1
|
Jiang X, Bíró I, Sárosi J, Fang Y, Gu Y. Comparison of ground reaction forces as running speed increases between male and female runners. Front Bioeng Biotechnol 2024; 12:1378284. [PMID: 39135948 PMCID: PMC11317262 DOI: 10.3389/fbioe.2024.1378284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: The biomechanics associated with human running are affected by gender and speed. Knowledge regarding ground reaction force (GRF) at various running speeds is pivotal for the prevention of injuries related to running. This study aimed to investigate the gait pattern differences between males and females while running at different speeds, and to verify the relationship between GRFs and running speed among both males and females. Methods: GRF data were collected from forty-eight participants (thirty male runners and eighteen female runners) while running on an overground runway at seven discrete speeds: 10, 11, 12, 13, 14, 15 and 16 km/h. Results: The ANOVA results showed that running speed had a significant effect (p < 0.05) on GRFs, propulsive and vertical forces increased with increasing speed. An independent t-test also showed significant differences (p < 0.05) in vertical and anterior-posterior GRFs at all running speeds, specifically, female runners demonstrated higher propulsive and vertical forces than males during the late stance phase of running. Pearson correlation and stepwise multiple linear regression showed significant correlations between running speed and the GRF variables. Discussion: These findings suggest that female runners require more effort to keep the same speed as male runners. This study may provide valuable insights into the underlying biomechanical factors of the movement patterns at GRFs during running.
Collapse
Affiliation(s)
- Xinyan Jiang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Doctoral School on Safety and Security Sciences, Obuda University, Budapest, Hungary
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - István Bíró
- Doctoral School on Safety and Security Sciences, Obuda University, Budapest, Hungary
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - József Sárosi
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yufei Fang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Yaodong Gu
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Shen W, Yu Y, Frias Bocanegra J, Wheeler PC, Fong DTP. Enhancing running injury prevention strategies with real-time biofeedback: A systematic review and meta-analysis. J Sports Sci 2024:1-12. [PMID: 38967313 DOI: 10.1080/02640414.2024.2374637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
The number of runners and the incidence of running-related injuries (RRIs) are on the rise. Real-time biofeedback gait retraining offers a promising approach to RRIs prevention. However, due to the diversity in study designs and reported outcomes, there remains uncertainty regarding the efficacy of different forms of feedback on running gait biomechanics. Three databases: MEDLINE, PUBMED, and SPORTDiscus were searched to identify relevant studies published up to March 2024, yielding 4646 articles for review. The quality of the included studies was assessed using the Downs and Black Quality checklist. Primary outcomes, including Peak Tibial Acceleration (PTA), Vertical Average Loading Rate (VALR), and Vertical Instantaneous Loading Rate (VILR), were analysed through meta-analysis. 24 studies met the inclusion criteria and were analysed in this review.17 used visual biofeedback (VB) while 14 chose auditory biofeedback (AB). The meta-analysis revealed a reduction in loading variables both immediately following the intervention and after extended training, with both visual and auditory feedback. Notably, the decrease in loading variables was more pronounced post-training and VB proved to be more effective than AB. Real-time biofeedback interventions are effective in lowering loading variables associated with RRIs. The impact is more substantial with sustained training, and VB outperforms AB in terms of effectiveness.
Collapse
Affiliation(s)
- Wei Shen
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Yifan Yu
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jose Frias Bocanegra
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Patrick C Wheeler
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Musculoskeletal, Sport & Exercise Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Daniel T P Fong
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
3
|
Chanchi ML, DeJong Lempke AF, Kocher M, Shore B, Meehan W, Willwerth S, Dawkins C, Hunt D, d'Hemecourt P, Stracciolini A, Whitney K. Running Biomechanics and Clinical Features Among Adolescent Athletes With Lower Leg Chronic Exertional Compartment Syndrome. Clin J Sport Med 2024; 34:348-356. [PMID: 38626073 DOI: 10.1097/jsm.0000000000001221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE To compare clinical measures between patients with chronic exertional compartment syndrome (CECS) and healthy controls and evaluate running biomechanics, physical measurements, and exertional intracompartmental (ICP) changes in adolescent athletes with lower leg CECS. DESIGN Cross-sectional case-control study. SETTING Large tertiary care hospital and affiliated injury prevention center. PARTICIPANTS Forty-nine adolescents with CECS (39 F, 10 M; age: 16.9 ± 0.8 years; body mass index (BMI): 23.1 ± 2.9 kg/m 2 ; symptom duration: 8 ± 12 months) were compared with 49 healthy controls (39 F, 10 M; age: 6.9 ± 0.8 years; BMI: 20.4 ± 3.7 kg/m 2 ). INTERVENTIONS All participants underwent gait analyses on a force plate treadmill and clinical lower extremity strength and range of motion testing. Patients with chronic exertional compartment syndrome underwent Stryker monitor ICP testing. MAIN OUTCOME MEASURES Symptoms, menstrual history, and ICP pressures of the patients with CECS using descriptive statistics. Mann-Whitney U and χ 2 analyses were used to compare CECS with healthy patients for demographics, clinical measures, and gait biomechanics continuous and categorical outcomes, respectively. For patients with CECS, multiple linear regressions analyses were used to assess associations between gait biomechanics, lower extremity strength and range of motion, and with ICP measures. RESULTS The CECS group demonstrated higher mass-normalized peak ground reaction force measures (xBW) compared with controls (0.21 ± 0.05 xBW ( P < 0.001) and were more likely to have impact peak at initial contact ( P = 0.04). Menstrual dysfunction was independently associated with higher postexertion ICP (ß = 14.6; P = 0.02). CONCLUSIONS The CECS group demonstrated increased total force magnitude and vertical impact transient peaks. In women with CECS, menstrual dysfunction was independently associated with increased postexertion ICP. These biomechanical and physiological attributes may play a role in the development of CECS.
Collapse
Affiliation(s)
- Mayela Leal Chanchi
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Alexandra F DeJong Lempke
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Mininder Kocher
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Ben Shore
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - William Meehan
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Sarah Willwerth
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
| | - Corey Dawkins
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
| | - Danielle Hunt
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
| | - Pierre d'Hemecourt
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Andrea Stracciolini
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Kristin Whitney
- Boston Children's Hospital Orthopedics and Sports Medicine, Boston, Massachusetts
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
4
|
Glover NA, Chaudhari AM. Neuromuscular and trunk control mediate factors associated with injury in fatigued runners. J Biomech 2024; 170:112176. [PMID: 38820995 DOI: 10.1016/j.jbiomech.2024.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
This study aimed to determine how fatigue affects factors associated with injury, neuromuscular activity, and control in recreational runners. Previously identified injury risk factors were defined as peak vertical instantaneous loading rates (pVILR) for tibial stress fracture (TSF) and peak hip adduction (pHADD) for patellofemoral pain syndrome and iliotibial band syndrome. Kinematics, kinetics, and electromyography data were collected from 11 recreational runners throughout a fatiguing run. Three trials were collected in the first and final minutes of the run. Coactivation was quantified about the knee and ankle for the entire stance phase and anticipatory, weight acceptance (WA), and propulsion sub-phases of stance. Trunk control was quantified by the peak mediolateral lean, peak forward lean, and flexion range of motion (ROM). There were significant increases in pHADD and pVILR when fatigued. Significant decreases in coactivation around the knee were found over the entire stance phase, in the anticipatory phase, and WA phase. Coactivation decreased about the ankle during WA. Lateral trunk lean significantly increased when fatigued, but no significant changes were found in flexion ROM or lean. Mediation analyses showed changes in ankle coactivation during WA, and lateral trunk lean are significant influences on pVILR, a measure associated with TSF. Fatigue-induced adaptations of decreasing ankle coactivation during WA and increased lateral trunk lean may increase the likelihood of TSF. In this study, a fatiguing run influenced changes in control in recreational runners. Further investigation of causal fatigue-induced injuries is necessary to better understand the effects of coactivation and trunk control.
Collapse
Affiliation(s)
- Nelson A Glover
- Department of Bioengineering, George Mason University, Fairfax, VA, United States.
| | - Ajit Mw Chaudhari
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
van Oeveren BT, de Ruiter CJ, Beek PJ, van Dieën JH. The biomechanics of running and running styles: a synthesis. Sports Biomech 2024; 23:516-554. [PMID: 33663325 DOI: 10.1080/14763141.2021.1873411] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Running movements are parametrised using a wide variety of devices. Misleading interpretations can be avoided if the interdependencies and redundancies between biomechanical parameters are taken into account. In this synthetic review, commonly measured running parameters are discussed in relation to each other, culminating in a concise, yet comprehensive description of the full spectrum of running styles. Since the goal of running movements is to transport the body centre of mass (BCoM), and the BCoM trajectory can be derived from spatiotemporal parameters, we anticipate that different running styles are reflected in those spatiotemporal parameters. To this end, this review focuses on spatiotemporal parameters and their relationships with speed, ground reaction force and whole-body kinematics. Based on this evaluation, we submit that the full spectrum of running styles can be described by only two parameters, namely the step frequency and the duty factor (the ratio of stance time and stride time) as assessed at a given speed. These key parameters led to the conceptualisation of a so-called Dual-axis framework. This framework allows categorisation of distinctive running styles (coined 'Stick', 'Bounce', 'Push', 'Hop', and 'Sit') and provides a practical overview to guide future measurement and interpretation of running biomechanics.
Collapse
Affiliation(s)
- Ben T van Oeveren
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Cornelis J de Ruiter
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Peter J Beek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Baker LM, Yawar A, Lieberman DE, Walsh CJ. Predicting overstriding with wearable IMUs during treadmill and overground running. Sci Rep 2024; 14:6347. [PMID: 38491093 PMCID: PMC10942980 DOI: 10.1038/s41598-024-56888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Running injuries are prevalent, but their exact mechanisms remain unknown largely due to limited real-world biomechanical analysis. Reducing overstriding, the horizontal distance that the foot lands ahead of the body, may be relevant to reducing injury risk. Here, we leverage the geometric relationship between overstriding and lower extremity sagittal segment angles to demonstrate that wearable inertial measurement units (IMUs) can predict overstriding during treadmill and overground running in the laboratory. Ten recreational runners matched their strides to a metronome to systematically vary overstriding during constant-speed treadmill running and showed similar overstriding variation during comfortable-speed overground running. Linear mixed models were used to analyze repeated measures of overstriding and sagittal segment angles measured with motion capture and IMUs. Sagittal segment angles measured with IMUs explained 95% and 98% of the variance in overstriding during treadmill and overground running, respectively. We also found that sagittal segment angles measured with IMUs correlated with peak braking force and explained 88% and 80% of the variance during treadmill and overground running, respectively. This study highlights the potential for IMUs to provide insights into landing and loading patterns over time in real-world running environments, and motivates future research on feedback to modify form and prevent injury.
Collapse
Affiliation(s)
- Lauren M Baker
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Avenue, Boston, MA, 02134, USA
| | - Ali Yawar
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Avenue, Boston, MA, 02134, USA.
| |
Collapse
|
7
|
Neal BS, Bramah C, McCarthy-Ryan MF, Moore IS, Napier C, Paquette MR, Gruber AH. Using wearable technology data to explain recreational running injury: A prospective longitudinal feasibility study. Phys Ther Sport 2024; 65:130-136. [PMID: 38181563 DOI: 10.1016/j.ptsp.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVES Investigate 1) if collecting and analysing wristwatch inertial measurement unit (IMU) and global positioning system (GPS) data using a commercially-available training platform was feasible in recreational runners and 2) which variables were associated with subsequent injury. DESIGN Prospective longitudinal cohort. PARTICIPANTS Healthy recreational runners. MAIN OUTCOME MEASURES We set a priori feasibility thresholds for recruitment (maximum six-months), acceptance (minimum 80%), adherence (minimum 70%), and data collection (minimum 80%). Participants completed three patient-reported outcome measures (PROMS) detailing their psychological health, sleep quality, and intrinsic motivation to run. We extracted baseline anthropometric, biomechanical, metabolic, and training load data from their IMU/GPS wristwatch for analysis. Participants completed a weekly injury status surveillance questionnaire over the next 12-weeks. Feasibility outcomes were analysed descriptively and injured versus non-injured group differences with 95% confidence intervals were calculated for PROM/IMU/GPS data. RESULTS 149 participants consented; 86 participants completed (55 men, 31 women); 21 developed an injury (0.46 injuries/1000km). Feasibility outcomes were satisfied (recruitment = 47 days; acceptance = 133/149 [89%]; adherence = 93/133 [70%]; data collection = 86/93 [92%]). Acute load by calculated effort was associated with subsequent injury (mean difference -562.14, 95% CI -1019.42, -21.53). CONCLUSION Collecting and analysing wristwatch IMU/GPS data using a commercially-available training platform was feasible in recreational runners.
