute of Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
21
|
Gonzaléz-Candia A, Arias PV, Aguilar SA, Figueroa EG, Reyes RV, Ebensperger G, Llanos AJ, Herrera EA. Melatonin Reduces Oxidative Stress in the Right Ventricle of Newborn Sheep Gestated under Chronic Hypoxia. Antioxidants (Basel) 2021; 10:antiox10111658. [PMID: 34829529 PMCID: PMC8614843 DOI: 10.3390/antiox10111658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension of newborns (PAHN) constitutes a critical condition involving both severe cardiac remodeling and right ventricle dysfunction. One main cause of this condition is perinatal hypoxia and oxidative stress. Thus, it is a public health concern for populations living above 2500 m and in cases of intrauterine chronic hypoxia in lowlands. Still, pulmonary and cardiac impairments in PAHN lack effective treatments. Previously we have shown the beneficial effects of neonatal melatonin treatment on pulmonary circulation. However, the cardiac effects of this treatment are unknown. In this study, we assessed whether melatonin improves cardiac function and modulates right ventricle (RV) oxidative stress. Ten lambs were gestated, born, and raised at 3600 m. Lambs were divided in two groups. One received daily vehicle as control, and another received daily melatonin (1 mg·kg-1·d-1) for 21 days. Daily cardiovascular measurements were recorded and, at 29 days old, cardiac tissue was collected. Melatonin decreased pulmonary arterial pressure at the end of the experimental period. In addition, melatonin enhanced manganese superoxide dismutase and catalase (CAT) expression, while increasing CAT activity in RV. This was associated with a decrease in superoxide anion generation at the mitochondria and NADPH oxidases in RV. Finally, these effects were associated with a marked decrease of oxidative stress markers in RV. These findings support the cardioprotective effects of an oral administration of melatonin in newborns that suffer from developmental chronic hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzaléz-Candia
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- Institute of Health Sciences, University of O’Higgins, Libertador Bernardo O’Higgins 611, Rancagua 2820000, Chile
| | - Pamela V. Arias
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Simón A. Aguilar
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Esteban G. Figueroa
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
| | - Roberto V. Reyes
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Germán Ebensperger
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
| | - Aníbal J. Llanos
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (R.V.R.); (G.E.); (A.J.L.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
| | - Emilio A. Herrera
- Laboratory of Vascular Function and Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Av. Salvador 486, Santiago 7500922, Chile; (A.G.-C.); (P.V.A.); (S.A.A.); (E.G.F.)
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre 1070000, Chile
- Correspondence: ; Tel.: +56-2-2977-0543
| |
Collapse
|
22
|
Schneider SR, Mayer LC, Lichtblau M, Berlier C, Schwarz EI, Saxer S, Tan L, Furian M, Bloch KE, Ulrich S. Effect of a day-trip to altitude (2500 m) on exercise performance in pulmonary hypertension: randomised crossover trial. ERJ Open Res 2021; 7:00314-2021. [PMID: 34651040 PMCID: PMC8502941 DOI: 10.1183/23120541.00314-2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
Question addressed by the study To investigate exercise performance and hypoxia-related health effects in patients with pulmonary hypertension (PH) during a high-altitude sojourn. Patients and methods In a randomised crossover trial in stable (same therapy for >4 weeks) patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) with resting arterial oxygen tension (PaO2) ≥7.3 kPa, we compared symptom-limited constant work-rate exercise test (CWRET) cycling time during a day-trip to 2500 m versus 470 m. Further outcomes were symptoms, oxygenation and echocardiography. For safety, patients with sustained hypoxaemia at altitude (peripheral oxygen saturation <80% for >30 min or <75% for >15 min) received oxygen therapy. Results 28 PAH/CTEPH patients (n=15/n=13); 13 females; mean±sd age 63±15 years were included. After >3 h at 2500 m versus 470 m, CWRET-time was reduced to 17±11 versus 24±9 min (mean difference −6, 95% CI −10 to −3), corresponding to −27.6% (−41.1 to −14.1; p<0.001), but similar Borg dyspnoea scale. At altitude, PaO2 was significantly lower (7.3±0.8 versus 10.4±1.5 kPa; mean difference −3.2 kPa, 95% CI −3.6 to −2.8 kPa), whereas heart rate and tricuspid regurgitation pressure gradient (TRPG) were higher (86±18 versus 71±16 beats·min−1, mean difference 15 beats·min−1, 95% CI 7 to 23 beats·min−1) and 56±25 versus 40±15 mmHg (mean difference 17 mmHg, 95% CI 9 to 24 mmHg), respectively, and remained so until end-exercise (all p<0.001). The TRPG/cardiac output slope during exercise was similar at both altitudes. Overall, three (11%) out of 28 patients received oxygen at 2500 m due to hypoxaemia. Conclusion This randomised crossover study showed that the majority of PH patients tolerate a day-trip to 2500 m well. At high versus low altitude, the mean exercise time was reduced, albeit with a high interindividual variability, and pulmonary artery pressure at rest and during exercise increased, but pressure–flow slope and dyspnoea were unchanged. Short-time exposure to high altitude in pulmonary hypertension induces hypoxaemia, reduces constant work-rate cycle time compared to ambient air and is well tolerated overallhttps://bit.ly/3xUAFMs
Collapse
Affiliation(s)
- Simon R Schneider
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland.,Dept of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Laura C Mayer
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Mona Lichtblau
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Charlotte Berlier
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Esther I Schwarz
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Stéphanie Saxer
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Lu Tan
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Furian
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Konrad E Bloch
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Ulrich
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
The Effects of Sodium Phosphate Supplementation on the Cardiorespiratory System and Gross Efficiency during Exercise under Hypoxia in Male Cyclists: A Randomized, Placebo-Controlled, Cross-Over Study. Nutrients 2021; 13:nu13103556. [PMID: 34684557 PMCID: PMC8538808 DOI: 10.3390/nu13103556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
The main aim of this study was to evaluate the effects of six days of tri-sodium phosphate (SP) supplementation on the cardiorespiratory system and gross efficiency (GE) during exercise under hypoxia in cyclists. Twenty trained male cyclists received SP (50 mg·kg−1 of fat-free mass/day) or placebo for six days in a randomized, cross-over study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion under normobaric hypoxia (FiO2 = 16%, ~2500 m). It was observed that short-term SP supplementation led to a decrease in heart rate, an increase in stroke volume, and an improvement in oxygen pulse (VO2/HR) during low and moderate-intensity exercise under hypoxia. These changes were accompanied by an increase in the serum inorganic phosphate level by 8.7% (p < 0.05). No significant changes were observed in serum calcium levels. GE at a given workload did not change significantly after SP supplementation. These results indicated that SP promotes improvements in the efficiency of the cardiorespiratory system during exercise in a hypoxic environment. Thus, SP supplementation may be beneficial for endurance exercise in hypoxia.
