1
|
Tinto B, Quellec J, Cêtre-Sossah C, Dicko A, Salinas S, Simonin Y. Rift Valley fever in West Africa: A zoonotic disease with multiple socio-economic consequences. One Health 2023; 17:100583. [PMID: 37664171 PMCID: PMC10474305 DOI: 10.1016/j.onehlt.2023.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 09/05/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an arbovirus that causes Rift Valley fever (RVF), a zoonotic disease that mainly affects domestic and wildlife ruminants and humans. The first epidemic in North-Western and West Africa occurred in Senegal and Mauritania in 1987, two countries where RVF is now endemic. Slaughterhouse workers, farmers, herders and veterinarians are at high risk of exposure to RVF. Beyond the health threat, RVF is considered to cause major socio-economic problems, specifically in developing countries where livestock farming and trade are important economic activities. Indeed, the mortality rate linked to RVF infection can reach 95-100% in newborns and young animals. In West Africa, livestock production is a key factor for food production and for national economics. Epizootics caused by RVF can therefore have serious socio-economic consequences by impacting multisectoral economics, the psycho-social health of pastoral communities, and food security. Improving prevention strategies against RVF, including vaccination, enhancing knowledge of RVF and correcting any inappropriate behaviors by populations of endemics areas, as well as better monitoring of RVF ecological factors are effective ways to better foresee and control outbreaks of RVF and its socio-economical side-effects in countries at high risk of occurrence of the disease.
Collapse
Affiliation(s)
- Bachirou Tinto
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
- Laboratoire National de Référence des Fièvres Hémorragiques Virale, Centre MURAZ, Institut National de Santé Publique (INSP), Bobo-Dioulasso, Burkina Faso
| | - Jordan Quellec
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| | | | - Amadou Dicko
- Laboratoire central de référence, Institut National de Santé Publique (INSP), Ouagadougou, Burkina Faso
- Ministère de l'Agriculture, des ressources animales et halieutiques du Burkina Faso, Ouagadougou, Burkina Faso
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| |
Collapse
|
2
|
Mechanistic models of Rift Valley fever virus transmission: A systematic review. PLoS Negl Trop Dis 2022; 16:e0010339. [PMID: 36399500 PMCID: PMC9718419 DOI: 10.1371/journal.pntd.0010339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/02/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic arbovirosis which has been reported across Africa including the northernmost edge, South West Indian Ocean islands, and the Arabian Peninsula. The virus is responsible for high abortion rates and mortality in young ruminants, with economic impacts in affected countries. To date, RVF epidemiological mechanisms are not fully understood, due to the multiplicity of implicated vertebrate hosts, vectors, and ecosystems. In this context, mathematical models are useful tools to develop our understanding of complex systems, and mechanistic models are particularly suited to data-scarce settings. Here, we performed a systematic review of mechanistic models studying RVF, to explore their diversity and their contribution to the understanding of this disease epidemiology. Researching Pubmed and Scopus databases (October 2021), we eventually selected 48 papers, presenting overall 49 different models with numerical application to RVF. We categorized models as theoretical, applied, or grey, depending on whether they represented a specific geographical context or not, and whether they relied on an extensive use of data. We discussed their contributions to the understanding of RVF epidemiology, and highlighted that theoretical and applied models are used differently yet meet common objectives. Through the examination of model features, we identified research questions left unexplored across scales, such as the role of animal mobility, as well as the relative contributions of host and vector species to transmission. Importantly, we noted a substantial lack of justification when choosing a functional form for the force of infection. Overall, we showed a great diversity in RVF models, leading to important progress in our comprehension of epidemiological mechanisms. To go further, data gaps must be filled, and modelers need to improve their code accessibility.
Collapse
|
3
|
Folly AJ, Sewgobind S, Hernández-Triana LM, Mansfield KL, Lean FZX, Lawson B, Seilern-Moy K, Cunningham AA, Spiro S, Wrigglesworth E, Pearce-Kelly P, Herdman T, Johnston C, Berrell M, Vaux AGC, Medlock JM, Johnson N. Evidence for overwintering and autochthonous transmission of Usutu virus to wild birds following its redetection in the United Kingdom. Transbound Emerg Dis 2022; 69:3684-3692. [PMID: 36217722 PMCID: PMC10092281 DOI: 10.1111/tbed.14738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 02/07/2023]
Abstract
Usutu virus (USUV) is an emerging zoonotic arbovirus in Europe, where it primarily impacts Eurasian blackbirds (Turdus merula). For mosquito-borne viruses to persist in temperate areas, transovarial transmission in vectors or overwintering in either hosts or diapausing vectors must occur to facilitate autochthonous transmission. We undertook surveillance of hosts and vectors in 2021 to elucidate whether USUV had overwintered in the United Kingdom (UK) following its initial detection there in 2020. From 175 dead bird submissions, we detected 1 case of USUV infection, in a blackbird, from which a full USUV genome was derived. Using a molecular clock analysis, we demonstrate that the 2021 detection shared a most recent common ancestor with the 2020 Greater London, UK, USUV sequence. In addition, we identified USUV-specific neutralizing antibodies in 10 out of 86 serum samples taken from captive birds at the index site, demonstrating in situ cryptic infection and potential sustained transmission. However, from 4966 mosquitoes, we detected no USUV RNA suggesting that prevalence in the vector community was absent or low during sampling. Combined, these results suggest that USUV overwintered in the UK, thus providing empirical evidence for the continued northward expansion of this vector-borne viral disease. Currently, our detection indicates geographically restricted virus persistence. Further detections over time will be required to demonstrate long-term establishment. It remains unclear whether the UK, and by extension other high-latitude regions, can support endemic USUV infection.
Collapse
Affiliation(s)
- Arran J Folly
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Weybridge, UK
| | - Sanam Sewgobind
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Weybridge, UK
| | | | - Karen L Mansfield
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Weybridge, UK
| | - Fabian Z X Lean
- Pathology and Animal Sciences Department, Animal and Plant Health Agency, Weybridge, UK
| | - Becki Lawson
- Institute of Zoology, Zoological Society of London, London, UK
| | | | | | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, London, UK
| | | | | | - Trent Herdman
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Salisbury, UK
| | - Colin Johnston
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Salisbury, UK
| | - Morgan Berrell
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Salisbury, UK
| | - Alexander G C Vaux
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Salisbury, UK
| | - Jolyon M Medlock
- Medical Entomology and Zoonoses Ecology Group, UK Health Security Agency, Salisbury, UK
| | - Nicholas Johnson
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Weybridge, UK
| |
Collapse
|
4
|
de Glanville WA, Nyarobi JM, Kibona T, Halliday JEB, Thomas KM, Allan KJ, Johnson PCD, Davis A, Lankester F, Claxton JR, Rostal MK, Carter RW, de Jong RMF, Rubach MP, Crump JA, Mmbaga BT, Nyasebwa OM, Swai ES, Willett B, Cleaveland S. Inter-epidemic Rift Valley fever virus infection incidence and risks for zoonotic spillover in northern Tanzania. PLoS Negl Trop Dis 2022; 16:e0010871. [PMID: 36306281 PMCID: PMC9665400 DOI: 10.1371/journal.pntd.0010871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/15/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne pathogen that has caused epidemics involving people and animals across Africa and the Arabian Peninsula. A number of studies have found evidence for the circulation of RVFV among livestock between these epidemics but the population-level incidence of infection during this inter-epidemic period (IEP) is rarely reported. General force of infection (FOI) models were applied to age-adjusted cross-sectional serological data to reconstruct the annual FOI and population-level incidence of RVFV infection among cattle, goats, and sheep in northern Tanzania from 2009 through 2015, a period without reported Rift Valley fever (RVF) cases in people or animals. To evaluate the potential for zoonotic RVFV spillover during this period, the relationship between village-level livestock RVFV FOI and human RVFV seropositivity was quantified using multi-level logistic regression. The predicted average annual incidence was 72 (95% Credible Interval [CrI] 63, 81) RVFV infections per 10,000 animals and 96 (95% CrI 81, 113), 79 (95% CrI 62, 98), and 39 (95% CrI 28, 52) per 10,000 cattle, sheep, and goats, respectively. There was variation in transmission intensity between study villages, with the highest estimated village-level FOI 2.49% (95% CrI 1.89, 3.23) and the lowest 0.12% (95% CrI 0.02, 0.43). The human RVFV seroprevalence was 8.2% (95% Confidence Interval 6.2, 10.9). Human seropositivity was strongly associated with the village-level FOI in livestock, with the odds of seropositivity in an individual person increasing by around 1.2 times (95% CrI 1.1, 1.3) for each additional annual RVFV seroconversion per 1,000 animals. A history of raw milk consumption was also positively associated with human seropositivity. RVFV has circulated at apparently low levels among livestock in northern Tanzania in the period since the last reported epidemic. Although our data do not allow us to confirm human RVFV infections during the IEP, a strong association between human seropositivity and the FOI in cattle, goats, and sheep supports the hypothesis that RVFV circulation among livestock during the IEP poses a risk for undetected zoonotic spillover in northern Tanzania. We provide further evidence for the likely role of raw milk consumption in RVFV transmission from animals to people.
