1
|
Tian F, Li J, Liu Y, Liu W, Liu Y, Xu S, Tong Y, Feng F. First molecular evidence of hepatitis E virus in farmed raccoon dogs. Emerg Microbes Infect 2024; 13:2361025. [PMID: 38801323 PMCID: PMC11177704 DOI: 10.1080/22221751.2024.2361025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Fengjuan Tian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Jing Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Yang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Wenli Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, People’s Republic of China
| | - Yue Liu
- School of Public Health, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Shan Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, People’s Republic of China
| |
Collapse
|
2
|
Molini U, Franzo G, de Villiers L, van Zyl L, de Villiers M, Khaiseb S, Busch F, Knauf S, Dietze K, Eiden M. Serological survey on Hepatitis E virus in Namibian dogs, cats, horses, and donkeys. Front Vet Sci 2024; 11:1422001. [PMID: 39091395 PMCID: PMC11292797 DOI: 10.3389/fvets.2024.1422001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
The present study investigated the seropositivity rate of Hepatitis E virus (HEV) in domestic and working animals in Namibia, which included dogs, cats, horses, and donkeys. HEV poses a growing threat as a significant cause of human hepatitis globally and has several genotypes of varying zoonotic potential. As epidemiological data on the seroprevalence of HEV in Namibia is scarce, a serosurvey was conducted on archived serum samples of 374 dogs, 238 cats, 98 horses, and 60 donkeys collected between 2018 and 2022 from different regions, to assess the potential of these animals as sources of HEV infection. The findings revealed that 10.43% (n = 39/374) canine and 5.88% (n = 14/238) feline samples tested positive for HEV antibodies, whereas no seropositivity was detected in horses and donkeys. The study further examined the risk factors associated with HEV seropositivity, including animal sex, age, and geographical region, and noted a higher prevalence in dogs living in areas with intensive pig farming. Although there is no direct evidence indicating that these animals served as major reservoirs for HEV transmission to humans, the study underscores the importance of preventive measures to minimize contact exposure with pets considering the potential zoonotic risk, especially for susceptible risk groups. Further research is needed to explore the zoonotic potential of domestic animals and the epidemiological links between animal and human HEV transmissions in Namibia.
Collapse
Affiliation(s)
- Umberto Molini
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
- Central Veterinary Laboratory (CVL), Windhoek, Namibia
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Lourens de Villiers
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Leandra van Zyl
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Mari de Villiers
- School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | | | - Frank Busch
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
- One Health/International Animal Health, Faculty of Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Ferrara G, Pagnini U, Improda E, Ciarcia R, Parisi A, Fiorito F, Della Valle G, Iovane G, Montagnaro S. Detection of anti-HEV antibodies but no molecular positivity in dogs in the Campania region, southern Italy. One Health 2024; 18:100724. [PMID: 38623500 PMCID: PMC11017036 DOI: 10.1016/j.onehlt.2024.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Paslahepevirus balayani genotypes 3 and 4 (HEV-3 and 4) have zoonotic potential and can be transmitted to humans and animals through the consumption of contaminated raw or undercooked meat. Although it has been demonstrated that dogs are susceptible to the infection and produce specific antibodies, the epidemiological role of this species is not yet well defined. This study aimed to evaluate the circulation of HEV at the serological and molecular level in the dog population of the Campania region, southern Italy. A total of 231 dogs were sampled, divided according to several variables (sex, age, origin, lifestyle, location, size, and breed), and tested for the presence of HEV antibodies using a commercial multi-species ELISA. A total of 197 blood samples and 170 stool samples were tested with two specific PCRs in order to detect viral RNA. A total of 19 out samples of 231 were seropositive, obtaining an exposure (8.2%) similar to that observed in other European countries. The univariate and multivariate analysis revealed a wide exposure to stray dogs and animals from the province of Salerno. All samples tested with molecular methods were negative. Defining the role of domestic carnivores continues to be a "one health" challenge, although it appears that they do not eliminate the virus and therefore do not pose a danger to humans. In the absence of other evidence, it is advisable to continue to carry out surveillance also for domestic animals, which, due to ethological characteristics or their position in the food chain, could be predisposed to being exposed to HEV.
Collapse
Affiliation(s)
- G. Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - U. Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - E. Improda
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - R. Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - A. Parisi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - F. Fiorito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - G. Della Valle
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - G. Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - S. Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| |
Collapse
|
4
|
Turlewicz-Podbielska H, Ruszkowski JJ, Wojciechowski J, Pomorska-Mól M. No evidence of hepatitis E virus (HEV) infection among pet cats and dogs, and low seroprevalence of hepatitis E virus among pet rabbits in Poland. Vet Res Commun 2024; 48:597-602. [PMID: 37740104 PMCID: PMC10811079 DOI: 10.1007/s11259-023-10223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The seroprevalence of Paslahepevirus balayani genotype 3 (hepatitis E virus genotype 3 - HEV-3; Hepeviridae family, genus Paslahepevirus) in pet cats, dogs and rabbits was evaluated. Samples from cats and dogs were collected from three veterinary practices from various parts of Poland: Poznan (wielkopolskie voivodeship), Przemysl (podkarpackie voivodeship) and Lublin (lubelskie voivodeship). Samples from rabbits were collected in Poznan. In total, serum samples from 90 cats, 82 dogs and 71 rabbits were selected and tested for specific anti-HEV-3 immunoglobulin (IgG) antibodies using a commercial ELISA test. Pathogen seroprevalence among rabbits was calculated at a 95% confidence interval (CI) for each gender, age (up to 12 months, 1-3 years, 4-7 years and over 8 years), symptoms group (healthy, gastrointestinal disorders, other disorders) and compared with a chi-squared test. No anti-HEV-3 IgG antibodies were detected in any of the samples from cats and dogs. Anti-HEV-3 IgG antibodies were detected in 2.82% of the serum samples from rabbits (2/71; 95% CI: 0.78-9.70). No significant correlations between seropositivity and gender, age, and symptoms (p > 0.05) were observed in rabbits. Our findings indicate that pet rabbits in Poland are exposed to HEV-3, develop humoral response due to infection and might constitute a source for HEV-3 transmission to humans.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animals Sciences, Poznan University of Life Sciences, Wolynska 35, 60‑637, Poznan, Poland
| | - Jakub Jędrzej Ruszkowski
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animals Sciences, Poznan University of Life Sciences, Wojska Polskiego 71C, 60‑625, Poznan, Poland
| | | | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animals Sciences, Poznan University of Life Sciences, Wolynska 35, 60‑637, Poznan, Poland.