Collapse
|
24
|
Muñoz S, Nazzal C, Jimenez D, Frenz P, Flores P, Alcantara-Zapata D, Marchetti N. Health Effects of Chronic Intermittent Hypoxia at a High Altitude among Chilean Miners: Rationale, Design, and Baseline Results of a Longitudinal Study. Ann Work Expo Health 2021; 65:908-918. [PMID: 34435202 DOI: 10.1093/annweh/wxab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES This study aims to assess the health effects on mining workers of exposure to chronic intermittent hypoxia (CIH) at high- and very high-altitude mining compared with similar work at lower altitudes in Chile, and it also aims to constitute the baseline of a 5-year follow-up study. METHODS We designed a cross-sectional study to assess health conditions in 483 miners working at 2 levels of altitude exposure: 336 working at a very high or high altitude (HA; 247 above 3900-4400 m, and 89 at 3000-3900 m), and 147 below 2400 m. Subjects were randomly selected in two stages. First, a selection of mines from a census of mines in each altitude stratum was made. Secondly, workers with less than 2 years of employment at each of the selected mines were recruited. The main outcomes measured at the baseline were mountain sickness, sleep alterations, hypertension, body mass index, and neurocognitive functions. RESULTS Prevalence of acute mountain sickness (AMS) was 28.4% in the very high-altitude stratum (P = 0.0001 compared with the low stratum), and 71.7% experienced sleep disturbance (P = 0.02). The adjusted odds ratio for AMS was 9.2 (95% confidence interval: 5.2-16.3) when compared with the very high- and low-altitude groups. Motor processing speed and spatial working memory score were lower for the high-altitude group. Hypertension was lower in the highest-altitude subjects, which may be attributed to preoccupational screening even though this was not statistically significant. CONCLUSIONS Despite longer periods of acclimatization to CIH, subjects continue to present AMS and sleep disturbance. Compromise of executive functions was detected, including working memory at HA. Further rigorous research is warranted to understand long-term health impacts of high-altitude mining, and to provide evidence-based policy recommendations.
Collapse
Affiliation(s)
- Sergio Muñoz
- Department of Public Health-CIGES, Faculty of Medicine, Universidad de La Frontera, 01145 Av. Francisco Salazar, Casilla 54-D, Temuco, Chile
| | - Carolina Nazzal
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| | - Daniel Jimenez
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| | - Patricia Frenz
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| | - Patricia Flores
- Faculty of Medicine, Psychiatry Department, Catholic University of Chile, 12351 Camino El Alba, Las Condes, Santiago, Chile.,Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Avenida Vitacura 5951, Región Metropolitana de Santiago, Santiago de Chile, Chile
| | - Diana Alcantara-Zapata
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| | - Nella Marchetti
- Program of Occupational Health, School of Public Health, Faculty of Medicine, University of Chile, 939 Av. Independencia, Santiago, Chile
| |
Collapse
|
25
|
Seasonal Effects of High-Altitude Forest Travel on Cardiovascular Function: An Overlooked Cardiovascular Risk of Forest Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189472. [PMID: 34574395 PMCID: PMC8469480 DOI: 10.3390/ijerph18189472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Cardiovascular physiological responses involving hypoxemia in low temperature environments at high altitude have yet to be adequately investigated. This study aims to demonstrate the health effects of hypoxemia and temperature changes in cardiovascular functions (CVFs) by comparing intra-individual differences as participants ascend from low (298 m, 21.9 °C) to high altitude (2729 m, 9.5 °C). CVFs were assessed by measuring the arterial pressure waveform according to cuff sphygmomanometer of an oscillometric blood pressure (BP) device. The mean ages of participants in winter and summer were 43.6 and 41.2 years, respectively. The intra-individual brachial systolic, diastolic BP, heart rate, and cardiac output of participants significantly increased, as participants climbed uphill from low to high altitude forest. Following the altitude increase from 298 m to 2729 m, with the atmosphere gradually reducing by 0.24 atm, the measured average SpO2 of participants showed a significant reduction from 98.1% to 81.2%. Using mixed effects model, it is evident that in winter, the differences in altitude affects CVFs by significantly increases the systolic BP, heart rate, left ventricular dP/dt max and cardiac output. This study provides evidence that cardiovascular workload increased significantly among acute high-altitude travelers as they ascend from low to high altitude, particularly in winter.
Collapse
|
26
|
Durkin C, Romano K, Egan S, Lohser J. Hypoxemia During One-Lung Ventilation: Does It Really Matter? CURRENT ANESTHESIOLOGY REPORTS 2021; 11:414-420. [PMID: 34254003 PMCID: PMC8263011 DOI: 10.1007/s40140-021-00470-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Hypoxemia during one-lung ventilation, while decreasing in frequency, persists as an intraoperative challenge for anesthesiologists. Discerning when desaturation and resultant hypoxemia correlates to tissue hypoxia is challenging in the perioperative setting and requires a thorough understanding of the physiology of oxygen delivery and tissue utilization. RECENT FINDINGS Oxygen delivery is not directly correlated with peripheral oxygen saturation in patients undergoing one-lung ventilation, emphasizing the importance of hemoglobin concentration and cardiac output in avoiding tissue hypoxia. While healthy humans can tolerate acute hypoxemia without long-term consequences, there is a paucity of evidence from patients undergoing thoracic surgery. Increasingly recognized is the potential harm of hyperoxic states, particularly in the setting of complex patients with comorbid diseases. SUMMARY Anesthesiologists are left to determine an acceptable oxygen saturation nadir that is individualized to the patient and procedure based on an understanding of oxygen supply, demand, and the consequences of interventions.
Collapse
Affiliation(s)
- Chris Durkin
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, JPP3 Room 3400, 899 West 12th Avenue, Vancouver, British Columbia V5Z-1M9 Canada
| | - Kali Romano
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, JPP3 Room 3400, 899 West 12th Avenue, Vancouver, British Columbia V5Z-1M9 Canada
| | - Sinead Egan
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, JPP3 Room 3400, 899 West 12th Avenue, Vancouver, British Columbia V5Z-1M9 Canada
| | - Jens Lohser
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver General Hospital, JPP3 Room 3400, 899 West 12th Avenue, Vancouver, British Columbia V5Z-1M9 Canada
| |
Collapse
|
27
|
The Mystery of Red Blood Cells Extracellular Vesicles in Sleep Apnea with Metabolic Dysfunction. Int J Mol Sci 2021; 22:ijms22094301. [PMID: 33919065 PMCID: PMC8122484 DOI: 10.3390/ijms22094301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).
