1
|
Olejarz A, Augustsson E, Kjellander P, Ježek M, Podgórski T. Experience shapes wild boar spatial response to drive hunts. Sci Rep 2024; 14:19930. [PMID: 39198665 PMCID: PMC11358132 DOI: 10.1038/s41598-024-71098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
Human-induced disturbances of the environment are rapid and often unpredictable in space and time, exposing wildlife to strong selection pressure favouring plasticity in specific traits. Measuring wildlife behavioural plasticity in response to human-induced disturbances such as hunting pressures is crucial in understanding population expansion in the highly plastic wild boar species. We collected GPS-based movement data from 55 wild boars during drive hunts over three hunting seasons (2019-2022) in the Czech Republic and Sweden to identify behavioural plasticity in space use and movement strategies over a range of experienced hunting disturbances. Daily distance, daily range, and daily range overlap with hunting area were not affected by hunting intensity but were clearly related to wild boar hunting experience. On average, the post-hunt flight distance was 1.80 km, and the flight duration lasted 25.8 h until they returned to their previous ranging area. We detected no relationship in flight behaviour to hunting intensity or wild boar experience. Wild boar monitored in our study showed two behavioural responses to drive hunts, "remain" or "leave". Wild boars tended to "leave" more often with increasing hunting experience. Overall, this study highlights the behavioural plasticity of wild boar in response to drive hunts.
Collapse
Affiliation(s)
- Astrid Olejarz
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic.
| | - Evelina Augustsson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73993, Riddarhyttan, Sweden
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73993, Riddarhyttan, Sweden
| | - Miloš Ježek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
| | - Tomasz Podgórski
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, Prague 6-Suchdol, 165 00, Czech Republic
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230, Białowieża, Poland
| |
Collapse
|
2
|
Ito S, Bosch J, Aguilar-Vega C, Jeong H, Sánchez-Vizcaíno JM. Geospatial analysis for strategic wildlife disease surveillance: African swine fever in South Korea (2019-2021). PLoS One 2024; 19:e0305702. [PMID: 38905303 PMCID: PMC11192348 DOI: 10.1371/journal.pone.0305702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
Since the confirmation of African swine fever (ASF) in South Korea in 2019, its spread, predominantly in wild boars, has been a significant concern. A key factor in this situation is the lack of identification of risk factors by surveillance bias. The unique orography, characterized by high mountains, complicates search efforts, leading to overlooked or delayed case detection and posing risks to the swine industry. Additionally, shared rivers with neighboring country present a continual threat of virus entry. This study employs geospatial analysis and statistical methods to 1) identify areas at high risk of ASF occurrence but possibly under-surveilled, and 2) indicate strategic surveillance points for monitoring the risk of ASF virus entry through water bodies and basin influences. Pearson's rho test indicated that elevation (rho = -0.908, p-value < 0.001) and distance from roads (rho = -0.979, p-value < 0.001) may have a significant impact on limiting surveillance activities. A map of potential under-surveilled areas was created considering these results and was validated by a chi-square goodness-of-fit test (X-square = 208.03, df = 1, p-value < 0.001). The strong negative correlation (rho = -0.997, p-value <0.001) between ASF-positive wild boars and distance from water sources emphasizes that areas surrounding rivers are one of the priority areas for monitoring. The subsequent hydrological analyses provided important points for monitoring the risk of virus entry via water from the neighboring country. This research aims to facilitate early detection and prevent further spread of ASF.
Collapse
Affiliation(s)
- Satoshi Ito
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- South Kyushu Livestock Veterinary Medicine Center, Kagoshima University, Kagoshima, Japan
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Cecilia Aguilar-Vega
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Jose Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Martínez Avilés M, Montes F, Sacristán I, de la Torre A, Iglesias I. Spatial and temporal analysis of African swine fever front-wave velocity in wild boar: implications for surveillance and control strategies. Front Vet Sci 2024; 11:1353983. [PMID: 38596463 PMCID: PMC11002761 DOI: 10.3389/fvets.2024.1353983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
The front-wave velocity of African swine fever (ASF) virus spread is depicted through a retrospective spatial and temporal analyses of wild boar outbreaks from Jan. 2014 to Jan. 2022 in Estonia, Latvia, Lithuania and Eastern Poland-regions responsible for more than 50% of all wild boar cases in the EU. The study uses empirical semivariograms in a universal kriging model to assess spatial autocorrelation in notification dates and identifies a discernable large-scale spatial trend. The critical parameter of ASF front-wave velocity was identified (Mean = 66.33 km/month, SD = 163.24) in the whole study area, and explored the variations across countries, wild boar habitat suitability, seasons, and the study period. Statistical differences in front-wave velocity values among countries and temporal clusters are explored, shedding light on potential factors influencing ASF transmission dynamics. The implications of these findings for surveillance and control strategies are discussed.
Collapse
Affiliation(s)
- Marta Martínez Avilés
- Epidemiology and Environmental Health Group, Department of Infectious Animal Diseases and Global Health, Animal Health Research Centre, National Centre Institute for Agriculture and Food Research and Technology, Spanish National Research Council (CISA-INIA-CSIC), Madrid, Spain
| | - Fernando Montes
- Center for International Forestry Research, National Centre Institute for Agriculture and Food Research and Technology, Spanish National Research Council (CIFOR, INIA-CSIC), Madrid, Spain
| | - Irene Sacristán
- Epidemiology and Environmental Health Group, Department of Infectious Animal Diseases and Global Health, Animal Health Research Centre, National Centre Institute for Agriculture and Food Research and Technology, Spanish National Research Council (CISA-INIA-CSIC), Madrid, Spain
| | - Ana de la Torre
- Epidemiology and Environmental Health Group, Department of Infectious Animal Diseases and Global Health, Animal Health Research Centre, National Centre Institute for Agriculture and Food Research and Technology, Spanish National Research Council (CISA-INIA-CSIC), Madrid, Spain
| | - Irene Iglesias
- Epidemiology and Environmental Health Group, Department of Infectious Animal Diseases and Global Health, Animal Health Research Centre, National Centre Institute for Agriculture and Food Research and Technology, Spanish National Research Council (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Chen Y, Guo Y, Chang H, Song Z, Wei Z, Huang Z, Zheng Z, Zhang G, Sun Y. Brequinar inhibits African swine fever virus replication in vitro by activating ferroptosis. Virol J 2023; 20:242. [PMID: 37875895 PMCID: PMC10599058 DOI: 10.1186/s12985-023-02204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND African swine fever virus (ASFV) is one of the most fatal swine etiological agents and has a huge economic impact on the global pork industry. Given that no effective vaccines or anti-ASFV drugs are available, there remains a pressing need for novel anti-ASFV drugs. This study aimed to investigate the anti-African swine fever virus (ASFV) activity of brequinar, a DHODH inhibitor. METHODS The anti-ASFV activity of brequinar was investigated using IFA, HAD, HAD50, qRT-PCR, and western blotting assays. The western blotting assay was used to investigate whether brequinar inhibits ASFV replication by killing ASFV particles directly or by acting on cell factors. The confocal microscopy and western blotting assays were used to investigate whether brequinar inhibits ASFV replication by activating ferroptosis. RESULTS In this study, brequinar was found to effectively inhibit ASFV replication ex vivo in porcine alveolar macrophages (PAMs) in a dose-dependent manner. In kinetic studies, brequinar was found to maintain ASFV inhibition from 24 to 72 hpi. Mechanistically, the time-of-addition assay showed that brequinar exerted anti-ASFV activity in all treatment modes, including pre-, co-, and post-treatment rather than directly killing ASFV particles. Notably, FerroOrange, Mito-FerroGreen, and Liperfluo staining experiments showed that brequinar increased the accumulation of intracellular iron, mitochondrial iron, and lipid peroxides, respectively. Furthermore, we also found that ferroptosis agonist cisplatin treatment inhibited ASFV replication in a dose-dependent manner and the inhibitory effect of brequinar on ASFV was partially reversed by the ferroptosis inhibitor ferrostatin-1, suggesting that brequinar activates ferroptosis to inhibit ASFV replication. Interestingly, exogenous uridine supplementation attenuated the anti-ASFV activity of brequinar, indicating that brequinar inhibits ASFV replication by inhibiting DHODH activity and the depletion of intracellular pyrimidine pools; however, the induction of ferroptosis by brequinar treatment was not reversed by exogenous uridine supplementation, suggesting that brequinar activation of ferroptosis is not related to the metabolic function of pyrimidines. CONCLUSIONS Our data confirm that brequinar displays potent antiviral activity against ASFV in vitro and reveal the mechanism by which brequinar inhibits ASFV replication by activating ferroptosis, independent of inhibiting pyrimidine synthesis, providing novel targets for the development of anti-ASFV drugs.
Collapse
Affiliation(s)
- Yang Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Yanchen Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Hao Chang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Zebu Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Zhi Wei
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Zhao Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China.
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China.
| |
Collapse
|
5
|
Amenu K, McIntyre KM, Moje N, Knight-Jones T, Rushton J, Grace D. Approaches for disease prioritization and decision-making in animal health, 2000-2021: a structured scoping review. Front Vet Sci 2023; 10:1231711. [PMID: 37876628 PMCID: PMC10593474 DOI: 10.3389/fvets.2023.1231711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/06/2023] [Indexed: 10/26/2023] Open
Abstract
This scoping review identifies and describes the methods used to prioritize diseases for resource allocation across disease control, surveillance, and research and the methods used generally in decision-making on animal health policy. Three electronic databases (Medline/PubMed, Embase, and CAB Abstracts) were searched for articles from 2000 to 2021. Searches identified 6, 395 articles after de-duplication, with an additional 64 articles added manually. A total of 6, 460 articles were imported to online document review management software (sysrev.com) for screening. Based on inclusion and exclusion criteria, 532 articles passed the first screening, and after a second round of screening, 336 articles were recommended for full review. A total of 40 articles were removed after data extraction. Another 11 articles were added, having been obtained from cross-citations of already identified articles, providing a total of 307 articles to be considered in the scoping review. The results show that the main methods used for disease prioritization were based on economic analysis, multi-criteria evaluation, risk assessment, simple ranking, spatial risk mapping, and simulation modeling. Disease prioritization was performed to aid in decision-making related to various categories: (1) disease control, prevention, or eradication strategies, (2) general organizational strategy, (3) identification of high-risk areas or populations, (4) assessment of risk of disease introduction or occurrence, (5) disease surveillance, and (6) research priority setting. Of the articles included in data extraction, 50.5% had a national focus, 12.3% were local, 11.9% were regional, 6.5% were sub-national, and 3.9% were global. In 15.2% of the articles, the geographic focus was not specified. The scoping review revealed the lack of comprehensive, integrated, and mutually compatible approaches to disease prioritization and decision support tools for animal health. We recommend that future studies should focus on creating comprehensive and harmonized frameworks describing methods for disease prioritization and decision-making tools in animal health.
Collapse
Affiliation(s)
- Kebede Amenu
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Microbiology, Immunology and Veterinary, Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - K. Marie McIntyre
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nebyou Moje
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Theodore Knight-Jones
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Jonathan Rushton
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Delia Grace
- Global Burden of Animal Diseases (GBADs) Programme, University of Liverpool, Liverpool, United Kingdom
- Food and Markets Department, Natural Resources Institute, University of Greenwich, London, United Kingdom
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
6
|
Ito S, Kawaguchi N, Bosch J, Aguilar-Vega C, Sánchez-Vizcaíno JM. What can we learn from the five-year African swine fever epidemic in Asia? Front Vet Sci 2023; 10:1273417. [PMID: 37841468 PMCID: PMC10569053 DOI: 10.3389/fvets.2023.1273417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Today's global swine industry is exposed to the unprecedented threat of African swine fever (ASF). Asia, the site of the most recent epidemics, could serve as a huge viral reservoir for the rest of the world given the severity of the damage, the huge swine industry, and the high volume of trade with other countries around the world. As the majority of ASF notifications in Asia today originate from pig farms, the movement of live pigs and associated pork products are considered critical control points for disease management. Particularly, small-scale or backyard farms with low biosecurity levels are considered major risk factors. Meanwhile, wild boars account for most notified cases in some countries and regions, which makes the epidemiological scenario different from that in other Asian countries. As such, the current epidemic situation and higher risk factors differ widely between these countries. A variety of studies on ASF control have been conducted and many valuable insights have been obtained in Asia; nevertheless, the overall picture of the epidemic is still unclear. The purpose of this review is to provide an accurate picture of the epidemic situation across Asia, focusing on each subregion to comprehensively explain the disease outbreak. The knowledge gained from the ASF epidemics experienced in Asia over the past 5 years would be useful for disease control in areas that are already infected, such as Europe, as well as for non-affected areas to address preventive measures. To this end, the review includes two aspects: a descriptive analytical review based on publicly available databases showing overall epidemic trends, and an individualized review at the subregional level based on the available literature.
