1
|
Huang X, Liu G, Chang T, Yang Y, Wang T, Xia D, Qi X, Zhu X, Wei Z, Tian X, Wang H, Tian Z, Cai X, An T. Recombinant characterization and pathogenicity of a novel L1C RFLP-1-4-4 variant of porcine reproductive and respiratory syndrome virus in China. Vet Res 2024; 55:142. [PMID: 39506759 PMCID: PMC11539553 DOI: 10.1186/s13567-024-01401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide and is caused by the PRRS virus (PRRSV), which has complex genetic variation due to frequent mutations, indels, and recombination. The emergence of PRRSV L1C.5 in 2020 in the United States has raised worldwide concerns about PRRSV with the RFLP 1-4-4 pattern and lineage 1C. However, studies on the pathogenic characteristics, epidemiological distribution, and effectiveness of vaccines against PRRSV with L1C and RFLP1-4-4 pattern in China are still insufficient. In this study, a novel recombinant variant of PRRSV with RFLP 1-4-4 and lineage 1C features, different from L1C.5 in the United States, was isolated in China in 2021. In pathogenicity experiments in specific pathogen-free piglets or farm piglets, 60-100% of artificially infected experimental piglets died with high fever and respiratory symptoms. Inflammatory cytokine and chemokine levels were upregulated in infected piglets. A commercially modified live vaccine against highly pathogenic PRRSV did not provide effective protection when the vaccinated piglets were challenged with the novel L1C-1-4-4 variant. Therefore, this strain merits special attention when devising control and vaccine strategies. These findings suggest that extensive joint surveillance is urgently needed and that vaccine strategies should be updated to prevent the disease from spreading further.
Collapse
Affiliation(s)
- Xinyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guoqing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tong Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yongbo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Dasong Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xinyu Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xulong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Ziyi Wei
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaoxiao Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China.
| |
Collapse
|
2
|
Shin GE, Lee KK, Ku BK, Oh SH, Jang SH, Kang B, Jeoung HY. Prevalence of viral agents causing swine reproductive failure in Korea and the development of multiplex real-time PCR and RT-PCR assays. Biologicals 2024; 86:101763. [PMID: 38641502 DOI: 10.1016/j.biologicals.2024.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/21/2024] Open
Abstract
This study aimed to investigate the prevalence of viral agents causing reproductive failure in pigs in Korea. In addition, two types of multiplex real-time PCR (mqPCR) were developed for the simultaneous detection of Aujeszky's disease virus (ADV) and porcine parvovirus (PPV) in mqPCR and encephalomyocarditis virus (EMCV) and Japanese encephalitis virus (JEV) in reverse transcription mqPCR (mRT-qPCR). A total of 150 aborted fetus samples collected from 2020 to 2022 were analyzed. Porcine reproductive and respiratory syndrome virus was the most prevalent (49/150 32.7%), followed by porcine circovirus type 2 (31/150, 20.7%), and PPV1 (7/150, 4.7%), whereas ADV, EMCV, and JEV were not detected. The newly developed mqPCR and mRT-qPCR could simultaneously detect and differentiate with high sensitivities and specificities. When applied to aborted fetuses, the newly developed mqPCR for PPV was 33.3% more sensitivities than the previously established diagnostic method. Amino acid analysis of the VP2 sequences of PPV isolates revealed considerable similarity to the highly pathogenic Kresse strain. This study successfully evaluated the prevalence of viral agents causing reproductive failure among swine in Korea, the developed mqPCR and mRT-qPCR methods could be utilized as effective and accurate diagnostic methods for the epidemiological surveillance of ADV, PPV, EMCV, and JEV.