Collapse
|
28
|
Gatterer H, Rauch S, Regli IB, Woyke S, Schlittler M, Turner R, Strapazzon G, Brugger H, Goetze JP, Feraille E, Siebenmann C. Plasma volume contraction reduces atrial natriuretic peptide after four days of hypobaric hypoxia exposure. Am J Physiol Regul Integr Comp Physiol 2021; 320:R526-R531. [PMID: 33533684 DOI: 10.1152/ajpregu.00313.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether low arterial oxygen tension ([Formula: see text]) or hypoxia-induced plasma volume (PV) contraction, which reduces central blood volume (BV) and atrial distension, explain reduction in circulating atrial natriuretic peptide (ANP) after prolonged hypoxic exposure. Ten healthy males were exposed for 4 days to hypobaric hypoxia corresponding to an altitude of 3,500 m. PV changes were determined by carbon monoxide rebreathing. Venous plasma concentrations of midregional proANP (MR-proANP) were measured before and at the end of the exposure. At the latter time point, the measurement was repeated after 1) restoration of [Formula: see text] by breathing a hyperoxic gas mixture for 30 min and 2) restoration of BV by fluid infusion. Correspondingly, left ventricular end-diastolic volume (LVEDV), left atrial area (LAA), and right atrial area (RAA) were determined by ultrasound before exposure and both before and after fluid infusion at the end of the exposure. Hypoxic exposure reduced MR-proANP from 37.9 ± 18.5 to 24.5 ± 10.3 pmol/L (P = 0.034), LVEDV from 107.4 ± 33.5 to 91.6 ± 26.3 mL (P = 0.005), LAA from 15.8 ± 4.9 to 13.3 ± 4.2 cm2 (P = 0.007), and RAA from 16.2 ± 3.1 to 14.3 ± 3.5 cm2 (P = 0.001). Hyperoxic breathing did not affect MR-proANP (24.8 ± 12.3 pmol/L, P = 0.890). Conversely, fluid infusion restored LVEDV, LAA, and RAA to near-baseline values (108.0 ± 29.3 mL, 17.2 ± 5.7 cm2, and 17.2 ± 3.1 cm2, respectively, P > 0.05 vs. baseline) and increased MR-proANP to 29.5 ± 13.3 pmol/L (P = 0.010 vs. preinfusion and P = 0.182 vs. baseline). These findings support that ANP reduction in hypoxia is at least partially attributed to plasma volume contraction, whereas reduced [Formula: see text] does not seem to contribute.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Simon Rauch
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | - Ivo B Regli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | - Simon Woyke
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Maja Schlittler
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Eric Feraille
- National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland.,Department of Cellular Physiology and Metabolism, University of Geneva, University Medical Center, Geneva, Switzerland
| | | |
Collapse
|
29
|
McGuire S, Horton EJ, Renshaw D, Chan K, Krishnan N, McGregor G. Cardiopulmonary and metabolic physiology during hemodialysis and inter/intradialytic exercise. J Appl Physiol (1985) 2021; 130:1033-1042. [PMID: 33507853 DOI: 10.1152/japplphysiol.00888.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemodialysis is associated with numerous symptoms and side effects that, in part, may be due to subclinical hypoxia. However, acute cardiopulmonary and metabolic physiology during hemodialysis is not well defined. Intradialytic and interdialytic exercise appear to be beneficial and may alleviate these side effects. To better understand these potential benefits, the acute physiological response to exercise should be evaluated. The aim of this study was to compare and characterize the acute physiological response during hemodialysis, intradialytic exercise, and interdialytic exercise. Cardiopulmonary physiology was evaluated during three conditions: 1) hemodialysis without exercise (HD), 2) intradialytic exercise (IDEx), and 3) interdialytic exercise (Ex). Exercise consisted of 30-min constant load cycle ergometry at 90% V̇O2AT (anaerobic threshold). Central hemodynamics (via noninvasive bioreactance) and ventilatory gas exchange were recorded during each experimental condition. Twenty participants (59 ± 12 yr, 16/20 male) completed the protocol. Cardiac output (Δ = -0.7 L/min), O2 uptake (Δ = -1.4 mL/kg/min), and arterial-venous O2 difference (Δ = -2.0 mL/O2/100 mL) decreased significantly during HD. Respiratory exchange ratio exceeded 1.0 throughout HD and IDEx. Minute ventilation was lower (P = 0.001) during IDEx (16.5 ± 1.1 L/min) compared with Ex (19.8 ± 1.0 L/min). Arterial-venous O2 difference was partially restored further to IDEx (4.6 ± 1.9 mL/O2/100 mL) compared with HD (3.5 ± 1.2 mL/O2/100 mL). Hemodialysis altered cardiopulmonary and metabolic physiology, suggestive of hypoxia. This dysregulated physiology contributed to a greater physiological demand during intradialytic exercise compared with interdialytic exercise. Despite this, intradialytic exercise partly normalized cardiopulmonary physiology during treatment, which may translate to a reduction in the symptoms and side effects of hemodialysis.NEW & NOTEWORTHY This study is the first, to our knowledge, to directly compare cardiopulmonary and metabolic physiology during hemodialysis, intradialytic exercise, and interdialytic exercise. Hemodialysis was associated with increased respiratory exchange ratio, blunted minute ventilation, and impaired O2 uptake and extraction. We also identified a reduced ventilatory response during intradialytic exercise compared with interdialytic exercise. Impaired arterial-venous O2 difference during hemodialysis was partly restored by intradialytic exercise. Despite dysregulated cardiopulmonary and metabolic physiology during hemodialysis, intradialytic exercise was well tolerated.
Collapse
Affiliation(s)
- S McGuire
- Faculty of Health and Life Sciences, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, United Kingdom
| | - E J Horton
- Faculty of Health and Life Sciences, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, United Kingdom
| | - D Renshaw
- Faculty of Health and Life Sciences, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, United Kingdom
| | - K Chan
- Faculty of Health and Life Sciences, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, United Kingdom
| | - N Krishnan
- Faculty of Health and Life Sciences, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, United Kingdom.,Department of Nephrology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - G McGregor
- Faculty of Health and Life Sciences, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, United Kingdom.,Department of Nephrology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom.,Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
30
|
Niewinski P, Tubek S, Paton JFR, Banasiak W, Ponikowski P. Oxygenation pattern and compensatory responses to hypoxia and hypercapnia following bilateral carotid body resection in humans. J Physiol 2021; 599:2323-2340. [DOI: 10.1113/jp281319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Piotr Niewinski
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| | - Stanislaw Tubek
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| | - Julian F. R. Paton
- Department of Physiology Faculty of Medical & Health Sciences University of Auckland Park Road Grafton Auckland New Zealand
| | | | - Piotr Ponikowski
- Department of Heart Diseases Wroclaw Medical University Wroclaw Poland
| |
Collapse
|
31
|
Tidal volume and stroke volume changes caused by respiratory events during sleep and their relationship with OSA severity: a pilot study. Sleep Breath 2021; 25:2025-2038. [PMID: 33683548 DOI: 10.1007/s11325-021-02334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Breath-by-breath tidal volume (TV) and beat-by-beat stroke volume (SV) were continuously measured in patients with OSA undergoing polysomnography (PSG). The objectives were to (1) determine the changes in TV/SV in response to respiratory events and (2) assess the relationship between these changes and the disease severity. METHODS From the PSG data of nine patients with OSA, six different types of respiratory events were identified, i.e., flow limitation (FL), respiratory effort related arousal (RERA), hypopnea with arousal only (Ha), hypopnea with desaturation only (Hd), hypopnea with arousal and desaturation (Had), and apnea. The measured TV and SV values during and after each respiratory event were compared with the pre-event baseline values. RESULTS The mean TV/SV reductions during all hypopneas and apneas were 38.1%/4.2% and 70.5%/8.8%, respectively. Among three different hypopnea types, the reductions in TV during Hd and Had were significantly greater than those during Ha. The TV reductions during Ha and FL were similar. After RERA, Ha, Had, and apnea, there was an overshoot in TV and SV values, whereas there was no overshoot after FL and Hd. During RERA, there was no reduction in TV/SV. CONCLUSIONS The changes in TV during and after each type of respiratory event were significantly different in most cases. The changes in SV between hypopnea and apnea were different with statistical significance. The AHI does not properly account for the ventilation losses caused by respiratory events. Thus, TV measurements might be useful in the future in assessing the OSA severity in conjunction with the AHI.
Collapse
|
32
|
Syed SA, Sherwani NZF, Riaz B, Iqbal J, Chaudhry M, Abdullah M, Malik A. Short-Term Effect of Inhaled Salbutamol on Heart Rate in Healthy Volunteers. Cureus 2021; 13:e13672. [PMID: 33824823 PMCID: PMC8018588 DOI: 10.7759/cureus.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective Tachycardia is a potential side effect of salbutamol inhalation. We aimed to study the short-term effect of salbutamol nebulization on the heart rate of healthy volunteers. Material and methods A randomized, single-blinded, placebo-controlled, cross-over study was conducted with 30 healthy volunteers divided into two groups of 15 each. One group was nebulized with salbutamol (2.5 mg/2 ml dilution) while the other group was given normal saline (2 ml). Each arm underwent administration of the opposite drug the following week. Baseline readings of heart rate and blood pressure were taken at zero (T0), seven (T7), 15 (T15), and 30 (T30) minutes. Results Thirty volunteers between the ages of 20 and 25 years were studied. The mean heart rate value was higher for nebulized salbutamol at each point as compared to saline. When nebulized with salbutamol, the heart rate had a significant rise (p= < 0.00001) at 15 minutes as compared to saline nebulization. Conclusion Salbutamol nebulization, even at a low dose, can lead to a significant increase in heart rate when compared to nebulization with normal saline in healthy individuals.
