1
|
Li C, Si XY, Wang XG, Yan ZW, Hou HY, You LQ, Chen YL, Zhang AK, Wang N, Sun AJ, Du YK, Zhang GP. Preparation and epitope analysis of monoclonal antibodies against African swine fever virus DP96R protein. BMC Vet Res 2024; 20:191. [PMID: 38734611 PMCID: PMC11088100 DOI: 10.1186/s12917-024-04043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Many proteins of African swine fever virus (ASFV, such as p72, p54, p30, CD2v, K205R) have been successfully expressed and characterized. However, there are few reports on the DP96R protein of ASFV, which is the virulence protein of ASFV and plays an important role in the process of host infection and invasion of ASFV. RESULTS Firstly, the prokaryotic expression vector of DP96R gene was constructed, the prokaryotic system was used to induce the expression of DP96R protein, and monoclonal antibody was prepared by immunizing mice. Four monoclonal cells of DP96R protein were obtained by three ELISA screening and two sub-cloning; the titer of ascites antibody was up to 1:500,000, and the monoclonal antibody could specifically recognize DP96R protein. Finally, the subtypes of the four strains of monoclonal antibodies were identified and the minimum epitopes recognized by them were determined. CONCLUSION Monoclonal antibody against ASFV DP96R protein was successfully prepared and identified, which lays a foundation for further exploration of the structure and function of DP96R protein and ASFV diagnostic technology.
Collapse
Affiliation(s)
- Chao Li
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Xuan-Ying Si
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Xiao-Ge Wang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Zhi-Wei Yan
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Hao-Yu Hou
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Long-Qi You
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Yin-Long Chen
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Ang-Ke Zhang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Na Wang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Ai-Jun Sun
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China
| | - Yong-Kun Du
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China.
- Longhu Advanced Immunization Laboratory, Zhengzhou, 450046, China.
| | - Gai-Ping Zhang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- National and International Joint Research Center for Animal Immunology, College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Engineering Laboratory of Animal Biological Products, Zhengzhou, 450046, China.
- Longhu Advanced Immunization Laboratory, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Glišić D, Milićević V, Krnjaić D, Toplak I, Prodanović R, Gallardo C, Radojičić S. Genetic analysis reveals multiple intergenic region and central variable region in the African swine fever virus variants circulating in Serbia. Vet Res Commun 2023; 47:1925-1936. [PMID: 37256519 DOI: 10.1007/s11259-023-10145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
This study provides the first comprehensive report on the molecular characteristics of African swine fever virus (ASFV) variants in Serbia between 2019 and 2022. Since its first observation in July 2019, the disease has been found in wild boar and domestic swine. The study involved the analysis of 95 ASFV-positive samples collected from 12 infected administrative districts in Serbia. Partial four genomic regions were genetically characterized, including B646L, E183L, B602L, and the intergenic region (IGR) between the I73R-I329L genes. The results of the study suggest that multiple ASFV strains belonging to genotype II are circulating in Serbia, as evidenced by the analysis of the IGR between I73R-I329L genes that showed the most differences. Furthermore, the phylogenetic analysis of the B602L gene showed three different clades within the CVR I group of ASFV strains. Regarding the IGR, 98.4% were grouped into IGR II, with only one positive sample grouped into the IGR III group. These findings provide essential insights into the molecular characteristics of ASFV variants in Serbia and contribute to the knowledge of circulating strains of ASFV in Europe. However, further research is necessary to gain a better understanding of ASFV spread and evolution.
Collapse
Affiliation(s)
- Dimitrije Glišić
- Department of Virology, Institute of Veterinary Medicine of Serbia, 11000, Belgrade, Serbia.
| | - Vesna Milićević
- Department of Virology, Institute of Veterinary Medicine of Serbia, 11000, Belgrade, Serbia
| | - Dejan Krnjaić
- Department of Microbiology and Immunology, University of Belgrade Faculty of Veterinary Medicine, 11000, Belgrade, Serbia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Laboratory for Virology, Veterinary Faculty, 1000, Ljubljana, Slovenia
| | - Radiša Prodanović
- Department of Ruminants and Swine Diseases, University of Belgrade Faculty of Veterinary Medicine, 11000, Belgrade, Serbia
| | - Carmina Gallardo
- European Union Reference Laboratory for ASF (EURL-ASF): Centro de Investigación en Sanidad Animal (CISA-INIA, CSIC), Valdeolmos, Madrid, Spain
| | - Sonja Radojičić
- Department of Infectious Animals Diseases and Diseases of Bees, University of Belgrade Faculty of Veterinary Medicine, 11000, Belgrade, Serbia
| |
Collapse
|
3
|
An Updated Review of Ornithodoros Ticks as Reservoirs of African Swine Fever in Sub-Saharan Africa and Madagascar. Pathogens 2023; 12:pathogens12030469. [PMID: 36986391 PMCID: PMC10059854 DOI: 10.3390/pathogens12030469] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
This updated review provides an overview of the available information on Ornithodoros ticks as reservoirs and biological vectors of the ASF virus in Africa and Indian Ocean islands in order to update the current knowledge in this field, inclusive of an overview of available methods to investigate the presence of ticks in the natural environment and in domestic pig premises. In addition, it highlights the major areas of research that require attention in order to guide future investigations and fill knowledge gaps. The available information suggests that current knowledge is clearly insufficient to develop risk-based control and prevention strategies, which should be based on a sound understanding of genotype distribution and the potential for spillover from the source population. Studies on tick biology in the natural and domestic cycle, including genetics and systematics, represent another important knowledge gap. Considering the rapidly changing dynamics affecting the African continent (demographic growth, agricultural expansion, habitat transformation), anthropogenic factors influencing tick population distribution and ASF virus (ASFV) evolution in Africa are anticipated and have been recorded in southern Africa. This dynamic context, together with the current global trends of ASFV dissemination, highlights the need to prioritize further investigation on the acarological aspects linked with ASF ecology and evolution.