Collapse
Affiliation(s)
- Satoshi Ito
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Nijiho Kawaguchi
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
- Division of Molecular Pathobiology, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Cecilia Aguilar-Vega
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Oh SI, Bui NA, Bui VN, Dao DT, Cho A, Lee HG, Jung YH, Do YJ, Kim E, Bok EY, Hur TY, Lee HS. Pathobiological analysis of african swine fever virus contact-exposed pigs and estimation of the basic reproduction number of the virus in Vietnam. Porcine Health Manag 2023; 9:30. [PMID: 37386526 PMCID: PMC10311738 DOI: 10.1186/s40813-023-00330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND African swine fever (ASF), caused by African swine fever virus (ASFV), is a fatal disease affecting wild and domestic pigs. Since China reported the first ASF outbreak in August 2018, ASFV has swept over the neighbouring Asian countries. However, studies involving experimental pig-to-pig ASFV transmission in Vietnam are lacking. The main objective of this experimental study was to demonstrate the pathobiological characteristics of ASFV contact-exposed pigs and estimate their basic reproduction number (R0) in Vietnam. Fifteen pigs were randomly divided into two groups: experimental (n = 10) and negative control (n = 5) groups. One pig in the experimental group was intramuscularly inoculated with ASFV strain from Vietnam in 2020 and housed with the uninoculated pigs during the study period (28 days). RESULTS The inoculated pig died 6 days post-inoculation, and the final survival rate was 90.0%. We started observing viremia and excretion of ASFV 10 days post-exposure in contact-exposed pigs. Unlike the surviving and negative control pigs, all necropsied pigs showed severe congestive splenomegaly and moderate-to-severe haemorrhagic lesions in the lymph nodes. The surviving pig presented with mild haemorrhagic lesions in the spleen and kidneys. We used Susceptible-Infectious-Removed models for estimating R0. The R0 values for exponential growth (EG) and maximum likelihood (ML) were calculated to be 2.916 and 4.015, respectively. In addition, the transmission rates (β) were estimated to be 0.729 (95% confidence interval [CI]: 0.379-1.765) for EG and 1.004 (95% CI: 0.283-2.450) for ML. CONCLUSIONS This study revealed pathobiological and epidemiological information in about pig-to-pig ASFV transmission. Our findings suggested that culling infected herds within a brief period of time may mitigate the spread of ASF outbreaks.
Collapse
Affiliation(s)
- Sang-Ik Oh
- Division of Animal Diseases & Health, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
- Bio-Safety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Ngoc Anh Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Vuong Nghia Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Duy Tung Dao
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Ara Cho
- Division of Animal Diseases & Health, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Han Gyu Lee
- Division of Animal Diseases & Health, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Young-Hun Jung
- Division of Animal Diseases & Health, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases & Health, Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Hu Suk Lee
- International Livestock Research Institute, Hanoi, Vietnam.
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
8
|
Zhao P, Wang Y, Zhang P, Du F, Li J, Wang C, Fang R, Zhao J. Epidemiological Investigation, Risk Factors, Spatial-Temporal Cluster, and Epidemic Trend Analysis of Pseudorabies Virus Seroprevalence in China (2017 to 2021). Microbiol Spectr 2023; 11:e0529722. [PMID: 37227271 PMCID: PMC10269690 DOI: 10.1128/spectrum.05297-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
Pseudorabies virus (PRV) is a double-stranded linear DNA virus capable of infecting various animals, including humans. We collected blood samples from 14 provinces in China between December 2017 and May 2021 to estimate PRV seroprevalence. The PRV gE antibody was detected using the enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis identified potential risk factors associated with PRV gE serological status at the farm level. Spatial-temporal clusters of high PRV gE seroprevalence were explored using SaTScan 9.6 software. Time-series data of PRV gE seroprevalence were modeled using the autoregressive moving average (ARMA) method. A Monte Carlo sampling simulation based on the established model was performed to analyze epidemic trends of PRV gE seroprevalence using @RISK software (version 7.0). A total of 40,024 samples were collected from 545 pig farms across China. The PRV gE antibody positivity rates were 25.04% (95% confidence interval [CI], 24.61% to 25.46%) at the animal level and 55.96% (95% CI, 51.68% to 60.18%) at the pig farm level. Variables such as farm geographical division, farm topography, African swine fever (ASF) outbreak, and porcine reproductive and respiratory syndrome virus (PRRSV) control in pig farms were identified as risk factors for farm-level PRV infection. Five significant high-PRV gE seroprevalence clusters were detected in China for the first time, with a time range of 1 December 2017 to 31 July 2019. The monthly average change value of PRV gE seroprevalence was -0.826%. The probability of a monthly PRV gE seroprevalence decrease was 0.868, while an increase was 0.132. IMPORTANCE PRV is a critical pathogen threatening the global swine industry. Our research fills knowledge gaps regarding PRV prevalence, infection risk factors, spatial-temporal clustering of high PRV gE seroprevalence, and the epidemic trend of PRV gE seroprevalence in China in recent years. These findings are valuable for the clinical prevention and control of PRV infection and suggest that PRV infection is likely to be successfully controlled in China.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University. Wuhan, Hubei, People’s Republic of China
| | - Yu Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University. Wuhan, Hubei, People’s Republic of China
| | - Pengfei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University. Wuhan, Hubei, People’s Republic of China
| | - Fen Du
- Hubei Center for Animal Disease Control and Prevention, Wuhan, Hubei, People’s Republic of China
| | - Jianhai Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University. Wuhan, Hubei, People’s Republic of China
| | - Chaofei Wang
- Wuhan Keweichuang Biotechnology Co., Ltd., Wuhan, Hubei, People’s Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University. Wuhan, Hubei, People’s Republic of China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University. Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
9
|
Rossi A, Santi A, Barsi F, Casadei G, Di Donato A, Fontana MC, Galletti G, Garbarino CA, Lombardini A, Musto C, Prosperi A, Pupillo G, Rugna G, Tamba M. Eleven Years of Health Monitoring in Wild Boars ( Sus scrofa) in the Emilia-Romagna Region (Italy). Animals (Basel) 2023; 13:1832. [PMID: 37889705 PMCID: PMC10252029 DOI: 10.3390/ani13111832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, the growth of wild ungulates has increased the focus on their health monitoring. In particular, the health status of wild boars is relevant for the economic impact on the pig industry. The Emilia-Romagna region activated a wildlife monitoring plan to better evaluate the health status of the wild boar population. Between 2011 and 2021, samples of found dead and hunted wild boar have been examined for trichinellosis, tuberculosis, brucellosis, african swine fever, classical swine fever, Aujeszky's disease, swine vesicular disease, and swine influenza A. Trichinella britovi was identified in 0.001% of the examined wild boars; neither M. bovis nor M. tuberculosis were found in M. tuberculosis complex positive samples; 2.3% were positive for Brucella suis; 29.4% of the sera were positive for Aujeszky's disease virus; and 0.9% of the samples were positive for swine influenza A virus. With an uncertain population estimate, the number of animals tested, the number of positives, and the sampling method do not allow us to make many inferences but suggest the need to implement and strengthen the existing surveillance activity, as it seems to be the only viable alternative for safeguarding animal and human health.
Collapse
Affiliation(s)
- Arianna Rossi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Annalisa Santi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Filippo Barsi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Gabriele Casadei
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Alessandra Di Donato
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Maria Cristina Fontana
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Giorgio Galletti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Chiara Anna Garbarino
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Annalisa Lombardini
- Settore Prevenzione Collettiva e Sanità Pubblica, Direzione Generale Cura della Persona, Salute e Welfare, Emilia-Romagna Region, 40127 Bologna, Italy;
| | - Carmela Musto
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
| | - Alice Prosperi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Giovanni Pupillo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Gianluca Rugna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy (F.B.); (G.C.); (A.D.D.); (M.C.F.); (G.G.); (C.A.G.); (A.P.); (G.P.); (G.R.); (M.T.)
| |
Collapse
|
10
|
Serafini Poeta Silva AP, Khan K, Corbellini LG, Medeiros AA, Silva GS. Compliance of biosecurity practices for compartmentalization to foot-mouth disease and classical swine fever viruses in commercial swine companies from southern Brazil. Front Vet Sci 2023; 10:1125856. [PMID: 36968468 PMCID: PMC10030730 DOI: 10.3389/fvets.2023.1125856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Classical swine fever (CSF) and foot-mouth disease (FMD) are both highly contagious disease and disruptive to commercial trades, but they are examples of foreign animal diseases that biosecurity-based compartmentalization could be used to support trade in free zones in response to an outbreak. This study aimed to evaluate biosecurity compliance to the Federal Normative Instruction #44 from December 4th, 2017 (BRAZIL, 2017) in commercial swine farms located in southern Brazil. A total of 604 swine farms from 10 commercial swine companies were sampled, from which 28.5% were breeding farms, 29.1% nursery, 32.8% finishing, 6.8% multipliers, and 2.8% farrow-to-finish. Cluster analyses revealed that farms with high compliance (n = 303, Cluster 1) performed 71% of the practices, moderate (n = 219, Cluster 2) 47%, and the low (n = 82, Cluster 3) 33%. A spatial logistic regression model estimated that biosecurity compliance was highest in only one of 10 commercial swine companies, and within a company, multipliers (when present) obtained the highest biosecurity compliance (p-value < 0.01). These results suggest that major improvements in biosecurity practices are needed in breeding herds, nursery, and grow-finish farms to be compliant to the Federal Instruction #44. Based on the combination of these analyses, only one commercial swine company was more suitable to establish compartments for CSF and FMD with minimal investments. Still, this study revealed that the majority of commercial swine companies needs to improve biosecurity practice protocols to then target compartmentalization.
Collapse
Affiliation(s)
- Ana Paula Serafini Poeta Silva
- Veterinary Diagnostic and Population Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Kori Khan
- Department of Statistics, Iowa State University, Ames, IA, United States
| | | | - Antônio Augusto Medeiros
- Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gustavo S. Silva
- Veterinary Diagnostic and Population Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Gustavo S. Silva
| |
Collapse
|
11
|
A Generic Risk Assessment Model for Animal Disease Entry through Wildlife: The Example of Highly Pathogenic Avian Influenza and African Swine Fever in The Netherlands. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/9811141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Animal diseases can enter countries or regions through the movements of infected wildlife. A generic risk model would allow to quantify the risk of entry via this introduction route for different diseases and wildlife species, despite the vast variety in both, and help policy-makers to make informed decisions. Here, we propose such a generic risk assessment model and illustrate its application by assessing the risk of entry of African swine fever (ASF) through wild boar and highly pathogenic avian influenza (HPAI) through wild birds for the Netherlands between 2014–2021. We used disease outbreak data and abstracted movement patterns to populate a stochastic risk model. We found that the entry risk of HPAI fluctuated between the years, with a peak in 2021. In that year, we estimated the number of infected birds to reach the Dutch border by wild bird migration at 273 (95% uncertainty interval: 254–290). The probability that ASF outbreaks that occurred between 2014 and 2021 reached the Dutch border through wild boar movement was very low throughout the whole period; only the upper confidence bound indicated a small entry risk. On a yearly scale, the predicted entry risk for HPAI correlated well with the number of observed outbreaks. In conclusion, we present a generic and flexible framework to assess the entry risk of disease through wildlife. The model allows rapid and transparent estimation of the entry risk for diverse diseases and wildlife species. The modular structure of the model allows for adding nuance and complexity when required or when more data becomes available.