Collapse
Affiliation(s)
- Salman A Syed
- Department of Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | | | - Bismah Riaz
- Department of Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Javed Iqbal
- Department of Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | | | - Mohammad Abdullah
- Department of Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Ayesha Malik
- Department of Medicine, Hameed Latif Hospital, Lahore, PAK
| |
Collapse
|
33
|
Effects of surgical face masks on cardiopulmonary parameters during steady state exercise. Sci Rep 2020; 10:22363. [PMID: 33349641 PMCID: PMC7752911 DOI: 10.1038/s41598-020-78643-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023] Open
Abstract
Wearing face masks reduce the maximum physical performance. Sports and occupational activities are often associated with submaximal constant intensities. This prospective crossover study examined the effects of medical face masks during constant-load exercise. Fourteen healthy men (age 25.7 ± 3.5 years; height 183.8 ± 8.4 cm; weight 83.6 ± 8.4 kg) performed a lactate minimum test and a body plethysmography with and without masks. They were randomly assigned to two constant load tests at maximal lactate steady state with and without masks. The cardiopulmonary and metabolic responses were monitored using impedance cardiography and ergo-spirometry. The airway resistance was two-fold higher with the surgical mask (SM) than without the mask (SM 0.58 ± 0.16 kPa l−1 vs. control [Co] 0.32 ± 0.08 kPa l−1; p < 0.01). The constant load tests with masks compared with those without masks resulted in a significantly different ventilation (77.1 ± 9.3 l min−1 vs. 82.4 ± 10.7 l min−1; p < 0.01), oxygen uptake (33.1 ± 5 ml min−1 kg−1 vs. 34.5 ± 6 ml min−1 kg−1; p = 0.04), and heart rate (160.1 ± 11.2 bpm vs. 154.5 ± 11.4 bpm; p < 0.01). The mean cardiac output tended to be higher with a mask (28.6 ± 3.9 l min−1 vs. 25.9 ± 4.0 l min−1; p = 0.06). Similar blood pressure (177.2 ± 17.6 mmHg vs. 172.3 ± 15.8 mmHg; p = 0.33), delta lactate (4.7 ± 1.5 mmol l−1 vs. 4.3 ± 1.5 mmol l−1; p = 0.15), and rating of perceived exertion (6.9 ± 1.1 vs. 6.6 ± 1.1; p = 0.16) were observed with and without masks. Surgical face masks increase airway resistance and heart rate during steady state exercise in healthy volunteers. The perceived exertion and endurance performance were unchanged. These results may improve the assessment of wearing face masks during work and physical training.
Collapse
|
34
|
Lässing J, Schulze A, Kwast S, Falz R, Vondran M, Schröter T, Borger M, Busse M. Effects of Custom-made Mouthguards on Cardiopulmonary Exercise Capacity. Int J Sports Med 2020; 42:448-455. [PMID: 33124016 DOI: 10.1055/a-1236-3814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The importance of using mouthguards as well as their low acceptance rate have been demonstrated. The aim of this study was to investigate the influence of customized mouthguards on hemodynamics.. This randomized crossover study used data from 13 subjects (23.5±1.4 years). The cardiopulmonary and metabolic parameters were observed during ergometer tests without mouthguard (control) in comparison to two types of mouthguards (with and normal without breathing channels). Maximum ventilation was significantly decreased with the normal mouthguard (113.3±30.00 l ∙ min-1) in contrast to the mouthguard with breathing channels (122.5±22.9 l ∙ min-1) and control (121.9±30.8 l ∙ min-1). Also the inspiration time was longer when using the normal mouthguard (0.70±0.11 s) compared to the mouthguard with breathing channels (0.63±0.11 s) and control (Co 0.64±0.10 s). Lactate was also increased under the influence of the mouthguard with breathing channels (10.72±1.4 mmol ∙ l-1) compared to the control (9.40±1.77 mmol ∙ l-1) and the normal mouthguard (9.02±1.67 mmol ∙ l-1). In addition, stroke volume kinetics (p=0.048) and maximum heart rates (p=0.01) show changes. Despite equal levels of oxygen uptake and performances under all three conditions, the use of mouthguards showed differences in cardiopulmonary parameters. The use of mouthguards during exercise does not affect physical performance and can be recommended for injury prevention.
Collapse
Affiliation(s)
- Johannes Lässing
- Institute of Sports Medicine & Prevention, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Antina Schulze
- Institute of Sports Medicine & Prevention, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Stefan Kwast
- Institute of Sports Medicine & Prevention, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Roberto Falz
- Institut für Prävention, Universitat Leipzig, Leipzig, Germany
| | - Maximilian Vondran
- Department of Cardiovascular Surgery, University of Marburg, Marburg, Germany
| | - Thomas Schröter
- University Department for Cardiac Surgery Leipzig, Leipzig Heart Centre University Hospital Clinic for Cardiology, Leipzig, Germany
| | - Michael Borger
- Institute of Sports Medicine & Prevention, University of Leipzig Faculty of Medicine, Leipzig, Germany.,University Department for Cardiac Surgery Leipzig, Leipzig Heart Centre University Hospital Clinic for Cardiology, Leipzig, Germany
| | - Martin Busse
- Institute of Sports Medicine & Prevention, University of Leipzig Faculty of Medicine, Leipzig, Germany
| |
Collapse
|
35
|
Schneider SR, Mayer LC, Lichtblau M, Berlier C, Schwarz EI, Saxer S, Furian M, Bloch KE, Ulrich S. Effect of Normobaric Hypoxia on Exercise Performance in Pulmonary Hypertension: Randomized Trial. Chest 2020; 159:757-771. [PMID: 32918899 DOI: 10.1016/j.chest.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Many patients with pulmonary arterial or chronic thromboembolic pulmonary hypertension (PH) wish to travel to altitude or by airplane, but their risk of hypoxia-related adverse health effects is insufficiently explored. RESEARCH QUESTION How does hypoxia, compared with normoxia, affect constant work-rate exercise test (CWRET) time in patients with PH, and which physiologic mechanisms are involved? STUDY DESIGN AND METHODS Stable patients with PH with resting Pao2 ≥ 7.3 kPa underwent symptom-limited cycling CWRET (60% of maximal workload) while breathing normobaric hypoxic air (hypoxia; Fio2, 15%) and ambient air (normoxia; Fio2, 21%) in a randomized cross-over design. Borg dyspnea score, arterial blood gases, tricuspid regurgitation pressure gradient, and mean pulmonary artery pressure/cardiac output ratio (mean PAP/CO) by echocardiography were assessed before and during end-CWRET. RESULTS Twenty-eight patients (13 women) were included: median (quartiles) age, 66 (54; 74) years; mean pulmonary artery pressure, 41 (29; 49) mm Hg; and pulmonary vascular resistance, 5.4 (4; 8) Wood units. Under normoxia and hypoxia, CWRET times were 16.9 (8.0; 30.0) and 6.7 (5.5; 27.3) min, respectively, with a median difference (95% CI) of -0.7 (-3.1 to 0.0) min corresponding to -7 (-32 to 0.0)% (P = .006). At end-exercise in normoxia and hypoxia, respectively, median values and differences in corresponding variables were as follows: Pao2: 8.0 vs 6.4, -1.7 (-2.7 to -1.1) kPa; arterial oxygen content: 19.2 vs 17.2, -1.7 (-3 to -0.1) mL/dL; Paco2: 4.7 vs 4.3, -0.3 (-0.5 to -0.1) kPa; lactate: 3.7 vs 3.7, 0.9 (0.1 to 1.6) mM (P < .05 all differences). Values for Borg scale score: 7 vs 6, 0.5 (0 to 1); tricuspid pressure gradient: 89 vs 77, -3 (-9 to 16) mm Hg; and mean PAP/CO: 4.5 vs 3.3, 0.3 (-0.8 to 1.4) Wood units remained unchanged. In multivariable regression, baseline pulmonary vascular resistance was the sole predictor of hypoxia-induced change in CWRET time. INTERPRETATION In patients with PH, short-time exposure to hypoxia was well tolerated but reduced CWRET time compared with normoxia in association with hypoxemia, lactacidemia, and hypocapnia. Because pulmonary hemodynamics and dyspnea at end-exercise remained unaltered, the hypoxia-induced exercise limitation may be due to a reduced oxygen delivery causing peripheral tissue hypoxia, augmented lactic acid loading and hyperventilation. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT03592927; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Simon R Schneider