Collapse
|
4
|
Omelchenko H, Avramenko NO, Petrenko MO, Wojciechowski J, Pejsak Z, Woźniakowski G. Ten Years of African Swine Fever in Ukraine: An Endemic Form of the Disease in the Wild Boar Population as a Threat to Domestic Pig Production. Pathogens 2022; 11:pathogens11121459. [PMID: 36558794 PMCID: PMC9788585 DOI: 10.3390/pathogens11121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: African swine fever (ASF) has been present in Ukraine for more than ten years (2012-2022). The purpose of our study was to perform a retrospective analysis of the spread of ASF to assess the role of wild boar in the epizootic expansion in Ukraine. (2) Methods: Statistical materials were collected and the epizootic situation of ASF from 2012 to 2022 was examined. The potential sources of the African swine fever virus (ASFV) and transmission factors were analysed. The main factors exerting negative impacts on domestic pig production were also analysed. (3) Results: Consequently, from the results of the retrospective analysis of ASF outbreaks in Ukraine, the probability ratio of ASF outbreaks in the wild boar and domestic pig populations was determined. The data show a direct relationship between ASF outbreaks among wild boar and domestic pigs with the observed decay of wild boar outbreaks across the entire territory of Ukraine. At the same time, an increase in the number of wild boars has been observed in the Mykolaiv region, with a parallel spillover of outbreaks in domestic pigs. (4) Conclusions: The epidemiological situation observed for ASF in the wild boar population may suggest an endemic form of the disease. This may further complicate eradication programs and the protection of domestic pig farms from ASF outbreaks. An additional and major reason to control the ASF epizootic is the continuing military Russian offensive in Ukraine.
Collapse
Affiliation(s)
- Hanna Omelchenko
- Department of Normal and Pathological Anatomy and Physiology of Animals, Poltava State Agrarian University, 36-0036 Poltava, Ukraine
| | - Natalia O. Avramenko
- Department of Normal and Pathological Anatomy and Physiology of Animals, Poltava State Agrarian University, 36-0036 Poltava, Ukraine
| | - Maksym O. Petrenko
- Department of Normal and Pathological Anatomy and Physiology of Animals, Poltava State Agrarian University, 36-0036 Poltava, Ukraine
| | | | - Zygmunt Pejsak
- Department of Infectious and Parasitic Diseases, The University Centre of Veterinary Medicine JU-AU, 31-120 Krakow, Poland
| | - Grzegorz Woźniakowski
- Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
5
|
Penrith ML, Kivaria FM. One hundred years of African swine fever in Africa: where have we been, where are we now, where are we going? Transbound Emerg Dis 2022; 69:e1179-e1200. [PMID: 35104041 DOI: 10.1111/tbed.14466] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/26/2022]
Abstract
One hundred years have passed since the first paper on African swine fever (ASF) was published by Montgomery in 1921. With no vaccine, ineffectiveness of prevention and control measures, and lack of common interest in eradicating the disease, ASF has proven to be one of the most devastating diseases because of its significant sanitary and socioeconomic consequences. The rapid spread of the disease on the European and Asian continents and its recent appearance in the Caribbean puts all countries at great risk because of global trade. The incidence of ASF has also increased on the African continent over the last few decades, extending its distribution far beyond the area in which the ancient sylvatic cycle is present with its complex epidemiological transmission pathways involving virus reservoirs in ticks and wild African Suidae. Both in that area and elsewhere, efficient transmission by infected domestic pigs and virus resistance in infected animal products and fomites mean that human driven factors along the pig value chain are the dominant impediments for its prevention, control, and eradication. Control efforts in Africa are furthermore hampered by the lack of information about the size and location of the fast-growing pig population, particularly in the dynamic smallholder sector that constitutes up to 90% of pig production in the region. A vaccine that will be both affordable and effective against multiple genotypes of the virus is not a short-term reality. Therefore, a strategy for management of ASF in sub-Saharan Africa is needed to provide a roadmap for the way forward for the continent. This review explores the progression of ASF and our knowledge of it through research over a century in Africa, our current understanding of ASF, and what must be done going forwards to improve the African situation and contribute to global prevention and control. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mary Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Fredrick Mathias Kivaria
- Food and Agriculture Organization of the UN, Block P, Level 3, United Nations Complex, UN Avenue, Gigiri, Nairobi, PO Box: 30470, GPO, Nairobi, 00100, Kenya
| |
Collapse
|
6
|
Brookes VJ, Barrett TE, Ward MP, Roby JA, Hernandez-Jover M, Cross EM, Donnelly CM, Barnes TS, Wilson CS, Khalfan S. A scoping review of African swine fever virus spread between domestic and free-living pigs. Transbound Emerg Dis 2021; 68:2643-2656. [PMID: 33455062 DOI: 10.1111/tbed.13993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Since 2007, African swine fever virus (ASFV) has spread to countries in Europe, Asia and Oceania and has caused devastating impacts on pigs and the pork industry. Transmission can be direct or indirect, and epidemiologic scenarios have been described in which spread occurs between free-living and domestic pigs. The purpose of this scoping review was to identify primary research in which authors made statements to support ASFV transmission between free-living and domestic pigs and assess the circumstances in which transmission events occurred. A search was conducted in five bibliographic databases and the grey literature. Two reviewers (from a team of ten) independently screened each record and charted data (demographics of the pig populations, their husbandry [domestic pigs] and habitat [free-living pigs], the spatial and temporal distribution of ASF, the occurrence or burden of ASF in the populations, and whether ticks were present in the geographic range of the pig populations). Data synthesis included statistics and a narrative summary. From 1,349 records screened, data were charted from 46 individual studies published from 1985 to 2020. Outbreak investigations revealed that whilst poor biosecurity of domestic pig operations was often reported, direct contact resulting in transmission between free-living and domestic pigs was rarely reported. Studies in which quantitative associations were made generally found that spread within populations was more important than spread between populations, although this was not always the case, particularly when domestic pigs were free-ranging. We conclude that there is limited evidence that transmission of ASFV between free-living and domestic pigs is an important feature of ASF epidemiology, especially in the current ASF epidemic in Europe and the Russian Federation. If ASFV elimination cannot be achieved in free-living pigs, compartmentalization of domestic pig populations from free-living populations via biosecurity strategies could be used to support trade of domestic pigs.