Collapse
Affiliation(s)
- Bradley S Neal
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, United Kingdom.
| | - Christopher Bramah
- Human Movement and Rehabilitation, School of Health and Society, University of Salford, Salford, United Kingdom; The Manchester Institute of Health and Performance, Manchester, United Kingdom
| | - Molly F McCarthy-Ryan
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Isabel S Moore
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Christopher Napier
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Faculty of Science, Burnaby, British Columbia, Canada
| | | | - Allison H Gruber
- Department of Kinesiology, School of Public Health - Bloomington, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
8
|
Baggaley M, Khassetarash A. Commentary on "Speed and surface steepness affect internal tibial loading during running". JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:125-126. [PMID: 37019208 PMCID: PMC10818111 DOI: 10.1016/j.jshs.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 05/24/2023]
Affiliation(s)
- Michael Baggaley
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| | - Arash Khassetarash
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Mitchell A, Greig M. Peak instantaneous PlayerLoad metrics highlight movement strategy deficits in professional male soccer players. Res Sports Med 2024; 32:61-71. [PMID: 35593507 DOI: 10.1080/15438627.2022.2079985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
To investigate the influence of task, limb dominance and previous injury on single leg hop task performance and loading response, 25 professional male soccer players completed anterior, medial and lateral hop tests with an accelerometer at mid-calf. Performance outcome was defined as hop distance with loading response defined as the magnitude of, and time to peak instantaneous planar PlayerLoad. The performance was sensitive to task and previous injury (P < 0.001) but not limb dominance, with no evidence of bilateral asymmetry (P = 0.668). Despite impaired performance, previously injured players did not exhibit lower peak instantaneous PlayerLoad after impact in any plane (P ≥ 0.110). There was however a significantly (P = 0.001) longer time to peak medio-lateral loading after impact in previously injured players' affected limb. This observation was exacerbated when the injury was to the non-dominant limb (P = 0.041). Lower-limb accelerometry enhances understanding of movement strategy beyond task outcome, with practical implications in player screening and objective rehabilitation.
Collapse
Affiliation(s)
- Andy Mitchell
- Medical Department, RB Leipzig Football Club, Leipzig, Germany
| | - Matt Greig
- Sports Injuries Research Group, Edge Hill University, Ormskirk, UK
| |
Collapse
|
10
|
Dimmick HL, van Rassel CR, MacInnis MJ, Ferber R. Use of subject-specific models to detect fatigue-related changes in running biomechanics: a random forest approach. Front Sports Act Living 2023; 5:1283316. [PMID: 38186400 PMCID: PMC10768007 DOI: 10.3389/fspor.2023.1283316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Running biomechanics are affected by fatiguing or prolonged runs. However, no evidence to date has conclusively linked this effect to running-related injury (RRI) development or performance implications. Previous investigations using subject-specific models in running have demonstrated higher accuracy than group-based models, however, this has been infrequently applied to fatigue. In this study, two experiments were conducted to determine whether subject-specific models outperformed group-based models to classify running biomechanics during non-fatigued and fatigued conditions. In the first experiment, 16 participants performed four treadmill runs at or around the maximal lactate steady state. In the second experiment, nine participants performed five prolonged runs using commercial wearable devices. For each experiment, two segments were extracted from each trial from early and late in the run. For each participant, a random forest model was applied with a leave-one-run-out cross-validation to classify between the early (non-fatigued) and late (fatigued) segments. Additionally, group-based classifiers with a leave-one-subject-out cross validation were constructed. For experiment 1, mean classification accuracies for the single-subject and group-based classifiers were 68.2 ± 8.2% and 57.0 ± 8.9%, respectively. For experiment 2, mean classification accuracies for the single-subject and group-based classifiers were 68.9 ± 17.1% and 61.5 ± 11.7%, respectively. Variable importance rankings were consistent within participants, but these rankings differed from each participant to those of the group. Although the classification accuracies were relatively low, these findings highlight the advantage of subject-specific classifiers to detect changes in running biomechanics with fatigue and indicate the potential of using big data and wearable technology approaches in future research to determine possible connections between biomechanics and RRI.
Collapse
Affiliation(s)
- Hannah L. Dimmick
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Cody R. van Rassel
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin J. MacInnis
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Reed Ferber
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Running Injury Clinic, Calgary, AB, Canada
| |
Collapse
|
11
|
Rubin DA, Holmes SC, Ramirez J, Garcia SA, Shumski EJ, Pamukoff DN. Bone mineral density and its relationship with ground reaction force characteristics during gait in young adults with Prader-Willi Syndrome. Bone Rep 2023; 19:101700. [PMID: 37520935 PMCID: PMC10382280 DOI: 10.1016/j.bonr.2023.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The incidence of osteopenia and osteoporosis is of concern in adults with Prader-Willi syndrome (PWS). Walking generates reaction forces that could stimulate bone mineralization and is popular in people with PWS. This study compared bone parameters and ground reaction forces (GRF) during gait between young adults with PWS and without PWS and explored associations between bone and GRFs during gait. Methods 10 adults with PWS, 10 controls with obesity (OB) and 10 with normal weight (NW) matched on sex participated. Segmental and full body dual-energy x-ray absorptiometry scans provided femoral neck, spine, total body minus the head bone mineral density (BMD), bone mineral content (BMC). Vertical GRF, vertical impulse, posterior force and negative impulse were measured during 5 walking trials at a self-selected speed along a 10 m runway. Results Multivariate analyses of variance showed that adults with PWS (n = 7-8) had hip and body BMD and BMC comparable (p > .050) to NW and lower (p < .050) than OB. Adults with PWS showed slower speed than NW (p < .050) but similar to OB (p > .050). Adults with PWS presented lower absolute vertical GRF, vertical impulse and negative impulse than OB (p < .050). Pearson r correlations (p < .050) in those with PWS (n = 7-8) indicated that femoral neck BMC was associated with vertical GRF (r = 0.716), vertical impulse (r = 0.780), posterior force (r = -0.805), and negative impulse (r = -0.748). Spine BMC was associated with speed (r = 0.829) and body BMD was associated with speed (r = 0.893), and posterior force (r = -0.780). Conclusions Increased BMC in the femoral neck and body were associated with larger breaking forces during walking, a phenomenon normally observed at greater gait speeds. Faster walking speed was associated with greater BMC in the spine and body. Our preliminary results suggest that young adults with PWS could potentially benefit from faster walking for bone health; however, larger prospective studies are needed to confirm this.
Collapse
Affiliation(s)
- Daniela A. Rubin
- California State University, Fullerton, 800 N. State College Blvd., Fullerton, CA 92831, United States
| | - Skylar C. Holmes
- University of Massachusetts Amherst, 30 Eastman Lane, Amherst, MA 01003, United States
| | - Jacqueline Ramirez
- California State University, Fullerton, 800 N. State College Blvd., Fullerton, CA 92831, United States
| | - Steven A. Garcia
- University of Michigan Dominos Farms, Lobby A. 24 Frank Lloyd Wright Drive, Ann Arbor, MI 48106, United States
| | - Eric J. Shumski
- University of Georgia, Athens, 330 River Rd, Athens, GA 30602, United States
| | - Derek N. Pamukoff
- Western University, 1151 Richmond Street, London, Ontario N6A3K7, Canada
| |
Collapse
|
12
|
Gaiesky SKT, Fridman L, Michie T, Blazey P, Tran N, Schneeberg A, Napier C. The one-week and three-month reliability of acceleration outcomes from an insole-embedded inertial measurement unit during treadmill running. Sports Biomech 2023:1-15. [PMID: 37941419 DOI: 10.1080/14763141.2023.2275258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Inertial measurement units (IMUs) represent an exciting opportunity for researchers to broaden our understanding of running-related injuries, and for clinicians to expand their application of running gait analysis. The primary aim of our study was to investigate the 1-week (short-term) and 3-month (long-term) reliability of peak resultant, vertical, and anteroposterior accelerations derived from insole-embedded IMUs. The secondary aim was to assess the reliability of peak acceleration variability and left-right limb symmetry in all directions over the short and long term. A sample of healthy adult rearfoot runners (n = 23; age 41.7 ± 11.2 years) ran at a variety of speeds (2.5 m/s, 3.0 m/s, and 3.5 m/s) on a treadmill in standardised footwear with insole-embedded IMUs in each shoe. Peak accelerations exhibited good to excellent short-term reliability and moderate to excellent long-term reliability in all directions. Peak acceleration variability showed poor to good short- and long-term reliability, whereas the symmetry of peak accelerations demonstrated moderate to excellent and moderate to good short- and long-term reliability, respectively. Our results demonstrate how insole-embedded IMUs represent a viable option for clinicians to measure peak accelerations within the clinic.
Collapse
Affiliation(s)
- Sean K T Gaiesky
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Metro Vancouver, BC, Canada
| | | | - Tom Michie
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Metro Vancouver, BC, Canada
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Paul Blazey
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | | | | | - Christopher Napier
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Metro Vancouver, BC, Canada
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
13
|
Malisoux L, Napier C, Gette P, Delattre N, Theisen D. Reference Values and Determinants of Spatiotemporal and Kinetic Variables in Recreational Runners. Orthop J Sports Med 2023; 11:23259671231204629. [PMID: 37868213 PMCID: PMC10588426 DOI: 10.1177/23259671231204629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background Identifying atypical lower limb biomechanics may help prevent the occurrence or recurrence of running-related injuries. No reference values for spatiotemporal or kinetic variables in healthy recreational runners are available in the scientific literature to support clinical management. Purpose To (1) present speed- and sex-stratified reference values for spatiotemporal and kinetic variables in healthy adult recreational runners; (2) identify the determinants of these biomechanical variables; and (3) develop reference regression equations that can be used as a guide in a clinical context. Study Design Descriptive laboratory study. Methods This study involved 860 healthy recreational runners (age, 19-65 years [38.5% women]) tested on an instrumented treadmill at their preferred running speed in randomly allocated, standardized running shoes with either hard or soft cushioning. Twelve common spatiotemporal and kinetic variables-including contact time, flight time, duty factor, vertical oscillation, step cadence, step length, vertical impact peak (VIP), time to VIP, vertical average loading rate, vertical stiffness, peak vertical ground-reaction force (GRF), and peak braking force-were derived from GRF recordings. Reference values for each biomechanical variable were calculated using descriptive statistics and stratified by sex and running speed category (≤7, 8, 9, 10, 11, 12, 13, 14, and ≥15 km/h). Correlations and multiple regression analyses were performed to identify potential determinants independently associated with each biomechanical variable and generate reference equations. Results The mean running speed was 10.5 ± 1.3 km/h and 9 ± 1.1 km/h in men and women, respectively. While all potential predictors were significantly correlated with many of the 12 biomechanical variables, only running speed showed high correlations (r > 0.7). The adjusted R2 of the multiple regression equations ranged from 0.19 to 0.88. Conclusion This study provides reference values and equations that may guide clinicians and researchers in interpreting spatiotemporal and kinetic variables in recreational runners. Clinical Relevance The reference values can be used as targets for clinicians working with recreational runners in cases where there is a clinical suspicion of a causal relationship between atypical biomechanics and running-related injury.
Collapse
Affiliation(s)
- Laurent Malisoux
- Physical Activity, Sport and Health research group, Luxembourg Institute of Health, Luxembourg
| | - Christopher Napier
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Gette
- Human Motion, Orthopaedics, Sports Medicine and Digital Methods, Luxembourg Institute of Health, Luxembourg
| | - Nicolas Delattre
- Decathlon Sports Lab, Movement Sciences Department, Villeneuve d’Ascq, France
| | | |
Collapse
|
14
|
Evans RJ, Moffit TJ, Mitchell PK, Pamukoff DN. Injury and performance related biomechanical differences between recreational and collegiate runners. Front Sports Act Living 2023; 5:1268292. [PMID: 37780121 PMCID: PMC10536965 DOI: 10.3389/fspor.2023.1268292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Running related injuries (RRI) are common, but factors contributing to running performance and RRIs are not commonly compared between different types of runners. Methods We compared running biomechanics previously linked to RRIs and performance between 27 recreational and 35 collegiate runners. Participants completed 5 overground running trials with their dominant limb striking a force plate, while outfitted with standardised footwear and 3-dimensional motion capture markers. Results Post hoc comparisons revealed recreational runners had a larger vertical loading rate (194.5 vs. 111.5 BW/s, p < 0.001) and shank angle (6.80 vs. 2.09, p < 0.001) compared with the collegiate runners who demonstrated greater vertical impulse (0.349 vs. 0.233 BWs, p < 0.001), negative impulse (-0.022 vs. -0.013 BWs, p < 0.001), positive impulse (0.024 vs. 0.014 BWs, p < 0.001), and propulsive force (0.390 vs. 0.333 BW, p = 0.002). Adjusted for speed, collegiate runners demonstrated greater total support moment (TSM), plantar flexor moment, knee extensor moment, hip extensor moment, and had greater proportional plantar flexor moment contribution and less knee extensor moment contribution to the TSM compared with recreational runners. Unadjusted for speed, collegiate runners compared with recreational had greater TSM and plantar flexor moment but similar joint contributions to the TSM. Discussion Greater ankle joint contribution may be more efficient and allow for greater capacity to increase speed. Improving plantarflexor function during running provides a strategy to improve running speed among recreational runners. Moreover, differences in joint kinetics and ground reaction force characteristics suggests that recreational and collegiate runners may experience different types of RRI.