Collapse
Affiliation(s)
- William A. de Glanville
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- University of Global Health Equity, Kigali, Rwanda
- * E-mail: (WAdG); (SC)
| | - James M. Nyarobi
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Tito Kibona
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Jo E. B. Halliday
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kate M. Thomas
- Centre for International Health, University of Otago, Dunedin, New Zealand
- Kilimanjaro Clinical Research Institute, Moshi, United Republic of Tanzania
| | - Kathryn J. Allan
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul C. D. Johnson
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alicia Davis
- School of Social and Political Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Felix Lankester
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, United States of America
- Global Animal Health Tanzania, Arusha, Tanzania
| | - John R. Claxton
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Melinda K. Rostal
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- EcoHealth Alliance, New York, New York, United States of America
| | - Ryan W. Carter
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rosanne M. F. de Jong
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew P. Rubach
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore
| | - John A. Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
| | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, United Republic of Tanzania
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
| | - Obed M. Nyasebwa
- Ministry of Livestock and Fisheries, Dodoma, United Republic of Tanzania
| | - Emanuel S. Swai
- Ministry of Livestock and Fisheries, Dodoma, United Republic of Tanzania
| | - Brian Willett
- MRC University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sarah Cleaveland
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (WAdG); (SC)
| |
Collapse
|
5
|
Wielgus E, Caron A, Bennitt E, De Garine‐Wichatitsky M, Cain B, Fritz H, Miguel E, Cornélis D, Chamaillé‐Jammes S. Inter‐Group Social Behavior, Contact Patterns and Risk for Pathogen Transmission in Cape Buffalo Populations. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elodie Wielgus
- Department of Natural Sciences Manchester Metropolitan University, All Saints Manchester M15 6BH UK
| | - Alexandre Caron
- Faculdade de Veterinária Universidade Eduardo Mondlane Av. De Moçambique, CP 257 Maputo Mozambique
| | - Emily Bennitt
- Okavango Research Institute University of Botswana Shorobe Road Maun Botswana
| | | | - Bradley Cain
- Department of Natural Sciences Manchester Metropolitan University, All Saints Manchester M15 6BH UK
| | - Herve Fritz
- REHABS, CNRS ‐ Université Lyon 1 ‐ Nelson Mandela University International Research Laboratory George Campus, Madiba Drive George South Africa
| | - Eve Miguel
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle Institut de Recherche pour le Développement 911 Avenue Agropolis, 34394 Montpellier cedex 5 France
| | - Daniel Cornélis
- CIRAD, Forêts et Sociétés, F‐34398 Montpellier, France; Forêts et Sociétés Université de Montpellier CIRAD, 34090 Montpellier France
| | - Simon Chamaillé‐Jammes
- CEFE, University of Montpellier, CNRS, EPHE, IRD University Paul Valéry Montpellier 3 Montpellier France
| |
Collapse
|
6
|
Eifan S, Hanif A, Nour I, Alqahtani S, Eisa ZM, Dafalla O, Kohl A. Distribution and Molecular Identification of Culex pipiens and Culex tritaeniorhynchus as Potential Vectors of Rift Valley Fever Virus in Jazan, Saudi Arabia. Pathogens 2021; 10:1334. [PMID: 34684282 PMCID: PMC8540973 DOI: 10.3390/pathogens10101334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Entomologic investigations were conducted in the Al-Darb, Al-Reath, Al-Aridah, Abuareesh, Al-Ahad, Samttah, Sabyah, Damad and Beash areas by CO2-baited CDC miniature light traps in the Jazan region. Vectors were identified morphologically, as well as COI gene segment amplification and sequencing. The relative abundance (RA%) and pattern of occurrence (C%) were recorded. The presence of the Rift Valley fever virus (RVFV) in pooled mosquito samples was investigated by reverse transcriptase-polymerase chain reaction (RT-PCR). Culex pipiens (C. pipiens) and Culex tritaeniorhynchus (C. tritaeniorhynchus) were found with RA% values of 96% and 4%, respectively, in the region. Significant variations in vector population densities were observed in different districts. The C. pipiens was found highly abundant in all districts and RA% value (100%) was recorded in the Al-Darb, Al-Reath, Al-Aridah, Samttah and Damad areas, whereas RA% values (93.75%, 93.33%, 92.30% and 91.66%) were noted in Al-Ahad, Sabyah, Abuareesh and Beash districts, respectively. RA% values for C. tritaeniorhynchus were recorded as 8.33%, 7.70%, 6.66% and 6.25% in Beash, Abuareesh, Sabyah and Al-Ahad areas, respectively. The pattern of occurrence for C. pipiens and C. tritaeniorhynchus was recorded as 100% and 44.4% in the region. Phylogenetic analysis of C. pipiens and C. tritaeniorhynchus exhibited a close relationship with mosquitoes from Kenya and Turkey, respectively. All mosquito samples tested by RT-PCR were found negative for RVFV. In summary, the current study assessed the composition, abundance, distribution of different mosquito vectors and presence of RVFV in different areas of the Jazan region. Our data will help risk assessments of RVFV future re-emergence in the region.
Collapse
Affiliation(s)
- Saleh Eifan
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (I.N.); (S.A.)
| | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (I.N.); (S.A.)
| | - Islam Nour
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (I.N.); (S.A.)
| | - Sultan Alqahtani
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (I.N.); (S.A.)
| | - Zaki M. Eisa
- Saudi Center for Disease Control and Prevention (SCDC), Jazan 82722-2476, Saudi Arabia; (Z.M.E.); (O.D.)
| | - Ommer Dafalla
- Saudi Center for Disease Control and Prevention (SCDC), Jazan 82722-2476, Saudi Arabia; (Z.M.E.); (O.D.)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| |
Collapse
|
7
|
Tennant WSD, Cardinale E, Cêtre-Sossah C, Moutroifi Y, Le Godais G, Colombi D, Spencer SEF, Tildesley MJ, Keeling MJ, Charafouddine O, Colizza V, Edmunds WJ, Métras R. Modelling the persistence and control of Rift Valley fever virus in a spatially heterogeneous landscape. Nat Commun 2021; 12:5593. [PMID: 34552082 PMCID: PMC8458460 DOI: 10.1038/s41467-021-25833-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The persistence mechanisms of Rift Valley fever (RVF), a zoonotic arboviral haemorrhagic fever, at both local and broader geographical scales have yet to be fully understood and rigorously quantified. We developed a mathematical metapopulation model describing RVF virus transmission in livestock across the four islands of the Comoros archipelago, accounting for island-specific environments and inter-island animal movements. By fitting our model in a Bayesian framework to 2004-2015 surveillance data, we estimated the importance of environmental drivers and animal movements on disease persistence, and tested the impact of different control scenarios on reducing disease burden throughout the archipelago. Here we report that (i) the archipelago network was able to sustain viral transmission in the absence of explicit disease introduction events after early 2007, (ii) repeated outbreaks during 2004-2020 may have gone under-detected by local surveillance, and (iii) co-ordinated within-island control measures are more effective than between-island animal movement restrictions.
Collapse
Affiliation(s)
- Warren S D Tennant
- The Zeeman Institute: SBIDER, University of Warwick, Coventry, CV4 7AL, UK.
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.