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland; Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Laura C Mayer
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Mona Lichtblau
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Charlotte Berlier
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Esther I Schwarz
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Stéphanie Saxer
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Furian
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Konrad E Bloch
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Ulrich
- Clinic of Pulmonology, University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Zhu J, Kang J, Li X, Wang M, Shang M, Luo Y, Xiong M, Hu K. Chronic intermittent hypoxia vs chronic continuous hypoxia: Effects on vascular endothelial function and myocardial contractility. Clin Hemorheol Microcirc 2020; 74:417-427. [PMID: 31683472 DOI: 10.3233/ch-190706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIM Both chronic intermittent hypoxia (CIH) and chronic continuous hypoxia (CCH) are risk factors for cardiovascular disease, which are associated with cardiac systolic function and associated with dysfunction of endothelia and coagulation-fibrinolysis system in the vasculature. However, the different effects of these two hypoxic models are not fully understood. In our study, we systemically compared the effects of CIH and CCH on cardiac function and related factor levels in serum using rat model. METHODS Forty-five male Sprague-Dawley rats were randomly divided into the normoxia control (NC), CIH and CCH groups. The rat CIH and CCH models were established, then the blood and tissue samples were collected to analyze the function of endothelium and the coagulation-fibrinolysis system. Also, the ultrasound cardiogram was performed to directly assess myocardial contractility. RESULTS Both CIH and CCH significantly decreased the NO, eNOS, P-eNOS and AT-III levels in the rat serum but significantly increased the levels of ET-1, vWF, COX-2, NF-κB, FIB, FVIII and PAI-1 in the rat serum (P < 0.05). The expression of ET-1, VWF and ICAM-1 in CIH group were higher than CCH group (P < 0.05), however, the expression of CD62p was increased in CCH group but not in CIH group. The expression of t-PA in CIH group were lower than CCH group (P < 0.05), but there were no significant differences in CCH group and NC group (P > 0.05). Using transmission electron microscope, we found that the mitochondrial ultrastructure of thoracic aorta endothelial cells in CIH and CCH group were damaged. Moreover, the myocardial contractility in CIH and CCH group were significantly decreased compared with NC group. CONCLUSION Our results suggested that CIH and CCH could cause endothelial dysfunction, dysfunction of the coagulation-fibrinolysis system and decreasing of myocardial contractility. Compared with CCH, CIH has greater effect on vasoconstriction and adhesion of vascular endothelial cells, and stronger procoagulant effect.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Kang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaochen Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmei Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Shang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuchuan Luo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
37
|
A brief bout of exercise in hypoxia reduces ventricular filling rate and stroke volume response during muscle metaboreflex activation. Eur J Appl Physiol 2020; 120:2115-2126. [PMID: 32683489 PMCID: PMC7419479 DOI: 10.1007/s00421-020-04435-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023]
Abstract
Purpose The hemodynamic consequences of exercise in hypoxia have not been completely investigated. The present investigation aimed at studying the hemodynamic effects of contemporary normobaric hypoxia and metaboreflex activation. Methods Eleven physically active, healthy males (age 32.7 ± 7.2 years) completed a cardiopulmonary test on an electromagnetically braked cycle-ergometer to determine their maximum workload (Wmax). On separate days, participants performed two randomly assigned exercise sessions (3 minutes pedalling at 30% of Wmax): (1) one in normoxia (NORMO), and (2) one in normobaric hypoxia with FiO2 set to 13.5% (HYPO). After each session, the following protocol was randomly assigned: either (1) post-exercise muscle ischemia (PEMI) to study the metaboreflex, or (2) a control exercise recovery session, i.e., without metaboreflex activation. Hemodynamics were assessed with impedance cardiography. Results The main result was that the HYPO session impaired the ventricular filling rate (measured as stroke volume/diastolic time) response during PEMI versus control condition in comparison to the NORMO test (31.33 ± 68.03 vs. 81.52 ± 49.23 ml·s−1,respectively, p = 0.003). This caused a reduction in the stroke volume response (1.45 ± 9.49 vs. 10.68 ± 8.21 ml, p = 0.020). As a consequence, cardiac output response was impaired during the HYPO test. Conclusions The present investigation suggests that a brief exercise bout in hypoxia is capable of impairing cardiac filling rate as well as stroke volume during the metaboreflex. These results are in good accordance with recent findings showing that among hemodynamic modulators, ventricular filling is the most sensible variable to hypoxic stimuli.
Collapse
|
38
|
Red Bull Increases Heart Rate at Near Sea Level and Pulmonary Shunt Fraction at High Altitude in a Porcine Model. Nutrients 2020; 12:nu12061738. [PMID: 32532046 PMCID: PMC7352389 DOI: 10.3390/nu12061738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Red Bull energy drink is popular among athletes, students and drivers for stimulating effects or enhancing physical performance. In previous work, Red Bull has been shown to exert manifold cardiovascular effects at rest and during exercise. Red Bull with caffeine as the main ingredient increases blood pressure in resting individuals, probably due to an increased release of (nor)-epinephrine. Red Bull has been shown to alter heart rate or leaving it unchanged. Little is known about possible effects of caffeinated energy drinks on pulmonary ventilation/perfusion distribution at sea level or at altitude. Here, we hypothesized a possible alteration of pulmonary blood flow in ambient air and in hypoxia after Red Bull consumption. We subjected eight anesthetized piglets in normoxia (FiO2 = 0.21) and in hypoxia (FiO2 = 0.13), respectively, to 10 mL/kg Red Bull ingestion. Another eight animals served as controls receiving an equivalent amount of saline. In addition to cardiovascular data, ventilation/perfusion distribution of the lung was assessed by using the multiple inert gas elimination technique (MIGET). Heart rate increased in normoxic conditions but was not different from controls in acute short-term hypoxia after oral Red Bull ingestion in piglets. For the first time, we demonstrate an increased fraction of pulmonary shunt with unchanged distribution of pulmonary blood flow after Red Bull administration in acute short-term hypoxia. In summary, these findings do not oppose moderate consumption of caffeinated energy drinks even at altitude at rest and during exercise.