Collapse
|
12
|
Poolkhet C, Kasemsuwan S, Thongratsakul S, Warrasuth N, Pamaranon N, Nuanualsuwan S. Prediction of the spread of African swine fever through pig and carcass movements in Thailand using a network analysis and diffusion model. PeerJ 2023; 11:e15359. [PMID: 37187529 PMCID: PMC10178211 DOI: 10.7717/peerj.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Background African swine fever (ASF) is a serious contagious viral disease of pigs that affects the pig industry. This study aimed to evaluate the possible African swine fever (ASF) distribution using network analysis and a diffusion model through live pig, carcass, and pig product movement data. Material and Methods Empirical movement data from Thailand for the year 2019 were used, and expert opinions were sought to evaluate network properties and the diffusion model. The networks were presented as live pig movement and carcass movement data at the provincial and district levels. For network analysis, a descriptive network analysis was performed using outdegree, indegree, betweenness, fragmentation, and power law distribution, and cutpoints were used to describe movement patterns. For the diffusion model, we simulated each network using spatially different infected locations, patterns, and initial infection sites. Based on expert opinions, the initial infection site, the probability of ASF occurrence, and the probability of the initial infected adopter were selected for the appropriated network. In this study, we also simulated networks under varying network parameters to predict the infection speed. Results and Conclusions The total number of movements recorded was 2,594,364. These were divided into 403,408 (403,408/2,594,364; 15.55%) for live pigs and 2,190,956 (2,190,956/2,594,364; 84.45%) for carcasses. We found that carcass movement at the provincial level showed the highest outdegree (mean = 342.554, standard deviation (SD) = 900.528) and indegree values (mean = 342.554, SD = 665.509). In addition, the outdegree and indegree presented similar mean values and the degree distributions of both district networks followed a power-law function. The network of live pigs at provincial level showed the highest value for betweenness (mean = 0.011, SD = 0.017), and the network of live pigs at provincial level showed the highest value for fragmentation (mean = 0.027, SD = 0.005). Our simulation data indicated that the disease occurred randomly due to live pig and carcass movements along the central and western regions of Thailand, causing the rapid spread of ASF. Without control measures, it could spread to all provinces within 5- and 3-time units and in all districts within 21- and 30-time units for the network of live pigs and carcasses, respectively. This study assists the authorities to plan control and preventive measures and limit economic losses caused by ASF.
Collapse
Affiliation(s)
- Chaithep Poolkhet
- Veterinary Public Health, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Suwicha Kasemsuwan
- Veterinary Public Health, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sukanya Thongratsakul
- Veterinary Public Health, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Nattachai Warrasuth
- Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Nuttavadee Pamaranon
- Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Food and Water Risk Analysis (FAWRA), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Ito S, Bosch J, Jeong H, Aguilar-Vega C, Park J, Martínez-Avilés M, Sánchez-Vizcaíno JM. Spatio-Temporal Epidemiology of the Spread of African Swine Fever in Wild Boar and the Role of Environmental Factors in South Korea. Viruses 2022; 14:v14122779. [PMID: 36560783 PMCID: PMC9782897 DOI: 10.3390/v14122779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Since the first confirmation of African swine fever (ASF) in domestic pig farms in South Korea in September 2019, ASF continues to expand and most notifications have been reported in wild boar populations. In this study, we first performed a spatio-temporal cluster analysis to understand ASF spread in wild boar. Secondly, generalized linear logistic regression (GLLR) model analysis was performed to identify environmental factors contributing to cluster formation. In the meantime, the basic reproduction number (R0) for each cluster was estimated to understand the growth of the epidemic. The cluster analysis resulted in the detection of 17 spatio-temporal clusters. The GLLR model analysis identified factors influencing cluster formation and indicated the possibility of estimating ASF epidemic areas based on environmental conditions. In a scenario only considering direct transmission among wild boar, R0 ranged from 1.01 to 1.5 with an average of 1.10, while, in another scenario including indirect transmission via an infected carcass, R0 ranged from 1.03 to 4.38 with an average of 1.56. We identified factors influencing ASF expansion based on spatio-temporal clusters. The results obtained would be useful for selecting priority areas for ASF control and would greatly assist in identifying efficient vaccination areas in the future.
Collapse
Affiliation(s)
- Satoshi Ito
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Hyunkyu Jeong
- Dodram Pig Research Center, Daejeon 35377, Republic of Korea
| | - Cecilia Aguilar-Vega
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jonghoon Park
- Independent Scholar, Daejeon 35377, Republic of Korea
| | | | - Jose Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Tiwari S, Dhakal T, Tiwari I, Jang GS, Oh Y. Spatial proliferation of African swine fever virus in South Korea. PLoS One 2022; 17:e0277381. [PMID: 36342947 PMCID: PMC9639837 DOI: 10.1371/journal.pone.0277381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The African swine fever virus (ASFV) was first detected in South Korea on a pig farm in September 2019. Despite active preventive measures to control the spread of ASFV, outbreaks on pig farms and in wild boar have been increasing. In this study, we investigated the spatial contamination area using the minimum convex polygon (MCP) approach, and growth rate using a logistic diffusion model. On the basis of the ASFV outbreak locations recorded from September 17th, 2019, to May 20th, 2022, the MCP area for the second week was 618.41 km2 and expanded to 37959.67 km2 in the final week. The maximum asymptote of the logistic function was considered as the land area of South Korea, and we estimated logistic growth rates of 0.022 km2 per week and 0.094 km2 per month. Administrative bodies should implement preventive and quarantine measures for infectious diseases. The results of this study will be a reference for epidemiologists, ecologists, and policy makers and contribute to the establishment of appropriate quarantine measures for disease control and management.
Collapse
Affiliation(s)
- Shraddha Tiwari
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Thakur Dhakal
- Department of Life Science, Yeungnam University, Gyeongbuk, Republic of South Korea
| | - Ishwari Tiwari
- Department of Anatomy, Physiology and Biochemistry, Agriculture and Forestry University, Chitwan, Nepal
| | - Gab-Sue Jang
- Department of Life Science, Yeungnam University, Gyeongbuk, Republic of South Korea
| | - Yeonsu Oh
- Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
15
|
Ruiz-Saenz J, Diaz A, Bonilla-Aldana DK, Rodríguez-Morales AJ, Martinez-Gutierrez M, Aguilar PV. African swine fever virus: A re-emerging threat to the swine industry and food security in the Americas. Front Microbiol 2022; 13:1011891. [PMID: 36274746 PMCID: PMC9581234 DOI: 10.3389/fmicb.2022.1011891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia,*Correspondence: Julian Ruiz-Saenz ;
| | - Andres Diaz
- PIC—Pig Improvement Company, Querétaro, Mexico
| | - D. Katterine Bonilla-Aldana
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia
| | - Alfonso J. Rodríguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Colombia,Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Patricia V. Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States,Center for Tropical Diseases, Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
16
|
Wild Boar Effects on Fungal Abundance and Guilds from Sporocarp Sampling in a Boreal Forest Ecosystem. Animals (Basel) 2022; 12:ani12192521. [PMID: 36230261 PMCID: PMC9558969 DOI: 10.3390/ani12192521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Native wild boar populations are expanding across Europe, causing concern due to their significant soil disturbances and considerable impact on ecosystems. However, little is known about how wild boar activities affect other organisms. This study investigated the effects of wild boars on the abundance of fungal sporocarps and their respective fungal guilds (i.e., symbiotic, saprophytic and pathogenic) in boreal forests in Sweden. We selected 11 forested sites in central Sweden: six with and five without the presence of wild boar. We determined the presence or absence of wild boar and rooting intensity at each site. Simultaneously, we investigated the abundance of fungal sporocarps and their fungal guilds. We found that the presence of wild boar and rooting intensity were associated with the abundance of fungal sporocarps. Wild boar rooting was positively correlated with saprotrophic fungi and negatively with symbiotic fungi. Pathogenic fungi were more abundant in plots with no rooting but in the presence of wild boar. We conclude that wild boar represents a recurrent disturbance agent and, based on sporocarp abundance, could eventually affect entire fungal populations. Abstract Native wild boar (Sus scrofa) populations are expanding across Europe. This is cause for concern in some areas where overabundant populations impact natural ecosystems and adjacent agronomic systems. To better manage the potential for impacts, managers require more information about how the species may affect other organisms. For example, information regarding the effect of wild boar on soil fungi for management application is lacking. Soil fungi play a fundamental role in ecosystems, driving essential ecological functions; acting as mycorrhizal symbionts, sustaining plant nutrition and providing defense; as saprotrophs, regulating the organic matter decomposition; or as plant pathogens, regulating plant fitness and survival. During autumn (Sep–Nov) 2018, we investigated the effects of wild boar (presence/absence and rooting intensity) on the abundance (number of individuals) of fungal sporocarps and their functional guilds (symbiotic, saprotrophic and pathogenic). We selected eleven forested sites (400–500 × 150–200 m) in central Sweden; six with and five without the presence of wild boar. Within each forest, we selected one transect (200 m long), and five plots (2 × 2 m each) for sites without wild boar, and ten plots for sites with boars (five within and five outside wild boar disturbances), to determine the relationship between the intensity of rooting and the abundance of sporocarps for three fungal guilds. We found that the presence of wild boar and rooting intensity were associated with the abundance of sporocarps. Interestingly, this relationship varied depending on the fungal guild analyzed, where wild boar rooting had a positive correlation with saprophytic sporocarps and a negative correlation with symbiotic sporocarps. Pathogenic fungi, in turn, were more abundant in undisturbed plots (no rooting) but located in areas with the presence of wild boar. Our results indicate that wild boar activities can potentially regulate the abundance of fungal sporocarps, with different impacts on fungal guilds. Therefore, wild boar can affect many essential ecosystem functions driven by soil fungi in boreal forests, such as positive effects on energy rotation and in creating mineral availability to plants, which could lead to increased diversity of plants in boreal forests.
Collapse
|
17
|
de Vos CJ, Petie R, van Klink EGM, Swanenburg M. Rapid risk assessment tool (RRAT) to prioritize emerging and re-emerging livestock diseases for risk management. Front Vet Sci 2022; 9:963758. [PMID: 36157188 PMCID: PMC9490411 DOI: 10.3389/fvets.2022.963758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing globalization and international trade contribute to rapid expansion of animal and human diseases. Hence, preparedness is warranted to prevent outbreaks of emerging and re-emerging diseases or detect outbreaks in an early stage. We developed a rapid risk assessment tool (RRAT) to inform risk managers on the incursion risk of multiple livestock diseases, about the main sources for incursion and the change of risk over time. RRAT was built as a relational database to link data on disease outbreaks worldwide, on introduction routes and on disease-specific parameters. The tool was parameterized to assess the incursion risk of 10 livestock diseases for the Netherlands by three introduction routes: legal trade in live animals, legal trade of animal products, and animal products illegally carried by air travelers. RRAT calculates a semi-quantitative risk score for the incursion risk of each disease, the results of which allow for prioritization. Results based on the years 2016-2018 indicated that the legal introduction routes had the highest incursion risk for bovine tuberculosis, whereas the illegal route posed the highest risk for classical swine fever. The overall incursion risk via the illegal route was lower than via the legal routes. The incursion risk of African swine fever increased over the period considered, whereas the risk of equine infectious anemia decreased. The variation in the incursion risk over time illustrates the need to update the risk estimates on a regular basis. RRAT has been designed such that the risk assessment can be automatically updated when new data becomes available. For diseases with high-risk scores, model results can be analyzed in more detail to see which countries and trade flows contribute most to the risk, the results of which can be used to design risk-based surveillance. RRAT thus provides a multitude of information to evaluate the incursion risk of livestock diseases at different levels of detail. To give risk managers access to all results of RRAT, an online visualization tool was built.
Collapse
|
18
|
Zhao Y, Niu Q, Yang S, Yang J, Zhang Z, Geng S, Fan J, Liu Z, Guan G, Liu Z, Zhou J, Hu H, Luo J, Yin H. Inhibition of BET Family Proteins Suppresses African Swine Fever Virus Infection. Microbiol Spectr 2022; 10:e0241921. [PMID: 35758684 PMCID: PMC9430462 DOI: 10.1128/spectrum.02419-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
African swine fever (ASF), an acute, severe, highly contagious disease caused by African swine fever virus (ASFV) infection in domestic pigs and boars, has a mortality rate of up to 100%. Because effective vaccines and treatments for ASF are lacking, effective control of the spread of ASF remains a great challenge for the pig industry. Host epigenetic regulation is essential for the viral gene transcription. Bromodomain and extraterminal (BET) family proteins, including BRD2, BRD3, BRD4, and BRDT, are epigenetic "readers" critical for gene transcription regulation. Among these proteins, BRD4 recognizes acetylated histones via its two bromodomains (BD1 and BD2) and recruits transcription factors, thereby playing a pivotal role in transcriptional regulation and chromatin remodeling during viral infection. However, how BET/BRD4 regulates ASFV replication and gene transcription is unknown. Here, we randomly selected 12 representative BET family inhibitors and compared their effects on ASFV infection in pig primary alveolar macrophages (PAMs). These were found to inhibit viral infection by interfering viral replication. The four most effective inhibitors (ARV-825, ZL0580, I-BET-762, and PLX51107) were selected for further antiviral activity analysis. These BET/BRD4 inhibitors dose dependently decreased the ASFV titer, viral RNA transcription, and protein production in PAMs. Collectively, we report novel function of BET/BRD4 inhibitors in inducing suppression of ASFV infection, providing insights into the role of BET/BRD4 in the epigenetic regulation of ASFV and potential new strategies for ASF prevention and control. IMPORTANCE Due to the continuing spread of the ASFV in the world and the lack of commercial vaccines, the development of improved control strategies, including antiviral drugs, is urgently needed. BRD4 is an important epigenetic factor and has been commonly used for drug development for tumor treatment. Furthermore, the latest research showed that BET/BRD4 inhibition could suppress replication of virus. In this study, we first showed the inhibitory effect of agents targeting BET/BRD4 on ASFV infection with no significant host cytotoxicity. Then, we found four BET/BRD4 inhibitors that can inhibit ASFV replication, RNA transcription, and protein synthesis. Our findings support the hypothesis that BET/BRD4 can be considered as attractive host targets in antiviral drug discovery against ASFV.