Collapse
Affiliation(s)
- Ryan J. Evans
- School of Kinesiology, Western University, London ON, Canada
| | - Tyler J. Moffit
- Department of Kinesiology, California State University, Bakersfield, CA, United States
| | - Peter K. Mitchell
- Department of Kinesiology, California State University, Fullerton, CA, United States
| | | |
Collapse
|
15
|
Dewald M, Dalland J, Stockland J. The Association of Joint Power Kinetic Variables with Running Injuries: A Case-Control Study. Int J Sports Phys Ther 2023; 18:864-873. [PMID: 37547840 PMCID: PMC10399108 DOI: 10.26603/001c.83216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/16/2023] [Indexed: 08/08/2023] Open
Abstract
Background There is conflicting data on which kinetic variables are important to consider with running injuries. Furthermore, less is understood regarding differences in these variables when considering demographics such as age, sex, weight, and running speed. The primary question was what joint power kinetic variables were different between non-injured and injured runners. Purpose The purpose of this study was to identify if there were differences in joint power kinetic variables between non-injured runners and injured runners. Study Design Case-Control Study. Methods Kinetic data were collected on 122 runners (26 non-injured and 96 injured) over three years with a Bertec force plated treadmill and Qualisys 3D motion capture. The subjects were considered eligible if they self-identified themselves as runners or had running as a key component of their activity. The subjects ran at a comfortable, self-selected pace while two 10-second trials of recordings were used to calculate the means of peak power generated at the hips, knees, and ankles of each gait cycle. Foot strike was categorized by kinematic data. Two sample T-tests were used to compare peak power variables at the hips, knees, and ankles between non-injured and injured runners. Logistic regression analyses examined how a combination of demographics and peak power variables were associated with injuries. Results No peak power variable at the hip, knee, or ankle was significantly different between injured and non-injured runners (p=0.07-0.87). However, higher hip power absorbed was found to be protective against injuries (odds ratio, .16; 95% CI .025-.88) when considering demographics using a logistic regression model including sex, foot strike, BMI, speed, age, and power variables from the hip, knee, and ankle. The area under the ROC curve was .74, which is acceptable discrimination. Conclusion When controlling for age, sex, BMI, foot strike, and speed; higher hip power absorbed was found to be protective against injury. This could be due to the hip muscles' unique role in absorbing force during early stance phase. Level of Evidence 3b©The Author(s).
Collapse
|
16
|
Bradach MM, Gaudette LW, Tenforde AS, Outerleys J, de Souza Júnior JR, Johnson CD. The Effects of a Simple Sensor Reorientation Procedure on Peak Tibial Accelerations during Running and Correlations with Ground Reaction Forces. SENSORS (BASEL, SWITZERLAND) 2023; 23:6048. [PMID: 37447897 DOI: 10.3390/s23136048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
While some studies have found strong correlations between peak tibial accelerations (TAs) and early stance ground reaction forces (GRFs) during running, others have reported inconsistent results. One potential explanation for this is the lack of a standard orientation for the sensors used to collect TAs. Therefore, our aim was to test the effects of an established sensor reorientation method on peak Tas and their correlations with GRFs. Twenty-eight runners had TA and GRF data collected while they ran at a self-selected speed on an instrumented treadmill. Tibial accelerations were reoriented to a body-fixed frame using a simple calibration trial involving quiet standing and kicking. The results showed significant differences between raw and reoriented peak TAs (p < 0.01) for all directions except for the posterior (p = 0.48). The medial and lateral peaks were higher (+0.9-1.3 g), while the vertical and anterior were lower (-0.5-1.6 g) for reoriented vs. raw accelerations. Correlations with GRF measures were generally higher for reoriented TAs, although these differences were fairly small (Δr2 = 0.04-0.07) except for lateral peaks (Δr2 = 0.18). While contingent on the position of the IMU on the tibia used in our study, our results first showed systematic differences between reoriented and raw peak accelerations. However, we did not find major improvements in correlations with GRF measures for the reorientation method. This method may still hold promise for further investigation and development, given that consistent increases in correlations were found.
Collapse
Affiliation(s)
- Molly M Bradach
- Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA
| | - Logan W Gaudette
- Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA
| | - Adam S Tenforde
- Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA
| | - Jereme Outerleys
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L 3N9, Canada
| | - José R de Souza Júnior
- Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA
- Faculty of Ceilandia, University of Brasilia, Brasilia 73340, Brazil
| | - Caleb D Johnson
- Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA 02138, USA
- Military Performance Division, United States Army Research Institute for Environmental Medicine, Natick, MA 01760, USA
| |
Collapse
|
17
|
Gruber AH. The "impacts cause injury" hypothesis: Running in circles or making new strides? J Biomech 2023; 156:111694. [PMID: 37364393 DOI: 10.1016/j.jbiomech.2023.111694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Some of the earliest biomechanics research focused on running and the ground reaction forces generated with each step. Research in running gait accelerated in the 1970's as the growing popularity in running increased attention to the musculoskeletal injuries sustained by runners. Despite decades of high-quality research, running remains the most common cause of exercise-related musculoskeletal injuries and rates of overuse running-related injuries (RRI) have not appreciably declined since the research began. One leading area of running gait research focuses on discrete variables derived from the vertical ground reaction force, such as the vertical loading rate. Across sub-disciplines of running gait research, vertical loading rate is often discussed as the primary and undisputed variable associated with RRI despite only low to moderate evidence that retrospectively or prospectively injured runners generate greater vertical loading rates than uninjured counterparts. The central thesis of this review is that relying on vertical loading rate is insufficient to establish causal mechanisms for RRI etiology. To present this argument, this review examines the history of the 'impacts cause injury' hypothesis, including a historical look at ground reaction forces in human running and the research from which this hypothesis was generated. Additionally, a synthesis of studies that have tested the hypothesis is provided and recommendations for future research are discussed. Although it is premature to reject or support the 'impacts cause injury' hypothesis, new knowledge of biomechanical risk factors for RRI will remain concealed until research departs from the current path or adopts new approaches to previous paradigms.
Collapse
Affiliation(s)
- Allison H Gruber
- The H.H. Morris Human Performance Laboratories, Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
18
|
Burke A, Dillon S, O'Connor S, Whyte EF, Gore S, Moran KA. Aetiological Factors of Running-Related Injuries: A 12 Month Prospective "Running Injury Surveillance Centre" (RISC) Study. SPORTS MEDICINE - OPEN 2023; 9:46. [PMID: 37310517 DOI: 10.1186/s40798-023-00589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Running-related injuries (RRIs) are a prevalent issue for runners, with several factors proposed to be causative. The majority of studies to date are limited by retrospective study design, small sample sizes and seem to focus on individual risk factors in isolation. This study aims to investigate the multifactorial contribution of risk factors to prospective RRIs. METHODS Recreational runners (n = 258) participated in the study, where injury history and training practices, impact acceleration, and running kinematics were assessed at a baseline testing session. Prospective injuries were tracked for one year. Univariate and multivariate Cox regression was performed in the analysis. RESULTS A total of 51% of runners sustained a prospective injury, with the calf most commonly affected. Univariate analysis found previous history of injury < 1 year ago, training for a marathon, frequent changing of shoes (every 0-3 months), and running technique (non-rearfoot strike pattern, less knee valgus, greater knee rotation) to be significantly associated with injury. The multivariate analysis revealed previous injury, training for a marathon, less knee valgus, and greater thorax drop to the contralateral side to be risk factors for injury. CONCLUSION This study found several factors to be potentially causative of injury. With the omission of previous injury history, the risk factors (footwear, marathon training and running kinematics) identified in this study may be easily modifiable, and therefore could inform injury prevention strategies. This is the first study to find foot strike pattern and trunk kinematics to relate to prospective injury.
Collapse
Affiliation(s)
- Aoife Burke
- School of Health and Human Performance, Dublin City University, XG08, Lonsdale Building, Glasnevin Campus, Dublin, Ireland.
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland.
| | - Sarah Dillon
- School of Health and Human Performance, Dublin City University, XG08, Lonsdale Building, Glasnevin Campus, Dublin, Ireland
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Siobhán O'Connor
- School of Health and Human Performance, Dublin City University, XG08, Lonsdale Building, Glasnevin Campus, Dublin, Ireland
- Centre for Injury Prevention and Performance, Athletic Therapy and Training, Dublin City University, Dublin, Ireland
| | - Enda F Whyte
- School of Health and Human Performance, Dublin City University, XG08, Lonsdale Building, Glasnevin Campus, Dublin, Ireland
- Centre for Injury Prevention and Performance, Athletic Therapy and Training, Dublin City University, Dublin, Ireland
| | - Shane Gore
- School of Health and Human Performance, Dublin City University, XG08, Lonsdale Building, Glasnevin Campus, Dublin, Ireland
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Kieran A Moran
- School of Health and Human Performance, Dublin City University, XG08, Lonsdale Building, Glasnevin Campus, Dublin, Ireland
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
- Centre for Injury Prevention and Performance, Athletic Therapy and Training, Dublin City University, Dublin, Ireland
| |
Collapse
|
19
|
Ross BJ, Lupica GM, Dymock ZR, Miskimin C, Mulcahey MK. Sex-related differences in hip and groin injuries in adult runners: a systematic review. PHYSICIAN SPORTSMED 2023; 51:107-120. [PMID: 34905425 DOI: 10.1080/00913847.2021.2016355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Hip/groin running-related injuries (RRIs) are relatively uncommon. It is unclear if runners of either sex are disproportionately affected. Our objective was to systematically review differences in hip/groin RRIs between males and females. DATA SOURCES A structured and comprehensive search of four medical literature databases was performed (PubMed, Embase, Ovid Medline, and CINAHL). Terms searched were as follows: risk, epidemiology, hip injury, groin injury, overuse injury, running, sprinting, and track and field. STUDY SELECTION Studies reporting sex-specific data on hip/groin RRIs in adult runners were included. Data was extracted and reviewed independently by two authors. STUDY APPRAISAL AND DATA SYNTHESIS Sex-specific injury rates, risk factors, and return to sport (RTS) following hip/groin RRI were extracted. Risk of bias was assessed using the Joanna-Briggs Institute Critical Appraisal Tool. RESULTS Ten studies with 7,353 total runners were included: 2,315 (47%) males and 2,559 (53%) females. The mean age of the included runners was 37.3 ± 8.9 years and the mean weekly running distance was 10.4 ± 8.4 km. Hip/groin injuries comprised 10.1% (491/4,874) of total RRIs, including 6.3% of RRIs sustained by males and 11.0% by females. Three studies reported significantly higher rates of hip/groin RRIs in female runners. One study reported significantly higher rates of gluteus medius and adductor RRIs for females and males, respectively. One study identified female sex as an independent risk factor for hip/groin RRIs. Three studies reported on RTS after hip/groin RRIs: the pooled RTS rate was 81.4% (57/70) at 1 to 368 days after injury. LIMITATIONS Data was pooled when possible; however, there was considerable clinical, methodological, and statistical heterogeneity across studies. CONCLUSIONS Hip/groin RRIs comprise a greater percentage of total injuries among injured female runners relative to males. Females may be at a higher risk for sustaining hip/groin RRIs though more research on risk factors and RTS is needed.
Collapse
Affiliation(s)
| | | | - Zakari R Dymock
- Department of Physical Medicine & Rehabilitation, University of Kentucky College of Medicine, Lexington
| | - Cadence Miskimin
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans
| | - Mary K Mulcahey
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans
| |
Collapse
|
20
|
Brake MT, Stolwijk N, Staal B, Van Hooren B. Using beat frequency in music to adjust running cadence in recreational runners: A randomized multiple baseline design. Eur J Sport Sci 2023; 23:345-354. [PMID: 35176971 DOI: 10.1080/17461391.2022.2042398] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Running with music has been shown to acutely change cadence. However, it is unclear if the increased cadence remains long-term when running without music in an in-field situation. The aim of this 12-week study was to investigate the effect of a 4-week music running program on cadence, speed and heartrate during and after the music running program. Seven recreational runners with a cadence of <170 steps per minute were randomly assigned to a baseline and post-intervention period of different durations. During the intervention phase, the participants ran with a musical beat that was 7.5-10% higher than their mean cadence at the start of the study. Cadence, heartrate and running speed were measured twice a week during a 5-kilometer run with a watch, and were analyzed using randomization tests and visual data inspection. Two participants dropped-out due to shortage of time (n = 1) and an acute calf injury (n = 1). Cadence significantly increased during the intervention period (+8.5%), and remained elevated during the post-intervention period (+7.9% (p = .001)) in comparison with the baseline period. Heartrate and running speed did not significantly change during any period. This study among five participants shows that four weeks of running with a musical beat that is 7.5-10% higher than the preferred cadence may be an effective and feasible intervention to increase running cadence. Importantly, the increased cadence occurred without simultaneous increases in running speed and heartrate, hereby potentially reducing mechanical loading without increasing metabolic load.HighlightsRunning with a musical rhythm that is higher than the preferred cadence leads to an increased running cadence, without increasing heartrate and running speed.This cadence remains elevated for at least three to five weeks after the music intervention period.All individuals showed a practically relevant increase in cadence during and after the intervention.