| |
Collapse
|
5
|
Pischke S, Knoop EV, Mader M, Kling L, Wolski A, Wagner A, Mueller K, Horvatits T, Stiller J, Wisnewski K, Kohn B, Schulze Zur Wiesch J, Groschup MH, Eiden M. Anti-HEV seroprevalence and rate of viremia in a German cohort of dogs, cats, and horses. Sci Rep 2023; 13:19240. [PMID: 37935733 PMCID: PMC10630430 DOI: 10.1038/s41598-023-46009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Hepatitis E virus (HEV) genotype 3 infections in Germany are mainly transmitted zoonotically through the consumption of swine meat. Furthermore, there is evidence that pets might come into contact with HEV, but the relevance of companion animals as possible sources of HEV transmission in Germany still needs to be defined. A monitoring study was therefore carried out on dogs, cats, and horses from Germany. In total 365 serum samples from pets (124 dogs, 119 cats, and 122 horses) were tested for HEV by PCR and for anti-HEV antibodies by a commercial ELISA. The HEV seroprevalence determined by the sero-assay varied significantly between dogs (10%), cats (6%), and horses (2%). Liver injury-related enzymes, alanine transaminase (ALT), and aspartate transaminase (AST) showed no differences between HEV-positive or negative animals. None of the pet serum samples tested positive for PCR. This serological study suggests that dogs and cats are significantly exposed to HEV in Germany, while horses are of minor relevance.
Collapse
Affiliation(s)
- S Pischke
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany.
| | | | - M Mader
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Kling
- SYNLAB.Vet GmbH, Berlin, Germany
| | - A Wolski
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Wagner
- Vetambulanz Hamburg, Hamburg, Germany
| | - K Mueller
- Small Animal Clinic, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - T Horvatits
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Stiller
- Small Animal Clinic, University of Leipzig, Leipzig, Germany
| | - K Wisnewski
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - B Kohn
- Small Animal Clinic, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - J Schulze Zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany
| | - M H Groschup
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - M Eiden
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner Sites, Hamburg, Germany
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Tsachev I, Gospodinova K, Pepovich R, Takova K, Kundurzhiev T, Zahmanova G, Kaneva K, Baymakova M. First Insight into the Seroepidemiology of Hepatitis E Virus (HEV) in Dogs, Cats, Horses, Cattle, Sheep, and Goats from Bulgaria. Viruses 2023; 15:1594. [PMID: 37515279 PMCID: PMC10385379 DOI: 10.3390/v15071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, hepatitis E virus (HEV) infection has been found to be widespread among different animal species worldwide. In Bulgaria, high HEV seropositivity was found among pigs (60.3%), wild boars (40.8%), and East Balkan swine (82.5%). The aim of the present study was to establish the seroprevalence of HEV among dogs, cats, horses, cattle, sheep, and goats in Bulgaria. In total, 720 serum samples from six animal species were randomly collected: dogs-90 samples; cats-90; horses-180; cattle-180; sheep-90; and goats-90. The serum samples were collected from seven districts of the country: Burgas, Kardzhali, Pazardzhik, Plovdiv, Sliven, Smolyan, and Stara Zagora. The animal serum samples were tested for HEV antibodies using the commercial Wantai HEV-Ab ELISA kit (Beijing, China). The overall HEV seroprevalence among different animal species from Bulgaria was as follows: dogs-21.1%; cats-17.7%; horses-8.3%; cattle-7.7%; sheep-32.2%; and goats-24.4%. We found the lowest overall HEV seropositivity in Plovdiv district (6.2%; 4/64; p = 0.203) and Smolyan district (8.8%; 4/45; p = 0.129), vs. the highest in Pazardzhik district (21.6%; 29/134; p = 0.024) and Burgas district (28.8%; 26/90; p = 0.062). To the best of our knowledge, this is the first serological evidence of HEV infection in dogs, cats, horses, cattle, sheep, and goats from Bulgaria. We found high HEV seropositivity in small ruminants (sheep and goats), moderate seropositivity in pets (dogs and cats), and a low level of seropositivity in large animals (horses and cattle). Previous Bulgarian studies and the results of this research show that HEV infection is widespread among animals in our country. In this regard, the Bulgarian health authorities must carry out increased surveillance and control of HEV infection among animals in Bulgaria.