| | - Eric Cardinale
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Animal, Santé, Territoires, Risques, et Écosystèmes, F-97490, Sainte Clotilde, La Réunion, France
- Animal, Santé, Territoires, Risques, et Écosystèmes, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, INRAE, Montpellier, France
| | - Catherine Cêtre-Sossah
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Animal, Santé, Territoires, Risques, et Écosystèmes, F-97490, Sainte Clotilde, La Réunion, France
- Animal, Santé, Territoires, Risques, et Écosystèmes, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, INRAE, Montpellier, France
| | - Youssouf Moutroifi
- Vice-Présidence en charge de l'Agriculture, l'Elevage, la Pêche, l'Industrie, l'Energie et l'Artisanat, B.P. 41 Mdé, Moroni, Union of the Comoros
| | - Gilles Le Godais
- Direction de l'Alimentation, de l'Agriculture et de la Forêt de Mayotte, Service de l'Alimentation, 97600, Mamoudzou, France
| | - Davide Colombi
- Aizoon Technology Consulting, Str. del Lionetto 6, Torino, Italy
| | - Simon E F Spencer
- The Zeeman Institute: SBIDER, University of Warwick, Coventry, CV4 7AL, UK
- Department of Statistics, University of Warwick, Coventry, CV4, 7AL, UK
| | - Mike J Tildesley
- The Zeeman Institute: SBIDER, University of Warwick, Coventry, CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Matt J Keeling
- The Zeeman Institute: SBIDER, University of Warwick, Coventry, CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Onzade Charafouddine
- Vice-Présidence en charge de l'Agriculture, l'Elevage, la Pêche, l'Industrie, l'Energie et l'Artisanat, B.P. 41 Mdé, Moroni, Union of the Comoros
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Épidémiologie et de Santé Publique (Unité Mixte de Recherche en Santé 1136), 75012, Paris, France
| | - W John Edmunds
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Raphaëlle Métras
- INSERM, Sorbonne Université, Institut Pierre Louis d'Épidémiologie et de Santé Publique (Unité Mixte de Recherche en Santé 1136), 75012, Paris, France
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
8
|
Tao Y, Hite JL, Lafferty KD, Earn DJD, Bharti N. Transient disease dynamics across ecological scales. THEOR ECOL-NETH 2021; 14:625-640. [PMID: 34075317 PMCID: PMC8156581 DOI: 10.1007/s12080-021-00514-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/04/2021] [Indexed: 11/25/2022]
Abstract
Analyses of transient dynamics are critical to understanding infectious disease transmission and persistence. Identifying and predicting transients across scales, from within-host to community-level patterns, plays an important role in combating ongoing epidemics and mitigating the risk of future outbreaks. Moreover, greater emphases on non-asymptotic processes will enable timely evaluations of wildlife and human diseases and lead to improved surveillance efforts, preventive responses, and intervention strategies. Here, we explore the contributions of transient analyses in recent models spanning the fields of epidemiology, movement ecology, and parasitology. In addition to their roles in predicting epidemic patterns and endemic outbreaks, we explore transients in the contexts of pathogen transmission, resistance, and avoidance at various scales of the ecological hierarchy. Examples illustrate how (i) transient movement dynamics at the individual host level can modify opportunities for transmission events over time; (ii) within-host energetic processes often lead to transient dynamics in immunity, pathogen load, and transmission potential; (iii) transient connectivity between discrete populations in response to environmental factors and outbreak dynamics can affect disease spread across spatial networks; and (iv) increasing species richness in a community can provide transient protection to individuals against infection. Ultimately, we suggest that transient analyses offer deeper insights and raise new, interdisciplinary questions for disease research, consequently broadening the applications of dynamical models for outbreak preparedness and management. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12080-021-00514-w.
Collapse
Affiliation(s)
- Yun Tao
- Intelligence Community Postdoctoral Research Fellowship Program, Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106 USA
| | - Jessica L. Hite
- School of Veterinary Medicine, Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706 USA
| | - Kevin D. Lafferty
- Western Ecological Research Center at UCSB Marine Science Institute, U.S. Geological Survey, CA 93106 Santa Barbara, USA
| | - David J. D. Earn
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Nita Bharti
- Department of Biology Center for Infectious Disease Dynamics, Penn State University, University Park, PA 16802 USA
| |
Collapse
|
9
|
Ndengu M, Matope G, Tivapasi M, Pfukenyi DM, Cetre-Sossah C, De Garine-Wichatitsky M. Seroprevalence and associated risk factors of Rift Valley fever in cattle and selected wildlife species at the livestock/wildlife interface areas of Gonarezhou National Park, Zimbabwe. ACTA ACUST UNITED AC 2020; 87:e1-e7. [PMID: 32370521 PMCID: PMC7203192 DOI: 10.4102/ojvr.v87i1.1731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
A study was conducted to investigate the seroprevalence and associated risk factors of Rift Valley fever (RVF) infection in cattle and some selected wildlife species at selected interface areas at the periphery of the Great Limpopo Transfrontier Conservation Area in Zimbabwe. Three study sites were selected based on the type of livestock–wildlife interface: porous livestock–wildlife interface (unrestricted); non-porous livestock–wildlife interface (restricted by fencing) and livestock–wildlife non-interface (totally absent contact or control). Sera were collected from cattle aged ≥ 2 years representing both female and intact male. Sera were also collected from selected wild ungulates from Mabalauta (porous interface) and Chipinda Pools (non-interface) areas of the Gonarezhou National Park. Sera were tested for antibodies to Rift Valley fever virus (RVFV) using a competitive enzyme-linked immunosorbent assay (ELISA) test. AX2 test was used to assess differences between categories, and p < 0.05 was considered as significant. In cattle, the overall seroprevalence was 1.7% (17/1011) (95% confidence interval [CI]: 1.01–2.7). The porous interface recorded a seroprevalence of 2.3% (95% CI: 1.2–4.3), the non-porous interface recorded a prevalence of 1.8% (95% CI: 0.7–4.3) and the non-interface area recorded a seroprevalence of 0.4% (955 CI: 0.02–2.5), but the difference in seroprevalence according to site was not significant (p > 0.05). All impala and kudu samples tested negative. The overall seroprevalence in buffaloes was 11.7% (95% CI: 6.6–19.5), and there was no significant (p = 0.38) difference between the sites (Mabalauta, 4.4% [95% CI: 0.2–24] vs. Chipinda, 13.6% [95% CI: 7.6–23]). The overall seroprevalence in buffaloes (11.7%, 13/111) was significantly (p < 0.0001) higher than in cattle (1.7%, 17/1011). The results established the presence of RVFV in cattle and selected wildlife and that sylvatic infections may be present in buffalo populations. Further studies are required to investigate if the virus is circulating between cattle and wildlife.
Collapse
Affiliation(s)
- Masimba Ndengu
- Department of Clinical Veterinary Studies, Faculty of Veterinary Science, University of Zimbabwe, Harare.
| | | | | | | | | | | |
Collapse
|
10
|
Van den Bergh C, Venter EH, Swanepoel R, Hanekom CC, Thompson PN. Neutralizing antibodies against Rift Valley fever virus in wild antelope in far northern KwaZulu-Natal, South Africa, indicate recent virus circulation. Transbound Emerg Dis 2020; 67:1356-1363. [PMID: 31943795 DOI: 10.1111/tbed.13479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/03/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022]
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease of domestic ruminants in Africa and the Arabian Peninsula caused by a mosquito-borne Phlebovirus. Outbreaks in livestock and humans occur after heavy rains favour breeding of vectors, and the virus is thought to survive dry seasons in the eggs of floodwater-breeding aedine mosquitoes. We recently found high seroconversion rates to RVF virus (RVFV) in cattle and goats, in the absence of outbreaks, in far northern KwaZulu-Natal (KZN), South Africa. Here, we report the prevalence of, and factors associated with, neutralizing antibodies to RVFV in 326 sera collected opportunistically from nyala (Tragelaphus angasii) and impala (Aepyceros melampus) culled during 2016-2018 in two nature reserves in the same area. The overall seroprevalence of RVFV, determined using the serum neutralization test, was 35.0% (114/326; 95%CI: 29.8%-40.4%) and tended to be higher in Ndumo Game Reserve (11/20; 55.0%; 95%CI: 31.5%-76.9%) than in Tembe Elephant Park (103/306; 33.6%; 95%CI: 28.4%-39.3%) (p = .087). The presence of antibodies in juveniles (6/21; 28.6%; 95%CI: 11.3%-52.2%) and sub-adults (13/65; 20.0%; 95%CI: 11.1%-37.8%) confirmed that infections had occurred at least until 2016, well after the 2008-2011 RVF outbreaks in South Africa. Odds of seropositivity was higher in adults than in sub-adults (OR = 3.98; 95%CI: 1.83-8.67; p = .001), in males than in females (OR = 2.66; 95%CI: 1.51-4.68; p = .001) and in animals collected ≤2 km from a swamp or floodplain compared with those collected further away (OR = 3.30; 95%CI: 1.70-6.38; p < .001). Under similar ecological conditions, domestic and wild ruminants may play a similar role in maintenance of RVFV circulation and either or both may serve as the mammalian host in a vector-host reservoir system. The study confirms the recent circulation of RVFV in the tropical coastal plain of northern KZN, providing the basis for investigation of factors affecting virus circulation and the role of wildlife in RVF epidemiology.
Collapse
Affiliation(s)
- Carien Van den Bergh
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Robert Swanepoel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | | - Peter N Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
11
|
Rissmann M, Stoek F, Pickin MJ, Groschup MH. Mechanisms of inter-epidemic maintenance of Rift Valley fever phlebovirus. Antiviral Res 2019; 174:104692. [PMID: 31870761 DOI: 10.1016/j.antiviral.2019.104692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/26/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
Rift Valley fever phlebovirus (RVFV) is an arthropod-borne virus that has caused substantial epidemics throughout Africa and in the Arabian Peninsula. The virus can cause severe disease in livestock and humans and therefore the control and prevention of viral outbreaks is of utmost importance. The epidemiology of RVFV has some particular characteristics. Unexpected and significant epidemics have been observed in spatially and temporally divergent patterns across the African continent. Sudden epidemics in previously unaffected areas are followed by periods of long-term apparent absence of virus and sudden, unpredictable reoccurrence in disparate regions. Therefore, the elucidation of underlying mechanisms of viral maintenance is one of the largest gaps in the knowledge of RVFV ecology. It remains unknown whether the virus needs to be reintroduced before RVF outbreaks can occur, or if unperceived viral circulation in local vertebrates or mosquitoes is sufficient for maintenance of the virus. To gain insight into these knowledge gaps, we here review existing data that describe potential mechanisms of RVFV maintenance, as well as molecular and serological studies in endemic and non-endemic areas that provide evidence of an inter- or pre-epidemic virus presence. Basic and country-specific mechanisms of RVFV introduction into non-endemic countries are summarized and an overview of studies using mathematical modeling of RVFV persistence is given.