Collapse
Affiliation(s)
| | - Niki Stolwijk
- Research Group Musculoskeletal Rehabilitation Nijmegen, HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Bart Staal
- Research Group Musculoskeletal Rehabilitation Nijmegen, HAN University of Applied Sciences, Nijmegen, The Netherlands.,Radboud Institute for Health Sciences, IQ Healthcare, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
21
|
Senevirathna AM, Pohl AJ, Jordan MJ, Edwards WB, Ferber R. Differences in kinetic variables between injured and uninjured rearfoot runners: A hierarchical cluster analysis. Scand J Med Sci Sports 2023; 33:160-168. [PMID: 36282596 DOI: 10.1111/sms.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 01/11/2023]
Abstract
Running is a popular form of physical activity with a high incidence of running-related injuries. However, the etiology of running-related injuries remains elusive, possibly due to the heterogeneity of movement patterns. The purpose of this study was to investigate whether different clusters existed within a large group of injured and uninjured runners based on their kinetic gait patterns. A sample of 134 injured and uninjured runners were acquired from an existing database and 12 discrete kinetic and spatiotemporal variables which are commonly associated with running injuries were extracted from the ground reaction force waveforms. A principal components analysis followed by an unsupervised hierarchical cluster analysis was performed. The results revealed two distinct clusters of runners which were not associated with injury status (OR = 1.14 [0.57, 2.30], χ2 = 0.143, p = 0.706) or sex (OR = 1.72 [0.85, 3.49], χ2 = 2.3258, p = 0.127). These results suggest that while there appeared to be evidence for two distinct clusters within a large sample of injured and uninjured runners, there is no association between the kinetic variables and running related injuries.
Collapse
Affiliation(s)
- Angela M Senevirathna
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Pohl
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Matthew J Jordan
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - William Brent Edwards
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Reed Ferber
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Running Injury Clinic, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Anderson LM, Martin JF, Barton CJ, Bonanno DR. What is the Effect of Changing Running Step Rate on Injury, Performance and Biomechanics? A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:112. [PMID: 36057913 PMCID: PMC9441414 DOI: 10.1186/s40798-022-00504-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022]
Abstract
Background Running-related injuries are prevalent among distance runners. Changing step rate is a commonly used running retraining strategy in the management and prevention of running-related injuries. Objective The aims of this review were to synthesise the evidence relating to the effects of changing running step rate on injury, performance and biomechanics. Design Systematic review and meta-analysis. Data Sources MEDLINE, EMBASE, CINAHL, and SPORTDiscus. Results Thirty-seven studies were included that related to injury (n = 2), performance (n = 5), and biomechanics (n = 36). Regarding injury, very limited evidence indicated that increasing running step rate is associated with improvements in pain (4 weeks: standard mean difference (SMD), 95% CI 2.68, 1.52 to 3.83; 12 weeks: 3.62, 2.24 to 4.99) and function (4 weeks: 2.31, 3.39 to 1.24); 12 weeks: 3.42, 4.75 to 2.09) in recreational runners with patellofemoral pain. Regarding performance, very limited evidence indicated that increasing step rate increases perceived exertion ( − 0.49, − 0.91 to − 0.07) and awkwardness (− 0.72, − 1.38 to − 0.06) and effort (− 0.69, − 1.34, − 0.03); and very limited evidence that an increase in preferred step rate is associated with increased metabolic energy consumption (− 0.84, − 1.57 to − 0.11). Regarding biomechanics, increasing running step rate was associated with strong evidence of reduced peak knee flexion angle (0.66, 0.40 to 0.92); moderate evidence of reduced step length (0.93, 0.49 to 1.37), peak hip adduction (0.40, 0.11 to 0.69), and peak knee extensor moment (0.50, 0.18 to 0.81); moderate evidence of reduced foot strike angle (0.62, 034 to 0.90); limited evidence of reduced braking impulse (0.64, 0.29 to 1.00), peak hip flexion (0.42, 0.10 to 0.75), and peak patellofemoral joint stress (0.56, 0.07 to 1.05); and limited evidence of reduced negative hip (0.55, 0.20 to 0.91) and knee work (0.84, 0.48 to 1.20). Decreasing running step rate was associated with moderate evidence of increased step length (− 0.76, − 1.31 to − 0.21); limited evidence of increased contact time (− 0.95, − 1.49 to − 0.40), braking impulse (− 0.73, − 1.08 to − 0.37), and negative knee work (− 0.88, − 1.25 to − 0.52); and limited evidence of reduced negative ankle work (0.38, 0.03 to 0.73) and negative hip work (0.49, 0.07 to 0.91). Conclusion In general, increasing running step rate results in a reduction (or no change), and reducing step rate results in an increase (or no change), to kinetic, kinematic, and loading rate variables at the ankle, knee and hip. At present there is insufficient evidence to conclusively determine the effects of altering running step rate on injury and performance. As most studies included in this review investigated the immediate effects of changing running step rate, the longer-term effects remain largely unknown. Prospero Registration CRD42020167657.
Collapse
|
23
|
Are impact accelerations during treadmill running representative of those produced overground? Gait Posture 2022; 98:195-202. [PMID: 36166957 DOI: 10.1016/j.gaitpost.2022.09.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Although many runners train overground, measuring impact accelerations on a treadmill may be advantageous for researchers and clinicians. Previous investigations of peak and rate of acceleration (peakaccel, rateaccel) during treadmill running compared to overground running have not examined both the relative consistency and absolute agreement of these measures, or the effect of treadmill stiffness. RESEARCH QUESTION (1) Are peakaccel and rateaccel produced during running on a stiff and less stiff treadmill 'representative' of those produced during overground running? (2) Are peakaccel and rateaccel measured on treadmills of different stiffness 'representative' of each other? METHODS Eighteen participants ran at a self-selected pace on three surfaces: Treadmill 1 (reduced stiffness), Treadmill 2 (increased stiffness) and overground on asphalt, whilst peakaccel and rateaccel were recorded at the shank and lower back. Relative consistency (ICC (3,1)), absolute agreement (Bland-Altman analysis) and systematic differences (ANOVA/Friedman's Tests) were assessed. RESULTS ICCs revealed moderate to excellent relative consistency in peakaccel and rateaccel between surfaces, with higher consistency for measures at the lower back. Absolute agreement was low, with the Bland Altman limits of agreement exceeding the clinical acceptable range for all comparisons. For systematic differences in means, peakaccel and rateaccel at the shank were significantly higher overground than on either treadmill; with no difference evident at the lower back. No differences were found for surface with respect to shank or lower back peakaccel and rateaccel between treadmills. SIGNIFICANCE Moderate to excellent relative consistency of peakaccel and rateaccel between the surfaces suggests that using different surfaces in research involving rank ordering of participants by acceleration magnitude may be acceptable (e.g. prospective studies examining if impact accelerations are related to injury). However, low absolute agreement indicates that data collected on treadmills of different stiffness and overground should not be used interchangeably (e.g. running-retraining studies).
Collapse
|
24
|
Garcia MC, Heiderscheit BC, Murray AM, Norte GE, Kraus E, Bazett-Jones DM. One size does not fit all: Influence of sex and maturation on temporal-spatial parameters for adolescent long-distance runners. J Sports Sci 2022; 40:2153-2158. [PMID: 36352559 DOI: 10.1080/02640414.2022.2142743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Runners and coaches are often interested in identifying the "ideal" running form to reduce the risk of injury and improve performance. While differences in pelvis and hip motion have been reported among adolescent female and male long-distance runners of different stages of physical maturation, the influence of sex and/or maturation on temporal-spatial parameters is unknown for adolescent runners. Adolescent runners of different stages of physical maturation (pre-, mid-, post-pubertal) completed an overground running analysis at a self-selected speed. We performed 2 × 3 ANCOVAs (covariate = running speed) to compare temporal-spatial parameters among sex and maturation groups. Pre-adolescents ran with higher cadences and shorter step lengths than mid- (p ≤ .01) and post-pubertal adolescents (p ≤ .01), respectively. Mid-pubertal males and post-pubertal females also ran with higher cadences and shorter step lengths than post-pubertal males (p ≤ .01). When step length was normalized to leg length, less physically mature runners demonstrated longer normalized step lengths (p ≤ .01). Caution is advised when using a "one-size-fits-all" approach for recommending an "ideal" cadence and/or step length for adolescent long-distance runners. A runner's sex, stage of physical maturation and leg length should be considered when assessing and prescribing cadence and/or step length.
Collapse
Affiliation(s)
- Micah C Garcia
- Motion Analysis and Integrative Neurophysiology Lab, College of Health and Human Services, the University of Toledo, Toledo, OH, USA
| | - Bryan C Heiderscheit
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda M Murray
- Motion Analysis and Integrative Neurophysiology Lab, College of Health and Human Services, the University of Toledo, Toledo, OH, USA
| | - Grant E Norte
- Motion Analysis and Integrative Neurophysiology Lab, College of Health and Human Services, the University of Toledo, Toledo, OH, USA
| | - Emily Kraus
- Division of Physical Medicine and Rehabilitation, Department of Orthopaedic Surgery, Stanford University, Redwood City, CA, USA
| | - David M Bazett-Jones
- Motion Analysis and Integrative Neurophysiology Lab, College of Health and Human Services, the University of Toledo, Toledo, OH, USA
| |
Collapse
|
25
|
The Effects of Cadence Manipulation on Joint Kinetic Patterns and Stride-to-Stride Kinetic Variability in Female Runners. J Appl Biomech 2022; 38:373-381. [PMID: 36126939 DOI: 10.1123/jab.2022-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
Altering running cadence is commonly done to reduce the risk of running-related injury/reinjury. This study examined how altering running cadence affects joint kinetic patterns and stride-to-stride kinetic variability in uninjured female runners. Twenty-four uninjured female recreational runners ran on an instrumented treadmill with their typical running cadence and with a running cadence that was 7.5% higher and 7.5% lower than typical. Ground reaction force and kinematic data were recorded during each condition, and principal component analysis was used to capture the primary sources of variability from the sagittal plane hip, knee, and ankle moment time series. Runners exhibited a reduction in the magnitude of their knee extension moments when they increased their cadence and an increase in their knee extension moments when they lowered their cadence compared with when they ran with their typical cadence. They also exhibited greater stride-to-stride variability in the magnitude of their hip flexion moments and knee extension moments when they deviated from their typical running cadence (ie, running with either a higher or lower cadence). These differences suggest that runners could alter their cadence throughout a run in an attempt to limit overly repetitive localized tissue stresses.
Collapse
|
26
|
Schmida EA, Wille CM, Stiffler-Joachim MR, Kliethermes SA, Heiderscheit BC. Vertical Loading Rate Is Not Associated with Running Injury, Regardless of Calculation Method. Med Sci Sports Exerc 2022; 54:1382-1388. [PMID: 35320147 PMCID: PMC9288487 DOI: 10.1249/mss.0000000000002917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Loading rate (LR), the slope of the vertical ground reaction force (vGRF), is commonly used to assess running-related injury risk. However, the relationship between LR and running-related injuries, including bone stress injuries (BSI), is unclear. Inconsistent findings may result from the numerous LR calculation methods that exist and their application across different running speeds. PURPOSE This study aimed to assess the influence of calculation method and running speed on LR values and to determine the association of LR during healthy running with subsequent injury. METHODS Healthy preseason running data and subsequent injury records from Division I cross-country athletes ( n = 79) over four seasons (2015-2019) at 2.68 m·s -1 , preferred training pace, and 4.47 m·s -1 were collected. LR at each speed was calculated four ways: 1) maximum and 2) average slope from 20% to 80% of vGRF magnitude at impact peak (IP), 3) average slope from initial contact to IP, and 4) average slope from 3% to 12% of stance time. Linear mixed effects models and generalized estimation equations were used to assess LR associations. RESULTS LR values differed depending on speed and calculation method ( P value <0.001). The maximum slope from 20% to 80% of the vGRF at 4.47 m·s -1 produced the highest LR estimate and the average slope from initial contact to IP at 2.68 m·s -1 produced the lowest. Sixty-four injuries (20 BSI) were observed. No significant association was found between LR and all injuries or BSI across any calculation method ( P values ≥0.13). CONCLUSIONS Calculation method and running speed result in significantly different LR values. Regardless of calculation method, no association between LR and subsequent injury was identified. Thus, healthy baseline LR may not be useful to prospectively assess running-related injury risk.