Collapse
Affiliation(s)
- Yaru Zhao
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Qingli Niu
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Saixia Yang
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Jifei Yang
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zhonghui Zhang
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Shuxian Geng
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Jie Fan
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zhijie Liu
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Guiquan Guan
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Zhiqing Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jianxun Luo
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
| | - Hong Yin
- African Swine Fever Regional Laboratory, and State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
19
|
Abstract
The recent and ever-growing problem of boar (Sus scrofa forms including wild boar, hybrid and feral pig) expansion is a very complex issue in wildlife management. The damages caused to biodiversity and the economies are addressed in different ways by the various countries, but research is needed to shed light on the causal factors of this emergency before defining a useful collaborative management policy. In this review, we screened more than 280 references published between 1975–2022, identifying and dealing with five hot factors (climate change, human induced habitat modifications, predator regulation on the prey, hybridization with domestic forms, and transfaunation) that could account for the boar expansion and its niche invasion. We also discuss some issues arising from this boar emergency, such as epizootic and zoonotic diseases or the depression of biodiversity. Finally, we provide new insights for the research and the development of management policies.
Collapse
|
20
|
Cadenas-Fernández E, Ito S, Aguilar-Vega C, Sánchez-Vizcaíno JM, Bosch J. The Role of the Wild Boar Spreading African Swine Fever Virus in Asia: Another Underestimated Problem. Front Vet Sci 2022; 9:844209. [PMID: 35573420 PMCID: PMC9093143 DOI: 10.3389/fvets.2022.844209] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is a highly lethal infectious disease in naive populations of domestic pigs and wild boar. In Asia, from the first outbreak in August 2018 until the end of November 2021, ASF has been reported in 16 Asian countries. The ASF virus (ASFV) circulation in domestic pigs is considered the main problem in Asia. On the other hand, there are very few reports of ASF in wild boar in this region. However, considering the high wild boar density within the same area of smallholder domestic pig farms in Asia, the occurrence of ASFV infection in wild boar may be underestimated. The role of the wild boar in other ASF epidemiological scenarios, such as Europe, is a key for the maintenance and transmission of the disease. Hence, we performed a preliminary study estimating the extent of ASFV infection in the Asian wild boar population. The potential risk area of ASF-infected wild boar was calculated based on the habitat suitability for wild boar, the kernel density of ASF notification in smallholder farms and wild boar, and the ASFV transmission rate of wild boar. As a result of the analysis, high-, medium-, and low-risk areas were identified throughout Southeast and East Asia. The highest risk area was detected in China, followed by Myanmar, Far East Russia, Thailand, Vietnam, Laos, Cambodia, and the Philippines. Additionally, another risk area was detected from northeastern China to the Korean Peninsula, including Far East Russia. This study shows hot spots where a high risk of infection in wild boar is most likely to occur, helping to control ASF.
Collapse
Affiliation(s)
- Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Estefanía Cadenas-Fernández
| | - Satoshi Ito
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Cecilia Aguilar-Vega
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
- Jaime Bosch
| |
Collapse
|
21
|
Ito S, Bosch J, Martínez-Avilés M, Sánchez-Vizcaíno JM. The Evolution of African Swine Fever in China: A Global Threat? Front Vet Sci 2022; 9:828498. [PMID: 35425825 PMCID: PMC9001964 DOI: 10.3389/fvets.2022.828498] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
African swine fever (ASF) is one of the most critical diseases in the pig industry. In Asia, 15 countries have already reported an outbreak as of November 22, 2021. In 2021, China reported the genotype II lower virulent ASF virus (ASFV) and the emergence of genotype I ASFV. ASF is generally known as a contagious and lethal disease, but if chronic infection spreads, then disease control would be more difficult. In the current study, we highlighted the possibility of lower virulent virus distribution throughout China and the subsequent general risk of the virus being released from the country. The kernel density estimation showed that the two highest kernel density areas of ASF notification were located in Northeast and Midwest China. Four of the five provinces where lower virulent ASFV was isolated overlapped with areas of relatively high ASF notification density. In terms of the risk of ASFV spreading from China, eight of the 10 largest airports and three of the 10 largest seaports are located in areas of relatively high ASF notification density. There were flight flow from China to 67 countries and ship flow to 81 countries. Asia had the highest flight flow, followed by Europe, North America, Africa, and Oceania. The highest number of ship flows was also concentrated in Asia, but about 10% of ships head to Africa and South America. Chinese overseas residents were distributed in each continent in proportion to these results. Here, we highlight the potential risk of ASFV spread from China to the world.
Collapse
Affiliation(s)
- Satoshi Ito
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Satoshi Ito
| | - Jaime Bosch
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Marta Martínez-Avilés
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
- Infectious Diseases and Global Health Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
22
|
de la Torre A, Bosch J, Sánchez-Vizcaíno JM, Ito S, Muñoz C, Iglesias I, Martínez-Avilés M. African Swine Fever Survey in a European Context. Pathogens 2022; 11:pathogens11020137. [PMID: 35215081 PMCID: PMC8878522 DOI: 10.3390/pathogens11020137] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
African swine fever (ASF) is currently the most threatening disease for domestic and wild pigs worldwide. Wild boar has been the main affected species in all EU countries except for Romania, where most notifications occur in domestic pigs. The spread of ASF in wild boar is challenging to control; risk factors are harder to identify and establish than in domestic pigs, which, together with an underestimation of the disease and the lack of treatment or an effective vaccine, are hindering control and eradication efforts. We distributed two online questionnaires, one for domestic pigs and one for wild boar, to experts of different background and countries in Europe, to explore risk factors in relation to ASF control connected to farming, hunting, trade, the environment, and domestic pig and wild boar populations. Overall, wild boar movements were estimated to pose the highest risk of ASF introduction and spread. The movement of pork and pork products for own consumption also ranked high. Here we explored, in addition to the assessment of risk pathways, the identification of risks of transmission at the domestic/wild boar interface, the importance of biosecurity practices and improved control efforts, and controversial opinions that require further attention.
Collapse
Affiliation(s)
- Ana de la Torre
- Infectious Diseases and Global Health Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28130 Madrid, Spain; (A.d.l.T.); (I.I.)
| | - Jaime Bosch
- Animal Health Department, Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (J.M.S.-V.); (S.I.); (C.M.)
| | - José Manuel Sánchez-Vizcaíno
- Animal Health Department, Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (J.M.S.-V.); (S.I.); (C.M.)
| | - Satoshi Ito
- Animal Health Department, Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (J.M.S.-V.); (S.I.); (C.M.)
| | - Carolina Muñoz
- Animal Health Department, Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (J.M.S.-V.); (S.I.); (C.M.)
| | - Irene Iglesias
- Infectious Diseases and Global Health Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28130 Madrid, Spain; (A.d.l.T.); (I.I.)
| | - Marta Martínez-Avilés
- Infectious Diseases and Global Health Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28130 Madrid, Spain; (A.d.l.T.); (I.I.)
- Correspondence:
| |
Collapse
|
23
|
Yu X, Zhu X, Chen X, Li D, Xu Q, Yao L, Sun Q, Ghonaim AH, Ku X, Fan S, Yang H, He Q. Establishment of a Blocking ELISA Detection Method for Against African Swine Fever Virus p30 Antibody. Front Vet Sci 2022; 8:781373. [PMID: 34977214 PMCID: PMC8718596 DOI: 10.3389/fvets.2021.781373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
African swine fever (ASF) is a highly lethal hemorrhagic viral disease of domestic pigs caused by African swine fever virus (ASFV). A sensitive and reliable serological diagnostic assay is required, so laboratories can effectively and quickly detect ASFV infection. The p30 protein is abundantly expressed early in cells and has excellent antigenicity. Therefore, this study aimed to produce and characterize p30 monoclonal antibodies with an ultimate goal of developing a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for ASFV antibody detection. Three monoclonal antibodies against p30 protein that were expressed in E. coli were generated, and their characterizations were investigated. Furthermore, a blocking ELISA based on a monoclonal antibody was developed. To evaluate the performance of the assay, 186 sera samples (88 negative and 98 positive samples) were analyzed and a receiver-operating characteristic (ROC) analysis was applied to determine the cutoff value. Based on the ROC analysis, the area under the curve (AUC) was 0.997 (95% confidence interval: 99.2 to 100%). Besides, a diagnostic sensitivity of 97.96% (95% confidence interval: 92.82 to 99.75%) and a specificity of 98.96% (95% confidence interval: 93.83 to 99.97%) were achieved when the cutoff value was set to 38.38%. Moreover, the coefficients of inter- and intra-batches were <10%, indicating the good repeatability of the method. The maximum dilution of positive standard serum detected by this ELISA method was 1:512. The blocking ELISA was able to detect seroconversion in two out of five pigs at 10 Dpi and the p30 response increasing trend through the time course of the study (0–20 Dpi). In conclusion, the p30 mAb-based blocking ELISA developed in this study demonstrated a high repeatability with maximized diagnostic sensitivity and specificity. The assay could be a useful tool for field surveillance and epidemiological studies in swine herd.
Collapse
Affiliation(s)
- Xuexiang Yu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xianjing Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoyu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dongfan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qian Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lun Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ahmed H Ghonaim
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Desert Research Center, Cairo, Egypt
| | - Xugang Ku
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shengxian Fan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hanchun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qigai He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
24
|
O'Hara KC, Beltrán-Alcrudo D, Hovari M, Tabakovski B, Martínez-López B. Descriptive and Multivariate Analysis of the Pig Sector in North Macedonia and Its Implications for African Swine Fever Transmission. Front Vet Sci 2021; 8:733157. [PMID: 34917667 PMCID: PMC8669509 DOI: 10.3389/fvets.2021.733157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
North Macedonia, a country in the Balkan region of Europe, is currently bordered to the north and east by countries with active African swine fever (ASF) outbreaks. The predominantly traditional backyard pig farming sector in this country is under imminent threat of disease incursion. The characteristics and practices of such sectors have rarely been described, and thus the implications for these factors on disease introduction and spread are poorly understood. Using a semi-structured questionnaire, 457 pig producers were interviewed, providing information on 77.7% of the pig population in North Macedonia. In addition, a pilot study of 25 pig producers in Kosovo was performed. This study aimed to provide a detailed description of the North Macedonian pig sector, to make comparisons with nearby Kosovo, and to identify areas with high-risk practices for targeted mitigation. Descriptive data were summarized. Results of the questionnaire were used to identify farm-level risk factors for disease introduction. These factors were used in the calculation of a biosecurity risk score. Kernel density estimation methods were used to generate density maps highlighting areas where the risk of disease introduction was particularly concentrated. Multiple correspondence analysis with hierarchical clustering on principal components was used to explore patterns in farm practices. Results show that farms were predominantly small-scale with high rates of turnover. Pig movement was predominantly local. The highest biosecurity risk scores were localized in the eastern regions of North Macedonia, concerningly the same regions with the highest frequency of wild boar sightings. Veterinarians were highly regarded, regularly utilized, and trusted sources of information. Practices that should be targeted for improvement include isolation of new pigs, and consistent application of basic sanitary practices including washing hands, use of disinfection mats, and separation of clean and dirty areas. This study provides the most complete description of the North Macedonian pig sector currently available. It also identifies regions and practices that could be targeted to mitigate the risk of disease incursion and spread. These results represent the first steps to quantify biosecurity gaps and high-risk behaviors in North Macedonia, providing baseline information to design risk-based, more cost-effective, prevention, surveillance, and control strategies.