Collapse
|
39
|
Using Electroencephalography (EEG) Power Responses to Investigate the Effects of Ambient Oxygen Content, Safety Shoe Type, and Lifting Frequency on the Worker's Activities. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7956037. [PMID: 32337279 PMCID: PMC7160726 DOI: 10.1155/2020/7956037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022]
Abstract
Objective The study assesses the changes in electroencephalography (EEG) power spectral density of individuals in hypoxia when wearing a different type of safety shoes under different lifting frequencies. It also assesses the EEG response behavior induced via the process of lifting loads related to these variables. Methods The study was conducted in two consecutive phases: training and acclimatization phase and experimental lifting phase. Ten male college students participated in this study. A four-way repeated measures design was used in this research with independent variables: ambient oxygen content (“15%, 18%, and 20%”), safety shoes type (“light-duty, medium-duty, and heavy-duty”), lifting frequency (“1 and 4 lifts/min”), and replication (“first and second”). And the dependent variables were alpha, theta, beta, gamma, θ/α, θ/β, α/β, β/α, (θ + α)/β, and (θ + α)/(α + β). The participant was allowed to determine his maximum acceptable weight of lift (MAWL) in fifteen minutes of lifting using psychophysically technique. Then, he continued lifting the MAWL for another five minutes, where all the data were collected. Results Results showed that the EEG responses at lower levels of the independent variables were significantly high than at higher levels; except for oxygen content, the EEG responses at lower levels were considerably lower than at a higher level. It also showed that an upsurge in the physical demand increased lifting frequency and replication and caused decreasing in alpha power, theta/beta, alpha/beta, (theta + alpha)/beta, (theta + alpha)/(alpha + beta) and increasing in the theta power and the gamma power. Furthermore, several interactions among independent variables had significant effects on the EEG responses. Conclusion The EEG implementation for the investigation of neural responses to physical demands allows for the possibility of newer nontraditional and faster methods of human performance monitoring. These methods provide effective and reliable results as compared to other traditional methods. This study will safeguard the physical capabilities and possible health risks of industrial workers. And the applications of these tasks can occur in almost all working environments (factories, warehouses, airports, building sites, farms, hospitals, offices, etc.) that are at high altitudes. It can include lifting boxes at a packaging line, handling construction materials, handling patients in hospitals, and cleaning.
Collapse
|
40
|
Sepehrinezhad A, Dehghanian A, Rafati A, Ketabchi F. Impact of liver damage on blood-borne variables and pulmonary hemodynamic responses to hypoxia and hyperoxia in anesthetized rats. BMC Cardiovasc Disord 2020; 20:13. [PMID: 31931715 PMCID: PMC6956555 DOI: 10.1186/s12872-019-01297-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Liver disorders may be associated with normal pulmonary hemodynamic, hepatopulmonary syndrome (HPS), or portopulmonary hypertension (POPH). In this study, we aimed to investigate the effect of the severity of liver dysfunctions on blood-borne variables, and pulmonary hemodynamic during repeated ventilation with hyperoxic and hypoxic gases. METHODS Female Sprague Dawley rats were assigned into four groups of Sham (n = 7), portal vein ligation (PPVL, n = 7), common bile duct ligation (CBDL, n = 7), and combination of them (CBDL+ PPVL, n = 7). Twenty-eight days later, right ventricular systolic pressure (RVSP) and systemic blood pressure were recorded in anesthetized animals subjected to repeated maneuvers of hyperoxia (O2 50%) and hypoxia (O2 10%). Besides, we assessed blood parameters and liver histology. RESULTS Liver histology score, liver enzymes, WBC and plasma malondialdehyde in the CBDL+PPVL group were higher than those in the CBDL group. Also, the plasma platelet level in the CBDL+PPVL group was lower than those in the other groups. On the other hand, the serum estradiol in the CBDL group was higher than that in the CBDL+PPVL group. All the above parameters in the PPVL group were similar to those in the Sham group. During ventilation with hyperoxia gas, RVSP in the CBDL+PPVL group was higher than the ones in the other groups, and in the CBDL group, it was more than those in the PPVL and Sham groups. Hypoxic pulmonary vasoconstriction (HPV) was not detected in both CBDL+PPVL and CBDL groups, whereas, it retained in the PPVL group. CONCLUSION Severe liver damage increases RVSP in the CBDL+PPVL group linked to the high level of ROS, low levels of serum estradiol and platelets or a combination of them. Furthermore, the high RVSP at the noted group could present a reliable animal model for POPH in female rats.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Ketabchi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Ghaleb AM, Ramadan MZ, Badwelan A, Saad Aljaloud K. Effect of Ambient Oxygen Content, Safety Shoe Type, and Lifting Frequency on Subject's MAWL and Physiological Responses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214172. [PMID: 31671827 PMCID: PMC6862084 DOI: 10.3390/ijerph16214172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the lifting capabilities of individuals in hypoxia when they wear different types of safety shoes and to investigate the behavior of the physiological responses induced by the lifting process associated with those variables. METHODS An experimental design was used, based on two sessions. The first was training and acclimatization session, then an experimental lifting phase. A total of ten male students of King Saud University were recruited in the study. A four-way repeated measures design, with four independent variables and six dependent variables, was used in this research. The independent variables that were studied in the experimental lifting phase were: ambient oxygen content (15%, 18%, and 21%), safety shoes type (light-duty, medium-duty, and heavy-duty), lifting frequency (1 and 4 lifts/min), and replication (first and second trials). The dependent variables were also: maximum acceptable weights lifting using the psychophysical technique, heart rate (HR), electromyography (EMG) of (biceps brachii, trapezius, anterior deltoid, and erector spinae), safety shoes discomfort rating, rating of perceived exertion, and ambient oxygen discomfort rating. RESULTS The maximum acceptable weights lifting that were selected by participants at lower levels of the independent variables (ambient oxygen content 21%, lifting frequency 1 lift/min, and first replication) were significantly higher than at high levels of the independent variables (ambient oxygen content 15%, lifting frequency 4 lift/min, and second replication). Several interaction effects were also significant. CONCLUSIONS It provides evidence that the ambient oxygen content increases the intensity of workload in lifting tasks. It showed that oxygen content affects the psychophysical selection of maximum acceptable weights lifting and the physiological responses represented in muscular activities and heart rate. It suggests that ambient oxygen content must be considered along with the type of safety shoes worn when the lifting task at altitudes occurs.
Collapse
Affiliation(s)
- Atef M Ghaleb
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.
| | - Mohamed Z Ramadan
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.
| | - Ahmed Badwelan
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia.
| | - Khalid Saad Aljaloud
- Department of Exercise Physiology, College of Sport Sciences & Physical Activity, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
42
|
Ando S, Komiyama T, Sudo M, Higaki Y, Ishida K, Costello JT, Katayama K. The interactive effects of acute exercise and hypoxia on cognitive performance: A narrative review. Scand J Med Sci Sports 2019; 30:384-398. [PMID: 31605635 DOI: 10.1111/sms.13573] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Acute moderate intensity exercise has been shown to improve cognitive performance. In contrast, hypoxia is believed to impair cognitive performance. The detrimental effects of hypoxia on cognitive performance are primarily dependent on the severity and duration of exposure. In this review, we describe how acute exercise under hypoxia alters cognitive performance, and propose that the combined effects of acute exercise and hypoxia on cognitive performance are mainly determined by interaction among exercise intensity and duration, the severity of hypoxia, and duration of exposure to hypoxia. We discuss the physiological mechanism(s) of the interaction and suggest that alterations in neurotransmitter function, cerebral blood flow, and possibly cerebral metabolism are the primary candidates that determine cognitive performance when acute exercise is combined with hypoxia. Furthermore, acclimatization appears to counteract impaired cognitive performance during prolonged exposure to hypoxia although the precise physiological mechanism(s) responsible for this amelioration remain to be elucidated. This review has implications for sporting, occupational, and recreational activities at terrestrial high altitude where cognitive performance is essential. Further studies are required to understand physiological mechanisms that determine cognitive performance when acute exercise is performed in hypoxia.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, Osaka, Japan
| | - Mizuki Sudo
- Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Yasuki Higaki
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
43
|
Takken T, Evertse A, de Waard F, Spoorenburg M, Kuijpers M, Schroer C, Hulzebos EH. Exercise responses in children and adults with a Fontan circulation at simulated altitude. CONGENIT HEART DIS 2019; 14:1005-1012. [PMID: 31602790 PMCID: PMC7003737 DOI: 10.1111/chd.12850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Traveling to high altitude has become more popular. High-altitude exposure causes hypobaric hypoxia. Exposure to acute high altitude, during air travel or mountain stays, seems to be safe for most patients with congenital heart disorders (CHD). Still, current guidelines for CHD patients express concerns regarding safety of altitude exposure for patients with a Fontan circulation. Therefore, investigating hemodynamic and pulmonary responses of acute high-altitude exposure (±2500 m) at rest and during maximal exercise in patients with Fontan circulation can provide clarity in this dispute and may contribute to improvement of clinical counseling. METHODS Twenty-one Fontan patients with 21 age-matched healthy controls, aged 8-40 years, were enrolled in an observational study. Participants performed two cardiopulmonary exercise tests on a cycle ergometer with breath-by-breath respiratory gas analyses combined with noninvasive impedance cardiac output measurements: one at sea level (±6 m) and one at simulated high altitude (±2500 m), respectively. RESULTS The effect of altitude exposure was different in rest for saturation (-2.3% vs -4.1%) between Fontan patients and healthy controls (P < .05). At peak exercise the effects of high altitude exposure was different on VO2 (-5.1% vs 9.6%) and AvO2 -diff (-0.3% vs -12.8%) between Fontan patients and healthy controls. CONCLUSION Although, acute high-altitude exposure has a detrimental effect on exercise capacity, the impact on pulmonary and hemodynamic responses of high-altitude exposure is comparable between Fontan patients and healthy controls.