Collapse
Affiliation(s)
- Elizabeth A. Schmida
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Christa M. Wille
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Mikel R. Stiffler-Joachim
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI
| | - Stephanie A. Kliethermes
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI
| | - Bryan C. Heiderscheit
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
27
|
Darch L, Chalmers S, Wiltshire J, Causby R, Arnold J. Running-induced fatigue and impact loading in runners: A systematic review and meta-analysis. J Sports Sci 2022; 40:1512-1531. [PMID: 35723671 DOI: 10.1080/02640414.2022.2089803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This systematic review and meta-analysis aimed to synthesise and clarify the effect of running-induced fatigue on impact loading during running. Eight electronic databases were systematically searched until April 2021. Studies that analysed impact loading over the course of a run, in adult runners free of medical conditions were included. Changes in leg stiffness, vertical stiffness, shock attenuation, peak tibial accelerations, peak ground reaction forces (GRF) and loading rates were extracted. Subgroup analyses were conducted depending on whether participants were required to run to exhaustion. Thirty-six studies were included in the review, 25 were included in the meta-analysis. Leg stiffness decreased with running-induced fatigue (SMD -0.31, 95% CI -0.52, -0.08, moderate evidence). Exhaustive and non-exhaustive subgroups were different for peak tibial acceleration (Chi2 = 3.79, p = 0.05), with limited evidence from exhaustive subgroups showing an increase in peak tibial acceleration with fatigue. Findings for vertical GRF impact peak and peak braking force were conflicting based on exhaustive and non-exhaustive protocols (Chi2 = 3.83, p = 0.05 and Chi2 = 5.10, p = 0.02, respectively). Moderate evidence suggests leg stiffness during running decreases with fatigue. Given the non-linear relationship between leg stiffness and running economy, this may have implications for performance.
Collapse
Affiliation(s)
- Lachlan Darch
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Samuel Chalmers
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - James Wiltshire
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Ryan Causby
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - John Arnold
- Alliance for Research in Exercise, Nutrition & Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
28
|
Fu F, Guo L, Tang X, Wang J, Xie Z, Fekete G, Cai Y, Hu Q, Gu Y. Effect of the Innovative Running Shoes With the Special Midsole Structure on the Female Runners’ Lower Limb Biomechanics. Front Bioeng Biotechnol 2022; 10:866321. [PMID: 35733527 PMCID: PMC9208082 DOI: 10.3389/fbioe.2022.866321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
The study aimed to research the effects of innovative running shoes (a high heel-to-toe drop and special structure of midsole) on the biomechanics of the lower limbs and perceptual sensitivity in female runners. Fifteen healthy female runners were recruited to run through a 145-m runway with planted force plates at one peculiar speed (3.6 m/s ± 5%) with two kinds of shoe conditions (innovative running shoes vs. normal running shoes) while getting biomechanical data. The perception of shoe characteristics was assessed simultaneously through a 15-cm visual analog scale. The statistical parametric mapping technique calculated the time-series parameters. Regarding 0D parameters, the ankle dorsiflexion angle of innovative running shoes at touchdown was higher, and the peak dorsiflexion angle, range of motion, peak dorsiflexion velocity, and plantarflexion moment on the metatarsophalangeal joint of innovative running shoes during running were significantly smaller than those of normal running shoes (all p < 0.001). In addition, the braking phase and the time of peak vertical force 1 of innovative running shoes were found to be longer than those of normal running shoes (both p < 0.05). Meanwhile, the average vertical loading rate 1, peak vertical loading rate 1, peak braking force, and peak vertical force 1 in the innovative running shoes were lower than those of the normal running shoes during running (both p < 0.01). The statistical parametric mapping analysis exhibited a higher ankle dorsiflexion angle (0–4%, p < 0.05), a smaller knee internal rotation angle (0–6%, p < 0.05) (63–72%, p < 0.05), a decreased vertical ground reaction force (11–17%, p = 0.009), and braking anteroposterior ground reaction force (22–27%, p = 0.043) for innovative running shoes than normal running shoes. Runners were able to perceive the cushioning of innovative running shoes was better than that of normal running shoes. These findings suggested combining the high offset and structure of the midsole would benefit the industrial utilization of shoe producers in light of reducing the risk of running injuries for female runners.
Collapse
Affiliation(s)
- Fengqin Fu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary
- Science Laboratory, Innovation center of Xtep Co., Ltd., Xiamen, China
| | - Lianming Guo
- Science Laboratory, Innovation center of Xtep Co., Ltd., Xiamen, China
| | - Xunfei Tang
- Science Laboratory, Innovation center of Xtep Co., Ltd., Xiamen, China
| | - Jiayu Wang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Zhihao Xie
- Science Laboratory, Innovation center of Xtep Co., Ltd., Xiamen, China
| | - Gusztáv Fekete
- Savaria Institute of Technology, Eötvös Loránd University, Budapest, Hungary
| | - Yuhui Cai
- Science Laboratory, Innovation center of Xtep Co., Ltd., Xiamen, China
| | - Qiuli Hu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
- *Correspondence: Yaodong Gu,
| |
Collapse
|
29
|
Development of a trail running injury screening instrument: A multiple methods approach. Phys Ther Sport 2022; 56:60-75. [DOI: 10.1016/j.ptsp.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
30
|
Kim HK, Dai X, Lu SH, Lu TW, Chou LS. Discriminating features of ground reaction forces in overweight old and young adults during walking using functional principal component analysis. Gait Posture 2022; 94:166-172. [PMID: 35339964 DOI: 10.1016/j.gaitpost.2022.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Limited attention has been paid to age- or body size-related changes in the ground reaction forces (GRF) during walking despite their strong associations with lower limb injuries and pathology. RESEARCH QUESTION Do the features of GRF during walking associate with age or body size? METHODS Fifty-four participants were subdivided into four groups according to their age and body size: overweight old (n = 12), non-overweight old (n = 13), overweight young (n = 13), and non-overweight young (n = 16). Participants were asked to walk at their self-selected speeds on level ground with force plates embedded in the center of walkway. Functional principal component analysis (FPCA) was performed to extract major modes of variation and functional principal component scores (FPCs) in three-dimensional GRFs. Analysis of variance models were employed to investigate the effect of age, body size, or their interactions on the FPCs of each component of the GRF, with the adjustment to gait speed. RESULTS Significant age and body size effects were observed in FPC1 across all three-dimensional GRF. Both overweight and older groups showed greater braking force after heel-strike and greater propulsive forces during pre-swing when compared to the non-overweight and younger groups, respectively. The overweight old group displayed greater medial forces during mid-stance and the overweight young group showed prominently larger medial forces during pre-swing, while non-overweight old showed a tendency of flatter medial-lateral GRF waveforms during the entire stance phase. FPC2 revealed that only body size had an effect on three-dimensional GRF with the highest FPC2 scores in the overweight old group. SIGNIFICANCE Three-dimensional GRF during walking could be altered by the body size and age, which were more pronounced in the overweight and older group. The more dynamic GRF pattern with greater and/or lower peaks could be contributing factors to the increased joint load and injury rates observed in overweight aged individuals.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Xiongtao Dai
- Department of Statistic, Iowa State University, Ames, IA, USA
| | - Shiuan-Huei Lu
- Department of Biomedical Engineering, National Taiwan University, Taiwan
| | - Tung-Wu Lu
- Department of Biomedical Engineering, National Taiwan University, Taiwan
| | - Li-Shan Chou
- Department of Kinesiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
31
|
Van den Berghe P, Breine B, Haeck E, De Clercq D. One hundred marathons in 100 days: Unique biomechanical signature and the evolution of force characteristics and bone density. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:347-357. [PMID: 33775883 PMCID: PMC9189712 DOI: 10.1016/j.jshs.2021.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/14/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND An extraordinary long-term running performance may benefit from low dynamic loads and a high load-bearing tolerance. An extraordinary runner (age = 55 years, height = 1.81 m, mass = 92 kg) scheduled a marathon a day for 100 consecutive days. His running biomechanics and bone density were investigated to better understand successful long-term running in the master athlete. METHODS Overground running gait analysis and bone densitometry were conducted before the marathon-a-day challenge and near its completion. The case's running biomechanics were compared pre-challenge to 31 runners who were matched by a similar foot strike pattern. RESULTS The case's peak vertical loading rate (Δx̄ = -61.9 body weight (BW)/s or -57%), peak vertical ground reaction force (Δx̄ = -0.38 BW or -15%), and peak braking force (Δx̄ = -0.118 BW or -31%) were remarkably lower (p < 0.05) than the control group at ∼3.3 m/s. The relatively low loading-related magnitudes were attributed to a remarkably high duty factor (0.41) at the evaluated speed. The foot strike angle of the marathoner (29.5°) was greater than that of the control group, affecting the peak vertical loading rate. Muscle powers in the lower extremity were also remarkably low in the case vs. controls: peak power of knee absorption (Δx̄ = -9.16 watt/kg or -48%) and ankle generation (Δx̄ = -3.17 watt/kg or -30%). The bone mineral density increased to 1.245 g/cm² (+2.98%) near completion of the challenge, whereas the force characteristics showed no statistically significant change. CONCLUSION The remarkable pattern of the high-mileage runner may be useful in developing or evaluating load-shifting strategies in distance running.
Collapse
Affiliation(s)
| | - Bastiaan Breine
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| | - Ella Haeck
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| | - Dirk De Clercq
- Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
32
|
Matias AB, Watari R, Taddei UT, Caravaggi P, Inoue RS, Thibes RB, Suda EY, Vieira MF, Sacco ICN. Effects of Foot-Core Training on Foot-Ankle Kinematics and Running Kinetics in Runners: Secondary Outcomes From a Randomized Controlled Trial. Front Bioeng Biotechnol 2022; 10:890428. [PMID: 35497357 PMCID: PMC9046605 DOI: 10.3389/fbioe.2022.890428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effectiveness of an 8-week foot-core exercise training program on foot-ankle kinematics during running and also on running kinetics (impact loads), with particular interest in biomechanical outcomes considered risk factors for running-related injuries in recreational runners. A single-blind, randomized, controlled trial was conducted with 87 recreational runners randomly allocated to either the control (CG) or intervention (IG) group and assessed at baseline and after 8 weeks. The IG underwent foot-core training 3 times/week, while the CG followed a placebo lower-limb stretching protocol. The participants ran on a force-instrumented treadmill at a self-selected speed while foot-segment motion was captured simultaneously with kinetic measurements. After the intervention, there were statistically significant changed in foot biomechanics, such as: IG participants strike the ground with a more inverted calcaneus and a less dorsiflexed midfoot than those in the CG; at midstance, ran with a less plantarflexed and more adducted forefoot and a more abducted hallux; and at push-off, ran with a less dorsiflexed midfoot and a less adducted and more dorsiflexed hallux. The IG runners also had significantly decreased medial longitudinal arch excursion (p = 0.024) and increased rearfoot inversion (p = 0.037). The 8-week foot-core exercise program had no effect on impact (p = 0.129) and breaking forces (p = 0.934) or on vertical loading rate (p = 0.537), but it was positively effective in changing foot-ankle kinematic patterns.”
Collapse
Affiliation(s)
- Alessandra B. Matias
- Faculdade de Medicina, Physical Therapy, Speech and Occupational Therapy Department, Universidade de São Paulo, Sao Paulo, Brazil
| | - Ricky Watari
- Faculdade de Medicina, Physical Therapy, Speech and Occupational Therapy Department, Universidade de São Paulo, Sao Paulo, Brazil
| | - Ulisses T. Taddei
- Faculdade de Medicina, Physical Therapy, Speech and Occupational Therapy Department, Universidade de São Paulo, Sao Paulo, Brazil
| | - Paolo Caravaggi
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rafael S. Inoue
- Faculdade de Medicina, Physical Therapy, Speech and Occupational Therapy Department, Universidade de São Paulo, Sao Paulo, Brazil
| | - Raissa B. Thibes
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Eneida Y. Suda
- Faculdade de Medicina, Physical Therapy, Speech and Occupational Therapy Department, Universidade de São Paulo, Sao Paulo, Brazil
| | - Marcus F. Vieira
- Bioengineering and Biomechanics Laboratory, Federal University of Goiás, Goiás, Brazil
| | - Isabel C. N. Sacco
- Faculdade de Medicina, Physical Therapy, Speech and Occupational Therapy Department, Universidade de São Paulo, Sao Paulo, Brazil
- *Correspondence: Isabel C. N. Sacco,
| |
Collapse
|
33
|
Pharis H, Kong A, Robbins M, Waranch C, Wissman R. Friction Syndromes of the Knee. J Knee Surg 2022; 35:491-497. [PMID: 35189665 DOI: 10.1055/s-0042-1743222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The knee is a complex joint with many fascial and ligamentous interactions. The movement in multiple planes makes the knee a prime site for friction syndromes, especially in active individuals. The most common friction syndrome is the iliotibial band friction syndrome. This occurs commonly in runners and cyclists and can be diagnosed clinically in a patient with lateral knee pain during activity. The anterior fat pads of the knee can also be the site of friction syndromes, most often in the Hoffa fat pad. Edema here can be located in the superolateral aspect of the fat pad when associated with patellar abnormalities, or diffusely when impingement is due to other causes. Edema of the quadriceps or prefemoral fat pad may also cause anterior knee pain and may be diagnosed with magnetic resonance imaging. The posteromedial friction syndrome and medial tibial crest syndrome are rare causes of medial knee pain highly active individuals.