Collapse
Affiliation(s)
- Victoria J Brookes
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Tamille E Barrett
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Michael P Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Justin A Roby
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
- School of Biomedical Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Marta Hernandez-Jover
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Emily M Cross
- School of Biomedical Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Camilla M Donnelly
- School of Biomedical Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Tamsin S Barnes
- The University of Queensland, School of Veterinary Science, Gatton, Qld, Australia
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Gatton, Qld, Australia
| | - Cara S Wilson
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| | - Shahid Khalfan
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, NSW, Australia
| |
Collapse
|
7
|
Oleaga A, Carnero-Morán A, Valero ML, Pérez-Sánchez R. Proteomics informed by transcriptomics for a qualitative and quantitative analysis of the sialoproteome of adult Ornithodoros moubata ticks. Parasit Vectors 2021; 14:396. [PMID: 34380568 PMCID: PMC8356541 DOI: 10.1186/s13071-021-04892-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023] Open
Abstract
Background The argasid tick Ornithodoros moubata is the main vector in mainland Africa of African swine fever virus and the spirochete Borrelia duttoni, which causes human relapsing fever. The elimination of populations of O. moubata would contribute to the prevention and control of these two serious diseases. Anti-tick vaccines are an eco-friendly and sustainable means of eliminating tick populations. Tick saliva forms part of the tick-host interface, and knowledge of its composition is key to the identification and selection of vaccine candidate antigens. The aim of the present work is to increase the body of data on the composition of the saliva proteome of adult O. moubata ticks, particularly of females, since in-depth knowledge of the O. moubata sialome will allow the identification and selection of novel salivary antigens as targets for tick vaccines. Methods We analysed samples of female and male saliva using two different mass spectrometry (MS) approaches: data-dependent acquisition liquid chromatography-tandem MS (LC–MS/MS) and sequential window acquisition of all theoretical fragment ion spectra–MS (SWATH-MS). To maximise the number of proteins identified, a proteomics informed by transcriptomics analysis was applied using the O. moubata salivary transcriptomic dataset previously obtained by RNA-Seq. Results SWATH-MS proved to be superior to LC–MS/MS for the study of female saliva, since it identified 61.2% more proteins than the latter, the reproducibility of results was enhanced with its use, and it provided a quantitative picture of salivary components. In total, we identified 299 non-redundant proteins in the saliva of O. moubata, and quantified the expression of 165 of these in both male and female saliva, among which 13 were significantly overexpressed in females and 40 in males. These results indicate important quantitative differences in the saliva proteome between the sexes. Conclusions This work expands our knowledge of the O. moubata sialome, particularly that of females, by increasing the number of identified novel salivary proteins, which have different functions at the tick–host feeding interface. This new knowledge taken together with information on the O. moubata sialotranscriptome will allow a more rational selection of salivary candidates as antigen targets for tick vaccine development. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04892-2.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Salamanca, Spain.
| | - Angel Carnero-Morán
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Salamanca, Spain
| | - M Luz Valero
- Proteomics Section, Central Service for Experimental Research, University of Valencia, Valencia, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Salamanca, Spain
| |
Collapse
|
8
|
ANTIBODY PREVALENCE TO AFRICAN SWINE FEVER VIRUS, MYCOBACTERIUM BOVIS, FOOT-AND-MOUTH DISEASE VIRUS, RIFT VALLEY FEVER VIRUS, INFLUENZA A VIRUS, AND BRUCELLA AND LEPTOSPIRA SPP. IN FREE-RANGING WARTHOG (PHACOCHOERUS AFRICANUS) POPULATIONS IN SOUTH AFRICA. J Wildl Dis 2021; 57:60-70. [PMID: 33635986 DOI: 10.7589/jwd-d-20-00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022]
Abstract
The warthog (Phacochoerus africanus) can be used as a model for investigating disease transmission at the human, wildlife, and livestock interface. An omnivore and scavenger, a warthog moves freely between natural ecotypes, farmland, and human communities and is susceptible to diseases of zoonotic, agricultural, and conservation concern. A retrospective study using 100 individual serum samples collected from May 1999 to August 2016 was performed to determine antibody prevalence to seven pathogens in warthogs from five locations in northeastern South Africa. Higher prevalence of antibodies to African swine fever virus and Mycobacterium bovis were detected in warthogs from the Greater Kruger National Park ecosystem in comparison to lower prevalence of antibodies to M. bovis and no antibodies to African swine fever virus in warthogs from uMhkuze Game Reserve. Low prevalence of antibodies to foot-and-mouth disease virus, Rift Valley fever virus, and influenza A virus was detected in all locations, and no antibodies against Brucella and Leptospira spp. were detected. No statistically significant difference in antibody prevalence was found between sexes for any disease. At the univariate analysis, M. bovis seropositivity was significantly different among age categories, with 49% (35/71) of adults found positive versus 29% (4/14) of juveniles and 9% (1/11) of sub-adults (Fisher's exact test, P=0.020), and between the sampling locations (Fisher's exact test, P=0.001). The multivariate model results indicated that juvenile warthogs had lower odds of testing positive to M. bovis antibodies than adults (juveniles' odds ratio [OR]=0.17, 95% confidence interval [CI]: 0.02-1.0), although this result was not statistically significant at the 5% level (P=0.052). For warthogs sampled at Satara Buffalo Camp, the odds (OR=0.22, 95% CI: 0.035-0.96) of being M. bovis antibody positive were significantly lower (P=0.043) than for warthogs sampled at Skukuza. Of particular interest in this study was the detection of warthogs seropositive for influenza A virus.
Collapse
|
9
|
Mapendere C, Jori F, Etter EMC, Ferguson JHW. Do wild suids from Ndumo Game Reserve, South Africa, play a role in the maintenance and transmission of African swine fever to domestic pigs? Transbound Emerg Dis 2021; 68:2774-2786. [PMID: 33877746 DOI: 10.1111/tbed.14090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Warthogs (Phacochoerus africanus) and bushpigs (Potamochoerus larvatus) are considered as the wild reservoirs of ASF. They are both present in Ndumo Game Reserve (NGR), located in the Northern South African Province of KwaZulu on the border with Mozambique. In that area, the occurrence of tick-warthog sylvatic cycle of ASF has been suspected for years. To assess if wild suids represent a risk of ASF virus spillover to domestic pigs, wild suid abundance and incursions outside NGR boundaries were estimated using transect counts, fence patrols and camera traps. Also, the presence of Ornithodoros ticks was explored in 35 warthog burrows within NGR. In addition, blood samples were taken from 67 domestic pig farms located outside NGR to be tested for ASF antibodies. Information on interactions between domestic and wild suids and ASF occurrence was gathered using interviews with pig farmers (n = 254) in the study area. In conclusion, the bushpigs and warthog's population estimates in NGR are 5 and 3-5 individuals/km2 , respectively. Both species move out of the reserve regularly (15.4 warthogs/day and 6.35 bushpigs/day), with movements significantly increasing in the dry season. Some farmers observed warthogs and bushpigs as far as 8 and 19 km from NGR, respectively, but no reports of direct wild-domestic suids interactions or ASF outbreaks. Also, no soft ticks were detected in all warthog burrows and all the pig blood samples were negative for ASF antibodies. The absence of ticks in warthog burrows, the absence of antibodies in pigs sampled, the absence of reported outbreaks, and no familiarity with ASF in the study area, suggest that a sylvatic cycle of ASF is, at present, unlikely in NGR. This conclusion must be confirmed by a larger survey of warthog burrows and monitoring potential antibodies in warthogs from NGR.