Collapse
Affiliation(s)
- Tim Takken
- Department of Medical Physiology, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alyanne Evertse
- Department of Medical Physiology, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fleur de Waard
- Department of Medical Physiology, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mandy Spoorenburg
- Department of Medical Physiology, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martijn Kuijpers
- Department of Medical Physiology, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Christian Schroer
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Pediatrics, Maxima Medical Center Veldhoven, Veldhoven, the Netherlands
| | - Erik H Hulzebos
- Department of Medical Physiology, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
44
|
de Oliveira MV, Rocha NDN, Santos RS, Rocco MRM, de Magalhães RF, Silva JD, Souza SAL, Capelozzi VL, Pelosi P, Silva PL, Rocco PRM. Endotoxin-Induced Emphysema Exacerbation: A Novel Model of Chronic Obstructive Pulmonary Disease Exacerbations Causing Cardiopulmonary Impairment and Diaphragm Dysfunction. Front Physiol 2019; 10:664. [PMID: 31191356 PMCID: PMC6546905 DOI: 10.3389/fphys.2019.00664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive disorder of the lung parenchyma which also involves extrapulmonary manifestations, such as cardiovascular impairment, diaphragm dysfunction, and frequent exacerbations. The development of animal models is important to elucidate the pathophysiology of COPD exacerbations and enable analysis of possible therapeutic approaches. We aimed to characterize a model of acute emphysema exacerbation and evaluate its consequences on the lung, heart, and diaphragm. Twenty-four Wistar rats were randomly assigned into one of two groups: control (C) or emphysema (ELA). In ELA group, animals received four intratracheal instillations of pancreatic porcine elastase (PPE) at 1-week intervals. The C group received saline under the same protocol. Five weeks after the last instillation, C and ELA animals received saline (SAL) or E. coli lipopolysaccharide (LPS) (200 μg in 200 μl) intratracheally. Twenty-four hours after saline or endotoxin administration, arterial blood gases, lung inflammation and morphometry, collagen fiber content, and lung mechanics were analyzed. Echocardiography, diaphragm ultrasonography (US), and computed tomography (CT) of the chest were done. ELA-LPS animals, compared to ELA-SAL, exhibited decreased arterial oxygenation; increases in alveolar collapse (p < 0.0001), relative neutrophil counts (p = 0.007), levels of cytokine-induced neutrophil chemoattractant-1, interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and vascular endothelial growth factor in lung tissue, collagen fiber deposition in alveolar septa, airways, and pulmonary vessel walls, and dynamic lung elastance (p < 0.0001); reduced pulmonary acceleration time/ejection time ratio, (an indirect index of pulmonary arterial hypertension); decreased diaphragm thickening fraction and excursion; and areas of emphysema associated with heterogeneous alveolar opacities on chest CT. In conclusion, we developed a model of endotoxin-induced emphysema exacerbation that affected not only the lungs but also the heart and diaphragm, thus resembling several features of human disease. This model of emphysema should allow preclinical testing of novel therapies with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Milena Vasconcellos de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth de Novaes Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Raquel Souza Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcella Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Ferreira de Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Augusto Lopes Souza
- Department of Radiology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Horiuchi M, Handa-Kirihara Y, Abe D, Fukuoka Y. Combined effects of exposure to hypoxia and cool on walking economy and muscle oxygenation profiles at tibialis anterior. J Sports Sci 2019; 37:1638-1647. [PMID: 30774004 DOI: 10.1080/02640414.2019.1580130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated combined effects of ambient temperature (23°C or 13°C) and fraction of inspired oxygen (21%O2 or 13%O2) on energy cost of walking (Cw: J·kg-1·km-1) and economical speed (ES). Eighteen healthy young adults (11 males, seven females) walked at seven speeds from 0.67 to 1.67 m s-1 (four min per stage). Environmental conditions were set; thermoneutral (N: 23°C) with normoxia (N: 21%O2) = NN; 23°C (N) with hypoxia (H: 13%O2) = NH; cool (C: 13°C) with 21%O2 (N) = CN, and 13°C (C) with 13%O2 (H) = CH. Muscle deoxygenation (HHb) and tissue O2 saturation (StO2) were measured at tibialis anterior. We found a significantly slower ES in NH (1.289 ± 0.091 m s-1) and CH (1.275 ± 0.099 m s-1) than in NN (1.334 ± 0.112 m s-1) and CN (1.332 ± 0.104 m s-1). Changes in HHb and StO2 were related to the ES. These results suggested that the combined effects (exposure to hypoxia and cool) is nearly equal to exposure to hypoxia and cool individually. Specifically, acute moderate hypoxia slowed the ES by approx. 4%, but acute cool environment did not affect the ES. Further, HHb and StO2 may partly account for an individual ES.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- a Division of Human Environmental Science , Mt. Fuji Research Institute , Fuji-yoshdia-city , Japan
| | - Yoko Handa-Kirihara
- a Division of Human Environmental Science , Mt. Fuji Research Institute , Fuji-yoshdia-city , Japan
| | - Daijiro Abe
- b Center for Health and Sports Science , Kyushu Sangyo University , Fukuoka , Japan
| | - Yoshiyuki Fukuoka
- c Faculty of Health and Sports Science , Doshisya University , Kyoto , Japan
| |
Collapse
|
46
|
Effects of exercise in normobaric hypoxia on hemodynamics during muscle metaboreflex activation in normoxia. Eur J Appl Physiol 2019; 119:1137-1148. [DOI: 10.1007/s00421-019-04103-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/13/2019] [Indexed: 01/21/2023]
|
47
|
Paleczny B, Seredyński R, Tubek S, Adamiec D, Ponikowski P, Ponikowska B. Hypoxic tachycardia is not a result of increased respiratory activity in healthy subjects. Exp Physiol 2019; 104:476-489. [PMID: 30672622 DOI: 10.1113/ep087233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/10/2019] [Indexed: 01/15/2023]
Abstract
NEW FINDINGS What is the central question of this research? Does increased ventilation contribute to the increase in heart rate during transient exposure to hypoxia in humans? What is the main finding and its importance? Voluntary suppression of the ventilatory response to transient hypoxia does not affect the magnitude of the heart rate response to the stimulus. This indicates that hypoxic tachycardia is not secondary to hyperpnoea in humans. Better understanding of the physiology underlying the cardiovascular response to hypoxia might help in identification of new markers of elevated chemoreceptor activity, which has been proposed as a target in treatment of sympathetically mediated diseases. ABSTRACT Animal data suggest that hypoxic tachycardia is secondary to hyperpnoea, and for years this observation has been extrapolated to humans, despite a lack of experimental evidence. We addressed this issue in 17 volunteers aged 29 ± 7 (SD) years. A transient hypoxia test, comprising several nitrogen-breathing episodes, was performed twice in each subject. In the first test, the subject breathed spontaneously (spontaneous breathing). In the second test, the subject was repeatedly asked to adjust his or her depth and rate of breathing according to visual (real-time inspiratory flow) and auditory (metronome sound) cues, respectively (controlled breathing), to maintain respiration at the resting level during nitrogen-breathing episodes. Hypoxic responsiveness, including minute ventilation [Hyp-VI; in liters per minute per percentage of blood oxygen saturation ( S p O 2 )], tidal volume [Hyp-VT; in litres per S p O 2 ], heart rate [Hyp-HR; in beats per minute per S p O 2 ], systolic [Hyp-SBP; in millimetres of mercury per S p O 2 ] and mean blood pressure [Hyp-MAP; in millimetres of mercury per S p O 2 ] and systemic vascular resistance [Hyp-SVR; in dynes seconds (centimetres)-5 per S p O 2 ] was calculated as the slope of the regression line relating the variable to S p O 2 , including pre- and post-hypoxic values. The Hyp-VI and Hyp-VT were reduced by 69 ± 25 and 75 ± 10%, respectively, in controlled versus spontaneous breathing (Hyp-VI, -0.30 ± 0.15 versus -0.11 ± 0.09; Hyp-VT, -0.030 ± 0.024 versus -0.007 ± 0.004; both P < 0.001). However, the cardiovascular responses did not differ between spontaneous and controlled breathing (Hyp-HR, -0.62 ± 0.24 versus -0.71 ± 0.33; Hyp-MAP, -0.43 ± 0.19 versus -0.47 ± 0.21; Hyp-SVR, 9.15 ± 5.22 versus 9.53 ± 5.57; all P ≥ 0.22), indicating that hypoxic tachycardia is not secondary to hyperpnoea. Hyp-HR was correlated with Hyp-SVR (r = -074 and -0.80 for spontaneous and controlled breathing, respectively; both P < 0.05) and resting barosensitivity assessed with the sequence technique (r = -0.60 for spontaneous breathing; P < 0.05). This might suggest that the baroreflex mechanism is involved.
