1
|
McEachran MC, Mladonicky J, Picasso-Risso C, Drake DAR, Phelps NBD. Release of live baitfish by recreational anglers drives fish pathogen introduction risk. Prev Vet Med 2023; 217:105960. [PMID: 37478526 DOI: 10.1016/j.prevetmed.2023.105960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Emerging diseases of wildlife are an existential threat to biodiversity, and human-mediated movements of live animals are a primary vector of their spread. Wildlife disease risk analyses offer an appealing alternative to precautionary approaches because they allow for explicit quantification of uncertainties and consideration of tradeoffs. Such considerations become particularly important in high-frequency invasion pathways with hundreds of thousands of individual vectors, where even low pathogen prevalence can lead to substantial risk. The purpose of this study was to examine the landscape-level dynamics of human behavior-mediated pathogen introduction risk in the context of a high-frequency invasion pathway. One such pathway is the use and release of live fish used as bait by recreational anglers. We used a stochastic risk assessment model parameterized by angler survey data from Minnesota, USA, to simulate one year of fishing in Minnesota and estimate the total number of risky trips for each of three pathogens: viral hemorrhagic septicemia virus, the microsporidian parasite Ovipleistophora ovariae, and the Asian fish tapeworm Schizocotyle acheilognathi. We assessed the number of introductions under four scenarios: current/baseline conditions, outbreak conditions (increased pathogen prevalence), source-focused control measures (decreased pathogen prevalence), and angler-focused control measures (decreased rates of release). We found that hundreds of thousands of introduction events can occur per year, even for regulated pathogens at low pathogen prevalence. Reducing the rate of illegal baitfish release had significant impact on risky trips in scenarios where a high number of anglers were involved, but was less impactful in circumstances with limited outbreaks and fewer affected anglers. In contrast, reducing pathogen prevalence in the source populations of baitfish had relatively little impact. In order to make meaningful changes in pathogen introduction risk, managers should focus efforts on containing local outbreaks and reducing illegal baitfish release to reduce pathogen introduction risk. Our study also demonstrates the risk associated with high-frequency invasion pathways and the importance of incorporating human behaviors into wildlife disease models and risk assessments.
Collapse
Affiliation(s)
- Margaret C McEachran
- Minnesota Aquatic Invasive Species Research Center, 135E Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, United States; Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 135E Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, United States
| | - Janice Mladonicky
- Department of Veterinary Population Medicine, University of Minnesota, 225 Veterinary Medical Center, 1365 Gortner Ave, Falcon Heights, MN 55108, United States
| | - Catalina Picasso-Risso
- Department of Veterinary Population Medicine, University of Minnesota, 225 Veterinary Medical Center, 1365 Gortner Ave, Falcon Heights, MN 55108, United States
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Nicholas B D Phelps
- Minnesota Aquatic Invasive Species Research Center, 135E Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, United States; Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 135E Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, United States.
| |
Collapse
|
2
|
Mugimba KK, Byarugaba DK, Mutoloki S, Evensen Ø, Munang’andu HM. Challenges and Solutions to Viral Diseases of Finfish in Marine Aquaculture. Pathogens 2021; 10:pathogens10060673. [PMID: 34070735 PMCID: PMC8227678 DOI: 10.3390/pathogens10060673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaculture is the fastest food-producing sector in the world, accounting for one-third of global food production. As is the case with all intensive farming systems, increase in infectious diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases cause high economic losses in marine aquaculture. We provide an overview of the major challenges limiting the control and prevention of viral diseases in marine fish farming, as well as highlight potential solutions. The major challenges include increase in the number of emerging viral diseases, wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and expertise, transportation of virus contaminated ballast water, and international trade. The proposed solutions to these problems include developing biosecurity policies at global and national levels, implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools, disease surveillance, as well as promoting the use of good husbandry and management practices. A multifaceted approach combining several control strategies would provide more effective long-lasting solutions to reduction in viral infections in marine aquaculture than using a single disease control approach like vaccination alone.
Collapse
Affiliation(s)
- Kizito K. Mugimba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| | - Denis K. Byarugaba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Stephen Mutoloki
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Hetron M. Munang’andu
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| |
Collapse
|
3
|
Reduction in Virulence over Time in Ostreid herpesvirus 1 (OsHV-1) Microvariants between 2011 and 2015 in Australia. Viruses 2021; 13:v13050946. [PMID: 34065570 PMCID: PMC8160646 DOI: 10.3390/v13050946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
Microvariant genotypes of Ostreid herpesvirus 1 (OsHV-1) are associated with mass mortality events of Pacific oysters in many countries. The OsHV-1 microvariant (µVar) emerged in France 2008 and caused significant economic losses as it became endemic and displaced the previously dominant OsHV-1 reference genotype. Recently, considerable genotypic variation has been described for OsHV-1 microvariants, however, less is known about variation in viral phenotype. This study used an in vivo laboratory infection model to assess differences in total cumulative mortality, peak viral load, transmissibility, and dose-response for three OsHV-1 isolates obtained between 2011 and 2015 from endemic waterways in Australia. This followed field observations of apparent reductions in the severity of mass mortalities over this time. Significantly higher hazard of death and cumulative mortality were observed for an isolate obtained in 2011 compared to isolates from 2014–2015. In keeping with other studies, the hazard of death was higher in oysters challenged by injection compared to challenge by cohabitation and the mortality was higher when the initial dose was 1 × 104 OsHV-1 DNA copies per oyster injection compared to 1 × 102 DNA copies. There was no difference in the quantity of OsHV-1 DNA at time of death that could be related to isolate or dose, suggesting similar pathogenetic processes in the individual oysters that succumbed to end-stage disease. While the isolates examined in this study were biased towards pathogenic types of OsHV-1, as they were collected during disease outbreaks, the variation in virulence that was observed, when combined with prior data on subclinical infections, suggests that surveillance for low virulence genotypes of OsHV-1 would be rewarding. This may lead to new approaches to disease management which utilize controlled exposure to attenuated strains of OsHV-1.
Collapse
|
5
|
Pernet F, Lupo C, Bacher C, Whittington RJ. Infectious diseases in oyster aquaculture require a new integrated approach. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2015.0213. [PMID: 26880845 DOI: 10.1098/rstb.2015.0213] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Emerging diseases pose a recurrent threat to bivalve aquaculture. Recently, massive mortality events in the Pacific oyster Crassostrea gigas associated with the detection of a microvariant of the ostreid herpesvirus 1 (OsHV-1µVar) have been reported in Europe, Australia and New Zealand. Although the spread of disease is often viewed as a governance failure, we suggest that the development of protective measures for bivalve farming is presently held back by the lack of key scientific knowledge. In this paper, we explore the case for an integrated approach to study the management of bivalve disease, using OsHV-1 as a case study. Reconsidering the key issues by incorporating multidisciplinary science could provide a holistic understanding of OsHV-1 and increase the benefit of research to policymakers.
Collapse
Affiliation(s)
- Fabrice Pernet
- UMR LEMAR 6539 (UBO/CNRS/IRD/Ifremer), Ifremer, Technopôle Brest Iroise, BP 70, Plouzané 29280, France
| | - Coralie Lupo
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Ifremer-SG2M-LGPMM, Avenue Mus de Loup, La Tremblade 17390, France
| | - Cédric Bacher
- Dyneco/BENTHOS, Ifremer, Technopôle Brest Iroise, BP 70, Plouzané 29280, France
| | - Richard J Whittington
- Faculty of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, New South Wales 2570, Australia
| |
Collapse
|