Collapse
Affiliation(s)
- Cynthia Mapendere
- Centre for Environmental Studies, Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Ferran Jori
- CIRAD, UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, CIRAD, INRA, University of Montpellier, Montpellier, France.,Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Eric M C Etter
- CIRAD, UMR Animal, Santé, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, CIRAD, INRA, University of Montpellier, Montpellier, France.,Department of Production Animal Studies, Faculty of Veterinary Sciences, University of Pretoria, Pretoria, South Africa
| | - Jan Helenus W Ferguson
- Centre for Environmental Studies, Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Penrith ML, Bastos A, Chenais E. With or without a Vaccine-A Review of Complementary and Alternative Approaches to Managing African Swine Fever in Resource-Constrained Smallholder Settings. Vaccines (Basel) 2021; 9:vaccines9020116. [PMID: 33540948 PMCID: PMC7913123 DOI: 10.3390/vaccines9020116] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
The spectacular recent spread of African swine fever (ASF) in Eastern Europe and Asia has been strongly associated, as it is in the endemic areas in Africa, with free-ranging pig populations and low-biosecurity backyard pig farming. Managing the disease in wild boar populations and in circumstances where the disease in domestic pigs is largely driven by poverty is particularly challenging and may remain so even in the presence of effective vaccines. The only option currently available to prevent ASF is strict biosecurity. Among small-scale pig farmers biosecurity measures are often considered unaffordable or impossible to implement. However, as outbreaks of ASF are also unaffordable, the adoption of basic biosecurity measures is imperative to achieve control and prevent losses. Biosecurity measures can be adapted to fit smallholder contexts, culture and costs. A longer-term approach that could prove valuable particularly for free-ranging pig populations would be exploitation of innate resistance to the virus, which is fully effective in wild African suids and has been observed in some domestic pig populations in areas of prolonged endemicity. We explore available options for preventing ASF in terms of feasibility, practicality and affordability among domestic pig populations that are at greatest risk of exposure to ASF.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
- Correspondence: ; Tel.: +27-12-342-1514
| | - Armanda Bastos
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa;
| | - Erika Chenais
- Department of Disease Control and Epidemiology, National Veterinary Institute, S-751 89 Uppsala, Sweden;
| |
Collapse
|
11
|
Vergne T, Andraud M, Bonnet S, De Regge N, Desquesnes M, Fite J, Etore F, Garigliany MM, Jori F, Lempereur L, Le Potier MF, Quillery E, Saegerman C, Vial L, Bouhsira E. Mechanical transmission of African swine fever virus by Stomoxys calcitrans: Insights from a mechanistic model. Transbound Emerg Dis 2020; 68:1541-1549. [PMID: 32910533 DOI: 10.1111/tbed.13824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
African swine fever (ASF) represents a global threat with huge economic consequences for the swine industry. Even though direct contact is likely to be the main transmission route from infected to susceptible hosts, recent epidemiological investigations have raised questions regarding the role of haematophagous arthropods, in particular the stable fly (Stomoxys calcitrans). In this study, we developed a mechanistic vector-borne transmission model for ASF virus (ASFV) within an outdoor domestic pig farm in order to assess the relative contribution of stable flies to the spread of the virus. The model was fitted to the ecology of the vector, its blood-feeding behaviour and pig-to-pig transmission dynamic. Model outputs suggested that in a context of low abundance (<5 flies per pig), stable flies would play a minor role in the spread of ASFV, as they are expected to be responsible for around 10% of transmission events. However, with abundances of 20 and 50 stable flies per pig, the vector-borne transmission would likely be responsible for almost 30% and 50% of transmission events, respectively. In these situations, time to reach a pig mortality of 10% would be reduced by around 26% and 40%, respectively. The sensitivity analysis emphasized that the expected relative contribution of stable flies was strongly dependent on the volume of blood they regurgitated and the infectious dose for pigs. This study identified crucial knowledge gaps that need to be filled in order to assess more precisely the potential contribution of stable flies to the spread of ASFV, including a quantitative description of the populations of haematophagous arthropods that could be found in pig farms, a better understanding of blood-feeding behaviours of stable flies and the quantification of the probability that stable flies partially fed with infectious blood transmit the virus to a susceptible pig during a subsequent blood-feeding attempt.