Collapse
Affiliation(s)
- Kathleen C O'Hara
- Center for Animal Disease Modeling and Surveillance (CADMS), School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Daniel Beltrán-Alcrudo
- Food and Agriculture Organization of the United Nations (FAO) Regional Office for Europe and Central Asia, Budapest, Hungary
| | - Mark Hovari
- Food and Agriculture Organization of the United Nations (FAO) Regional Office for Europe and Central Asia, Budapest, Hungary
| | | | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
25
|
Li D, Zhang J, Yang W, Li P, Ru Y, Kang W, Li L, Ran Y, Zheng H. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. J Biol Chem 2021; 297:101190. [PMID: 34517008 PMCID: PMC8526981 DOI: 10.1016/j.jbc.2021.101190] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/03/2022] Open
Abstract
African swine fever virus (ASFV) is a large DNA virus that is highly contagious and pathogenic in domestic pigs with a mortality rate up to 100%. However, how ASFV suppresses JAK-STAT1 signaling to evade the immune response remains unclear. In this study, we found that the ASFV-encoded protein MGF-505-7R inhibited proinflammatory IFN-γ-mediated JAK-STAT1 signaling. Mechanistically, MGF-505-7R was found to interact with JAK1 and JAK2 and mediate their degradation. Further study indicated that MGF-505-7R promoted degradation of JAK1 and JAK2 by upregulating the E3 ubiquitin ligase RNF125 expression and inhibiting expression of Hes5, respectively. Consistently, MGF-505-7R-deficient ASFV induced high levels of IRF1 expression and displayed compromised replication both in primary porcine alveolar macrophages and pigs compared with wild-type ASFV. Furthermore, MGF-505-7R deficiency attenuated the virulence of the ASFV and pathogenesis of ASF in pigs. These findings suggest that the JAK-STAT1 axis mediates the innate immune response to the ASFV and that MGF-505-7R plays a critical role in the virulence of the ASFV and pathogenesis of ASF by antagonizing this axis. Thus, we conclude that deletion of MGF-505-7R may serve as a strategy to develop attenuated vaccines against the ASFV.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Weifang Kang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - LuLu Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yong Ran
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| |
Collapse
|
26
|
Sauter-Louis C, Conraths FJ, Probst C, Blohm U, Schulz K, Sehl J, Fischer M, Forth JH, Zani L, Depner K, Mettenleiter TC, Beer M, Blome S. African Swine Fever in Wild Boar in Europe-A Review. Viruses 2021; 13:1717. [PMID: 34578300 PMCID: PMC8472013 DOI: 10.3390/v13091717] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
The introduction of genotype II African swine fever (ASF) virus, presumably from Africa into Georgia in 2007, and its continuous spread through Europe and Asia as a panzootic disease of suids, continues to have a huge socio-economic impact. ASF is characterized by hemorrhagic fever leading to a high case/fatality ratio in pigs. In Europe, wild boar are especially affected. This review summarizes the currently available knowledge on ASF in wild boar in Europe. The current ASF panzootic is characterized by self-sustaining cycles of infection in the wild boar population. Spill-over and spill-back events occur from wild boar to domestic pigs and vice versa. The social structure of wild boar populations and the spatial behavior of the animals, a variety of ASF virus (ASFV) transmission mechanisms and persistence in the environment complicate the modeling of the disease. Control measures focus on the detection and removal of wild boar carcasses, in which ASFV can remain infectious for months. Further measures include the reduction in wild boar density and the limitation of wild boar movements through fences. Using these measures, the Czech Republic and Belgium succeeded in eliminating ASF in their territories, while the disease spread in others. So far, no vaccine is available to protect wild boar or domestic pigs reliably against ASF.
Collapse
Affiliation(s)
- Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.J.C.); (C.P.); (K.S.)
| | - Franz J. Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.J.C.); (C.P.); (K.S.)
| | - Carolina Probst
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.J.C.); (C.P.); (K.S.)
| | - Ulrike Blohm
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (F.J.C.); (C.P.); (K.S.)
| | - Julia Sehl
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Melina Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (M.F.); (J.H.F.); (M.B.); (S.B.)
| | - Jan Hendrik Forth
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (M.F.); (J.H.F.); (M.B.); (S.B.)
| | - Laura Zani
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of International Animal Health/One Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.Z.); (K.D.)
| | - Klaus Depner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of International Animal Health/One Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.Z.); (K.D.)
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (M.F.); (J.H.F.); (M.B.); (S.B.)
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (M.F.); (J.H.F.); (M.B.); (S.B.)
| |
Collapse
|
27
|
African Swine Fever Virus E120R Protein Inhibits Interferon Beta Production by Interacting with IRF3 To Block Its Activation. J Virol 2021; 95:e0082421. [PMID: 34190598 DOI: 10.1128/jvi.00824-21] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
African swine fever is a devastating disease of swine caused by African swine fever virus (ASFV). The pathogenesis of the disease remains largely unknown, leaving the spread of the disease uncontrolled in many countries and regions. Here, we identified E120R, a structural protein of ASFV, as a key virulence factor and late-phase-expressed protein of the virus. E120R revealed an activity to suppress the host antiviral response through blocking beta interferon (IFN-β) production, and the amino acids (aa) at sites 72 and 73 (amino acids 72-73) in the C-terminal domain were essential for this function. E120R interacted with interferon regulatory factor 3 (IRF3) and interfered with the recruitment of IRF3 to TANK-binding kinase 1 (TBK1), which in turn suppressed IRF3 phosphorylation, decreasing interferon production. A recombinant mutant ASFV was further constructed to confirm the claimed mechanism. The ASFV lacking the complete E120R region could not be rescued, whereas the virus could tolerate the deletion of the 72nd and 73rd residues in E120R (ASFV E120R-Δ72-73aa). ASFV E120R with the two-amino-acid deletion failed to interact with IRF3 during ASFV E120R-Δ72-73aa infection, and the viral infection activated IRF3 phosphorylation highly and induced more robust type I interferon production than its parental ASFV. An unbiased transcriptome-wide analysis of gene expression also confirmed that considerably more IFN-stimulated genes (ISGs) were detected in ASFV E120R-Δ72-73aa-infected porcine alveolar macrophages (PAMs) than in wild-type ASFV-infected PAMs. Together, our findings have identified a novel mechanism evolved by ASFV to inhibit the host antiviral response, and they provide a new target for guiding the development of ASFV live-attenuated vaccine. IMPORTANCE African swine fever is a highly contagious animal disease affecting the pig industry worldwide, which has brought enormous economic losses. Infection by the causative agent, African swine fever virus (ASFV), causes severe immunosuppression during viral infection, contributing to serious clinical manifestations. Therefore, identification of the viral proteins involved in immunosuppression is critical for ASFV vaccine design and development. Here, for the first time, we demonstrated that E120R protein, a structural protein of ASFV, played an important role in suppression of interferon regulatory factor 3 (IRF3) phosphorylation and type I interferon production by binding to IRF3 and blocking the recruitment of IRF3 to TANK-binding kinase 1 (TBK1). Deletion of the crucial binding sites in E120R critically increased the interferon response during ASFV infection. This study explored a novel antagonistic mechanism of ASFV, which is critical for guiding the development of ASFV live-attenuated vaccines.
Collapse
|
28
|
Schettino DN, Korennoy FI, Perez AM. Risk of Introduction of Classical Swine Fever Into the State of Mato Grosso, Brazil. Front Vet Sci 2021; 8:647838. [PMID: 34277750 PMCID: PMC8280757 DOI: 10.3389/fvets.2021.647838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Classical swine fever (CSF) is considered one of the most important diseases of swine because of the far-reaching economic impact the disease causes to affected countries and regions. The state of Mato Grosso (MT) is part of Brazil's CSF-free zone. CSF status is uncertain in some of MT's neighboring States and countries, which has resulted in the perception that MT is at high risk for the disease. However, the risk for CSF introduction into MT has not been previously assessed. Here, we estimated that the risk for CSF introduction into the MT is highly heterogeneous. The risk associated with shipment of commercial pigs was concentrated in specific municipalities with intense commercial pig production, whereas the risk associated with movement of wild boars was clustered in certain municipalities located close to the state's borders, mostly in northern and southwestern MT. Considering the two pathways of possible introduction assessed here, these results demonstrate the importance of using alternative strategies for surveillance that target different routes and account for different likelihoods of introduction. These results will help to design, implement, and monitor surveillance activities for sustaining the CSF-free status of MT at times when Brazil plans to expand the recognition of disease-free status for other regions in the country.
Collapse
Affiliation(s)
- Daniella N Schettino
- Department of Veterinary Population Medicine, Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Animal Health Coordination, Instituto de Defesa Agropecuária de Mato Grosso (INDEA-MT), Mato Grosso, Cuiabá, Brazil
| | - Fedor I Korennoy
- FGBI Federal Centre for Animal Health (FGBI ARRIAH), Vladimir, Russia
| | - Andres M Perez
- Department of Veterinary Population Medicine, Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
29
|
Zero-inflated-censored Weibull and gamma regression models to estimate wild boar population dispersal distance. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE 2021. [DOI: 10.1007/s42081-021-00124-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe dynamics of the wild boar population has become a pressing issue not only for ecological purposes, but also for agricultural and livestock production. The data related to the wild boar dispersal distance can have a complex structure, including excess of zeros and right-censored observations, thus being challenging for modeling. In this sense, we propose two different zero-inflated-right-censored regression models, assuming Weibull and gamma distributions. First, we present the construction of the likelihood function, and then, we apply both models to simulated datasets, demonstrating that both regression models behave well. The simulation results point to the consistency and asymptotic unbiasedness of the developed methods. Afterwards, we adjusted both models to a simulated dataset of wild boar dispersal, including excess of zeros, right-censored observations, and two covariates: age and sex. We showed that the models were useful to extract inferences about the wild boar dispersal, correctly describing the data mimicking a situation where males disperse more than females, and age has a positive effect on the dispersal of the wild boars. These results are useful to overcome some limitations regarding inferences in zero-inflated-right-censored datasets, especially concerning the wild boar’s population. Users will be provided with an R function to run the proposed models.
Collapse
|
30
|
A Review of Risk Factors of African Swine Fever Incursion in Pig Farming within the European Union Scenario. Pathogens 2021; 10:pathogens10010084. [PMID: 33478169 PMCID: PMC7835761 DOI: 10.3390/pathogens10010084] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
African swine fever (ASF) is a notifiable viral disease of pigs and wild boars that could lead to serious economic losses for the entire European pork industry. As no effective treatment or vaccination is available, disease prevention and control rely on strictly enforced biosecurity measures tailored to the specific risk factors of ASF introduction within domestic pig populations. Here, we present a review addressing the risk factors associated with different European pig farming systems in the context of the actual epidemiological scenario. A list of keywords was combined into a Boolean query, “African swine fever” AND (“Risk factors” OR “Transmission” OR “Spread” OR “Pig farming” OR “Pigs” OR “Wild boars”); was run on 4 databases; and resulted in 52 documents of interest being reviewed. Based on our review, each farming system has its own peculiar risk factors: commercial farms, where best practices are already in place, may suffer from unintentional breaches in biosecurity, while backyard and outdoor farms may suffer from poor ASF awareness, sociocultural factors, and contact with wild boars. In the literature selected for our review, human-related activities and behaviours are presented as the main risks, but we also stress the need to implement biosecurity measures also tailored to risks factors that are specific for the different pig farming practices in the European Union (EU).
Collapse
|
31
|
Zavala-Cortés A, Hernández G, Calderón-Salinas JV. An index for multidimensional assessment of swine health. Trop Anim Health Prod 2021; 53:75. [PMID: 33404929 PMCID: PMC7785921 DOI: 10.1007/s11250-020-02552-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 11/04/2022]
Abstract
Pork accounts for almost one-third of the meat consumed worldwide. Infectious diseases have a marked impact on pig production. Epidemiological indicators are considered the most useful criteria in decision-making; however, a health status assessment remains a challenge at the national and regional levels. This study proposes a health index including herd-losses, morbidity, fatality, and type of diseases, to rate the health situation in a region or country; it contributes to assessing the effectiveness of control, damage manifestation, and trends. It is a multidimensional index with a structure of triads and simple quantitative, semi-quantitative, and qualitative expressions that use flexible and dynamics limits. With it, we analyzed twenty-one countries in 2005-2018, focusing on African swine fever, classical swine fever, foot-mouth-disease, and porcine respiratory and reproductive syndrome, diseases that caused 72% of the morbidity. Our multidimensional approach estimates farm, local, and regional impact from infectious agents and outbreaks, and apprises trends aiming to be useful to control measures, strategic actions, and animal health policies.