Collapse
Affiliation(s)
- Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Krasimira Gospodinova
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Roman Pepovich
- Department of Infectious Pathology, Hygiene, Technology and Control of Foods from Animal Origin, Faculty of Veterinary Medicine, University of Forestry, 1797 Sofia, Bulgaria
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Todor Kundurzhiev
- Department of Occupational Medicine, Faculty of Public Health, Medical University, 1527 Sofia, Bulgaria
| | - Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Kristin Kaneva
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, 1606 Sofia, Bulgaria
| |
Collapse
|
7
|
Animal reservoirs for hepatitis E virus within the Paslahepevirus genus. Vet Microbiol 2023; 278:109618. [PMID: 36640568 DOI: 10.1016/j.vetmic.2022.109618] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is responsible for acute hepatitis in humans. It is a single-stranded, positive-sense RNA virus that belongs to the Hepeviridae family. The majority of concerning HEV genotypes belong to the Paslahepevirus genus and are subsequently divided into eight genotypes. HEV genotypes 1 and 2 exclusively infect humans and primates while genotypes 3 and 4 infect both humans and other mammals. Whereas HEV genotypes 5 and 6 are isolated from wild boars and genotypes 7 and 8 were identified from camels in the United Arab Emirates and China, respectively. HEV mainly spreads from humans to humans via the fecal-oral route. However, some genotypes with the capability of zoonotic transmissions, such as 3 and 4 transmit from animals to humans through feces, direct contact, and ingestion of contaminated meat products. As we further continue to uncover novel HEV strains in various animal species, it is becoming clear that HEV has a broad host range. Therefore, understanding the potential animal reservoirs for this virus will allow for better risk management and risk mitigation of infection with HEV. In this review, we mainly focused on animal reservoirs for the members of the species Paslahepevirus balayani and provided a comprehensive list of the host animals identified to date.
Collapse
|
8
|
Tsachev I, Baymakova M, Bangieva D, Khezzani B, Kundurzhiev T, Valeva B, Pepovich R. Serological Searching for Hepatitis E Virus Infection Among Pig Liver Transudate from Bulgaria: An Alternative Method for Seroepidemiological Survey. Vector Borne Zoonotic Dis 2022; 22:596-599. [PMID: 36322875 DOI: 10.1089/vbz.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background: The aim of this research was to perform a seroepidemiological survey of hepatitis E virus (HEV) by an alternative method-serological establishment of the virus from pig liver transudate. This is the first such research in Bulgaria. Moreover, no studies have been conducted on HEV in pig liver in our country. Materials and Methods: A total of 90 liver samples from healthy pigs were collected from slaughterhouses in three parts of the country (Sofia, Lovech, and Stara Zagora districts). An equal number of samples (n = 30) were obtained from each district. Results: The overall HEV seropositivity was 67.7% of all 90 tested pig liver transudate samples; in Sofia district 20.0%, in Lovech district 90.0%, and in Stara Zagora district 93.3%. Conclusion: These data are similar to our previous serological studies for HEV in serum samples from industrial pigs, wild boars, and East Balkan swine. In this regard, testing the liver transudate could be a fine alternative method for seroepidemiological survey on HEV in swine.
Collapse
Affiliation(s)
- Ilia Tsachev
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Desislava Bangieva
- Department of Food Quality and Safety and Veterinary Legislation, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Bachir Khezzani
- Department of Biology, Faculty of Nature and Life Sciences, University of El Oued, El Oued, Algeria.,Laboratory of Biology, Environment and Health (LBEH), Faculty of Nature and Life Sciences, University of El Oued, El Oued, Algeria
| | - Todor Kundurzhiev
- Department of Occupational Medicine, Faculty of Public Health, Medical University, Sofia, Bulgaria
| | - Betina Valeva
- Department of Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Roman Pepovich
- Department of Infectious Pathology, Hygiene, Technology and Control of Foods from Animal Origin, Faculty of Veterinary Medicine, University of Forestry, Sofia, Bulgaria
| |
Collapse
|
9
|
Sayed IM, Abdelwahab SF. Is Hepatitis E Virus a Neglected or Emerging Pathogen in Egypt? Pathogens 2022; 11:1337. [PMID: 36422589 PMCID: PMC9697431 DOI: 10.3390/pathogens11111337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2023] Open
Abstract
Though Egypt ranks among the top countries for viral hepatitis and death-related liver disease, Hepatitis E virus (HEV) is a neglected pathogen. Living in villages and rural communities with low sanitation, use of underground well water and contact with animals are the main risk factors for HEV infection. Domestic animals, especially ruminants and their edible products, are one source of infection. Contamination of water by either human or animal stools is the main route of infection. In addition, HEV either alone or in coinfection with other hepatotropic viruses has been recorded in Egyptian blood donors. HEV seropositivity among Egyptian villagers was 60-80%, especially in the first decade of life. Though HEV seropositivity is the highest among Egyptians, HEV infection is not routinely diagnosed in Egyptian hospitals. The initial manifestations of HEV among Egyptians is a subclinical infection, although progression to fulminant hepatic failure has been recorded. With the improvement in serological and molecular approaches and increasing research on HEV, it is becoming clear that HEV represents a threat for Egyptians and preventive measures should be considered to reduce the infection rate and possible complications.