Collapse
Affiliation(s)
- Timothée Vergne
- UMR ENVT-INRAE IHAP, National Veterinary School of Toulouse, France
| | - Mathieu Andraud
- Unité d'Epidémiologie et de Bien-être Animal, Laboratoire de Ploufragan/Plouzané/Niort, Anses, France
| | - Sarah Bonnet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort Cedex, France
| | - Nick De Regge
- Sciensano, Scientific Direction Infectious Diseases in Animals, Brussels, Belgium
| | - Marc Desquesnes
- InterTryp, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Florence Etore
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Ferran Jori
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | | | | | - Elsa Quillery
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Laurence Vial
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Emilie Bouhsira
- UMR ENVT-INRAE InTheRes, National Veterinary School of Toulouse, Toulouse, France
| |
Collapse
|
12
|
Chambaro HM, Sasaki M, Sinkala Y, Gonzalez G, Squarre D, Fandamu P, Lubaba C, Mataa L, Shawa M, Mwape KE, Gabriël S, Chembensofu M, Carr MJ, Hall WW, Qiu Y, Kajihara M, Takada A, Orba Y, Simulundu E, Sawa H. Evidence for exposure of asymptomatic domestic pigs to African swine fever virus during an inter-epidemic period in Zambia. Transbound Emerg Dis 2020; 67:2741-2752. [PMID: 32434281 DOI: 10.1111/tbed.13630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 04/05/2020] [Accepted: 05/14/2020] [Indexed: 11/29/2022]
Abstract
African swine fever (ASF) causes persistent outbreaks in endemic and non-endemic regions in Zambia. However, the epidemiology of the disease is poorly understood, particularly during the inter-epidemic periods. We conducted surveillance for ASF in asymptomatic domestic pigs and soft ticks in selected Zambian provinces. While serum samples (n = 1,134) were collected from crossbred pigs from all study sites between 2014 and 2017, whole blood (n = 300) was collected from both crossbred and indigenous pigs in Eastern Province (EP) in 2017. Soft ticks were collected from Mosi-oa-Tunya National Park in Southern Province (SP) in 2019. Sera were screened for antibodies against ASF by ELISA while genome detection in whole blood and soft ticks was conducted by PCR. Ticks were identified morphologically and by phylogenetic analysis of the 16S rRNA gene. Seroprevalence was highest in EP (50.9%, 95% CI [47.0-54.9]) compared to significantly lower rates in SP (2.9%, 95% CI [1.6-5.1]). No antibodies to ASFV were detected in Lusaka Province. In EP, the prevalence of ASFV genome was 11.7% (35/300), significantly higher (OR = 6.2, 95% CI [2.4-16.6]) in indigenous pigs compared to crossbred pigs. The pooled prevalence of ASFV genome in ticks was 11.0%, 95% CI [8.5-13.9]. Free-range husbandry system was the only factor that was significantly associated with seropositive (p < .0001, OR = 39.3) and PCR-positive results (p < .001, OR = 5.7). Phylogenetically, based on the p72 gene, ASFV from Ornithodoros moubata ticks detected in this study belonged to genotype I, but they separated into two distinct clusters. Besides confirming ASF endemicity in EP and the presence of ASFV-infected ticks in SP, these results provide evidence for exposure of domestic pigs to ASFV in non-endemic regions during the inter-epidemic period.
Collapse
Affiliation(s)
- Herman M Chambaro
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Ministry of Fisheries and Livestock, Lusaka, Zambia.,Virology Unit, Central Veterinary Research Institute, Lusaka, Zambia
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yona Sinkala
- Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - David Squarre
- Wildlife Veterinary Unit, Department of National Parks and Wildlife, Lusaka, Zambia.,Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland
| | - Paul Fandamu
- Ministry of Fisheries and Livestock, Lusaka, Zambia
| | | | | | - Misheck Shawa
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kabemba E Mwape
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Sarah Gabriël
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Mwelwa Chembensofu
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Michael J Carr
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Global Virus Network, Baltimore, MD, USA
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Masahiro Kajihara
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Ayato Takada
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, MD, USA
| |
Collapse
|
13
|
Rodrigues CMF, Garcia HA, Rodrigues AC, Pereira DL, Pereira CL, Viola LB, Neves L, Camargo EP, Gibson W, Teixeira MMG. Expanding our knowledge on African trypanosomes of the subgenus Pycnomonas: A novel Trypanosoma suis-like in tsetse flies, livestock and wild ruminants sympatric with Trypanosoma suis in Mozambique. INFECTION GENETICS AND EVOLUTION 2019; 78:104143. [PMID: 31837483 DOI: 10.1016/j.meegid.2019.104143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022]
Abstract
Among the subgenera of African tsetse-transmitted trypanosomes pathogenic to livestock, the least known is the subgenus Pycnomonas, which contains a single species, Trypanosoma suis (TSU), a pathogen of domestic pigs first reported in 1905 and recently rediscovered in Tanzania and Mozambique. Analysis by Fluorescent Fragment Length Barcoding (FFLB) revealed an infection rate of 20.3% (108 out of 530 tsetse flies) in a recent study in the Gorongosa and Niassa wildlife reserves in Mozambique, and demonstrated two groups of Pycnomonas trypanosomes: one (14.1%, 75 flies) showing an FFLB profile identical to the reference TSU from Tanzania, and the other (6.2%, 33 flies) differing slightly from reference TSU and designated Trypanosoma suis-like (TSU-L). Phylogenetic analyses tightly clustered TSU and TSU-L from Mozambique with TSU from Tanzania forming the clade Pycnomonas positioned between the subgenera Trypanozoon and Nannomonas. Our preliminarily exploration of host ranges of Pycnomonas trypanosomes revealed TSU exclusively in warthogs while TSU-L was identified, for the first time for a member of the subgenus Pycnomonas, in ruminants (antelopes, Cape buffalo, and in domestic cattle and goats). The preferential blood meal sources of tsetse flies harbouring TSU and TSU-L were wild suids, and most of these flies concomitantly harboured the porcine trypanosomes T. simiae, T. simiae Tsavo, and T. godfreyi. Therefore, our findings support the link of TSU with suids while TSU-L remains to be comprehensively investigated in these hosts. Our results greatly expand our knowledge of the diversity, hosts, vectors, and epidemiology of Pycnomonas trypanosomes. Due to shortcomings of available molecular diagnostic methods, a relevant cohort of trypanosomes transmitted by tsetse flies to ungulates, especially suids, has been neglected or most likely misidentified. The method employed in the present study enables an accurate discrimination of trypanosome species and genotypes and, hence, a re-evaluation of the "lost" subgenus Pycnomonas and of porcine trypanosomes in general, the most neglected group of African trypanosomes pathogenic to ungulates.
Collapse
Affiliation(s)
- Carla M F Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; INCT-EpiAmO - Instituto Nacional de Epidemiologia na Amazônia Ocidental, Brazil
| | - Herakles A Garcia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Adriana C Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Carlos Lopes Pereira
- National Administration of Conservation Areas (ANAC), Ministry of Land, Environment and Rural Development, Maputo, Mozambique
| | | | - Luis Neves
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa; Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; INCT-EpiAmO - Instituto Nacional de Epidemiologia na Amazônia Ocidental, Brazil
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; INCT-EpiAmO - Instituto Nacional de Epidemiologia na Amazônia Ocidental, Brazil.