Collapse
Affiliation(s)
- Aidé Zavala-Cortés
- Program on Science, Technology and Society, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Gerardo Hernández
- Section of Metodology of Science, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José-Víctor Calderón-Salinas
- Biochemistry Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
32
|
Brown VR, Miller RS, McKee SC, Ernst KH, Didero NM, Maison RM, Grady MJ, Shwiff SA. Risks of introduction and economic consequences associated with African swine fever, classical swine fever and foot-and-mouth disease: A review of the literature. Transbound Emerg Dis 2020; 68:1910-1965. [PMID: 33176063 DOI: 10.1111/tbed.13919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022]
Abstract
African swine fever (ASF), classical swine fever (CSF) and foot-and-mouth disease (FMD) are considered to be three of the most detrimental animal diseases and are currently foreign to the U.S. Emerging and re-emerging pathogens can have tremendous impacts in terms of livestock morbidity and mortality events, production losses, forced trade restrictions, and costs associated with treatment and control. The United States is the world's top producer of beef for domestic and export use and the world's third-largest producer and consumer of pork and pork products; it has also recently been either the world's largest or second largest exporter of pork and pork products. Understanding the routes of introduction into the United States and the potential economic impact of each pathogen are crucial to (a) allocate resources to prevent routes of introduction that are believed to be more probable, (b) evaluate cost and efficacy of control methods and (c) ensure that protections are enacted to minimize impact to the most vulnerable industries. With two scoping literature reviews, pulled from global data, this study assesses the risk posed by each disease in the event of a viral introduction into the United States and illustrates what is known about the economic costs and losses associated with an outbreak.
Collapse
Affiliation(s)
- Vienna R Brown
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - Sophie C McKee
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Karina H Ernst
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Nicole M Didero
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Rachel M Maison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Meredith J Grady
- Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO, USA
| | - Stephanie A Shwiff
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| |
Collapse
|
33
|
Fekede RJ, HaoNing W, Hein VG, XiaoLong W. Could wild boar be the Trans-Siberian transmitter of African swine fever? Transbound Emerg Dis 2020; 68:1465-1475. [PMID: 32866334 DOI: 10.1111/tbed.13814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 11/27/2022]
Abstract
China has experienced a sudden multi-focal and multi-round of African swine fever (ASF) outbreaks during 2018. The subsequent epidemiological survey resulted in a debate including the possibility of a transboundary spread from European Russia to China through wild boar. We contribute to the debate by assessing a hypothetical overland Euro-Siberian transmission path and its associated ASF arrival dates. We selected the maximum entropy algorithm for spatial modelling of ASF-infected wild boar and the Spatial Distribution Modeller in ArcGIS to plot Least Cost Paths (LCPs) between Eastern Europe and NE China. The arrival dates of ASF-infected wild boar have been predicted by cumulative maximum transmission distances per season and cover with their associated minimum time intervals along the LCPs. Our results show high costs for wild boar to cross Kazakhstan, Xinjiang (NW China) and/or Mongolia to reach NE China. Instead, the Paths lead almost straight eastward along the 59.5° northern latitude through Siberia and would have taken a minimum of 219 or 260 days. Therefore, infected wild boar moving all the way along the LCP could not have been the source of the ASF infection in NE China on 2 August 2018.
Collapse
Affiliation(s)
- Regassa Joka Fekede
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, PR China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, PR China.,Key Laboratory of Wildlife diseases and Biosecurity Management of Heilongjiang Province, PR China
| | - Wang HaoNing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, PR China.,Key Laboratory of Wildlife diseases and Biosecurity Management of Heilongjiang Province, PR China
| | - Van Gils Hein
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, PR China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, PR China.,Key Laboratory of Wildlife diseases and Biosecurity Management of Heilongjiang Province, PR China
| | - Wang XiaoLong
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, PR China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, PR China.,Key Laboratory of Wildlife diseases and Biosecurity Management of Heilongjiang Province, PR China
| |
Collapse
|
34
|
Esser HJ, Liefting Y, Ibáñez-Justicia A, van der Jeugd H, van Turnhout CAM, Stroo A, Reusken CBEM, Koopmans MPG, de Boer WF. Spatial risk analysis for the introduction and circulation of six arboviruses in the Netherlands. Parasit Vectors 2020; 13:464. [PMID: 32912330 PMCID: PMC7488554 DOI: 10.1186/s13071-020-04339-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Background Arboviruses are a growing public health concern in Europe, with both endemic and exotic arboviruses expected to spread further into novel areas in the next decades. Predicting where future outbreaks will occur is a major challenge, particularly for regions where these arboviruses are not endemic. Spatial modelling of ecological risk factors for arbovirus circulation can help identify areas of potential emergence. Moreover, combining hazard maps of different arboviruses may facilitate a cost-efficient, targeted multiplex-surveillance strategy in areas where virus transmission is most likely. Here, we developed predictive hazard maps for the introduction and/or establishment of six arboviruses that were previously prioritized for the Netherlands: West Nile virus, Japanese encephalitis virus, Rift Valley fever virus, tick-borne encephalitis virus, louping-ill virus and Crimean-Congo haemorrhagic fever virus. Methods Our spatial model included ecological risk factors that were identified as relevant for these arboviruses by an earlier systematic review, including abiotic conditions, vector abundance, and host availability. We used geographic information system (GIS)-based tools and geostatistical analyses to model spatially continuous datasets on these risk factors to identify regions in the Netherlands with suitable ecological conditions for arbovirus introduction and establishment. Results The resulting hazard maps show that there is spatial clustering of areas with either a relatively low or relatively high environmental suitability for arbovirus circulation. Moreover, there was some overlap in high-hazard areas for virus introduction and/or establishment, particularly in the southern part of the country. Conclusions The similarities in environmental suitability for some of the arboviruses provide opportunities for targeted sampling of vectors and/or sentinel hosts in these potential hotspots of emergence, thereby increasing the efficient use of limited resources for surveillance.![]()
Collapse
Affiliation(s)
- Helen Joan Esser
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands. .,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | - Yorick Liefting
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Adolfo Ibáñez-Justicia
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Agriculture, Nature and Food Quality, Wageningen, The Netherlands
| | - Henk van der Jeugd
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, The Netherlands
| | - Chris A M van Turnhout
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands.,Department of Animal Ecology & Ecophysiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), National Reference Centre (NRC), Netherlands Food and Consumer Product Safety Authority (NVWA), Ministry of Agriculture, Nature and Food Quality, Wageningen, The Netherlands
| | - Chantal B E M Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Department of Viroscience, WHO CC for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, WHO CC for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem Fred de Boer
- Wildlife Ecology & Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
35
|
Taylor RA, Podgórski T, Simons RRL, Ip S, Gale P, Kelly LA, Snary EL. Predicting spread and effective control measures for African swine fever-Should we blame the boars? Transbound Emerg Dis 2020; 68:397-416. [PMID: 32564507 DOI: 10.1111/tbed.13690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/19/2020] [Accepted: 06/06/2020] [Indexed: 01/25/2023]
Abstract
An ongoing, continually spreading, outbreak of African swine fever (ASF), following its identification in Georgia in 2007, has resulted in 17 European and 12 Asian countries reporting cases by April 2020, with cases occurring in both wild boar and domestic pigs. Curtailing further spread of ASF requires understanding of the transmission pathways of the disease. ASF is self-sustaining in the wild boar population, and they have been implicated as one of the main drivers of transmission within Europe. We developed a spatially explicit model to estimate the risk of infection with ASF in wild boar and pigs due to natural movement of wild boar that is applicable across the whole of Europe. We demonstrate the model by using it to predict the probability that early cases of ASF in Poland were caused by wild boar dispersion. The risk of infection in 2015 is computed due to wild boar cases in Poland in 2014, compared against reported cases in 2015, and then the procedure is repeated for 2015-2016. We find that long- and medium-distance spread of ASF (i.e. >30 km) is unlikely to have occurred due to wild boar dispersal, due in part to the generally short distances wild boar will travel (<20 km on average). We also predict the relative success of different control strategies in 2015, if they were implemented in 2014. Results suggest that hunting of wild boar reduces the number of new cases, but a larger region is at risk of ASF compared with no control measure. Alternatively, introducing wild boar-proof fencing reduces the size of the region at risk in 2015, but not the total number of cases. Overall, our model suggests wild boar movement is only responsible for local transmission of disease; thus, other pathways are more dominant in medium- and long-distance spread of the disease.
Collapse
Affiliation(s)
- Rachel A Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK
| | - Tomasz Podgórski
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Robin R L Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK
| | - Sophie Ip
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Paul Gale
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK
| | - Louise A Kelly
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK.,Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Emma L Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
36
|
Gao X, Liu T, Liu Y, Xiao J, Wang H. Transmission of African swine fever in China Through Legal Trade of Live Pigs. Transbound Emerg Dis 2020; 68:355-360. [PMID: 32530109 DOI: 10.1111/tbed.13681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/03/2023]
Abstract
The African swine fever virus (ASFV) was first reported in China on 3 August 2018, which subsequently triggered a severe epidemic that spreads across the country. While the ASFV has numerous underlying transmission paths in China, this study primarily assessed the possibility of ASFV transmission through the legal animal husbandry trade. The reason for this is that, historically, this transmission path is one of the critical contacts for exotic diseases to access disease-free areas. This study employed a stochastic model to assess the monthly possibility for ASFV entering respective Chinese provinces. The results of this model suggest that the risk of ASFV transmission though the legal live-pig trade is highest in the southeastern regions of China. Vulnerable regions centred around Zhejiang, Jiangsu and Anhui provinces, especially throughout the months of January and December. Liaoning province contributes most to transmission risk with 46.7% of the overall annual risk. This study quantified the risk of ASFV spread in China related to the legal trade of pigs and provides detailed and new information for the development of ASFV monitoring and control plans in China and other countries who also face the challenge of ASFV.
Collapse
Affiliation(s)
- Xiang Gao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeast Agricultural University, Harbin, Heilongjiang, PR China.,Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Tao Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yuxin Liu
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jianhua Xiao
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Hongbin Wang
- Department of Veterinary Surgery, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
37
|
Spatio-Temporal Analysis of the Spread of ASF in the Russian Federation in 2017-2019. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Currently, African swine fever (ASF) is one of the biggest global economic challenges in Europe and Asia. Despite all the efforts done to understand the mechanism of spread, presence and maintenance of ASF in domestic pigs and wild boar, there are still many gaps in the knowledge on its epidemiology.
This study aims to describe spatial and temporal patterns of ASF spread in wild boar and domestic pigs in the country during the last three years. Methods of Spatio-temporal scanning statistics of Kulldorff (SatScan) and Mann-Kendell statistics (space-time cube) were used to identify potential clusters of outbreaks and the presence of hot spots (areas of active flare clusters), respectively. The results showed that ASF in the country has a local epidemic pattern of spread (11 explicit clusters in wild boar and 16 epizootic clusters were detected in the domestic pig population: 11 in the European part and 5 in the Asian part), and only six of them are overlapped suggesting that ASF epidemics in domestic pigs and wild boar are two separate processes. In the Nizhny Novgorod, Vladimir, Ivanovo, Novgorod, Pskov, Leningrad regions, the clusters identified are characterized as sporadic epidemics clusters, while in the Ulyanovsk region, Primorsky Territory, and the Jewish Autonomous Region the clusters are consistent. Considering the low biosecurity level of pig holdings in the far east and its close economic and cultural connections with China as well as other potential risk factors, it can be expected that the epidemic will be present in the region for a long time. The disease has spread in the country since 2007, and now it is reoccurring in some of the previously affected regions. Outbreaks in the domestic pig sector can be localized easily (no pattern detected), while the presence of the virus in wildlife (several consecutive hot spots detected) hampers its complete eradication. Although the disease has different patterns of spread over the country its driving forces remain the same (human-mediated spread and wild boar domestic-pigs mutual spillover). The results indicate that despite all efforts taken since 2007, the policy of eradication of the disease needs to be reviewed, especially measures in wildlife.