Collapse
Affiliation(s)
- Ibrahim M. Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
10
|
Serological, Virological Investigation and Hepatic Injury Evaluation for Hepatitis E Virus in Hunting Dogs. Pathogens 2022; 11:pathogens11101123. [PMID: 36297180 PMCID: PMC9608991 DOI: 10.3390/pathogens11101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis E virus (HEV) is a quasi-enveloped single-stranded positive-sense RNA virus belonging to the Orthohepevirus A genus within the Hepeviridae family. The most common transmission route of this virus is fecal–oral, although zoonotic transmission by contact with infected animals has also been described. In this study, 80 sera and rectal swabs were collected from dogs during the 2019/2020 and 2020/2021 wild boar hunting season in Tuscany. All dogs were submitted for serological screening to detect the presence of anti-HEV antibodies. To evaluate the circulation of HEV, rectal swabs from both seropositive dogs and dogs living in the same kennels were examined by One-Step RT-qPCR. In addition, the presence of markers of hepatic damage in dogs’ sera was investigated. Results indicated the presence of anti-HEV antibodies in 4/80 subjects (5%). However, neither HEV RNA nor signs of hepatic damage were found. In conclusion, although HEV can stimulate a specific immuno-response in dogs, this species does not seem to play an important role in HEV epidemiology.
Collapse
|
11
|
The first evidence of zoonotic hepatitis E virus (HEV) exposure in domestic cats in Türkiye. Comp Immunol Microbiol Infect Dis 2022; 86:101820. [DOI: 10.1016/j.cimid.2022.101820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
|
12
|
Caballero-Gómez J, Rivero-Juarez A, Jurado-Tarifa E, Jiménez-Martín D, Jiménez-Ruiz E, Castro-Scholten S, Ulrich RG, López-López P, Rivero A, García-Bocanegra I. Serological and molecular survey of hepatitis E virus in cats and dogs in Spain. Transbound Emerg Dis 2021; 69:240-248. [PMID: 34951935 DOI: 10.1111/tbed.14437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that is currently recognized as one of the major causes of acute human hepatitis worldwide. In Europe, the increasing number of hepatitis E cases is mainly associated with the consumption of animal food products or contact with infected animals. Dogs and cats have been suggested as a zoonotic source of HEV infection. The aim of this study was to assess Orthohepevirus circulation, including HEV-A, HEV-B and HEV-C species, in sympatric urban cats and dogs in southern Spain. Between 2017 and 2020, blood samples were collected from 144 stray cats and 152 dogs, both strays and pets. The presence of antibodies against HEV were tested using a double-antigen sandwich ELISA and seropositive samples were further analyzed by western blot. A RT-PCR was performed to detect RNA of Orthohepevirus species (HEV-A, HEV-B and HEV-C). A total of 19 (6.4%; 95%CI: 3.6-9.2) of the 296 animals tested showed anti-HEV antibodies by ELISA. Seropositivity was significantly higher in dogs (9.9%; 15/152; 95%CI: 5.1-14.6) than in cats (2.8%; 4/144; 95%CI: 0.1-5.5). Ten out of the 18 ELISA-positive animals that could be further analyzed by western blot, reacted against HEV-3 and/or HEV-C1 antigens, which suggest circulation of both genotypes in urban cats and dogs in the study area. However, HEV-A, HEV-B and HEV-C RNA was not detected in any of the tested sera. This is the first study to assess HEV circulation in both stray cats and dogs in Europe. Our results provide evidence of HEV exposure in sympatric urban cat and dog populations in southern Spain. Further studies are needed to determine the role of these species in the epidemiology of HEV. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Javier Caballero-Gómez
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, 14014, España.,Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, 14004, España.,CIBERINFEC
| | - Antonio Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, 14004, España.,CIBERINFEC
| | - Estefanía Jurado-Tarifa
- Centro de Sanidad y Bienestar Animal (SBA), Empresa Municipal de Saneamiento de Córdoba (SADECO), Córdoba, 14005, España
| | - Débora Jiménez-Martín
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, 14014, España
| | - Elena Jiménez-Ruiz
- Centro de Sanidad y Bienestar Animal (SBA), Empresa Municipal de Saneamiento de Córdoba (SADECO), Córdoba, 14005, España
| | - Sabrina Castro-Scholten
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, 14014, España
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Greifswald-Insel Riems, 17493, Germany
| | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, 14004, España.,CIBERINFEC
| | - Antonio Rivero
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, 14004, España.,CIBERINFEC
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, 14014, España.,CIBERINFEC
| |
Collapse
|
13
|
Sarchese V, Fruci P, Palombieri A, Di Profio F, Robetto S, Ercolini C, Orusa R, Marsilio F, Martella V, Di Martino B. Molecular Identification and Characterization of a Genotype 3 Hepatitis E Virus (HEV) Strain Detected in a Wolf Faecal Sample, Italy. Animals (Basel) 2021; 11:ani11123465. [PMID: 34944242 PMCID: PMC8698176 DOI: 10.3390/ani11123465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatitis E virus (HEV) infection is a major health problem worldwide. In developed countries, zoonotic transmission of HEV genotypes (Gt) 3 and 4 is caused by the ingestion of raw or undercooked meat of infected pigs and wild boars, the main reservoirs of HEV. However, additional animals may harbour HEV or HEV-related strains, including carnivores. In this study, we investigated the molecular epidemiology of orthohepeviruses in wild canids by screening a total of 136 archival faecal samples, collected from wolves (42) and red foxes (94) in Northwestern Italy. Orthohepevirus RNA was identified in a faecal specimen, collected from a wolf carcass in the province of La Spezia (Liguria Region, Italy). The nearly full-length (7212 nucleotides) genome of the strain HEV/81236/Wolf/2019/ITA (GenBank accession no. MZ463196) was determined by combining a sequence-independent single-primer amplification (SISPA) approach with the Oxford Nanopore Technologies sequencing platform. Upon phylogenetic analysis, the HEV detected in wolf was segregated into clade HEV-3.1, displaying the highest nucleotide (nt) identity (89.0-93.3%) to Gt3 strains belonging to subtype c. Interestingly, the wolf faecal sample also contained porcine astrovirus sequences, endorsing the hypothesis of a dietary origin of the HEV strain due to preying habits.