Collapse
Affiliation(s)
- Melanie Rissmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany
| | - Franziska Stoek
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany
| | - Matthew J Pickin
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Suedufer 10, 17489, Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Lubisi BA, Ndouvhada PN, Neiffer D, Penrith ML, Sibanda DR, Bastos A. Seroprevalence of Rift valley fever in South African domestic and wild suids (1999-2016). Transbound Emerg Dis 2019; 67:811-821. [PMID: 31655018 DOI: 10.1111/tbed.13402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023]
Abstract
Rift valley fever (RVF) is a vector-borne viral disease of domestic ruminants, camels and man, characterized by widespread abortions and neonatal deaths in animals, and flu-like symptoms, which can progress to hepatitis and encephalitis in humans. The disease is endemic in Africa, Saudi Arabia and Yemen, and outbreaks occur after periods of high rainfall, or in environments supporting the proliferation of RVF virus (RVFV)-infected mosquito vectors. The domestic and wild animal maintenance hosts of RVFV, which may serve as sources of virus during inter-epidemic periods (IEPs) and contribute to occurrence of sporadic outbreaks, remain unknown, although reports indicate that the African buffalo (Syncerus caffer) may play a role. Due to the close proximity of the habitats of domestic pigs and warthogs to those of known domestic and wild ruminant RVFV maintenance hosts respectively, our study investigated their possible role in the epidemiology of RVF in South Africa by evaluating RVFV exposure and seroconversion in suids. A total of 107 warthog and 3,984 domestic pig sera from 2 and all 9 provinces of South Africa, respectively, were screened for presence of RVFV neutralizing antibodies using the virus neutralization test (VNT). Sero-positivity rates of 1.87% (95% CI: 0.01%-6.9%) and 0.68% (95% CI: 0.49%-1.04%) were observed for warthogs and domestic pigs, respectively, but true prevalence rates, taking test sensitivity and specificity into account, were lower for both groups. There was a strong association between the results of the two groups (χ2 = 0.75, p = .38), and differences in prevalence between the epidemic and IEPs were non-significant for all suid samples tested (p > .05). This study, which provides the first evidence of probable exposure and infection of South African domestic pigs and warthogs to RVFV, indicates that further investigations are warranted, to fully clarify the role of suids in the epidemiology of RVF.
Collapse
Affiliation(s)
- Baratang Alison Lubisi
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa.,Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Phumudzo Nomicia Ndouvhada
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa.,Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa
| | - Donald Neiffer
- Wildlife Health Sciences, National Zoological Park, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Mary Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Donald-Ray Sibanda
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort, South Africa
| | - Armanda Bastos
- Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa.,Centre for Veterinary Wildlife Studies, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
13
|
Bartlow AW, Manore C, Xu C, Kaufeld KA, Del Valle S, Ziemann A, Fairchild G, Fair JM. Forecasting Zoonotic Infectious Disease Response to Climate Change: Mosquito Vectors and a Changing Environment. Vet Sci 2019; 6:E40. [PMID: 31064099 PMCID: PMC6632117 DOI: 10.3390/vetsci6020040] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/12/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Infectious diseases are changing due to the environment and altered interactions among hosts, reservoirs, vectors, and pathogens. This is particularly true for zoonotic diseases that infect humans, agricultural animals, and wildlife. Within the subset of zoonoses, vector-borne pathogens are changing more rapidly with climate change, and have a complex epidemiology, which may allow them to take advantage of a changing environment. Most mosquito-borne infectious diseases are transmitted by mosquitoes in three genera: Aedes, Anopheles, and Culex, and the expansion of these genera is well documented. There is an urgent need to study vector-borne diseases in response to climate change and to produce a generalizable approach capable of generating risk maps and forecasting outbreaks. Here, we provide a strategy for coupling climate and epidemiological models for zoonotic infectious diseases. We discuss the complexity and challenges of data and model fusion, baseline requirements for data, and animal and human population movement. Disease forecasting needs significant investment to build the infrastructure necessary to collect data about the environment, vectors, and hosts at all spatial and temporal resolutions. These investments can contribute to building a modeling community around the globe to support public health officials so as to reduce disease burden through forecasts with quantified uncertainty.
Collapse
Affiliation(s)
- Andrew W Bartlow
- Los Alamos National Laboratory, Biosecurity and Public Health, Los Alamos, NM 87545, USA.
| | - Carrie Manore
- Los Alamos National Laboratory, Information Systems and Modeling, Los Alamos, NM 87545, USA.
| | - Chonggang Xu
- Los Alamos National Laboratory, Earth Systems Observations, Los Alamos, NM 87545, USA.
| | - Kimberly A Kaufeld
- Los Alamos National Laboratory, Statistical Sciences, Los Alamos, NM 87545, USA.
| | - Sara Del Valle
- Los Alamos National Laboratory, Information Systems and Modeling, Los Alamos, NM 87545, USA.
| | - Amanda Ziemann
- Los Alamos National Laboratory, Space Data Science and Systems, Los Alamos, NM 87545, USA.
| | - Geoffrey Fairchild
- Los Alamos National Laboratory, Information Systems and Modeling, Los Alamos, NM 87545, USA.
| | - Jeanne M Fair
- Los Alamos National Laboratory, Biosecurity and Public Health, Los Alamos, NM 87545, USA.
| |
Collapse
|
14
|
Rostal MK, Liang JE, Zimmermann D, Bengis R, Paweska J, Karesh WB. Rift Valley Fever: Does Wildlife Play a Role? ILAR J 2018; 58:359-370. [PMID: 28985319 DOI: 10.1093/ilar/ilx023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Rift Valley fever (RVF) virus (RVFV) is an emerging vector-borne pathogen that causes sporadic epizootics and epidemics with multi-year, apparently quiescent, inter-epidemic periods. The epidemiology and ecology of the virus during these inter-epidemic periods is poorly understood. There is evidence for low-level circulation of the virus in livestock and wild ruminants; however, as of yet there is no evidence to identify a specific mammalian reservoir host. Using a systematic approach, this review synthesizes results from serosurveys, attempts at viral detection, and experimental infection of wildlife. These data demonstrate there is a gap in research conducted on RVF in wild ruminants. Specifically, there is very little published data on the pathogenicity of an RVFV infection in various wildlife species, validation of diagnostic assays for exposure to RVFV and understanding of epizootic or endemic disease dynamics in wild ruminants. We recommend that future research on RVFV incorporate a more systematic approach to understand the low-level cycling of the virus during inter-epidemic periods in both wild and domestic ruminant species.