Collapse
|
38
|
Bosch J, Barasona JA, Cadenas-Fernández E, Jurado C, Pintore A, Denurra D, Cherchi M, Vicente J, Sánchez-Vizcaíno JM. Retrospective spatial analysis for African swine fever in endemic areas to assess interactions between susceptible host populations. PLoS One 2020; 15:e0233473. [PMID: 32469923 PMCID: PMC7259610 DOI: 10.1371/journal.pone.0233473] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
African Swine Fever (ASF) is one of the most complex and significant diseases from a sanitary-economic perspective currently affecting the world's swine-farming industry. ASF has been endemic in Sardinia (Italy) since 1978, and several control and eradication programmes have met with limited success. In this traditional ASF endemic area, there are three susceptible host populations for this virus sharing the same habitat: wild boar, farmed domestic pigs and non-registered free-ranging pigs (known as "brado" animals). The main goal of this study was to determine and predict fine-scale spatial interactions of this multi-host system in relation to the epidemiology of ASF in the main endemic area of Sardinia, Montes-Orgosolo. To this end, simultaneous monitoring of GPS-GSM collared wild boar and free-ranging pigs sightings were performed to predict interaction indexes through latent selection difference functions with environmental, human and farming factors. Regarding epidemiological assessment, the spatial inter-specific interaction indexes obtained here were used to correlate ASF notifications in wild boar and domestic pig farms. Daily movement patterns, home ranges (between 120.7 and 2,622.8 ha) and resource selection of wild boar were obtained for the first time on the island. Overall, our prediction model showed the highest spatial interactions between wild boar and free-ranging pigs in areas close to pig farms. A spatially explicit model was obtained to map inter-specific interaction over the complete ASF-endemic area of the island. Our approach to monitoring interaction indexes may help explain the occurrence of ASF notifications in wild boar and domestic pigs on a fine-spatial scale. These results support the recent and effective eradication measures taken in Sardinia. In addition, this methodology could be extrapolated to apply in the current epidemiological scenarios of ASF in Eurasia, where exist multi-host systems involving free-ranging pigs and wild boar.
Collapse
Affiliation(s)
- Jaime Bosch
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose A. Barasona
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Estefanía Cadenas-Fernández
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Cristina Jurado
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Antonio Pintore
- Istituto Zooprofilattico Sperimentale della Sardegna, Sardinia, Italy
| | - Daniele Denurra
- Istituto Zooprofilattico Sperimentale della Sardegna, Sardinia, Italy
| | - Marcella Cherchi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sardinia, Italy
| | - Joaquín Vicente
- Spanish Wildlife Research Institute (IREC) (CSIC-UCLM), Ciudad Real, Spain
| | - Jose M. Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
39
|
Risk Assessment of African Swine Fever Virus Exposure to Sus scrofa in Japan Via Pork Products Brought in Air Passengers' Luggage. Pathogens 2020; 9:pathogens9040302. [PMID: 32326040 PMCID: PMC7238144 DOI: 10.3390/pathogens9040302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 02/01/2023] Open
Abstract
In recent years, African swine fever (ASF) has become prevalent in many areas, including Asia. The repeated detection of the ASF virus (ASFV) genome in pork products brought in air passenger’s luggage (PPAP) was also reported from Japanese airports. In the present study, the risk of ASFV exposure to susceptible hosts in Japan via three different pathways was assessed. Two quantitative stochastic risk assessment models were built to estimate the annual probability of ASFV exposure to domestic pigs, which could be attributed to foreign job trainees or foreign tourists. A semi-quantitative stochastic model was built to assess the risk of ASFV exposure to wild boar caused by foreign tourists. The overall mean annual probability of ASFV exposure to domestic pigs via PPAP carried by foreign job trainees was 0.169 [95% confidence interval (CI): 0.000–0.600], whereas that by foreign tourists was 0.050 [95% CI: 0.000–0.214], corresponding to approximately one introduction every 5.9 and 20 years, respectively. The risk of ASFV exposure to domestic pigs was dispersed over the country, whereas that of wild boar was generally higher in the western part of Japan, indicating that the characteristics of the potential ASF risk in each prefecture were varied.
Collapse
|
40
|
Johann F, Handschuh M, Linderoth P, Heurich M, Dormann CF, Arnold J. Variability of daily space use in wild boar Sus scrofa. WILDLIFE BIOLOGY 2020. [DOI: 10.2981/wlb.00609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Franz Johann
- F. Johann (https://orcid.org/0000-0003-3056-0298) ✉ and C. F. Dormann, Dept of Biometry and Environmental System Analysis, Faculty of Environment and Natural Resources, Albert-Ludwigs-Univ. Freiburg i. Br., Tennenb
| | - Markus Handschuh
- M. Handschuh and M. Heurich, Chair of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, Albert-Ludwigs-Univ., Freiburg i. Br., Germany. M. Heurich also at: Bavarian Forest National Park, Grafenau, Germany
| | - Peter Linderoth
- FJ, P. Linderoth and J. Arnold, Agricultural Centre Baden-Württemberg, Wildlife Research Unit, Aulendorf, Germany
| | - Marco Heurich
- M. Handschuh and M. Heurich, Chair of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, Albert-Ludwigs-Univ., Freiburg i. Br., Germany. M. Heurich also at: Bavarian Forest National Park, Grafenau, Germany
| | - Carsten F. Dormann
- F. Johann (https://orcid.org/0000-0003-3056-0298) ✉ and C. F. Dormann, Dept of Biometry and Environmental System Analysis, Faculty of Environment and Natural Resources, Albert-Ludwigs-Univ. Freiburg i. Br., Tennenb
| | - Janosch Arnold
- FJ, P. Linderoth and J. Arnold, Agricultural Centre Baden-Württemberg, Wildlife Research Unit, Aulendorf, Germany
| |
Collapse
|
41
|
de Vos CJ, Taylor RA, Simons RRL, Roberts H, Hultén C, de Koeijer AA, Lyytikäinen T, Napp S, Boklund A, Petie R, Sörén K, Swanenburg M, Comin A, Seppä-Lassila L, Cabral M, Snary EL. Cross-Validation of Generic Risk Assessment Tools for Animal Disease Incursion Based on a Case Study for African Swine Fever. Front Vet Sci 2020; 7:56. [PMID: 32133376 PMCID: PMC7039936 DOI: 10.3389/fvets.2020.00056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, several generic risk assessment (RA) tools have been developed that can be applied to assess the incursion risk of multiple infectious animal diseases allowing for a rapid response to a variety of newly emerging or re-emerging diseases. Although these tools were originally developed for different purposes, they can be used to answer similar or even identical risk questions. To explore the opportunities for cross-validation, seven generic RA tools were used to assess the incursion risk of African swine fever (ASF) to the Netherlands and Finland for the 2017 situation and for two hypothetical scenarios in which ASF cases were reported in wild boar and/or domestic pigs in Germany. The generic tools ranged from qualitative risk assessment tools to stochastic spatial risk models but were all parameterized using the same global databases for disease occurrence and trade in live animals and animal products. A comparison of absolute results was not possible, because output parameters represented different endpoints, varied from qualitative probability levels to quantitative numbers, and were expressed in different units. Therefore, relative risks across countries and scenarios were calculated for each tool, for the three pathways most in common (trade in live animals, trade in animal products, and wild boar movements) and compared. For the 2017 situation, all tools evaluated the risk to the Netherlands to be higher than Finland for the live animal trade pathway, the risk to Finland the same or higher as the Netherlands for the wild boar pathway, while the tools were inconclusive on the animal products pathway. All tools agreed that the hypothetical presence of ASF in Germany increased the risk to the Netherlands, but not to Finland. The ultimate aim of generic RA tools is to provide risk-based evidence to support risk managers in making informed decisions to mitigate the incursion risk of infectious animal diseases. The case study illustrated that conclusions on the ASF risk were similar across the generic RA tools, despite differences observed in calculated risks. Hence, it was concluded that the cross-validation contributed to the credibility of their results.
Collapse
Affiliation(s)
- Clazien J. de Vos
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Robin R. L. Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Helen Roberts
- Department for Environment, Food & Rural Affairs (Defra), London, United Kingdom
| | | | - Aline A. de Koeijer
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | | | - Sebastian Napp
- Centre de Recerca en Sanitat Animal (CReSA IRTA-UAB), Bellaterra, Spain
| | - Anette Boklund
- Department of Veterinary and Animal Sciences, Section for Animal Welfare and Disease Control, University of Copenhagen, Frederiksberg, Denmark
| | - Ronald Petie
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Kaisa Sörén
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Manon Swanenburg
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Arianna Comin
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Maria Cabral
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Wageningen University & Research, Lelystad, Netherlands
| | - Emma L. Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| |
Collapse
|
42
|
Taylor RA, Condoleo R, Simons RRL, Gale P, Kelly LA, Snary EL. The Risk of Infection by African Swine Fever Virus in European Swine Through Boar Movement and Legal Trade of Pigs and Pig Meat. Front Vet Sci 2020; 6:486. [PMID: 31998765 PMCID: PMC6962172 DOI: 10.3389/fvets.2019.00486] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is currently spreading westwards throughout Europe and eastwards into China, with cases occurring in both wild boar and domestic pigs. A generic risk assessment framework is used to determine the probability of first infection with ASF virus (ASFV) at a fine spatial scale across European Union Member States. The framework aims to assist risk managers across Europe with their ASF surveillance and intervention activities. Performing the risk assessment at a fine spatial scale allows for hot-spot surveillance, which can aid risk managers by directing surveillance or intervention resources at those areas or pathways deemed most at risk, and hence enables prioritization of limited resources. We use 2018 cases of ASF to estimate prevalence of the disease in both wild boar and pig populations and compute the risk of initial infection for 2019 at a 100 km2 cell resolution via three potential pathways: legal trade in live pigs, natural movement of wild boar, and legal trade in pig meat products. We consider the number of pigs, boar and amount of pig meat entering our area of interest, the prevalence of the disease in the origin country, the probability of exposure of susceptible pigs or boar in the area of interest to introduced infected pigs, boar, or meat from an infected pig, and the probability of transmission to susceptible animals. We provide maps across Europe indicating regions at highest risk of initial infection. Results indicate that the risk of ASF in 2019 was predominantly focused on those regions which already had numerous cases in 2018 (Poland, Lithuania, Hungary, Romania, and Latvia). The riskiest pathway for ASFV transmission to pigs was the movement of wild boar for Eastern European countries and legal trade of pigs for Western European countries. New infections are more likely to occur in wild boar rather than pigs, for both the pig meat and wild boar movement pathways. Our results provide an opportunity to focus surveillance activities and thus increase our ability to detect ASF introductions earlier, a necessary requirement if we are to successfully control the spread of this devastating disease for the pig industry.
Collapse
Affiliation(s)
- Rachel A. Taylor
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Roberto Condoleo
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
- Istituto Zooprofilattico Sperimentale Lazio e Toscana “M. Aleandri”, Rome, Italy
| | - Robin R. L. Simons
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Paul Gale
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Louise A. Kelly
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Emma L. Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| |
Collapse
|
43
|
Ye X, Li L, Li J, Wu X, Fang X, Kong J. Microfluidic-CFPA Chip for the Point-of-Care Detection of African Swine Fever Virus with a Median Time to Threshold in about 10 min. ACS Sens 2019; 4:3066-3071. [PMID: 31602971 DOI: 10.1021/acssensors.9b01731] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outbreak of African swine fever has brought serious public safety problems to the world, and there is a need for reliable diagnostic tools to prevent and control the epidemic. Here, we successfully established a portable microfluidic-circular fluorescent probe-mediated isothermal nucleic acid amplification (CFPA) system for the rapid, high-throughput, accurate, and sensitive detection of African swine fever virus at point-of-care settings. This detection system has a detection limit of 10 copies/μL, good stability (C.V. < 5%), and 92.73% sensitivity, and 100% specificity when tested on 220 pig samples collected for the diagnosis of African swine fever virus, with a median time to threshold of 10.8 min. This novel integrated diagnostic tool is urgently needed and has promising applications for the monitoring and control of African swine fever epidemics worldwide and, in particular, the serious outbreak in China.