Collapse
Affiliation(s)
- Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Paola Fruci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Serena Robetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), 11020 Aosta, Italy; (S.R.); (R.O.)
| | - Carlo Ercolini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, SC Liguria e Portualità Marittima, 19100 La Spezia, Italy;
| | - Riccardo Orusa
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), 11020 Aosta, Italy; (S.R.); (R.O.)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70121 Valenzano, Italy;
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (V.S.); (P.F.); (A.P.); (F.D.P.); (F.M.)
- Correspondence:
| |
Collapse
|
14
|
Hriskova K, Marosevic D, Belting A, Wenzel JJ, Carl A, Katz K. Epidemiology of Hepatitis E in 2017 in Bavaria, Germany. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:337-346. [PMID: 33900549 PMCID: PMC8379136 DOI: 10.1007/s12560-021-09474-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/03/2021] [Indexed: 05/04/2023]
Abstract
In the last decade, the number of reported hepatitis E virus (HEV) infections in Germany, including Bavaria, has continued to rise. In order to identify risk factors associated with HEV infection, we investigated notified hepatitis E cases from Bavaria during 2017. The project "Intensified Hepatitis E Surveillance in Bavaria" included interviews with questionnaires, collection and genotyping of stool, serum and food samples. In addition, certain risk factors were examined in a sample comparison with healthy population using univariable analysis and logistic regression. In total, 135 hepatitis E cases from Bavaria were included in the analysis. Mean age for women was 46 (range 20-74) years and 47.5 (range 20-85) for men. 56 of the cases (41.5%) were asymptomatic. Among the symptomatic cases, both men and women were equally affected with symptoms like fever (16.3%), jaundice (18.8%) and upper abdominal pain (28.2%). 145 human samples (serum, stool) and 6 food samples were collected. 15.9% of the human samples (n = 23) were positive for HEV RNA by reverse-transcription quantitative real-time PCR (RT-qPCR). Identified risk factors significantly associated with hepatitis E were sausage consumption with odds ratio 9.6 (CI 1.3-70.1), fish with OR 2.2 (CI 1.1-4.4) and cat ownership with OR 1.9 (CI 1.3-3.0) in multivariable analyses. Further investigation is needed to confirm the role of fish in HEV transmission. Autochthonous HEV genotype 3 is prevalent in Bavaria and there could be more transmission routes contributing to the spread of HEV than previously known. Undercooked meat, offal, sausages, fish, shellfish and contact with animals and pets are possible sources for infection.
Collapse
Affiliation(s)
- K Hriskova
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Pettenkofer School of Public Health, Munich, Germany.
| | - D Marosevic
- Bavarian Public Health and Food Safety Authority (LGL), Veterinärstraße 2, 85764, Oberschleißheim, Germany
| | - A Belting
- Bavarian Public Health and Food Safety Authority (LGL), Veterinärstraße 2, 85764, Oberschleißheim, Germany
| | - J J Wenzel
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Medical Centre Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - A Carl
- Bavarian Public Health and Food Safety Authority (LGL), Veterinärstraße 2, 85764, Oberschleißheim, Germany
| | - K Katz
- Bavarian Public Health and Food Safety Authority (LGL), Veterinärstraße 2, 85764, Oberschleißheim, Germany
| |
Collapse
|
15
|
Mrzljak A, Balen I, Barbic L, Ilic M, Vilibic-Cavlek T. Hepatitis E virus in professionally exposed: A reason for concern? World J Hepatol 2021; 13:723-730. [PMID: 34367494 PMCID: PMC8326162 DOI: 10.4254/wjh.v13.i7.723] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
The zoonotic risk of hepatitis E virus (HEV) is well established. The HEV seroprevalence rates vary according to geographical region, assays used, and study cohorts. HEV infection is still underdiagnosed, implying the need to evaluate the disease's burden in the general population and specific risk groups, such as professionally exposed. Close contact with various animal reservoirs such as pigs, rabbits, sheep, dogs, wild boars, and deer has been associated with higher anti-HEV seroprevalence as a part of occupational exposure. While exact transmission routes remain to be determined, some general preventive measures such as proper hand hygiene, the usage of personal protective equipment, and the thermal processing of food before consumption should be followed. A “One-Health” multisectoral approach should be implemented to achieve optimal health and well-being outcomes, recognizing the interconnections between humans, animals, plants, and their shared environment, in which a vaccine against the zoonotic genotypes 3 and 4 and swine vaccination should be considered as a possible public health measure. This opinion review comprehensively addresses the HEV burden of professional exposure for butchers, slaughterhouse workers, veterinarians, farmers, hunters, and forestry workers delineates the current limits of protective work measures, and tackles future directions.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Gastroenterology and Hepatology, University Hospital Centre Zagreb, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Ivan Balen
- Department of Gastroenterology and Endocrinology, General Hospital “Dr. Josip Bencevic”, Slavonski Brod 35000, Croatia
| | - Ljubo Barbic
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Tatjana Vilibic-Cavlek
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Department of Virology, Croatian Institute of Public Health, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
16
|
Capozza P, Decaro N, Beikpour F, Buonavoglia C, Martella V. Emerging Hepatotropic Viruses in Cats: A Brief Review. Viruses 2021; 13:v13061162. [PMID: 34204394 PMCID: PMC8233973 DOI: 10.3390/v13061162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
The possible role of viruses in feline liver disease has long remained neglected. However, in 2018, an analogue of human hepatitis B virus was identified in cats. Moreover, antibodies for human hepatitis E have been detected consistently at various prevalence rates in cats. Although the correlation between these viruses and the liver injury in cats must be clarified, hepatotropic viruses might represent an increasing risk for feline and public health.