Collapse
Affiliation(s)
- Hunter Pharis
- Department of Medical Education, Heritage College of Osteopathic Medicine, Ohio University, Dublin, Ohio
| | - Andrew Kong
- Department of Radiology, University of Missouri System, Columbia, Missouri
| | - Mike Robbins
- Department of Radiology, University of Missouri System, Columbia, Missouri
| | - Christy Waranch
- Department of Radiology, University of Missouri System, Columbia, Missouri
| | - Robert Wissman
- Department of Radiology, University of Missouri System, Columbia, Missouri
| |
Collapse
|
34
|
Peterson B, Hawke F, Spink M, Sadler S, Hawes M, Callister R, Chuter V. Biomechanical and Musculoskeletal Measurements as Risk Factors for Running-Related Injury in Non-elite Runners: A Systematic Review and Meta-analysis of Prospective Studies. SPORTS MEDICINE - OPEN 2022; 8:38. [PMID: 35254562 PMCID: PMC8901814 DOI: 10.1186/s40798-022-00416-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/31/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Running-related injury (RRI) is highly prevalent among recreational runners and is a key barrier to participation. Atypical lower limb alignment and mechanical function have been proposed to play a role in development of lower extremity injury. The purpose of this study was to investigate relationships between incidence of running-related injury (RRI) in non-elite runners with biomechanical and musculoskeletal variables. METHODS A systematic review and meta-analysis of prospective studies. Published research indexed in MEDLINE, EMBASE, CINAHL, SPORTDiscus, AMED, and The Cochrane library until 13th January 2021, grey literature, and reference lists of included studies were screened to identify prospective studies of non-elite adult runners that measured a relationship between biomechanical or musculoskeletal measures and incidence of RRI. RESULTS Thirty studies (3404 runners), testing over 100 discrete biomechanical and musculoskeletal risk factors for RRI, were included. Nineteen studies were pooled in twenty-five separate meta-analyses. Meta-analysis of four studies detected significantly less knee extension strength among runners who developed a RRI (SMD - 0.19, 95% CI - 0.36 to - 0.02, p = 0.03), though this may not be clinically important. A meta-analysis of two studies detected significantly lower hip adduction velocity among runners who developed a RRI (MD - 12.80, 95% CI - 25.22 to - 0.38, p = 0.04). Remaining meta-analyses found no significant relationship between biomechanical or musculoskeletal variables and RRI. CONCLUSION This systematic review and meta-analysis found the currently available literature does not generally support biomechanical or musculoskeletal measures as risk factors for RRI in non-elite runners. While meta-analysis findings for knee extension strength and hip adduction velocity as risk factors for RRI were statistically significant, the associated trivial to small effects sizes suggest these findings should be treated with caution. Until further evidence emerges, recommendations for injury prevention in non-elite runners cannot be made based on biomechanical and musculoskeletal measurements alone.
Collapse
Affiliation(s)
- Benjamin Peterson
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Central Coast Campus, Ourimbah, NSW, 2258, Australia.
- Department of Podiatry, School of Health, Medical and Applied Sciences, CQUniversity, Rockhampton, QLD, 4701, Australia.
| | - Fiona Hawke
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Central Coast Campus, Ourimbah, NSW, 2258, Australia
| | - Martin Spink
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Central Coast Campus, Ourimbah, NSW, 2258, Australia
| | - Sean Sadler
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Central Coast Campus, Ourimbah, NSW, 2258, Australia
| | - Morgan Hawes
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Central Coast Campus, Ourimbah, NSW, 2258, Australia
| | - Robin Callister
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan Campus, Callaghan, NSW, 2308, Australia
| | - Vivienne Chuter
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Central Coast Campus, Ourimbah, NSW, 2258, Australia
- School of Health Sciences, Western Sydney University, Campbelltown Campus, Sydney, NSW, 2560, Australia
| |
Collapse
|
35
|
Napier C, Fridman L, Blazey P, Tran N, Michie TV, Schneeberg A. Differences in Peak Impact Accelerations Among Foot Strike Patterns in Recreational Runners. Front Sports Act Living 2022; 4:802019. [PMID: 35308593 PMCID: PMC8931222 DOI: 10.3389/fspor.2022.802019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Running-related injuries (RRIs) occur from a combination of training load errors and aberrant biomechanics. Impact loading, measured by peak acceleration, is an important measure of running biomechanics that is related to RRI. Foot strike patterns may moderate the magnitude of impact load in runners. The effect of foot strike pattern on peak acceleration has been measured using tibia-mounted inertial measurement units (IMUs), but not commercially available insole-embedded IMUs. The aim of this study was to compare the peak acceleration signal associated with rearfoot (RFS), midfoot (MFS), and forefoot (FFS) strike patterns when measured with an insole-embedded IMU. Materials and Methods Healthy runners ran on a treadmill for 1 min at three different speeds with their habitual foot strike pattern. An insole-embedded IMU was placed inside standardized neutral cushioned shoes to measure the peak resultant, vertical, and anteroposterior accelerations at impact. The Foot strike pattern was determined by two experienced observers and evaluated using high-speed video. Linear effect mixed-effect models were used to quantify the relationship between foot strike pattern and peak resultant, vertical, and anteroposterior acceleration. Results A total of 81% of the 187 participants exhibited an RFS pattern. An RFS pattern was associated with a higher peak resultant (0.29 SDs; p = 0.029) and vertical (1.19 SD; p < 0.001) acceleration when compared with an FFS running pattern, when controlling for speed and limb, respectively. However, an MFS was associated with the highest peak accelerations in the resultant direction (0.91 SD vs. FFS; p = 0.002 and 0.17 SD vs. RFS; p = 0.091). An FFS pattern was associated with the lowest peak accelerations in both the resultant and vertical directions. An RFS was also associated with a significantly greater peak acceleration in the anteroposterior direction (0.28 SD; p = 0.033) than an FFS pattern, while there was no difference between MFS and FFS patterns. Conclusion Our findings indicate that runners should be grouped by RFS, MFS, and FFS when comparing peak acceleration, rather than the common practice of grouping MFS and FFS together as non-RFS runners. Future studies should aim to determine the risk of RRI associated with peak accelerations from an insole-embedded IMU to understand whether the small observed differences in this study are clinically meaningful.
Collapse
Affiliation(s)
- Christopher Napier
- Centre for Hip Health & Mobility, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Christopher Napier
| | | | - Paul Blazey
- Centre for Hip Health & Mobility, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | | | - Tom V. Michie
- Centre for Hip Health & Mobility, Vancouver, BC, Canada
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Vancouver, BC, Canada
| | | |
Collapse
|
36
|
Malisoux L, Gette P, Delattre N, Urhausen A, Theisen D. Spatiotemporal and Ground-Reaction Force Characteristics as Risk Factors for Running-Related Injury: A Secondary Analysis of a Randomized Trial Including 800+ Recreational Runners. Am J Sports Med 2022; 50:537-544. [PMID: 35049407 DOI: 10.1177/03635465211063909] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Running biomechanics may play a role in running-related injury development, but to date, only a few modifiable factors have been prospectively associated with injury risk. PURPOSE To identify risk factors among spatiotemporal and ground-reaction force characteristics in recreational runners and to investigate whether shoe cushioning modifies the association between running biomechanics and injury risk. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS Recreational runners (N = 848) were tested on an instrumented treadmill at their preferred running speed in randomly allocated, standardized running shoes (with either hard or soft cushioning). Typical kinetic and spatiotemporal metrics were derived from ground-reaction force recordings. Participants were subsequently followed up for 6 months regarding running activity and injury. Cox regression models for competing risk were used to investigate the association between biomechanical risk factors and injury risk, including stratified analyses by shoe version. RESULTS In the crude analysis, greater injury risk was found for greater step length (subhazard rate ratio [SHR], 1.01; 95% CI, 1.00-1.02; P = .038), longer flight time (SHR, 1.00; 95% CI, 1.00-1.01; P = .028), shorter contact time (SHR, 0.99; 95% CI, 0.99-1.00; P = .030), and lower duty factor (defined as the ratio between contact time and stride time; SHR, 0.95; 95% CI, 0.91-0.98; P = .005). In the stratified analyses by shoe version, adjusted for previous injury and running speed, lower duty factor was associated with greater injury risk in those using the soft shoes (SHR, 0.92; 95% CI, 0.85-0.99; P = .042) but not in those using the hard shoes (SHR, 0.97; 95% CI, 0.91-1.04; P = .348). CONCLUSION Lower duty factor is an injury risk factor, especially for softer shoe use. Contrary to widespread beliefs, vertical impact peak, loading rate, and step rate were not injury risk factors in recreational runners. REGISTRATION NCT03115437 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Laurent Malisoux
- Physical Activity, Sport & Health Research Group, Luxembourg Institute of Health, Luxembourg, Grand-Duchy of Luxembourg
| | - Paul Gette
- Human Motion, Orthopaedics, Sports Medicine and Digital Methods, Luxembourg Institute of Health, Luxembourg, Grand-Duchy of Luxembourg
| | - Nicolas Delattre
- Decathlon Sports Lab, Movement Sciences Department, Villeneuve d'Ascq, France
| | - Axel Urhausen
- Sports Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Grand-Duchy of Luxembourg
| | - Daniel Theisen
- ALAN-Maladies Rares Luxembourg, Grand-Duchy of Luxembourg, Luxembourg
| |
Collapse
|
37
|
Comparisons of Gait Variability and Symmetry in Healthy Runners, Runners with a History of Lower Limb Injuries, and Runners with a Current Lower Limb Injury. Asian J Sports Med 2022. [DOI: 10.5812/asjsm.114922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Running is a cyclic movement requiring bilateral symmetry between the lower limbs to reduce injury risk. The assessment of side-to-side differences is often performed to detect functional deficits. Objectives: The purpose was to study side-to-side differences using clinical and running performance assessments in healthy runners (HR), runners with a history of lower limb injuries (RHI), and runners with a current lower limb injury (RLI). Methods: Forty-three runners were recruited, with 14 participants being allocated to the HR group, 13 to the RHI group, and 16 to the RLI group. Peak vertical ground reaction force (GRF), midfoot pressure, foot rotation, and gait variability were recorded using a Zebris FDM-T treadmill analysis system. Participants were also assessed using the navicular drop test. Dependent t-tests were used to determine if any differences existed between the lower limbs within each group. One-way ANOVAs were then used to investigate the side-to-side differences between the three groups. Results: Significant differences were seen in navicular drop height between lower limbs within both the HR (P = 0.02) and RHI (P = 0.009) groups, and side-to-side differences in foot rotation were greatest in the RLI group (~34%) compared to both the RHI (~30.5%) and HR (~24%) groups. The lateral variability of the center of pressure was greatest in the RLI group (37.1 mm) compared to the RHI (28.9 mm) and HR (22.2 mm) groups. Conclusions: Variability of butterfly center of pressure diagram may help identify runners at a greater risk of lower limb injury. Side-to-side differences should be expected to progressively decrease from the injured stage, through the recovery and return to sport phases. Target goals of less than 34% side-to-side difference for foot rotation and 37.1 mm for the lateral center of pressure variability may be used to help the decision-making process when considering a return to running practice.