Collapse
Affiliation(s)
- Melinda K Rostal
- Melinda K. Rostal, DVM, MPH, is a senior research scientist at EcoHealth Alliance in New York City, New York. Janice E. Liang is a research assistant at EcoHealth Alliance in New York City, New York. David Zimmermann, BVSc, MSc, is a veterinarian with South African National Parks in Kimberley, South Africa. Roy Bengis, BVSc, MSc, PhD, is a veterinarian who sits on the World Organisation for Animal Health (OIE) Working Group on Wildlife and in Port Alfred, South Africa. Janusz Paweska, Prof., DVSc, dr hab., is the head of the Center for Emerging and Zoonotic Diseases at the National Institute for Communicable Diseases of the National Health Laboratory Service in Sandringham, South Africa. William B. Karesh is the Executive Vice President for Health and Policy at EcoHealth Alliance in New York City, New York
| | - Janice E Liang
- Melinda K. Rostal, DVM, MPH, is a senior research scientist at EcoHealth Alliance in New York City, New York. Janice E. Liang is a research assistant at EcoHealth Alliance in New York City, New York. David Zimmermann, BVSc, MSc, is a veterinarian with South African National Parks in Kimberley, South Africa. Roy Bengis, BVSc, MSc, PhD, is a veterinarian who sits on the World Organisation for Animal Health (OIE) Working Group on Wildlife and in Port Alfred, South Africa. Janusz Paweska, Prof., DVSc, dr hab., is the head of the Center for Emerging and Zoonotic Diseases at the National Institute for Communicable Diseases of the National Health Laboratory Service in Sandringham, South Africa. William B. Karesh is the Executive Vice President for Health and Policy at EcoHealth Alliance in New York City, New York
| | - David Zimmermann
- Melinda K. Rostal, DVM, MPH, is a senior research scientist at EcoHealth Alliance in New York City, New York. Janice E. Liang is a research assistant at EcoHealth Alliance in New York City, New York. David Zimmermann, BVSc, MSc, is a veterinarian with South African National Parks in Kimberley, South Africa. Roy Bengis, BVSc, MSc, PhD, is a veterinarian who sits on the World Organisation for Animal Health (OIE) Working Group on Wildlife and in Port Alfred, South Africa. Janusz Paweska, Prof., DVSc, dr hab., is the head of the Center for Emerging and Zoonotic Diseases at the National Institute for Communicable Diseases of the National Health Laboratory Service in Sandringham, South Africa. William B. Karesh is the Executive Vice President for Health and Policy at EcoHealth Alliance in New York City, New York
| | - Roy Bengis
- Melinda K. Rostal, DVM, MPH, is a senior research scientist at EcoHealth Alliance in New York City, New York. Janice E. Liang is a research assistant at EcoHealth Alliance in New York City, New York. David Zimmermann, BVSc, MSc, is a veterinarian with South African National Parks in Kimberley, South Africa. Roy Bengis, BVSc, MSc, PhD, is a veterinarian who sits on the World Organisation for Animal Health (OIE) Working Group on Wildlife and in Port Alfred, South Africa. Janusz Paweska, Prof., DVSc, dr hab., is the head of the Center for Emerging and Zoonotic Diseases at the National Institute for Communicable Diseases of the National Health Laboratory Service in Sandringham, South Africa. William B. Karesh is the Executive Vice President for Health and Policy at EcoHealth Alliance in New York City, New York
| | - Janusz Paweska
- Melinda K. Rostal, DVM, MPH, is a senior research scientist at EcoHealth Alliance in New York City, New York. Janice E. Liang is a research assistant at EcoHealth Alliance in New York City, New York. David Zimmermann, BVSc, MSc, is a veterinarian with South African National Parks in Kimberley, South Africa. Roy Bengis, BVSc, MSc, PhD, is a veterinarian who sits on the World Organisation for Animal Health (OIE) Working Group on Wildlife and in Port Alfred, South Africa. Janusz Paweska, Prof., DVSc, dr hab., is the head of the Center for Emerging and Zoonotic Diseases at the National Institute for Communicable Diseases of the National Health Laboratory Service in Sandringham, South Africa. William B. Karesh is the Executive Vice President for Health and Policy at EcoHealth Alliance in New York City, New York
| | - William B Karesh
- Melinda K. Rostal, DVM, MPH, is a senior research scientist at EcoHealth Alliance in New York City, New York. Janice E. Liang is a research assistant at EcoHealth Alliance in New York City, New York. David Zimmermann, BVSc, MSc, is a veterinarian with South African National Parks in Kimberley, South Africa. Roy Bengis, BVSc, MSc, PhD, is a veterinarian who sits on the World Organisation for Animal Health (OIE) Working Group on Wildlife and in Port Alfred, South Africa. Janusz Paweska, Prof., DVSc, dr hab., is the head of the Center for Emerging and Zoonotic Diseases at the National Institute for Communicable Diseases of the National Health Laboratory Service in Sandringham, South Africa. William B. Karesh is the Executive Vice President for Health and Policy at EcoHealth Alliance in New York City, New York
| |
Collapse
|
15
|
Lo Iacono G, Cunningham AA, Bett B, Grace D, Redding DW, Wood JLN. Environmental limits of Rift Valley fever revealed using ecoepidemiological mechanistic models. Proc Natl Acad Sci U S A 2018; 115:E7448-E7456. [PMID: 30021855 PMCID: PMC6077718 DOI: 10.1073/pnas.1803264115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vector-borne diseases (VBDs) of humans and domestic animals are a significant component of the global burden of disease and a key driver of poverty. The transmission cycles of VBDs are often strongly mediated by the ecological requirements of the vectors, resulting in complex transmission dynamics, including intermittent epidemics and an unclear link between environmental conditions and disease persistence. An important broader concern is the extent to which theoretical models are reliable at forecasting VBDs; infection dynamics can be complex, and the resulting systems are highly unstable. Here, we examine these problems in detail using a case study of Rift Valley fever (RVF), a high-burden disease endemic to Africa. We develop an ecoepidemiological, compartmental, mathematical model coupled to the dynamics of ambient temperature and water availability and apply it to a realistic setting using empirical environmental data from Kenya. Importantly, we identify the range of seasonally varying ambient temperatures and water-body availability that leads to either the extinction of mosquito populations and/or RVF (nonpersistent regimens) or the establishment of long-term mosquito populations and consequently, the endemicity of the RVF infection (persistent regimens). Instabilities arise when the range of the environmental variables overlaps with the threshold of persistence. The model captures the intermittent nature of RVF occurrence, which is explained as low-level circulation under the threshold of detection, with intermittent emergence sometimes after long periods. Using the approach developed here opens up the ability to improve predictions of the emergence and behaviors of epidemics of many other important VBDs.
Collapse
Affiliation(s)
- Giovanni Lo Iacono
- Department of Veterinary Medicine, Disease Dynamics Unit, University of Cambridge, Cambridge CB3 0ES, United Kingdom;
- Public Health England, Didcot, Oxford OX11 0RQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, United Kingdom
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom
| | - Bernard Bett
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100 Kenya
| | - Delia Grace
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, 00100 Kenya
| | - David W Redding
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - James L N Wood
- Department of Veterinary Medicine, Disease Dynamics Unit, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| |
Collapse
|
16
|
Lumley S, Hernández-Triana LM, Horton DL, Fernández de Marco MDM, Medlock JM, Hewson R, Fooks AR, Johnson N. Competence of mosquitoes native to the United Kingdom to support replication and transmission of Rift Valley fever virus. Parasit Vectors 2018; 11:308. [PMID: 29776384 PMCID: PMC5960175 DOI: 10.1186/s13071-018-2884-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rift Valley fever phlebovirus (RVFV) is a mosquito-borne arbovirus causing severe disease in humans and livestock. It is endemic in Africa and spread to the Arabian Peninsula in 2000 raising concerns it could emerge in Europe. The ability of temperate mosquitoes from the United Kingdom (UK) to support replication and transmission of RVFV is unknown. METHODS In this study, two colonised lines of Culex pipiens, wild-caught Aedes detritus and Ae. rusticus from the UK were infected with pathogenic strains of RVFV to assess their vector competence. Mosquitoes were offered artificial blood-meals containing 106 or 107 plaque forming units (PFU)/ml RVFV, simulating natural peak viraemia in young ruminants, and maintained at 20 °C or 25 °C for up to 21 days. Bodies, legs and saliva were collected and tested for the presence of viral RNA and infectious virus to determine the infection, dissemination and transmission potential. RESULTS Across temperatures, doses and strains the average infection, dissemination and transmission rates were: 35, 13 and 5% (n = 91) for Cx. pipiens (Caldbeck); 23, 14 and 5% (n = 138) for Cx. pipiens (Brookwood); 36, 28 and 7% (n = 118) for Ae. detritus. However, despite 35% (n = 20) being susceptible to infection, Ae. rusticus did not transmit RVFV. Survival of Aedes species was negatively affected by maintenance at 25 °C compared to the more representative peak average British summer temperature of 20 °C. Increased mortality was also observed with some species infected with 107 PFU/ml compared to 106 PFU/ml. CONCLUSIONS It can be concluded that temperate mosquito species present in the UK demonstrate a transmission potential for RVFV in the laboratory but, even at high temperatures, this occurred at low efficiency.
Collapse
Affiliation(s)
- Sarah Lumley
- Microbiology Services Division, Public Health England, Wiltshire, UK. .,School of Veterinary Medicine, University of Surrey, Guildford, UK. .,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK.
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Jolyon M Medlock
- Microbiology Services Division, Public Health England, Wiltshire, UK
| | - Roger Hewson
- Microbiology Services Division, Public Health England, Wiltshire, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Nicholas Johnson
- School of Veterinary Medicine, University of Surrey, Guildford, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK
| |
Collapse
|
17
|
Walsh MG, Mor SM. Interspecific network centrality, host range and early-life development are associated with wildlife hosts of Rift Valley fever virus. Transbound Emerg Dis 2018; 65:1568-1575. [PMID: 29756406 DOI: 10.1111/tbed.12903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 11/29/2022]
Abstract
Rift Valley fever virus (RVFV) is responsible for a substantive disease burden in pastoralist communities and the agricultural sector in the African continent and Arabian Peninsula. Enzootic, epizootic and zoonotic RVFV transmission dynamics remain ill-defined, particularly due to a poor understanding of the role of mammalian hosts in the epidemiology and infection ecology of this arbovirus. Using a piecewise structural equation model, this study sought to identify associations between biological and ecological characteristics of mammalian species and documented RVFV infection to highlight species-level traits that may influence wildlife host status. Interspecific network centrality, size of species home range and reproductive life-history traits were all associated with being an RVFV host. The identification of these species-level characteristics may help to provide ecological context for the role of wildlife amplification hosts in the epidemiology of spillover to livestock and humans and may also help to identify specific points of vulnerability at the wildlife-livestock interface.