Collapse
|
17
|
Capozza P, Martella V, Lanave G, Beikpour F, Di Profio F, Palombieri A, Sarchese V, Marsilio F, La Rosa G, Suffredini E, Camero M, Buonavoglia C, Di Martino B. A surveillance study of hepatitis E virus infection in household cats. Res Vet Sci 2021; 137:40-43. [PMID: 33932821 DOI: 10.1016/j.rvsc.2021.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Hepatitis E virus (HEV) typically causes self-limiting acute viral hepatitis, however chronic infection and extrahepatic manifestations have increasingly become a significant health problem. Domestic pigs and wild boars are the main reservoirs of HEV genotype 3 and genotype 4 for human infections in industrialized countries, although molecular and serological evidence suggest that several additional animal species may act as HEV hosts. In this study, by assessing serologically and molecularly the sera of 324 household cats from Apulia region (Italy), HEV antibodies were detected with an overall prevalence of 3.1%. Viral RNA was not detected in the sera of the animals using both HEV-specific assays and a pan-hepevirus broadly reactive set of primers for Hepeviridae. These findings document a low seroprevalence to HEV in cats in the investigated geographical setting. The exact nature of the HEV-like strains circulating in feline population remains to be established.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy.
| | - Gianvito Lanave
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Farzad Beikpour
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Camero
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| |
Collapse
|
18
|
Veronesi R, Morach M, Hübschke E, Bachofen C, Stephan R, Nüesch‐Inderbinen M. Seroprevalence of hepatitis E virus in dogs in Switzerland. Zoonoses Public Health 2020; 68:8-11. [DOI: 10.1111/zph.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/26/2020] [Accepted: 10/18/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Rebecca Veronesi
- Institute for Food Safety and Hygiene Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Marina Morach
- Institute for Food Safety and Hygiene Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Ella Hübschke
- Institute for Food Safety and Hygiene Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Claudia Bachofen
- Institute of Virology Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene Vetsuisse Faculty University of Zurich Zurich Switzerland
| | | |
Collapse
|
19
|
Li P, Liu J, Li Y, Su J, Ma Z, Bramer WM, Cao W, de Man RA, Peppelenbosch MP, Pan Q. The global epidemiology of hepatitis E virus infection: A systematic review and meta-analysis. Liver Int 2020; 40:1516-1528. [PMID: 32281721 PMCID: PMC7384095 DOI: 10.1111/liv.14468] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Hepatitis E virus (HEV), as an emerging zoonotic pathogen, is a leading cause of acute viral hepatitis worldwide, with a high risk of developing chronic infection in immunocompromised patients. However, the global epidemiology of HEV infection has not been comprehensively assessed. This study aims to map the global prevalence and identify the risk factors of HEV infection by performing a systematic review and meta-analysis. METHODS A systematic searching of articles published in Medline, Embase, Web of science, Cochrane and Google scholar databases till July 2019 was conducted to identify studies with HEV prevalence data. Pooled prevalence among different countries and continents was estimated. HEV IgG seroprevalence of subgroups was compared and risk factors for HEV infection were evaluated using odd ratios (OR). RESULTS We identified 419 related studies which comprised of 1 519 872 individuals. A total of 1 099 717 participants pooled from 287 studies of general population estimated a global anti-HEV IgG seroprevalence of 12.47% (95% CI 10.42-14.67; I2 = 100%). Notably, the use of ELISA kits from different manufacturers has a substantial impact on the global estimation of anti-HEV IgG seroprevalence. The pooled estimate of anti-HEV IgM seroprevalence based on 98 studies is 1.47% (95% CI 1.14-1.85; I2 = 99%). The overall estimate of HEV viral RNA-positive rate in general population is 0.20% (95% CI 0.15-0.25; I2 = 98%). Consumption of raw meat (P = .0001), exposure to soil (P < .0001), blood transfusion (P = .0138), travelling to endemic areas (P = .0244), contacting with dogs (P = .0416), living in rural areas (P = .0349) and receiving education less than elementary school (P < .0001) were identified as risk factors for anti-HEV IgG positivity. CONCLUSIONS Globally, approximately 939 million corresponding to 1 in 8 individuals have ever experienced HEV infection. 15-110 million individuals have recent or ongoing HEV infection. Our study highlights the substantial burden of HEV infection and calls for increasing routine screening and preventive measures.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Jiaye Liu
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Yang Li
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Junhong Su
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands,Biomedical Research CenterNorthwest Minzu UniversityLanzhouChina
| | - Zhongren Ma
- Biomedical Research CenterNorthwest Minzu UniversityLanzhouChina
| | - Wichor M. Bramer
- Medical LibraryErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Wanlu Cao
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Robert A. de Man
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands,Biomedical Research CenterNorthwest Minzu UniversityLanzhouChina
| |
Collapse
|
20
|
Li Y, Qu C, Spee B, Zhang R, Penning LC, de Man RA, Peppelenbosch MP, Fieten H, Pan Q. Hepatitis E virus seroprevalence in pets in the Netherlands and the permissiveness of canine liver cells to the infection. Ir Vet J 2020; 73:6. [PMID: 32266057 PMCID: PMC7119158 DOI: 10.1186/s13620-020-00158-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E virus (HEV) as an emerging zoonotic pathogen causes a major public health issue. Transmission from domestic, wildlife and zoo animals to human has been widely reported. Whether pets also serve as reservoirs remains an intriguing question. In this study, we found the sero-positive rates of HEV-specific antibodies in pet dogs, cats and horses of 18.52% (30/162), 14.89% (7/47) and 18.18% (4/22) in the Netherlands. Although HEV viral RNA was not detected in these animals, we have demonstrated that dog liver cells are susceptible to HEV infection in vitro. These results call more attention to address the potential role of pets in the zoonotic transmission of HEV.