Collapse
|
38
|
Aristizábal Pla G, Hollville E, Schütte K, Vanwanseele B. The Use of a Single Trunk-Mounted Accelerometer to Detect Changes in Center of Mass Motion Linked to Lower-Leg Overuse Injuries: A Prospective Study. SENSORS 2021; 21:s21217385. [PMID: 34770692 PMCID: PMC8588413 DOI: 10.3390/s21217385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022]
Abstract
Movement dynamics during running was previously characterized using a trunk-mounted accelerometer, and were associated with a history of overuse injuries. However, it remains unknown if these measures are also linked to the development of overuse injuries. The aim of this study was therefore to determine how movement dynamics alter in response to fatigue, and the possible link with developing lower-leg overuse injuries during a six-month follow-up period. Two hundred and eight movement science university students completed a 12-min all-out run while wearing a trunk-mounted accelerometer. Dynamic stability, dynamic loading and spatiotemporal measures were extracted from the accelerometer. Participants sustaining an injury within the 6-month period demonstrated significantly higher RMS ratio values in the vertical direction and lower RMS ratio values in the anteroposterior direction, and lower impact acceleration values in the anteroposterior direction in an unfatigued state compared to the uninjured group. They also demonstrated an increase in dynamic loading in the horizontal plane during the run. In addition, with running fatigue both groups exhibited changes in dynamic stability and loading measures. These results show the potential of using a single trunk-mounted accelerometer to detect changes in movement dynamics that are linked to lower-leg overuse injuries.
Collapse
Affiliation(s)
- Gerard Aristizábal Pla
- Human Movements Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (G.A.P.); (E.H.); (K.S.)
- Department of Kinesiology, UMASS Amherst Amherst, University of Massachusetts Integrative Locomotion Lab, Amherst, MA 01003, USA
| | - Enzo Hollville
- Human Movements Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (G.A.P.); (E.H.); (K.S.)
| | - Kurt Schütte
- Human Movements Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (G.A.P.); (E.H.); (K.S.)
| | - Benedicte Vanwanseele
- Human Movements Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium; (G.A.P.); (E.H.); (K.S.)
- Correspondence:
| |
Collapse
|
39
|
Smyth B, Lawlor A, Berndsen J, Feely C. Recommendations for marathon runners: on the application of recommender systems and machine learning to support recreational marathon runners. USER MODELING AND USER-ADAPTED INTERACTION 2021; 32:787-838. [PMID: 36452939 PMCID: PMC9701182 DOI: 10.1007/s11257-021-09299-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/22/2021] [Indexed: 06/17/2023]
Abstract
Every year millions of people, from all walks of life, spend months training to run a traditional marathon. For some it is about becoming fit enough to complete the gruelling 26.2 mile (42.2 km) distance. For others, it is about improving their fitness, to achieve a new personal-best finish-time. In this paper, we argue that the complexities of training for a marathon, combined with the availability of real-time activity data, provide a unique and worthwhile opportunity for machine learning and for recommender systems techniques to support runners as they train, race, and recover. We present a number of case studies-a mix of original research plus some recent results-to highlight what can be achieved using the type of activity data that is routinely collected by the current generation of mobile fitness apps, smart watches, and wearable sensors.
Collapse
Affiliation(s)
- Barry Smyth
- Insight SFI Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Aonghus Lawlor
- Insight SFI Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Jakim Berndsen
- Insight SFI Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Ciara Feely
- Insight SFI Centre for Data Analytics, University College Dublin, Dublin, Ireland
| |
Collapse
|
40
|
Almonroeder TG, Harding L, Seubert B, Cowley H, Kernozek T. The effects of incremental changes in rucksack load on lower extremity joint Kinetic patterns during ruck marching. ERGONOMICS 2021; 64:971-982. [PMID: 33688792 DOI: 10.1080/00140139.2021.1893391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Injuries are often attributed to ruck marching. Therefore, it is important to examine how load carriage influences gait mechanics. The purpose of this study was to examine how subtle changes in rucksack load influence joint torque patterns during marching. Fourteen Army ROTC cadets marched with light, moderate, and heavy rucksack loads. Kinetic and kinematic data were recorded via an instrumented treadmill and motion capture system and principal component analysis was used to analyse the joint torque waveforms. Cadets exhibited moderate-large increases in knee extension torques during early stance (effect sizes ≥0.45) and small-moderate increases in ankle plantarflexion torques during push off (effect sizes ≥0.23) with each incremental increase in rucksack load. The lighter load also resulted in lower hip extension torques during early stance and flexion torques during late stance, vs. the moderate and heavier loads (effect sizes ≥0.23). It appears that subtle changes in rucksack load influence marching mechanics. Practitioner Summary: The purpose of this study was to examine how relatively subtle changes in rucksack load influence marching mechanics. Army ROTC cadets marched with relatively light, moderate, and heavy rucksack loads. Our results indicate that even subtle changes in rucksack load influence joint torque patterns of the hip, knee, and ankle. Abbreviations: ROTC: reserve officer training corps; RoF: rating-of-fatigue; PC: principal component; ICC: intraclass correlation coefficient; ES: effect size.
Collapse
Affiliation(s)
- Thomas Gus Almonroeder
- Department of Health Professions, Physical Therapy Program, University of Wisconsin - La Crosse, La Crosse, WI, USA
| | - Lauren Harding
- Department of Health Professions, Physical Therapy Program, University of Wisconsin - La Crosse, La Crosse, WI, USA
| | - Brooke Seubert
- Department of Health Professions, Physical Therapy Program, University of Wisconsin - La Crosse, La Crosse, WI, USA
| | - Hanni Cowley
- Department of Health Professions, Physical Therapy Program, University of Wisconsin - La Crosse, La Crosse, WI, USA
| | - Thomas Kernozek
- Department of Health Professions, Physical Therapy Program, University of Wisconsin - La Crosse, La Crosse, WI, USA
| |
Collapse
|
41
|
The Prevalence of Lower Extremity Injuries in Running and Associated Risk Factors: A Systematic Review. PHYSICAL ACTIVITY AND HEALTH 2021. [DOI: 10.5334/paah.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
42
|
Kliethermes SA, Stiffler-Joachim MR, Wille CM, Sanfilippo JL, Zavala P, Heiderscheit BC. Lower step rate is associated with a higher risk of bone stress injury: a prospective study of collegiate cross country runners. Br J Sports Med 2021; 55:851-856. [PMID: 33990294 DOI: 10.1136/bjsports-2020-103833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES To determine if running biomechanics and bone mineral density (BMD) were independently associated with bone stress injury (BSI) in a cohort of National Collegiate Athletic Association Division I cross country runners. METHODS This was a prospective, observational study of 54 healthy collegiate cross country runners over three consecutive seasons. Whole body kinematics, ground reaction forces (GRFs) and BMD measures were collected during the preseason over 3 years via motion capture on an instrumented treadmill and total body densitometer scans. All medically diagnosed BSIs up to 12 months following preseason data collection were recorded. Generalised estimating equations were used to identify independent risk factors of BSI. RESULTS Univariably, step rate, centre of mass vertical excursion, peak vertical GRF and vertical GRF impulse were associated with BSI incidence. After adjusting for history of BSI and sex in a multivariable model, a higher step rate was independently associated with a decreased risk of BSI. BSI risk decreased by 5% (relative risk (RR): 0.95; 95% CI 0.91 to 0.98) with each one step/min increase in step rate. BMD z-score was not a statistically significant risk predictor in the final multivariable model (RR: 0.93, 95% CI 0.85 to 1.03). No other biomechanical variables were found to be associated with BSI risk. CONCLUSION Low step rate is an important risk factor for BSI among collegiate cross country runners and should be considered when developing comprehensive programmes to mitigate BSI risk in distance runners.
Collapse
Affiliation(s)
- Stephanie A Kliethermes
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA .,Badger Athletic Performance, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Mikel R Stiffler-Joachim
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Badger Athletic Performance, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Christa M Wille
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Badger Athletic Performance, University of Wisconsin Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer L Sanfilippo
- Badger Athletic Performance, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Pedro Zavala
- Badger Athletic Performance, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Bryan C Heiderscheit
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Badger Athletic Performance, University of Wisconsin Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Blazey P, Michie TV, Napier C. A narrative review of running wearable measurement system accuracy and reliability: can we make running shoe prescription objective? FOOTWEAR SCIENCE 2021. [DOI: 10.1080/19424280.2021.1878287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Paul Blazey
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Christopher Napier
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Burnaby,Canada
| |
Collapse
|
44
|
Napier C, Willy RW, Hannigan BC, McCann R, Menon C. The Effect of Footwear, Running Speed, and Location on the Validity of Two Commercially Available Inertial Measurement Units During Running. Front Sports Act Living 2021; 3:643385. [PMID: 33981991 PMCID: PMC8107270 DOI: 10.3389/fspor.2021.643385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Most running-related injuries are believed to be caused by abrupt changes in training load, compounded by biomechanical movement patterns. Wearable technology has made it possible for runners to quantify biomechanical loads (e.g., peak positive acceleration; PPA) using commercially available inertial measurement units (IMUs). However, few devices have established criterion validity. The aim of this study was to assess the validity of two commercially available IMUs during running. Secondary aims were to determine the effect of footwear, running speed, and IMU location on PPA. Materials and Methods: Healthy runners underwent a biomechanical running analysis on an instrumented treadmill. Participants ran at their preferred speed in three footwear conditions (neutral, minimalist, and maximalist), and at three speeds (preferred, +10%, −10%) in the neutral running shoes. Four IMUs were affixed at the distal tibia (IMeasureU-Tibia), shoelaces (RunScribe and IMeasureU-Shoe), and insole (Plantiga) of the right shoe. Pearson correlations were calculated for average vertical loading rate (AVLR) and PPA at each IMU location. Results: The AVLR had a high positive association with PPA (IMeasureU-Tibia) in the neutral and maximalist (r = 0.70–0.72; p ≤ 0.001) shoes and in all running speed conditions (r = 0.71–0.83; p ≤ 0.001), but low positive association in the minimalist (r = 0.47; p < 0.05) footwear condition. Conversely, the relationship between AVLR and PPA (Plantiga) was high in the minimalist (r = 0.75; p ≤ 0.001) condition and moderate in the neutral (r = 0.50; p < 0.05) and maximalist (r = 0.57; p < 0.01) footwear. The RunScribe metrics demonstrated low to moderate positive associations (r = 0.40–0.62; p < 0.05) with AVLR across most footwear and speed conditions. Discussion: Our findings indicate that the commercially available Plantiga IMU is comparable to a tibia-mounted IMU when acting as a surrogate for AVLR. However, these results vary between different levels of footwear and running speeds. The shoe-mounted RunScribe IMU exhibited slightly lower positive associations with AVLR. In general, the relationship with AVLR improved for the RunScribe sensor at slower speeds and improved for the Plantiga and tibia-mounted IMeasureU sensors at faster speeds.
Collapse
Affiliation(s)
- Christopher Napier
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada.,Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Richard W Willy
- School of Physical Therapy and Rehabilitation Science, University of Montana, Missoula, MT, United States
| | - Brett C Hannigan
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Ryan McCann
- School of Physical Therapy and Rehabilitation Science, University of Montana, Missoula, MT, United States
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC, Canada.,Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| |
Collapse
|
45
|
Bonnaerens S, Fiers P, Galle S, Derie R, Aerts P, Frederick E, Kaneko Y, Derave W, De Clercq D, Segers V. Relationship between duty factor and external forces in slow recreational runners. BMJ Open Sport Exerc Med 2021; 7:e000996. [PMID: 33747540 PMCID: PMC7931753 DOI: 10.1136/bmjsem-2020-000996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives Recreational runners show a large interindividual variation in spatiotemporal characteristics. This research focused on slow runners and intended: (1) to document the variance in duty factor (DF) between runners in a real-life running setting and (2) examine whether the interindividual variation in DF and stride frequency (SF) relates to differences in external loading parameters between runners. Methods Spatiotemporal characteristics of 23 slow runners (ie, <2.6 m/s) were determined during a 5.2 km running event. To relate the interindividual variation in DF and SF to differences in external forces between runners (maximal vertical ground reaction force (FzMax), peak braking force (PBF) and vertical instantaneous loading rate (VILR)), 14 of them were invited to the lab. They ran at 1.9 m/s on a treadmill while ground reaction forces were recorded. A multiple linear regression analysis was conducted to investigate the effect of DF and SF on external force measures. Results DF between slow runners varied from 42.50% to 56.49% in a recreational running event. DF was found to be a significant predictor of FzMax (R²=0.755) and PBF (R²=0.430). SF only improved the model for PBF, but to a smaller extent than DF (R² change=0.191). For VILR, neither DF nor SF were significant predictors. Conclusion External forces are lower in recreational runners that run with higher DFs and slightly lower SFs. These findings may be important for injury prevention purposes, especially directed to recreational runners that are more prone to overuse injuries.