Collapse
Affiliation(s)
- M G Walsh
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW, Australia.,Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - S M Mor
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW, Australia.,Faculty of Science, School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
18
|
Mbotha D, Bett B, Kairu-Wanyoike S, Grace D, Kihara A, Wainaina M, Hoppenheit A, Clausen PH, Lindahl J. Inter-epidemic Rift Valley fever virus seroconversions in an irrigation scheme in Bura, south-east Kenya. Transbound Emerg Dis 2017; 65:e55-e62. [PMID: 28710814 DOI: 10.1111/tbed.12674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 11/30/2022]
Abstract
Rift Valley fever (RVF) is an acute mosquito-borne viral zoonosis whose outbreaks are often associated with prolonged rainfall and flooding, during which large numbers of vectors emerge. Recent studies into the inter-epidemic maintenance of RVF virus (RVFV) suggest that both vertical transmission in vectors and direct transmission between hosts act in combination with predisposing factors for persistence of the virus. A comparative longitudinal survey was carried out in Tana River County, Kenya, in irrigated, riverine and pastoral ecosystems from September 2014-June 2015. The objectives were to investigate the possibility of low-level RVFV transmission in these ecosystems during an inter-epidemic period (IEP), examine variations in RVFV seroprevalence in sheep and goats and determine the risk factors for transmission. Three hundred and sixteen small ruminants were selected and tested for immunoglobulin G antibodies against RVFV nucleoprotein using a competitive ELISA during six visits. Data on potential risk factors were also captured. Inter-epidemic RVFV transmission was evidenced by 15 seroconversions within the irrigated and riverine villages. The number of seroconversions was not significantly different (OR = 0.66, CI = 0.19-2.17, p = .59) between irrigated and riverine areas. No seroconversions were detected in the pastoral ecosystem. This study highlights the increased risk of inter-epidemic RVFV transmission posed by irrigation, through provision of necessary environmental conditions that enable vectors access to more breeding grounds, resting places and shade, which favour their breeding and survival.
Collapse
Affiliation(s)
- D Mbotha
- International Livestock Research Institute, Nairobi, Kenya.,Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | - B Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - D Grace
- International Livestock Research Institute, Nairobi, Kenya
| | - A Kihara
- International Livestock Research Institute, Nairobi, Kenya
| | - M Wainaina
- International Livestock Research Institute, Nairobi, Kenya
| | - A Hoppenheit
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | - P-H Clausen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | - J Lindahl
- International Livestock Research Institute, Nairobi, Kenya.,Swedish University of Agricultural Sciences, Uppsala, Sweden.,Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Lumley S, Horton DL, Hernandez-Triana LLM, Johnson N, Fooks AR, Hewson R. Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes. J Gen Virol 2017; 98:875-887. [PMID: 28555542 DOI: 10.1099/jgv.0.000765] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne arbovirus causing severe disease in humans and ruminants. Spread of RVFV out of Africa has raised concerns that it could emerge in Europe or the USA. Virus persistence is dependent on successful infection of, replication in, and transmission to susceptible vertebrate and invertebrate hosts, modulated by virus-host and vector-virus interactions. The principal accepted theory for the long-term maintenance of RVFV involves vertical transmission (VT) of virus to mosquito progeny, with the virus surviving long inter-epizootic periods within the egg. This VT hypothesis, however, is yet to be comprehensively proven. Here, evidence for and against the VT of RVFV is reviewed along with the identification of factors limiting its detection in natural and experimental data. The observations of VT for other arboviruses in the genera Alphavirus, Flavivirus and Orthobunyavirus are discussed within the context of RVFV. The review concludes that VT of RVFV is likely but that current data are insufficient to irrefutably prove this hypothesis.
Collapse
Affiliation(s)
- Sarah Lumley
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK.,School of Veterinary Medicine, University of Surrey, Guildford, UK.,Virology and Pathogenesis Group, Microbiology Services Division, Public Health England, Wiltshire, UK
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Luis L M Hernandez-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Nicholas Johnson
- School of Veterinary Medicine, University of Surrey, Guildford, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Addlestone, Surrey, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Roger Hewson
- Virology and Pathogenesis Group, Microbiology Services Division, Public Health England, Wiltshire, UK.,NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
20
|
Sang R, Arum S, Chepkorir E, Mosomtai G, Tigoi C, Sigei F, Lwande OW, Landmann T, Affognon H, Ahlm C, Evander M. Distribution and abundance of key vectors of Rift Valley fever and other arboviruses in two ecologically distinct counties in Kenya. PLoS Negl Trop Dis 2017; 11:e0005341. [PMID: 28212379 PMCID: PMC5333903 DOI: 10.1371/journal.pntd.0005341] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/02/2017] [Accepted: 01/19/2017] [Indexed: 11/19/2022] Open
Abstract
Background Rift Valley fever (RVF) is a mosquito-borne viral zoonosis of ruminants and humans that causes outbreaks in Africa and the Arabian Peninsula with significant public health and economic consequences. Humans become infected through mosquito bites and contact with infected livestock. The virus is maintained between outbreaks through vertically infected eggs of the primary vectors of Aedes species which emerge following rains with extensive flooding. Infected female mosquitoes initiate transmission among nearby animals, which amplifies virus, thereby infecting more mosquitoes and moving the virus beyond the initial point of emergence. With each successive outbreak, RVF has been found to expand its geographic distribution to new areas, possibly driven by available vectors. The aim of the present study was to determine if RVF virus (RVFV) transmission risk in two different ecological zones in Kenya could be assessed by looking at the species composition, abundance and distribution of key primary and secondary vector species and the level of virus activity. Methodology Mosquitoes were trapped during short and long rainy seasons in 2014 and 2015 using CO2 baited CDC light traps in two counties which differ in RVF epidemic risk levels(high risk Tana-River and low risk Isiolo),cryo-preserved in liquid nitrogen, transported to the laboratory, and identified to species. Mosquito pools were analyzed for virus infection using cell culture screening and molecular analysis. Findings Over 69,000 mosquitoes were sampled and identified as 40 different species belonging to 6 genera (Aedes, Anopheles, Mansonia, Culex, Aedeomyia, Coquillettidia). The presence and abundance of Aedes mcintoshi and Aedes ochraceus, the primary mosquito vectors associated with RVFV transmission in outbreaks, varied significantly between Tana-River and Isiolo. Ae. mcintoshi was abundant in Tana-River and Isiolo but notably, Aedes ochraceus found in relatively high numbers in Tana-River (n = 1,290), was totally absent in all Isiolo sites. Fourteen virus isolates including Sindbis, Bunyamwera, and West Nile fever viruses were isolated mostly from Ae. mcintoshi sampled in Tana-River. RVFV was not detected in any of the mosquitoes. Conclusion This study presents the geographic distribution and abundance of arbovirus vectors in two Kenyan counties, which may assist with risk assessment for mosquito borne diseases. Rift Valley fever (RVF) is a mosquito-borne disease caused by the Rift Valley fever virus (RVFV) transmitted by diverse species of mosquitoes broadly classified into primary vectors and secondary vectors. Primary vectors consist of floodwater Aedes (e.g Ae. mcintoshi, Ae. ochraceus, Ae. sudanensis, Ae. dentatus etc), known to maintain the virus in their drought resistant eggs which are deposited on wet soils on low lying depressions on land, remaining viable in dry soil for variable number of years during dry periods. Following heavy persistent rains with flooding, such eggs hatch with a proportion already infected. Emerging infected adult female mosquitoes initiate transmission to nearby animals which serve as amplifiers, infecting more mosquitoes resulting in outbreaks. Another group of mosquito species, the secondary vectors, mainly from the Culex (Culex pipiens and Culex poicilipes), and other potential vectors including, Culex univittatus, Anopheles and Mansonia species may take over such breeding sites, breed in abundance and incidentally propagate RVFV transmission. Outbreaks of RFV occur at varying intensities among livestock in different counties in Kenya, and counties are classified into high, medium and low risk zones. We assessed the species composition, distribution and abundance of primary and secondary vectors in two counties; Isiolo (medium risk) and Tana-River (high risk). Striking difference in composition of primary vector species between Isiolo and Tana-River was observed suggesting that vector species composition in different regions could further be applied to assess risk of RVF outbreaks and intensity. We propose further evaluation of vector species surveillance as an additional risk assessment tool for RVFV and other mosquito borne viruses.
Collapse
Affiliation(s)
- Rosemary Sang
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- * E-mail:
| | - Samwel Arum
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Edith Chepkorir
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Gladys Mosomtai
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Caroline Tigoi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Faith Sigei
- Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Tobias Landmann
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Hippolyte Affognon
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bamako, Mali
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Pedro SA, Abelman S, Tonnang HEZ. Predicting Rift Valley Fever Inter-epidemic Activities and Outbreak Patterns: Insights from a Stochastic Host-Vector Model. PLoS Negl Trop Dis 2016; 10:e0005167. [PMID: 28002417 PMCID: PMC5176166 DOI: 10.1371/journal.pntd.0005167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/06/2016] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever (RVF) outbreaks are recurrent, occurring at irregular intervals of up to 15 years at least in East Africa. Between outbreaks disease inter-epidemic activities exist and occur at low levels and are maintained by female Aedes mcintoshi mosquitoes which transmit the virus to their eggs leading to disease persistence during unfavourable seasons. Here we formulate and analyse a full stochastic host-vector model with two routes of transmission: vertical and horizontal. By applying branching process theory we establish novel relationships between the basic reproduction number, R0, vertical transmission and the invasion and extinction probabilities. Optimum climatic conditions and presence of mosquitoes have not fully explained the irregular oscillatory behaviour of RVF outbreaks. Using our model without seasonality and applying van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how outbreaks multi-year periodicity varies with the vertical transmission. Our theory predicts complex fluctuations with a dominant period of 1 to 10 years which essentially depends on the efficiency of vertical transmission. Our predictions are then compared to temporal patterns of disease outbreaks in Tanzania, Kenya and South Africa. Our analyses show that interaction between nonlinearity, stochasticity and vertical transmission provides a simple but plausible explanation for the irregular oscillatory nature of RVF outbreaks. Therefore, we argue that while rainfall might be the major determinant for the onset and switch-off of an outbreak, the occurrence of a particular outbreak is also a result of a build up phenomena that is correlated to vertical transmission efficiency.