Collapse
Affiliation(s)
- Yunlong Li
- 1Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, room Na-1005, 's-Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Changbo Qu
- 1Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, room Na-1005, 's-Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Bart Spee
- 2Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ruyi Zhang
- 1Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, room Na-1005, 's-Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Louis C Penning
- 2Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Robert A de Man
- 1Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, room Na-1005, 's-Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- 1Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, room Na-1005, 's-Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| | - Hille Fieten
- 2Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Qiuwei Pan
- 1Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, room Na-1005, 's-Gravendijkwal 230, NL-3015 CE Rotterdam, The Netherlands
| |
Collapse
|
21
|
Liver Transudate, a Potential Alternative to Detect Anti-Hepatitis E Virus Antibodies in Pigs and Wild Boars ( Sus scrofa). Microorganisms 2020; 8:microorganisms8030450. [PMID: 32210090 PMCID: PMC7144013 DOI: 10.3390/microorganisms8030450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, cases of hepatitis E virus (HEV) infection have increased in Europe in association with the consumption of contaminated food, mainly from pork products but also from wild boars. The animal’s serum is usually tested for the presence of anti-HEV antibodies and viral RNA but, in many cases such as during hunting, an adequate serum sample cannot be obtained. In the present study, liver transudate was evaluated as an alternative matrix to serum for HEV detection. A total of 125 sera and liver transudates were tested by enzyme-linked immunosorbent assay at different dilutions (1:2, 1:10, 1:20), while 58 samples of serum and liver transudate were checked for the presence of HEV RNA by RT-qPCR. Anti- HEV antibodies were detected by ELISA in 68.0% of the serum samples, and in 61.6% of the undiluted transudate, and in 70.4%, 56.8%, and 44.8% of 1:2, 1:10, or 1:20 diluted transudate, respectively. The best results were obtained for the liver transudate at 1:10 dilution, based on the Kappa statistic (0.630) and intraclass correlation coefficient (0.841). HEV RNA was detected by RT-qPCR in 22.4% of the serum samples and 6.9% of the transudate samples, all samples used for RT-qPCR were positive by ELISA. Our results indicate that liver transudate may be an alternative matrix to serum for the detection of anti-HEV antibodies.
Collapse
|
22
|
Eiden M, Dähnert L, Spoerel S, Vina-Rodriguez A, Schröder R, Conraths FJ, Groschup MH. Spatial-Temporal Dynamics of Hepatitis E Virus Infection in Foxes ( Vulpes vulpes) in Federal State of Brandenburg, Germany, 1993-2012. Front Microbiol 2020; 11:115. [PMID: 32082295 PMCID: PMC7005575 DOI: 10.3389/fmicb.2020.00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
Hepatitis E virus (HEV) is the main course for acute hepatitis in humans throughout the world. Human associated genotypes 1 and 2 as well as zoonotic genotypes 3 and 4 are grouped in the species Orthohepevirus A. In addition, a large variety of HEV-related viruses has been found in vertebrates including carnivores, rats, bats, and chickens, which were classified in species Orthohepevirus B-D. In 2015, partial genome sequences of a novel hepevirus were detected in feces of red foxes (Vulpes vulpes). However, no further information about virus circulation and the prevalence in foxes was available. We therefore assayed a unique panel of 880 transudates, which was collected from red foxes over 19 years (1993–2012) in Brandenburg, Germany, for HEV-related viral RNA and antibodies. Our results demonstrate a high antibody prevalence of HEV in red foxes, which oscillated annually between 40 and 100%. Molecular screening of the transudates revealed only a single RNA-positive sample, which was assigned to the carnivore species Orthohepevirus C based on the amplified partial sequence. These data indicate that the virus is circulating widely in the fox population and that foxes are carriers of this virus.