Collapse
Affiliation(s)
- Senne Bonnaerens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Pieter Fiers
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Samuel Galle
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Rud Derie
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Peter Aerts
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | - Yasunori Kaneko
- Global Research & Development Department, Mizuno Corporation, Osaka, Japan
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Dirk De Clercq
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Veerle Segers
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Van den Berghe P, Lorenzoni V, Derie R, Six J, Gerlo J, Leman M, De Clercq D. Music-based biofeedback to reduce tibial shock in over-ground running: a proof-of-concept study. Sci Rep 2021; 11:4091. [PMID: 33603028 PMCID: PMC7892879 DOI: 10.1038/s41598-021-83538-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/24/2021] [Indexed: 12/22/2022] Open
Abstract
Methods to reduce impact in distance runners have been proposed based on real-time auditory feedback of tibial acceleration. These methods were developed using treadmill running. In this study, we extend these methods to a more natural environment with a proof-of-concept. We selected ten runners with high tibial shock. They used a music-based biofeedback system with headphones in a running session on an athletic track. The feedback consisted of music superimposed with noise coupled to tibial shock. The music was automatically synchronized to the running cadence. The level of noise could be reduced by reducing the momentary level of tibial shock, thereby providing a more pleasant listening experience. The running speed was controlled between the condition without biofeedback and the condition of biofeedback. The results show that tibial shock decreased by 27% or 2.96 g without guided instructions on gait modification in the biofeedback condition. The reduction in tibial shock did not result in a clear increase in the running cadence. The results indicate that a wearable biofeedback system aids in shock reduction during over-ground running. This paves the way to evaluate and retrain runners in over-ground running programs that target running with less impact through instantaneous auditory feedback on tibial shock.
Collapse
Affiliation(s)
- Pieter Van den Berghe
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sports Sciences, Ghent University, 9000, Ghent, Belgium.
| | - Valerio Lorenzoni
- Department of Arts, Music and Theatre Sciences, IPEM, Ghent University, 9000, Ghent, Belgium
| | - Rud Derie
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sports Sciences, Ghent University, 9000, Ghent, Belgium
| | - Joren Six
- Department of Arts, Music and Theatre Sciences, IPEM, Ghent University, 9000, Ghent, Belgium
| | - Joeri Gerlo
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sports Sciences, Ghent University, 9000, Ghent, Belgium
| | - Marc Leman
- Department of Arts, Music and Theatre Sciences, IPEM, Ghent University, 9000, Ghent, Belgium
| | - Dirk De Clercq
- Biomechanics and Motor Control of Human Movement, Department of Movement and Sports Sciences, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
47
|
Johnson CD, Outerleys J, Davis IS. Relationships between tibial acceleration and ground reaction force measures in the medial-lateral and anterior-posterior planes. J Biomech 2021; 117:110250. [PMID: 33486264 DOI: 10.1016/j.jbiomech.2021.110250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
Peak vertical tibial accelerations during running have shown strong correlations with vertical ground reaction force loading rates and some associations with injury. However, little attention has been given to tibial accelerations along the medial-lateral and anterior-posterior axes. Therefore, our purpose was to examine the correlation between peak tibial accelerations and ground reaction force loading rates in the medial-lateral and posterior directions. Eighteen recreational runners were recruited who ran with a rearfoot strike pattern (10 men/ 8 women, mean age (yrs) = 33 ± 11). Tibial accelerations and ground reaction forces were collected while participants ran on an instrumented treadmill at a self-selected speed. Correlations were developed for: a) peak medial and lateral accelerations with lateral and medial loading rates, respectively, b) peak anterior tibial accelerations and posterior loading rates. Significant correlations were found between tibial accelerations and loading rates in all planes. Peak medial tibial accelerations were correlated with lateral loading rates (Rs = 0.86, p < 0.001) and peak lateral tibial accelerations were correlated with peak medial loading rates (Rs = 0.91, p < 0.001). A lower correlation was found between anterior accelerations and posterior loading rates (Rs = 0.51, p = 0.030). Tibial accelerations in the medial-lateral plane seem to be a valid surrogate for the respective ground reaction force measures during running on a treadmill, explaining 74-83% of the variance in loading rates. However, with only 26% of the variance explained, the same may not be true for anterior tibial accelerations and posterior loading rates.
Collapse
Affiliation(s)
- Caleb D Johnson
- Spaulding National Running Center, Dept. of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA, United States.
| | - Jereme Outerleys
- Spaulding National Running Center, Dept. of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA, United States
| | - Irene S Davis
- Spaulding National Running Center, Dept. of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA, United States
| |
Collapse
|
48
|
van Poppel D, van der Worp M, Slabbekoorn A, van den Heuvel SSP, van Middelkoop M, Koes BW, Verhagen AP, Scholten-Peeters GGM. Risk factors for overuse injuries in short- and long-distance running: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:14-28. [PMID: 32535271 PMCID: PMC7856562 DOI: 10.1016/j.jshs.2020.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 05/13/2023]
Abstract
PURPOSE The aim of this study was to review information about risk factors for lower extremity running injuries in both short-distance (mean running distance ≤20 km/week and ≤10 km/session) and long-distance runners (mean running distance >20 km/week and >10 km/session). METHODS Electronic databases were searched for articles published up to February 2019. Prospective cohort studies using multivariable analysis for the assessment of individual risk factors or risk models for the occurrence of lower extremity running injuries were included. Two reviewers independently selected studies for eligibility and assessed risk of bias with the Quality in Prognostic Studies Tool. The GRADE approach was used to assess the quality of the evidence. RESULTS A total of 29 studies were included: 17 studies focused on short-distance runners, 11 studies focused on long-distance runners, and 1 study focused on both types of runners. A previous running-related injury was the strongest risk factor for an injury for long-distance runners, with moderate-quality evidence. Previous injuries not attributed to running was the strongest risk factor for an injury for short-distance runners, with high-quality evidence. Higher body mass index, higher age, sex (male), having no previous running experience, and lower running volume were strong risk factors, with moderate quality evidence, for short-distance runners. Low-quality evidence was found for all risk models as predictors of running-related injuries among short- and long-distance runners. CONCLUSION Several risk factors for lower extremity injuries have been identified among short- and long-distance runners, but the quality of evidence for these risk factors for running-related injuries is limited. Running injuries seem to have a multifactorial origin both in short- and long-distance runners.
Collapse
Affiliation(s)
- Dennis van Poppel
- Research Group Diagnostics, Avans University of Applied Sciences, Breda, 4818 CR, the Netherlands.
| | - Maarten van der Worp
- Stichting Academie Instituut Fysiotherapie PLUS, Utrecht, 3581 MD, the Netherlands
| | - Anouk Slabbekoorn
- Research Group Diagnostics, Avans University of Applied Sciences, Breda, 4818 CR, the Netherlands
| | | | - Marienke van Middelkoop
- Department of General Practice, Erasmus MC Medical University Center, Rotterdam, 3015 CE, the Netherlands
| | - Bart W Koes
- Department of General Practice, Erasmus MC Medical University Center, Rotterdam, 3015 CE, the Netherlands; Center for Muscle and Joint Health, University of Southern Denmark, Odense, 5230, Denmark
| | - Arianne P Verhagen
- Research Group Diagnostics, Avans University of Applied Sciences, Breda, 4818 CR, the Netherlands; Department of General Practice, Erasmus MC Medical University Center, Rotterdam, 3015 CE, the Netherlands; Discipline of Physiotherapy, Graduate School of Health, University of Technology, Sydney, Chippendale NSW 2008, Australia
| | - Gwendolyne G M Scholten-Peeters
- Research Group Diagnostics, Avans University of Applied Sciences, Breda, 4818 CR, the Netherlands; Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the Netherlands
| |
Collapse
|
49
|
Miller EM, Crowell MS, Morris JB, Mason JS, Zifchock R, Goss DL. Gait Retraining Improves Running Impact Loading and Function in Previously Injured U.S. Military Cadets: A Pilot Study. Mil Med 2020; 186:e1077-e1087. [PMID: 33215669 DOI: 10.1093/milmed/usaa383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Running-related musculoskeletal injury (RRI) among U.S. military service members continues to negatively impact force readiness. There is a paucity of evidence supporting the use of RRI interventions, such as gait retraining, in military populations. Gait retraining has demonstrated effectiveness in altering running biomechanics and reducing running load. The purpose of this pilot study was to investigate the clinical effect of a gait retraining intervention on a military cadet population recovering from a lower-extremity RRI. MATERIALS AND METHODS The study design is a pilot study. Before study initiation, institutional approval was granted by the Keller Army Community Hospital Office of Human Research Protections. Nine rearfoot strike (RFS) runners recovering from a lower-extremity RRI at the U.S. Military Academy were prospectively enrolled and completed a gait retraining intervention. Participants followed-up with their assigned medical provider 6 times over 10 weeks for a clinical evaluation and running gait retraining. Gait retraining was provided utilizing verbal, visual, and audio feedback to facilitate a change in running foot strike pattern from RFS to non-rearfoot strike (NRFS) and increase preferred running step rate. At pre-intervention and post-intervention running ground reaction forces (GRF) [average vertical loading rate (AVLR), peak vertical GRF], kinematic (foot strike pattern) and temporospatial (step rate, contact time) data were collected. Participants self-reported their level of function via the Single Assessment Numeric Evaluation, Patient-Specific Functional Scale, and total weekly running minutes. Paired samples t-tests and Wilcoxon signed rank tests were used to compare pre- and post-intervention measures of interest. Values of P < .05 were considered statistically significant. RESULTS Nine patients completed the 10-week intervention (age, 20.3 ± 2.2 years; height, 170.7 ± 13.8 cm; mass, 71.7 ± 14.9 kg; duration of injury symptoms, 192.4 ± 345.5 days; running speed, 2.8 ± 0.38 m/s). All nine runners (100%) transitioned from RFS to NRFS. Left AVLR significantly decreased from 60.3 ± 17.0 bodyweight per second (BW/s) before intervention to 25.9 ± 9.1 BW/s after intervention (P = 0.008; effect size (d) = 2.5). Right AVLR significantly decreased from 60.5 ± 15.7 BW/s to 32.3 ± 12.5 BW/s (P < .001; d = 2.0). Similarly, step rate increased from 169.9 ± 10.0 steps per minute (steps/min) before intervention to 180.5 ± 6.5 steps/min following intervention (P = .005; d = 1.3). Single Assessment Numeric Evaluation scores improved significantly from 75 ± 23 to 100 ± 8 (P = .008; d = 1.5) and Patient-Specific Functional Scale values significantly improved from 6 ± 2.3 to 9.5 ± 1.6 (P = .007; d = 1.8) after intervention. Peak vertical GRF (left, P = .127, d = 0.42; right, P = .052, d = 0.53), contact time (left, P = 0.127, d = 0.42; right, P = 0.052, d = 0.53), and total weekly continuous running minutes (P = 0.095, d = 0.80) remained unchanged at post-intervention. All 9 patients remained injury free upon a 6-month medical record review. CONCLUSIONS In 9 military service members with a RRI, a 10-week NRFS gait retraining intervention was effective in improving running mechanics and measures of function. Patients remained injury-free 6 months following enrollment. The outcomes of this pilot study suggest that individuals recovering from certain lower-extremity RRIs may benefit from transitioning to an NRFS running pattern.
Collapse
Affiliation(s)
- Erin M Miller
- Keller Army Community Hospital Division I Sports Physical Therapy Fellowship, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Michael S Crowell
- Keller Army Community Hospital Division I Sports Physical Therapy Fellowship, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Jamie B Morris
- Army-Baylor Doctorate of Physical Therapy Program, United States Army Medical Center of Excellence,Fort Sam Houston, TX 78234, USA
| | - John S Mason
- Keller Army Community Hospital Division I Sports Physical Therapy Fellowship, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Rebeca Zifchock
- Department of Civil and Mechanical Engineering, United States Military Academy, West Point, NY 10996, USA
| | - Donald L Goss
- Department of Physical Therapy, One University Parkway, High Point University, High Point, NC 27268, USA
| |
Collapse
|
50
|
Lee M, Park S. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6277. [PMID: 33158140 PMCID: PMC7663495 DOI: 10.3390/s20216277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Kinetics data such as ground reaction forces (GRFs) are commonly used as indicators for rehabilitation and sports performance; however, they are difficult to measure with convenient wearable devices. Therefore, researchers have attempted to estimate accurately unmeasured kinetics data with artificial neural networks (ANNs). Because the inputs to an ANN affect its performance, they must be carefully selected. The GRF and center of pressure (CoP) have a mechanical relationship with the center of mass (CoM) in the three dimensions (3D). This biomechanical characteristic can be used to establish an appropriate input and structure of an ANN. In this study, an ANN for estimating gait kinetics with a single inertial measurement unit (IMU) was designed; the kinematics of the IMU placed on the sacrum as a proxy for the CoM kinematics were applied based on the 3D spring mechanics. The walking data from 17 participants walking at various speeds were used to train and validate the ANN. The estimated 3D GRF, CoP trajectory, and joint torques of the lower limbs were reasonably accurate, with normalized root-mean-square errors (NRMSEs) of 6.7% to 15.6%, 8.2% to 20.0%, and 11.4% to 24.1%, respectively. This result implies that the biomechanical characteristics can be used to estimate the complete three-dimensional gait data with an ANN model and a single IMU.
Collapse
Affiliation(s)
| | - Sukyung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|