Collapse
Affiliation(s)
- Xin Ye
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Lin Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong 266032, P. R. China
| | - Jian Li
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs District, Shanghai 200135, P. R. China
| | - Xiaodong Wu
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, 369 Nanjing Road, Qingdao, Shandong 266032, P. R. China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
44
|
Ito S, Jurado C, Sánchez-Vizcaíno JM, Isoda N. Quantitative risk assessment of African swine fever virus introduction to Japan via pork products brought in air passengers' luggage. Transbound Emerg Dis 2019; 67:894-905. [PMID: 31692238 DOI: 10.1111/tbed.13414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/02/2019] [Accepted: 10/27/2019] [Indexed: 11/30/2022]
Abstract
The spread of African swine fever (ASF) has reached pandemic levels over the last decade, and outbreaks of this disease in China, Mongolia, Vietnam and Cambodia in 2018 and 2019 could accelerate its transmission to neighbouring Asian territories. Thus, the risk that the ASF virus (ASFV) will be introduced to disease-free territories increases each year. Since Japan is an island nation, the most likely way in which ASFV would be introduced is via pork products brought in air passengers' luggage (PPAP). Therefore, in the present study, we assessed the risk of ASFV introduction to Japan via PPAP. For the purposes of this analysis, we considered 214 international commercial flights travelling from 47 origin territories to 31 destination airports as potential routes of ASFV introduction via PPAP. The risk was estimated quantitatively through a stochastic model that considered the volume of air passengers' luggage, the amount of confiscated pork products that were carried in air passengers' luggage and the disease status of the origin territory. The overall mean annual probability of ASFV introduction to Japan via PPAP was found to be 0.941 [95% confidence interval (CI), 0.661-1.000], which approximately corresponds to one introduction every 1.06 years. At the origin territory level, Mongolia was led as the highest risk territory, with a risk of 0.864 (95% CI, 0.434-1.000), followed by China (0.697; 0.223-0.999), Vietnam (0.662; 0.196-0.998) and the Russian Federation (0.136; 0.018-0.401). At the destination airport level, Narita International Airport had the highest risk (0.905; 0.537-1.000), followed by Kansai International Airport (0.496; 0.109-0.961), Tokyo International Airport (0.389; 0.072-0.879) and Chubu Centrair International Airport (0.338; 0.058-0.816). This information will help improve risk management activities and monitoring systems to prevent the introduction of ASFV to Japan.
Collapse
Affiliation(s)
- Satoshi Ito
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,VISAVET Center and Animal Health Department, University Complutense of Madrid, Madrid, Spain
| | - Cristina Jurado
- VISAVET Center and Animal Health Department, University Complutense of Madrid, Madrid, Spain
| | | | - Norikazu Isoda
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
Ito S, Jurado C, Bosch J, Ito M, Sánchez-Vizcaíno JM, Isoda N, Sakoda Y. Role of Wild Boar in the Spread of Classical Swine Fever in Japan. Pathogens 2019; 8:pathogens8040206. [PMID: 31653072 PMCID: PMC6963481 DOI: 10.3390/pathogens8040206] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Since September 2018, nearly 900 notifications of classical swine fever (CSF) have been reported in Gifu Prefecture (Japan) affecting domestic pig and wild boar by the end of August 2019. To determine the epidemiological characteristics of its spread, a spatio-temporal analysis was performed using actual field data on the current epidemic. The spatial study, based on standard deviational ellipses of official CSF notifications, showed that the disease likely spread to the northeast part of the prefecture. A maximum significant spatial association estimated between CSF notifications was 23 km by the multi-distance spatial cluster analysis. A space-time permutation analysis identified two significant clusters with an approximate radius of 12 and 20 km and 124 and 98 days of duration, respectively. When the area of the identified clusters was overlaid on a map of habitat quality, approximately 82% and 75% of CSF notifications, respectively, were found in areas with potential contact between pigs and wild boar. The obtained results provide information on the current CSF epidemic, which is mainly driven by wild boar cases with sporadic outbreaks on domestic pig farms. These findings will help implement control measures in Gifu Prefecture.
Collapse
Affiliation(s)
- Satoshi Ito
- Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- VISAVET Center and Animal Health Department, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Cristina Jurado
- VISAVET Center and Animal Health Department, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Jaime Bosch
- VISAVET Center and Animal Health Department, University Complutense of Madrid, 28040 Madrid, Spain.
| | - Mitsugi Ito
- Akabane Animal Clinic, Co. Ltd., 55 Ishizoe, Akabane-cho, Tahara, Aichi-ken, 441-3502, Japan.
| | | | - Norikazu Isoda
- Research Center for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan.
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0018, Japan.
| |
Collapse
|
46
|
QUANTIFYING THE SEVERITY OF GIRAFFE SKIN DISEASE VIA PHOTOGRAMMETRY ANALYSIS OF CAMERA TRAP DATA. J Wildl Dis 2019. [DOI: 10.7589/2018-06-149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Morelle K, Jezek M, Licoppe A, Podgorski T. Deathbed choice by ASF-infected wild boar can help find carcasses. Transbound Emerg Dis 2019; 66:1821-1826. [PMID: 31183963 DOI: 10.1111/tbed.13267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
African swine fever (ASF) is a fatal disease infectious to wild and domesticated suids. This disease entered the European Union in 2014 and recently reached western Europe, with the first cases observed in Belgium in September 2018. Carcasses of ASF-infected wild boar play an important role in the spread and persistence of the virus in the environment. Thus, rapidly finding and removing carcasses is a crucial measure for effective ASF control. Using distribution modelling, we investigated whether the fine-scale distribution of ASF-infected animals can be predicted and support wild boar carcass searches. Our results suggest that ASF-infected wild boar selected deathbeds in cool and moist habitats; thus, deathbed choice was mostly influenced by topographic and water-dependent covariates. Furthermore, we show that in the case of an epidemic, it is important to quickly collect a minimum of 75-100 carcasses with exact locations to build a well-performing and efficient carcass distribution model. The proposed model provides an indication of where carcasses are most likely to be found and can be used as a guide to strategically allocate resources.
Collapse
Affiliation(s)
- Kevin Morelle
- Mammal Research Institute, Polish Academy of Sciences, Bialowieza, Poland
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Milos Jezek
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Alain Licoppe
- SPW-DEMNA-DNE, Laboratoire de la Faune Sauvage et de Cynegetique, Gembloux, Belgium
| | - Tomasz Podgorski
- Mammal Research Institute, Polish Academy of Sciences, Bialowieza, Poland
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
48
|
Zhao D, Liu R, Zhang X, Li F, Wang J, Zhang J, Liu X, Wang L, Zhang J, Wu X, Guan Y, Chen W, Wang X, He X, Bu Z. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg Microbes Infect 2019; 8:438-447. [PMID: 30898043 PMCID: PMC6455124 DOI: 10.1080/22221751.2019.1590128] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
African swine fever (ASF) entered China in August 2018 and rapidly spread across the entire country, severely threatening the Chinese domestic pig population, which accounts for more than 50% of the pig population worldwide. In this study, an ASFV isolate, Pig/Heilongjiang/2018 (Pig/HLJ/18), was isolated in primary porcine alveolar macrophages (PAMs) from a pig sample from an ASF outbreak farm. The isolate was characterized by using the haemadsorption (HAD) test, Western blotting and immunofluorescence, and electronic microscopy. Phylogenetic analysis of the viral p72 gene revealed that Pig/HLJ/18 belongs to Genotype II. Infectious titres of virus propagated in primary PAMs and pig marrow macrophages were as high as 107.2 HAD50/ml. Specific-pathogen-free pigs intramuscularly inoculated with different virus dosages at 103.5-106.5 HAD50 showed acute disease with fever and haemorrhagic signs. The incubation periods were 3-5 days for virus-inoculated pigs and 9 days for contact pigs. All virus-inoculated pigs died between 6-9 days post-inoculation (p.i.), and the contact pigs died between 13-14 days post-contact (p.c.). Viremia started on day 2 p.i. in inoculated pigs and on day 9 p.c. in contact pigs. Viral genomic DNA started to be detected from oral and rectal swab samples on 2-5 days p.i. in virus-inoculated pigs, and 6-10 days p.c. in contact pigs. These results indicate that Pig/HLJ/18 is highly virulent and transmissible in domestic pigs. Our study demonstrates the threat of ASFV and emphasizes the need to control and eradicate ASF in China.
Collapse
Affiliation(s)
- Dongming Zhao
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China
| | - Renqiang Liu
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China
| | - Xianfeng Zhang
- b National High Containment Laboratory for Animal Diseases Control and Prevention , Harbin , People's Republic of China
| | - Fang Li
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China
| | - Jingfei Wang
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China
| | - Jiwen Zhang
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China
| | - Xing Liu
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China
| | - Lulu Wang
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China
| | - Jiaoer Zhang
- b National High Containment Laboratory for Animal Diseases Control and Prevention , Harbin , People's Republic of China
| | - Xinzhou Wu
- b National High Containment Laboratory for Animal Diseases Control and Prevention , Harbin , People's Republic of China
| | - Yuntao Guan
- b National High Containment Laboratory for Animal Diseases Control and Prevention , Harbin , People's Republic of China
| | - Weiye Chen
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China
| | - Xijun Wang
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China
| | - Xijun He
- b National High Containment Laboratory for Animal Diseases Control and Prevention , Harbin , People's Republic of China
| | - Zhigao Bu
- a State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin , People's Republic of China.,b National High Containment Laboratory for Animal Diseases Control and Prevention , Harbin , People's Republic of China
| |
Collapse
|
49
|
Schulz K, Staubach C, Blome S, Viltrop A, Nurmoja I, Conraths FJ, Sauter-Louis C. Analysis of Estonian surveillance in wild boar suggests a decline in the incidence of African swine fever. Sci Rep 2019; 9:8490. [PMID: 31186505 PMCID: PMC6560063 DOI: 10.1038/s41598-019-44890-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/21/2019] [Indexed: 12/02/2022] Open
Abstract
African swine fever (ASF) in wild boar populations is difficult to control. In affected areas, samples from all wild boar shot and found dead are investigated. The use of laboratory tests allows estimating the duration of the infection in affected animals. The study aimed to test the hypothesis that the stage of the epidemic in different areas of Estonia can be assessed on the basis of prevalence estimates. ASF surveillance data of Estonian wild boar were used to estimate prevalences and compare them between the East and West of Estonia. The temporal trend of the estimated prevalence of ASF virus positive animals and of the estimated seroprevalence of wild boar showing antibodies against ASFV was analyzed. Due to the potential influence of population density on the course of ASF in wild boar, also population density data (number of wild boar/km2) were used to investigate the relationship with laboratory test results. In areas, where the epidemic had already lasted for a long time, a small number of new cases emerged recently. The prevalence of samples that were only seropositive was significantly higher in these regions as compared to areas, where the epidemic is in full progress. The observed course of the disease could be the beginning of an ASF endemicity in this region. However, the results may also indicate that ASF has started to subside in the areas that were first affected in Estonia.
Collapse
Affiliation(s)
- Katja Schulz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Arvo Viltrop
- Estonian University of Life Science, Institute of Veterinary Medicine and Animal Sciences, Kreutzwaldi 62, 51014, Tartu, Estonia
| | - Imbi Nurmoja
- Estonian University of Life Science, Institute of Veterinary Medicine and Animal Sciences, Kreutzwaldi 62, 51014, Tartu, Estonia
- Estonian Veterinary and Food Laboratory (VFL), Kreutzwaldi 30, 51006, Tartu, Estonia
| | - Franz Josef Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Carola Sauter-Louis
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| |
Collapse
|
50
|
Lu Y, Deng X, Chen J, Wang J, Chen Q, Niu B. Risk analysis of African swine fever in Poland based on spatio-temporal pattern and Latin hypercube sampling, 2014-2017. BMC Vet Res 2019; 15:160. [PMID: 31118049 PMCID: PMC6532167 DOI: 10.1186/s12917-019-1903-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/09/2019] [Indexed: 01/04/2023] Open
Abstract
Background African swine fever (ASF) is a devastating infectious disease of pigs. ASF poses a potential threat to the world pig industry, due to the lack of vaccines and treatments. In this study, the Geographic Information System (GIS) spatial analysis was applied to analyze the distribution, dispersion of the epidemic and clustering of ASF in Poland. Results The results show that the center of the epidemic moved gradually towards the southwest, and the distribution of the epidemic changed from south-north to east-west. Through space-time scan statistical analysis, the 3 clusters major of wild boar cases involve longer time spans and larger radii, while the other five with higher relative risks involved in domestic pigs. And then, a quantitative model was constructed to analyse the risk of releasing African swine fever virus (ASFV) from Poland by the legal export of pork and pork products. The Latin hypercube sampling results show that the probability is relatively low (the average value is 4.577 × 10− 7). Conclusions All the identification of the spatio-temporal patterns of the epidemic and the risk analysis model would give a further understanding of the dynamics of disease transmission and help to design corresponding measures to minimize the catastrophic consequences of potential ASFV introduction.
Collapse
Affiliation(s)
- Yi Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaojun Deng
- Technology Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Entry Exit Inspect and Quarantine Bur, Shanghai, 200135, China
| | - Jiahui Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jianying Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|