Collapse
Affiliation(s)
- Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lisa Dähnert
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Susanne Spoerel
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.,Tierarztpraxis Dr. Kindler, Wiesbaden, Germany
| | - Ariel Vina-Rodriguez
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ronald Schröder
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Franz J Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
23
|
Rui P, Zhao F, Yan S, Wang C, Fu Q, Hao J, Zhou X, Zhong H, Tang M, Hui W, Li W, Shi D, Ma Z, Song T. Detection of hepatitis E virus genotypes 3 and 4 in donkeys in northern China. Equine Vet J 2019; 52:415-419. [PMID: 31746470 DOI: 10.1111/evj.13203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is the causative agent of acute self-limiting hepatitis in humans in developing countries. Hepatitis E virus RNA was first detected in donkeys in Spain, but little is known about the possible presence of HEV in donkeys in China. OBJECTIVES To investigate the prevalence of HEV in donkeys in northern China. STUDY DESIGN Investigation of the prevalence of HEV in donkeys using serological, molecular and phylogenetic approaches. METHODS A total of 401 donkey serum specimens were tested for serological and molecular detection of HEV via enzyme-linked immunosorbent assay and quantitative reverse transcription polymerase chain reaction. The amplified products were cloned in pMD18-T vector and sequenced. The alignment and phylogenetic analysis of partial HEV ORF2 genes were compared with the corresponding sequences of the obtained HEV representative strains. RESULTS Serological results showed that 49 donkeys (12.22%, 95% CI: 9.18-15.83%) were positive for anti-HEV-specific antibodies, and 17 donkeys (4.24%, 95% CI: 2.49-6.70%) were positive for HEV viral RNA. On the basis of sequence alignment and phylogenetic analysis, all isolated HEV strains belonged to genotype 3 (HEV-3) or HEV-4, sharing more than 76.2-96.3% identities with 67 other HEV representative strains of HEV-1 to HEV-8. MAIN LIMITATIONS Further studies about the prevalence of HEV in organs or faecal samples from donkeys are needed to evaluate the possible role of HEV reservoir and to determine the risk factors associated with the transmission of this zoonotic virus in donkeys in China. CONCLUSIONS This is the first report documenting the molecular analysis of donkey HEV strains worldwide and the serological evidence of HEV infection in donkeys in northern China. The results suggest that young donkeys are more susceptible to HEV infection compared with older donkeys. Further investigation is required to determine whether donkeys should be considered reservoirs for zoonotic HEV. The Summary is available in Chinese - see Supporting information.
Collapse
Affiliation(s)
- P Rui
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - F Zhao
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd., Donge, Shandong, China
| | - S Yan
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - C Wang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Q Fu
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - J Hao
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - X Zhou
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd., Donge, Shandong, China
| | - H Zhong
- College of Science, Henan University of Engineering, Zhengzhou, Henan, China
| | - M Tang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - W Hui
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - W Li
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - D Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Z Ma
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - T Song
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| |
Collapse
|
24
|
|
25
|
Lyoo KS, Yang SJ, Na W, Song D. Detection of antibodies against hepatitis E virus in pet veterinarians and pet dogs in South Korea. Ir Vet J 2019; 72:8. [PMID: 31367342 PMCID: PMC6647305 DOI: 10.1186/s13620-019-0146-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/18/2019] [Indexed: 01/19/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen commonly considered an important foodborne virus. Pet dogs are important reservoirs of zoonotic agents. In the present study, the seroprevalence of HEV in pet dogs and pet veterinarians were found to be 28.2 and 5.0%, respectively. It remains unclear whether pet veterinarians are at higher risk of HEV transmission. However, pet animals and individuals who have contact with infected animals must be continually monitored for public health concerns.
Collapse
Affiliation(s)
- Kwang-Soo Lyoo
- 1Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea
| | - Soo-Jin Yang
- 2School of Bioresources and Bioscience, Chung-Ang University, Anseong, South Korea
| | - Woonsung Na
- 3College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Daesub Song
- 4College of Pharmacy, Korea University, Sejong, South Korea
| |
Collapse
|
26
|
The Current Host Range of Hepatitis E Viruses. Viruses 2019; 11:v11050452. [PMID: 31108942 PMCID: PMC6563279 DOI: 10.3390/v11050452] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen transmitting both human to human via the fecal oral route and from animals to humans through feces, direct contact, and consumption of contaminated meat products. Understanding the host range of the virus is critical for determining where potential threats to human health may be emerging from and where potential reservoirs for viral persistence in the environment may be hiding. Initially thought to be a human specific disease endemic to developing countries, the identification of swine as a primary host for genotypes 3 and 4 HEV in industrialized countries has begun a long journey of discovering novel strains of HEV and their animal hosts. As we continue identifying new strains of HEV in disparate animal species, it is becoming abundantly clear that HEV has a broad host range and many of these HEV strains can cross between differing animal species. These cross-species transmitting strains pose many unique challenges to human health as they are often unrecognized as sources of viral transmission.
Collapse
|
27
|
Seroprevalence of hepatitis E virus (HEV) in a general adult population in Northern Norway: the Tromsø study. Med Microbiol Immunol 2019; 208:715-725. [PMID: 30903372 DOI: 10.1007/s00430-019-00599-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in many parts of the world but only a few cases have been diagnosed in Norway. To investigate the HEV exposure rate in a presumed low-risk area, we have conducted a population-based study of anti-HEV IgG seroprevalence in Northern Norway. A total of 1800 serum samples from 900 women and 900 men, age 40-79 years, were randomly selected from the 21,083 participants in the 7th Tromsø Study, representing the 32,591 inhabitants of the Tromsø municipality that were ≥ 40 years. All samples were analyzed by ELISA-1 (recomWell HEV IgG). Samples testing positive or borderline, as well as a 1.5-fold excess of negative samples, were retested by ELISA-2 (DiaPro HEV IgG). If still borderline or a result discordant from ELISA-1, the sample was retested by ELISA-3 (Wantai HEV IgG) and strip-immunoassay (recomLine HEV IgG). Anti-HEV IgG was detected in 205 individuals (11.4%), yielding an estimated seroprevalence of 10.4% in the age-matched population of Tromsø. Using logistic regression analysis followed by multivariable backward elimination analysis, increasing age (OR 1.036 per year; p < 0.001) and higher education (OR 2.167; p < 0.001) were found as potential risk factors, whereas travel abroad or eating of red meat were not. Our results indicate that HEV-infection is common in Northern Norway and suggest that HEV testing should be included in the evaluation of elevated liver enzymes.
Collapse
|