| |
Collapse
|
14
|
Mulumba-Mfumu LK, Saegerman C, Dixon LK, Madimba KC, Kazadi E, Mukalakata NT, Oura CAL, Chenais E, Masembe C, Ståhl K, Thiry E, Penrith ML. African swine fever: Update on Eastern, Central and Southern Africa. Transbound Emerg Dis 2019; 66:1462-1480. [PMID: 30920725 DOI: 10.1111/tbed.13187] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 11/28/2022]
Abstract
Control of African swine fever (ASF) in countries in Eastern, Central and Southern Africa (ECSA) is particularly complex owing to the presence of all three known epidemiological cycles of maintenance of the virus, namely an ancient sylvatic cycle involving the natural hosts and vectors of the disease as well as domestic cycles with and without involvement of natural vectors. While the situation is well documented in some of the countries, for others very little information is available. In spite of the unfavourable ASF situation, the pig population in the sub-region has grown exponentially in recent decades and is likely to continue to grow in response to rapid urban growth resulting in increasing demand for animal protein by populations that are no longer engaged in livestock production. Better management of ASF will be essential to permit the pig sector to reach its full potential as a supplier of high quality protein and a source of income to improve livelihoods and create wealth. No vaccine is currently available and it is likely that, in the near future, the sub-region will continue to rely on the implementation of preventive measures, based on the epidemiology of the disease, to avoid both the devastating losses that outbreaks can cause and the risk the sub-region poses to other parts of Africa and the world. The current situation in the ECSA sub-region is reviewed and gaps in knowledge are identified in order to support ongoing strategy development for managing ASF in endemic areas.
Collapse
Affiliation(s)
- Léopold K Mulumba-Mfumu
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.,Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR- ULiège), Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR- ULiège), Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | | | - Kapanga C Madimba
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Eric Kazadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Ndeji T Mukalakata
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Chris A L Oura
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, Champ Fleurs, Trinidad and Tobago
| | - Erika Chenais
- Department of Disease Control and Epidemiology, SVA, Uppsala, Sweden
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Karl Ståhl
- Department of Disease Control and Epidemiology, SVA, Uppsala, Sweden
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Mary Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
15
|
Penrith ML, Bastos AD, Etter EMC, Beltrán-Alcrudo D. Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socio-economic imperatives. Transbound Emerg Dis 2019; 66:672-686. [PMID: 30633851 DOI: 10.1111/tbed.13117] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022]
Abstract
African swine fever (ASF) is believed to have evolved in eastern and southern Africa in a sylvatic cycle between common warthogs (Phacochoerus africanus) and argasid ticks of the Ornithodoros moubata complex that live in their burrows. The involvement of warthogs and possibly other wild suids in the maintenance of ASF virus means that the infection cannot be eradicated from Africa, but only prevented and controlled in domestic pig populations. Historically, outbreaks of ASF in domestic pigs in Africa were almost invariably linked to the presence of warthogs, but subsequent investigations of the disease in pigs revealed the presence of another cycle involving domestic pigs and ticks, with a third cycle becoming apparent when the disease expanded into West Africa where the sylvatic cycle is not present. The increase in ASF outbreaks that has accompanied the exponential growth of the African pig population over the last three decades has heralded a shift in the epidemiology of ASF in Africa, and the growing importance of the pig husbandry and trade in the maintenance and spread of ASF. This review, which focuses on the ASF situation between 1989 and 2017, suggests a minor role for wild suids compared with the domestic cycle, driven by socio-economic factors that determine the ability of producers to implement the control measures needed for better management of ASF in Africa.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Armanda Duarte Bastos
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Eric M C Etter
- Department of Production Animal Studies, University of Pretoria, Pretoria, South Africa.,CIRAD, UMR Animal Santé, Territoires, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, Univ. Montpellier, CIRAD, INRA, Montpellier, France
| | - Daniel Beltrán-Alcrudo
- Regional Office for Europe and Central Asia, Food and Agriculture Organization of the United Nations, Budapest, Hungary
| |
Collapse
|
16
|
Evaluation of the protective efficacy of Ornithodoros moubata midgut membrane antigens selected using omics and in silico prediction algorithms. Ticks Tick Borne Dis 2018; 9:1158-1172. [PMID: 29728336 DOI: 10.1016/j.ttbdis.2018.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
Abstract
The African argasid tick Ornithodoros moubata transmits two important pathogens, the African swine fever virus and the spirochete Borrelia duttoni, the cause of human relapsing fever. To date, only conventional control measures such as widespread application of acaricides, strict control measures, and animal movement restrictions have been implemented to confine these diseases. Vaccines against tick infestations have the potential to be among the most efficacious interventions for the management of these diseases. Plasma membrane-associated proteins upregulated in tick midgut cells in response to blood feeding and digestion are thought to play vital functions in tick physiology and in the transmission of tick-borne pathogens. In addition, their antigenic extracellular regions are easily accessible to antibodies synthesised by immunised hosts, which makes them interesting targets for tick vaccine design. The mialomes (midgut transcriptomes and proteomes) of unfed O. moubata females and of engorged females at 48 h post-feeding have recently been obtained, providing a wealth of predicted midgut protein sequences. In the current study, these mialomes were screened using in silico tools to select predicted antigenic transmembrane proteins that were upregulated after feeding (516 proteins). The functionally annotatable proteins from this list (396 proteins) were then manually inspected following additional criteria in order to select a finite and easy-manageable number of candidate antigens for tick vaccine design. The extracellular antigenic regions of five of these candidates were obtained either as truncated recombinant proteins or as KLH-conjugated synthetic peptides, formulated in Freund's adjuvant, and individually administered to rabbits to assess their immunogenicity and protective potential against infestations by O. moubata and the Iberian species Ornithodoros erraticus. All candidates were highly immunogenic, but provided low protection against the O. moubata infestations (ranging from 7% to 39%). Interestingly, all candidates except one also protected against infestations by O. erraticus, achieving higher efficacies against this species (from 20% to 66%). According to their protective potential, three of the five antigens tested (Om17, Om86 and OM99) were considered little suitable for use in tick vaccines, while the other two (OM85 and OM03) were considered useful antigens for tick vaccine development, deserving further studies.