Collapse
Affiliation(s)
- Bartłomiej Paleczny
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland.,Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland
| | - Rafał Seredyński
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland
| | - Stanisław Tubek
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.,Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Dorota Adamiec
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Ponikowski
- Department of Cardiology, Centre for Heart Diseases, 4th Military Hospital, Wroclaw, Poland.,Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Beata Ponikowska
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
48
|
Savla JJ, Levine BD, Sadek HA. The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe? High Alt Med Biol 2019; 19:124-130. [PMID: 29939783 DOI: 10.1089/ham.2018.0044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Savla, Jainy J., Benjamin D. Levine, and Hesham A. Sadek. The effect of hypoxia on cardiovascular disease: Friend or foe? High Alt Med Biol. 19:124-130, 2018.-Over 140 million people reside at altitudes exceeding 2500 m across the world, resulting in exposure to atmospheric (hypobaric) hypoxia. Whether this chronic exposure is beneficial or detrimental to the cardiovascular system, however, is uncertain. On one hand, multiple studies have suggested a protective effect of living at moderate and high altitudes for cardiovascular risk factors and cardiovascular disease (CVD) events. Conversely, residence at high altitude comes at the tradeoff of developing diseases such as chronic mountain sickness and high-altitude pulmonary hypertension and worsens outcomes for diseases such as chronic obstructive pulmonary disease. Interestingly, recently published data show a potential role for severe hypoxia as a unique and unexpected therapy after myocardial infarction. In this review, we will discuss the current literature evaluating the effects of altitude exposure and the accompanying hypoxia on health and the potential therapeutic applications of hypoxia on CVD.
Collapse
Affiliation(s)
- Jainy J Savla
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Benjamin D Levine
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
- 2 Institute for Exercise and Environmental Medicine , Texas Health Presbyterian Hospital, Dallas, Texas
| | - Hesham A Sadek
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
49
|
Jensen MLF, Vestergaard MB, Tønnesen P, Larsson HBW, Jennum PJ. Cerebral blood flow, oxygen metabolism, and lactate during hypoxia in patients with obstructive sleep apnea. Sleep 2019; 41:4788814. [PMID: 29309697 DOI: 10.1093/sleep/zsy001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Study Objectives Obstructive sleep apnea (OSA) is associated with increased risk of stroke but the underlying mechanism is poorly understood. We suspect that the normal cerebrovascular response to hypoxia is disturbed in patients with OSA. Methods Global cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), and lactate concentration during hypoxia were measured in patients with OSA and matched controls. Twenty-eight patients (82.1% males, mean age 52.3 ± 10.0 years) with moderate-to-severe OSA assessed by partial polysomnography were examined and compared with 19 controls (73.7% males, mean age 51.8 ± 10.1 years). Patients and controls underwent magnetic resonance imaging (MRI) during 35 min of normoxia followed by 35 min inhaling hypoxic air (10%-12% O2). After 3 months of continuous positive airway pressure (CPAP) treatment, 22 patients were rescanned. Results During hypoxia, CBF significantly increased with decreasing arterial blood oxygen concentration (4.53 mL (blood)/100 g/min per -1 mmol(O2)/L, p < 0.001) in the control group, but was unchanged (0.89 mL (blood)/100 g/min per -1 mmol(O2)/L, p = 0.289) in the patient group before CPAP treatment. The CBF response to hypoxia was significantly weaker in patients than in controls (p = 0.003). After 3 months of CPAP treatment the CBF response normalized, showing a significant increase during hypoxia (5.15 mL (blood)/100 g/min per -1 mmol(O2)/L, p < 0.001). There was no difference in CMRO2 or cerebral lactate concentration between patients and controls, and no effect of CPAP treatment. Conclusions Patients with OSA exhibit reduced CBF in response to hypoxia. CPAP treatment normalized these patterns.
Collapse
Affiliation(s)
- M L F Jensen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - M B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - P Tønnesen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - H B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
50
|
Mourot L. Limitation of Maximal Heart Rate in Hypoxia: Mechanisms and Clinical Importance. Front Physiol 2018; 9:972. [PMID: 30083108 PMCID: PMC6064954 DOI: 10.3389/fphys.2018.00972] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
The use of exercise intervention in hypoxia has grown in popularity amongst patients, with encouraging results compared to similar intervention in normoxia. The prescription of exercise for patients largely rely on heart rate recordings (percentage of maximal heart rate (HRmax) or heart rate reserve). It is known that HRmax decreases with high altitude and the duration of the stay (acclimatization). At an altitude typically chosen for training (2,000-3,500 m) conflicting results have been found. Whether or not this decrease exists or not is of importance since the results of previous studies assessing hypoxic training based on HR may be biased due to improper intensity. By pooling the results of 86 studies, this literature review emphasizes that HRmax decreases progressively with increasing hypoxia. The dose–response is roughly linear and starts at a low altitude, but with large inter-study variabilities. Sex or age does not seem to be a major contributor in the HRmax decline with altitude. Rather, it seems that the greater the reduction in arterial oxygen saturation, the greater the reduction in HRmax, due to an over activity of the parasympathetic nervous system. Only a few studies reported HRmax at sea/low level and altitude with patients. Altogether, due to very different experimental design, it is difficult to draw firm conclusions in these different clinical categories of people. Hence, forthcoming studies in specific groups of patients are required to properly evaluate (1) the HRmax change during acute hypoxia and the contributing factors, and (2) the physiological and clinical effects of exercise training in hypoxia with adequate prescription of exercise training intensity if based on heart rate.
Collapse
Affiliation(s)
- Laurent Mourot
- EA 3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Franche-Comté, Besançon, France.,Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|