Collapse
Affiliation(s)
- Sansao A. Pedro
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
- Modelling Unit, International Center of Insect Physiology and Ecology, Nairobi, Kenya
- Departmento de Matemática e Informática, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Shirley Abelman
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
| | - Henri E. Z. Tonnang
- International Maize and Wheat Improvement Center (CIMMYT) ICRAF House, United Nation, Avenue, Gigiri, Nairobi, Kenya
| |
Collapse
|
22
|
Pachka H, Annelise T, Alan K, Power T, Patrick K, Véronique C, Janusz P, Ferran J. Rift Valley fever vector diversity and impact of meteorological and environmental factors on Culex pipiens dynamics in the Okavango Delta, Botswana. Parasit Vectors 2016; 9:434. [PMID: 27502246 PMCID: PMC4977755 DOI: 10.1186/s13071-016-1712-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/19/2016] [Indexed: 12/01/2022] Open
Abstract
Background In Northern Botswana, rural communities, livestock, wildlife and large numbers of mosquitoes cohabitate around permanent waters of the Okavango Delta. As in other regions of sub-Saharan Africa, Rift Valley Fever (RVF) virus is known to circulate in that area among wild and domestic animals. However, the diversity and composition of potential RVF mosquito vectors in that area are unknown as well as the climatic and ecological drivers susceptible to affect their population dynamics. Methods Using net traps baited with carbon dioxide, monthly mosquito catches were implemented over four sites surrounding cattle corrals at the northwestern border of the Okavango Delta between 2011 and 2012. The collected mosquito species were identified and analysed for the presence of RVF virus by molecular methods. In addition, a mechanistic model was developed to assess the qualitative influence of meteorological and environmental factors such as temperature, rainfall and flooding levels, on the population dynamics of the most abundant species detected (Culex pipiens). Results More than 25,000 mosquitoes from 32 different species were captured with an overabundance of Cx. pipiens (69,39 %), followed by Mansonia uniformis (20,67 %) and a very low detection of Aedes spp. (0.51 %). No RVF virus was detected in our mosquito pooled samples. The model fitted well the Cx. pipiens catching results (ρ = 0.94, P = 0.017). The spatial distribution of its abundance was well represented when using local rainfall and flooding measures (ρ = 1, P = 0.083). The global population dynamics were mainly influenced by temperature, but both rainfall and flooding presented a significant influence. The best and worst suitable periods for mosquito abundance were around March to May and June to October, respectively. Conclusions Our study provides the first available data on the presence of potential RVF vectors that could contribute to the maintenance and dissemination of RVF virus in the Okavango Delta. Our model allowed us to understand the dynamics of Cx. pipiens, the most abundant vector identified in this area. Potential predictions of peaks in abundance of this vector could allow the identification of the most suitable periods for disease occurrence and provide recommendations for vectorial and disease surveillance and control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1712-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hammami Pachka
- UPR AGIRs, F-34398, CIRAD, Montpellier, France. .,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa. .,UMR CMAEE, F-34398, CIRAD, Montpellier, France.
| | - Tran Annelise
- UPR AGIRs, F-34398, CIRAD, Montpellier, France.,UMR TETIS, F-34398, CIRAD, Montpellier, France
| | - Kemp Alan
- Special Pathogens Unit, NICD, Johannesburg, South Africa
| | - Tshikae Power
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Special Pathogens Unit, NICD, Johannesburg, South Africa
| | - Kgori Patrick
- Department of Veterinary Services, Ministry of Agriculture, Gaborone, Botswana
| | | | - Paweska Janusz
- Special Pathogens Unit, NICD, Johannesburg, South Africa
| | - Jori Ferran
- UPR AGIRs, F-34398, CIRAD, Montpellier, France.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Department of Animal Science and Production, Botswana College of Agriculture, Private bag 0037, Gaborone, Botswana
| |
Collapse
|
23
|
Bird BH, McElroy AK. Rift Valley fever virus: Unanswered questions. Antiviral Res 2016; 132:274-80. [PMID: 27400990 DOI: 10.1016/j.antiviral.2016.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/02/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
This mosquito-borne pathogen of humans and animals respects no international or geographic boundaries. It is currently found in parts of Africa and the Arabian Peninsula where periodic outbreaks of severe and fatal disease occur, and threatens to spread into other geographic regions. In recent years, modern molecular techniques have led to many breakthroughs deepening our understanding of the mechanisms of RVFV virulence, phylogenetics, and the creation of several next-generation vaccine candidates. Despite tremendous progress in these areas, other challenges remain in RVF disease pathogenesis, the virus life-cycle, and outbreak response preparedness that deserve our attention. Here we discuss and highlight ten key knowledge gaps and challenges in RVFV research. Answers to these key questions may lead to the development of new effective therapeutics and enhanced control strategies for this serious human and veterinary health threat.
Collapse
Affiliation(s)
- Brian H Bird
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Anita K McElroy
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; Pediatric Infectious Disease, Emory University Atlanta, GA 30322, USA
| |
Collapse
|
24
|
Capobianco Dondona A, Aschenborn O, Pinoni C, Di Gialleonardo L, Maseke A, Bortone G, Polci A, Scacchia M, Molini U, Monaco F. Rift Valley Fever Virus among Wild Ruminants, Etosha National Park, Namibia, 2011. Emerg Infect Dis 2016; 22:128-30. [PMID: 26692385 PMCID: PMC4696689 DOI: 10.3201/eid2201.150725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
After a May 2011 outbreak of Rift Valley fever among livestock northeast of Etosha National Park, Namibia, wild ruminants in the park were tested for the virus. Antibodies were detected in springbok, wildebeest, and black-faced impala, and viral RNA was detected in springbok. Seroprevalence was high, and immune response was long lasting.
Collapse
|
25
|
Beechler BR, Manore CA, Reininghaus B, O'Neal D, Gorsich EE, Ezenwa VO, Jolles AE. Enemies and turncoats: bovine tuberculosis exposes pathogenic potential of Rift Valley fever virus in a common host, African buffalo (Syncerus caffer). Proc Biol Sci 2015; 282:rspb.2014.2942. [PMID: 25788592 DOI: 10.1098/rspb.2014.2942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Valley fever (RVF) in a competent reservoir host, African buffalo, combining data from a natural outbreak of RVF in captive buffalo at a buffalo breeding facility in 2008 with data collected from a neighbouring free-living herd of African buffalo in Kruger National Park. RVF infection was twice as likely in individual BTB+ buffalo as in BTB- buffalo, which, according to a mathematical model, may increase RVF outbreak size at the population level. In addition, co-infection was associated with a far higher rate of fetal abortion than other infection states. Immune interactions between BTB and RVF may underlie both of these interactions, since animals with BTB had decreased innate immunity and increased pro-inflammatory immune responses. This study is one of the first to demonstrate how the consequences of emerging infections extend beyond direct effects on host health, potentially altering the dynamics and fitness effects of infectious diseases that had previously existed in the ecosystem on free-ranging wildlife populations.