Collapse
|
17
|
Quembo CJ, Jori F, Vosloo W, Heath L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg Dis 2018; 65:420-431. [PMID: 28921895 PMCID: PMC5873395 DOI: 10.1111/tbed.12700] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 11/27/2022]
Abstract
African swine fever virus (ASFV) is one of the most threatening infectious diseases of pigs. There are not sufficient data to indicate the importance of the sylvatic cycle in the spread and maintenance of the disease locally and potentially, globally. To assess the capacity to maintain ASF in the environment, we investigated the presence of soft tickreservoirs of ASFV in Gorongosa National Park (GNP) and its surrounding villages. A total of 1,658 soft ticks were recovered from warthog burrows and pig pens at the wildlife/livestock interface of the GNP and viral DNA was confirmed by nested PCR in 19% of Ornithodoros porcinus porcinus and 15% of O. p. domesticus. However, isolation of ASFV was only achieved in approximately 50% of the PCR-positive samples with nineteen haemadsorbing virus isolates recovered. These were genotyped using a combination of partial sequencing of the B646L gene (p72) and analysis of the central variable region (CVR) of the B602L gene. Eleven isolates were classified as belonging to genotype II and homologous to contemporary isolates from southern Africa, the Indian Ocean and eastern Europe. Three isolates grouped within genotype V and were similar to previous isolates from Mozambique and Malawi. The remaining five isolates constituted a new, previously unidentified genotype, designated genotype XXIV. This work confirms for the first time that the virus currently circulating in eastern Europe is likely to have a wildlife origin, and that the large diversity of ASFV maintained in wildlife areas can act as a permanent sources of different strains for the domestic pig value chain in Mozambique and beyond its boundaries. Their genetic similarity to ASFV strains currently spreading across Europe justifies the need to continue studying the sylvatic cycle in this African country and other parts of southern Africa in order to identify potential hot spots of ASF emergence and target surveillance and control efforts.
Collapse
Affiliation(s)
- C. J. Quembo
- Transboundary Animal Disease ProgramOnderstepoort Veterinary InstitutePretoriaSouth Africa
- Department of Veterinary Tropical DiseasesFaculty of Veterinary SciencesUniversity of PretoriaPretoriaSouth Africa
- Laboratório Regional de Veterinária em ChimoioCentro Zonal de Investigação Agrária da Zona CentroInstituto de Investigação Agrária de MoçambiqueChimoioMozambique
| | - F. Jori
- UMR ASTRECIRADMontpellierFrance
- Department of Zoology & EntomologyMammal Research InstituteUniversity of PretoriaPretoriaSouth Africa
| | - W. Vosloo
- Transboundary Animal Disease ProgramOnderstepoort Veterinary InstitutePretoriaSouth Africa
- Department of Veterinary Tropical DiseasesFaculty of Veterinary SciencesUniversity of PretoriaPretoriaSouth Africa
- Australian Animal Health LaboratoryGeelongVic.Australia
| | - L. Heath
- Transboundary Animal Disease ProgramOnderstepoort Veterinary InstitutePretoriaSouth Africa
| |
Collapse
|
18
|
Alkhamis MA, Gallardo C, Jurado C, Soler A, Arias M, Sánchez-Vizcaíno JM. Phylodynamics and evolutionary epidemiology of African swine fever p72-CVR genes in Eurasia and Africa. PLoS One 2018; 13:e0192565. [PMID: 29489860 PMCID: PMC5831051 DOI: 10.1371/journal.pone.0192565] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/25/2018] [Indexed: 12/11/2022] Open
Abstract
African swine fever (ASF) is a complex infectious disease of swine that constitutes devastating impacts on animal health and the world economy. Here, we investigated the evolutionary epidemiology of ASF virus (ASFV) in Eurasia and Africa using the concatenated gene sequences of the viral protein 72 and the central variable region of isolates collected between 1960 and 2015. We used Bayesian phylodynamic models to reconstruct the evolutionary history of the virus, to identify virus population demographics and to quantify dispersal patterns between host species. Results suggest that ASFV exhibited a significantly high evolutionary rate and population growth through time since its divergence in the 18th century from East Africa, with no signs of decline till recent years. This increase corresponds to the growing pig trade activities between continents during the 19th century, and may be attributed to an evolutionary drift that resulted from either continuous circulation or maintenance of the virus within Africa and Eurasia. Furthermore, results implicate wild suids as the ancestral host species (root state posterior probability = 0.87) for ASFV in the early 1700s in Africa. Moreover, results indicate the transmission cycle between wild suids and pigs is an important cycle for ASFV spread and maintenance in pig populations, while ticks are an important natural reservoir that can facilitate ASFV spread and maintenance in wild swine populations. We illustrated the prospects of phylodynamic methods in improving risk-based surveillance, support of effective animal health policies, and epidemic preparedness in countries at high risk of ASFV incursion.
Collapse
Affiliation(s)
- Moh A Alkhamis
- Faculty of Public Heath, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Carmina Gallardo
- European Union Reference Laboratory for African swine fever. Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Cristina Jurado
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Soler
- European Union Reference Laboratory for African swine fever. Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Marisa Arias
- European Union Reference Laboratory for African swine fever. Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - José M Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
19
|
The Epidemiology of African Swine Fever in "Nonendemic" Regions of Zambia (1989-2015): Implications for Disease Prevention and Control. Viruses 2017; 9:v9090236. [PMID: 28832525 PMCID: PMC5618003 DOI: 10.3390/v9090236] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022] Open
Abstract
African swine fever (ASF) is a highly contagious and deadly viral hemorrhagic disease of swine. In Zambia, ASF was first reported in 1912 in Eastern Province and is currently believed to be endemic in that province only. Strict quarantine measures implemented at the Luangwa River Bridge, the only surface outlet from Eastern Province, appeared to be successful in restricting the disease. However, in 1989, an outbreak occurred for the first time outside the endemic province. Sporadic outbreaks have since occurred almost throughout the country. These events have brought into acute focus our limited understanding of the epidemiology of ASF in Zambia. Here, we review the epidemiology of the disease in areas considered nonendemic from 1989 to 2015. Comprehensive sequence analysis conducted on genetic data of ASF viruses (ASFVs) detected in domestic pigs revealed that p72 genotypes I, II, VIII and XIV have been involved in causing ASF outbreaks in swine during the study period. With the exception of the 1989 outbreak, we found no concrete evidence of dissemination of ASFVs from Eastern Province to other parts of the country. Our analyses revealed a complex epidemiology of the disease with a possibility of sylvatic cycle involvement. Trade and/or movement of pigs and their products, both within and across international borders, appear to have been the major factor in ASFV dissemination. Since ASFVs with the potential to cause countrywide and possibly regional outbreaks, could emerge from “nonendemic regions”, the current ASF control policy in Zambia requires a dramatic shift to ensure a more sustainable pig industry.
Collapse
|
20
|
Oleaga A, Obolo-Mvoulouga P, Manzano-Román R, Pérez-Sánchez R. A proteomic insight into the midgut proteome of Ornithodoros moubata females reveals novel information on blood digestion in argasid ticks. Parasit Vectors 2017; 10:366. [PMID: 28764815 PMCID: PMC5540513 DOI: 10.1186/s13071-017-2300-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
Background The argasid tick Ornithodoros moubata is the main African vector of the human relapsing fever agent Borrelia duttoni and the African swine fever virus. Together with saliva, the tick midgut forms part of the host-tick-pathogen interface, and numerous midgut proteins play key functions in the blood digestion-related process and the infection and transmission of pathogens. This work explores the composition of the midgut proteome of unfed and fed O. moubata females with the aim to complete the biological information already obtained from the midgut transcriptome and provide a more robust and comprehensive perspective of this biological system. Methods Midgut tissues taken from females before feeding and 48 h after feeding were subjected to LC/MS-MS analysis. After functional characterization and classification of the proteins identified, the differences in the proteome between unfed and fed females were analysed and discussed. Additionally, a detailed analysis of particular groups of proteins that are involved in the processes of nutrient digestion and responses to the oxidative stress was carried out. Results 1491 non-redundant tick proteins were identified: 1132 of them in the midgut of unfed ticks, 1138 in the midgut of fed ticks, and up to 779 shared by both physiological conditions. Overall, the comparative analysis of the midgut proteomes of O. moubata females before and after feeding did not reveal great differences in the number or class of proteins expressed, enzymatic composition or functional classification. Conclusions The hemoglobinolytic system in ixodids and argasids is very similar in spite of the fact that they display very different feeding and reproductive strategies. Although the main source of nutrients in ticks are proteins, lipids and carbohydrates also constitute significant nutritional sources and play an important part in the process of blood digestion. The genes and proteins involved in intracellular transport mechanisms, defensive responses, detoxifying responses and stress responses seem to be closely regulated, highlighting the complexity and importance of these processes in tick biology, which in turn assigns them a great interest as targets for therapeutic and immunological interventions. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2300-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain.
| | - Prosper Obolo-Mvoulouga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| | - Raúl Manzano-Román
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| |
Collapse
|
21
|
Pérez-Sánchez R, Oleaga A. Acaricidal activity of fluralaner against Ornithodoros moubata and Ornithodoros erraticus argasid ticks evaluated through in vitro feeding. Vet Parasitol 2017; 243:119-124. [PMID: 28807279 DOI: 10.1016/j.vetpar.2017.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023]
Abstract
Ornithodoros erraticus and Ornithodoros moubata are argasid tick vectors that transmit severe diseases such as African swine fever and human relapsing fever. Elimination of the synanthropic populations of these vectors would facilitate the control of these diseases. Fluralaner is a novel isoxazoline that selectively blocks the GABA- and glutamate-gated channels, providing potent insecticidal and acaricidal activity. The aim of the current study was to provide quantitative data on the susceptibility of males, females and third nymphal instar of O. erraticus and O. moubata to fluralaner through in vitro feeding exposure. Fluralaner activity against these developmental stages and species was assessed by feeding the ticks on ovine blood medicated with decreasing fluralaner concentrations between 1 and 10-8μg/mL. Tick mortality was measured at 4, 24 and 48h and 1, 2 and 3 weeks post-feeding. Tests included solvent-treated and untreated blood controls. Fluralaner was extremely active against O. erraticus, with mean lethal concentrations 50 (LC50) and 95 (LC95) of 2.0×10-8 and 5.4×10-8μg/mL, respectively. Fluralaner was also highly active against O. moubata, showing a mean LC50 of 1.5×10-6μg/mL and a mean LC95 of 1.8×10-3μg/mL. In the latter species, the most susceptible life stages were the females (LC95 1.4×10-4μg/mL). Fluralaner demonstrated potent acaricidal activity against all developmental stages of O. erraticus and O. moubata tested, in the first 48h after in vitro feeding. Therefore, fluralaner has the potential to provide very high acaricidal efficacy to multiple argasid tick species via feeding exposure and could be included as an acaricidal agent in integrated programmes for the control of argasid tick vectors and argasid tick-borne diseases.
Collapse
Affiliation(s)
- R Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - A Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
22
|
Oleaga A, Obolo-Mvoulouga P, Manzano-Román R, Pérez-Sánchez R. Functional annotation and analysis of the Ornithodoros moubata midgut genes differentially expressed after blood feeding. Ticks Tick Borne Dis 2017; 8:693-708. [PMID: 28528879 DOI: 10.1016/j.ttbdis.2017.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/03/2017] [Accepted: 05/07/2017] [Indexed: 10/19/2022]
Abstract
The argasid tick Ornithodoros moubata is the main vector of the African swine fever and the human relapsing fever in Africa. As part of the host-parasite-pathogen interface, the tick midgut expresses key proteins for tick survival and tick-borne pathogen transmission. Accordingly, midgut proteins are potential targets for the development of new drugs and vaccines aimed at tick control, and obtaining proteomic and transcriptomic data from the O. moubata midgut would facilitate the identification of such target candidates. With this aim, we have assembled and characterized the midgut transcriptome of O. moubata females before and 48h after a blood meal, and identified the genes that are differentially expressed in the midgut after feeding. Overall, 23,863 transcripts were obtained, and of them, 9,164 were identified and annotated. The most represented molecular functions were catalytic and binding activities, and the most represented biological processes were metabolic, cellular and single-organism processes. KEGG analysis of the annotated sequences assigned up to 3,053 of them to 130 active pathways, among which, the top 30 pathways were mostly metabolic routes. Differential expression analysis between unfed and fed ticks detected 8,026 Differentially Expressed Genes (DEGs), 4,093 up-regulated and 3,933 down-regulated, respectively. The biological significance of these DEGs was further investigated using the KEEG, Pfam and GO databases. The functional groups of the genes/proteins predicted to be involved in the processes of blood digestion, nutrient transport and metabolism, and in responses related to defence and oxidative stress are discussed in more detail. This work reports the first midgut transcriptome analysis of an argasid tick species, and provides a wealth of novel molecular information about the argasid machinery involved in blood feeding and digestion. This information represents a starting point for the development of alternative strategies for tick control.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Prosper Obolo-Mvoulouga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Raúl Manzano-Román
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| |
Collapse
|