Collapse
Affiliation(s)
- B R Beechler
- College of Veterinary Medicine, Oregon State University, Dryden Hall, Corvallis, OR, USA
| | - C A Manore
- Center for Computational Science, Tulane University, Tulane, LA, USA
| | - B Reininghaus
- Mpumalanga State Veterinary Services, Nelspruit, Mpumalanga, South Africa
| | - D O'Neal
- Odum School of Ecology and Department of Infectious Disease, University of Georgia, Athens, GA, USA
| | - E E Gorsich
- Environmental Sciences, Oregon State University, OR, USA
| | - V O Ezenwa
- Odum School of Ecology and Department of Infectious Disease, University of Georgia, Athens, GA, USA
| | - A E Jolles
- College of Veterinary Medicine, Oregon State University, Dryden Hall, Corvallis, OR, USA
| |
Collapse
|
26
|
A Stochastic Model to Study Rift Valley Fever Persistence with Different Seasonal Patterns of Vector Abundance: New Insights on the Endemicity in the Tropical Island of Mayotte. PLoS One 2015; 10:e0130838. [PMID: 26147799 PMCID: PMC4493030 DOI: 10.1371/journal.pone.0130838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/25/2015] [Indexed: 12/24/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic vector-borne disease causing abortion storms in cattle and human epidemics in Africa. Our aim was to evaluate RVF persistence in a seasonal and isolated population and to apply it to Mayotte Island (Indian Ocean), where the virus was still silently circulating four years after its last known introduction in 2007. We proposed a stochastic model to estimate RVF persistence over several years and under four seasonal patterns of vector abundance. Firstly, the model predicted a wide range of virus spread patterns, from obligate persistence in a constant or tropical environment (without needing vertical transmission or reintroduction) to frequent extinctions in a drier climate. We then identified for each scenario of seasonality the parameters that most influenced prediction variations. Persistence was sensitive to vector lifespan and biting rate in a tropical climate, and to host viraemia duration and vector lifespan in a drier climate. The first epizootic peak was primarily sensitive to viraemia duration and thus likely to be controlled by vaccination, whereas subsequent peaks were sensitive to vector lifespan and biting rate in a tropical climate, and to host birth rate and viraemia duration in arid climates. Finally, we parameterized the model according to Mayotte known environment. Mosquito captures estimated the abundance of eight potential RVF vectors. Review of RVF competence studies on these species allowed adjusting transmission probabilities per bite. Ruminant serological data since 2004 and three new cross-sectional seroprevalence studies are presented. Transmission rates had to be divided by more than five to best fit observed data. Five years after introduction, RVF persisted in more than 10% of the simulations, even under this scenario of low transmission. Hence, active surveillance must be maintained to better understand the risk related to RVF persistence and to prevent new introductions.
Collapse
|
27
|
Manore CA, Hickmann KS, Hyman JM, Foppa IM, Davis JK, Wesson DM, Mores CN. A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease. JOURNAL OF BIOLOGICAL DYNAMICS 2015; 9:52-72. [PMID: 25648061 PMCID: PMC5473441 DOI: 10.1080/17513758.2015.1005698] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mosquito-borne diseases cause significant public health burden and are widely re-emerging or emerging. Understanding, predicting, and mitigating the spread of mosquito-borne disease in diverse populations and geographies are ongoing modelling challenges. We propose a hybrid network-patch model for the spread of mosquito-borne pathogens that accounts for individual movement through mosquito habitats, extending the capabilities of existing agent-based models (ABMs) to include vector-borne diseases. The ABM are coupled with differential equations representing 'clouds' of mosquitoes in patches accounting for mosquito ecology. We adapted an ABM for humans using this method and investigated the importance of heterogeneity in pathogen spread, motivating the utility of models of individual behaviour. We observed that the final epidemic size is greater in patch models with a high risk patch frequently visited than in a homogeneous model. Our hybrid model quantifies the importance of the heterogeneity in the spread of mosquito-borne pathogens, guiding mitigation strategies.
Collapse
Affiliation(s)
- Carrie A. Manore
- Center for Computational Science, Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
| | - Kyle S. Hickmann
- Center for Computational Science, Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
| | - James M. Hyman
- Center for Computational Science, Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
| | - Ivo M. Foppa
- Battelle/Epidemiology & Prevention Branch, Influenza Division, CDC, Atlanta, GA, USA
| | - Justin K. Davis
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Dawn M. Wesson
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Christopher N. Mores
- Vector-borne Disease Laboratories, Center for Experimental Infectious Disease Research, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
28
|
Swai ES, Sindato C. Seroprevalence of Rift Valley fever virus infection in camels (dromedaries) in northern Tanzania. Trop Anim Health Prod 2014; 47:347-52. [PMID: 25432300 DOI: 10.1007/s11250-014-0726-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/18/2014] [Indexed: 01/02/2023]
Abstract
Rift Valley fever (RVF) is an arthropod-borne viral zoonotic disease that affects a wide range of animals including sheep, goats, cattle, camels and humans. Camels have only recently been introduced into Tanzania and, as a result, there is no credible diseases status information concerning this population, estimated to be in the low hundreds. As part of a broader study on camel diseases in different localities of northern Tanzania, serum samples (n = 109) were collected from apparently healthy, non-vaccinated camels during the period June to August 2010 and tested for antibodies specific to RVF virus (RVFV) using the inhibition enzyme-linked immunosorbent assay (ELISA). Overall, herd and individual camel IgG seroprevalence was 78.5 % (11/14) and 27.5 % (30/109), respectively. IgG was found to be most prevalent in camels from Kilindi and Hai districts (45 %, each) and in introduced camels from other areas (37.1 %). The relationship between age and seropositivity showed that the seroprevalence was the highest (84.6 %) in age group of ≥10 years and lowest (11.9 %) in age group of ≤5 years.The results of this study reveal that evidence of camels being exposed to RVFV and that the risk of seropositivity varied according to district, being higher in Kilindi and Hai compared with other districts sampled. The risk of seropositivity increased with increasing animal age and the introduction of camels into the herd. Based on these study findings, continuous disease surveillance of camels for RVFV is indicated.
Collapse
Affiliation(s)
- Emmanuel Senyael Swai
- Ministry of Livestock Development and Fisheries, (MoLDF), Box 9152, Dar es Salaam, Tanzania,
| | | |
Collapse
|
29
|
Mweya CN, Holst N, Mboera LEG, Kimera SI. Simulation modelling of population dynamics of mosquito vectors for rift valley Fever virus in a disease epidemic setting. PLoS One 2014; 9:e108430. [PMID: 25259792 PMCID: PMC4178157 DOI: 10.1371/journal.pone.0108430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/19/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Rift Valley Fever (RVF) is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics. METHODS/FINDINGS Time-varying distributed delays (TVDD) and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML) files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district. CONCLUSION/SIGNIFICANCE Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings.
Collapse
Affiliation(s)
- Clement N. Mweya
- National Institute for Medical Research, Tukuyu, Tanzania
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Niels Holst
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Sharadhuli I. Kimera
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
30
|
A modeling approach to investigate epizootic outbreaks and enzootic maintenance of Rift Valley fever virus. Bull Math Biol 2014; 76:2052-72. [PMID: 25102776 DOI: 10.1007/s11538-014-9998-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
We propose a mathematical model to investigate the transmission dynamics of Rift Valley fever (RVF) virus among ruminants. Our findings indicate that in endemic areas RVF virus maintains at a very low level among ruminants after outbreaks and subsequent outbreaks may occur when new susceptible ruminants are recruited into endemic areas or abundant numbers of mosquitoes emerge when herd immunity decreases. Many factors have been shown to have impacts on the severity of RVF outbreaks; a higher probability of death due to RVF among ruminants, a higher mosquito:ruminant ratio, or a shorter lifespan of animals can amplify the magnitude of the outbreaks; vaccination helps to reduce the magnitude of RVF outbreaks and the loss of animals efficiently, and the maximum vaccination effort (a high vaccination rate and a larger number of vaccinated animals) is recommended before the commencement of an outbreak but can be reduced later during the enzootic.
Collapse
|
31
|
McMahon B, Manore C, Hyman J, LaBute M, Fair J. Coupling Vector-host Dynamics with Weather Geography and Mitigation Measures to Model Rift Valley Fever in Africa. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2014; 9:161-177. [PMID: 25892858 PMCID: PMC4398965 DOI: 10.1051/mmnp/20149211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present and characterize a multi-host epidemic model of Rift Valley fever (RVF) virus in East Africa with geographic spread on a network, rule-based mitigation measures, and mosquito infection and population dynamics. Susceptible populations are depleted by disease and vaccination and are replenished with the birth of new animals. We observe that the severity of the epidemics is strongly correlated with the duration of the rainy season and that even severe epidemics are abruptly terminated when the rain stops. Because naturally acquired herd immunity is established, total mortality across 25 years is relatively insensitive to many mitigation approaches. Strong reductions in cattle mortality are expected, however, with sufficient reduction in population densities of either vectors or susceptible (ie. unvaccinated) hosts. A better understanding of RVF epidemiology would result from serology surveys to quantify the importance of herd immunity in epidemic control, and sequencing of virus from representative animals to quantify the realative importance of transportation and local reservoirs in nucleating yearly epidemics. Our results suggest that an effective multi-layered mitigation strategy would include vector control, movement control, and vaccination of young animals yearly, even in the absence of expected rainfall.
Collapse
Affiliation(s)
- B.H. McMahon
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, NM 87545
| | - C.A. Manore
- Department of Mathematics, Tulane University, New Orleans, LA 70118
- Center for Computational Science, Tulane University, New Orleans, LA 70118
| | - J.M. Hyman
- Department of Mathematics, Tulane University, New Orleans, LA 70118
| | - M.X. LaBute
- Lawrence Livermore National Laboratory, Applied Statistics Group – Computational Engineering Division, Mailstop L-174, 7000 East Ave. Livermore, CA 94550
| | - J.M. Fair
- Los Alamos National Laboratory, Environmental Stewardship, K404, Los Alamos, NM 87545
| |
Collapse
|