Collapse
Affiliation(s)
- Go-Eun Shin
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Bok-Kyung Ku
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Su Hong Oh
- Mediandiagnostics, Chuncheon, 24399, Gangwon-do, Republic of Korea.
| | - Sang-Ho Jang
- Mediandiagnostics, Chuncheon, 24399, Gangwon-do, Republic of Korea.
| | - Bokyu Kang
- Mediandiagnostics, Chuncheon, 24399, Gangwon-do, Republic of Korea.
| | - Hye-Young Jeoung
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
3
|
Li S, Qiu M, Li S, Li C, Lin H, Qiu Y, Qi W, Feng B, Cui M, Yang S, Zheng W, Shang S, Tian K, Zhu J, Lu Y, Chen N. A chimeric porcine reproductive and respiratory syndrome virus 1 strain containing synthetic ORF2-6 genes can trigger T follicular helper cell and heterologous neutralizing antibody responses and confer enhanced cross-protection. Vet Res 2024; 55:28. [PMID: 38449049 PMCID: PMC10918997 DOI: 10.1186/s13567-024-01280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
The prevalence of porcine reproductive and respiratory syndrome virus 1 (PRRSV1) isolates has continued to increase in Chinese swine herds in recent years. However, no effective control strategy is available for PRRSV1 infection in China. In this study, we generated the first infectious cDNA clone (rHLJB1) of a Chinese PRRSV1 isolate and subsequently used it as a backbone to construct an ORF2-6 chimeric virus (ORF2-6-CON). This virus contained a synthesized consensus sequence of the PRRSV1 ORF2-6 gene encoding all the envelope proteins. The ORF2-6 consensus sequence shared > 90% nucleotide similarity with four representative strains (Amervac, BJEU06-1, HKEU16 and NMEU09-1) of PRRSV1 in China. ORF2-6-CON had replication efficacy similar to that of the backbone rHLJB1 virus in primary alveolar macrophages (PAMs) and exhibited cell tropism in Marc-145 cells. Piglet inoculation and challenge studies indicated that ORF2-6-CON is not pathogenic to piglets and can induce enhanced cross-protection against a heterologous SD1291 isolate. Notably, ORF2-6-CON inoculation induced higher levels of heterologous neutralizing antibodies (nAbs) against SD1291 than rHLJB1 inoculation, which was concurrent with a higher percentage of T follicular helper (Tfh) cells in tracheobronchial lymph nodes (TBLNs), providing the first clue that porcine Tfh cells are correlated with heterologous PRRSV nAb responses. The number of SD1291-strain-specific IFNγ-secreting cells was similar in ORF2-6-CON-inoculated and rHLJB1-inoculated pigs. Overall, our findings support that the Marc-145-adapted ORF2-6-CON can trigger Tfh cell and heterologous nAb responses to confer improved cross-protection and may serve as a candidate strain for the development of a cross-protective PRRSV1 vaccine.
Collapse
Affiliation(s)
- Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Meng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
| | - Yu Lu
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Goto Y, Fukunari K, Tada S, Ichimura S, Chiba Y, Suzuki T. A multiplex real-time RT-PCR system to simultaneously diagnose 16 pathogens associated with swine respiratory disease. J Appl Microbiol 2023; 134:lxad263. [PMID: 37951290 DOI: 10.1093/jambio/lxad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
AIMS Swine respiratory disease (SRD) is a major disease complex in pigs that causes severe economic losses. SRD is associated with several intrinsic and extrinsic factors such as host health status, viruses, bacteria, and environmental factors. Particularly, it is known that many pathogens are associated with SRD to date, but most of the test to detect those pathogens can be normally investigated only one pathogen while taking time and labor. Therefore, it is desirable to develop rapidly and efficiently detectable methods those pathogens to minimize the damage caused by SRD. METHODS AND RESULTS We designed a multiplex real-time RT-PCR (RT-qPCR) system to diagnose simultaneously 16 pathogens, including nine viruses and seven bacteria associated with SRD, on the basis of single qPCR and RT-qPCR assays reported in previous studies. Multiplex RT-qPCR system we designed had the same ability to single RT-qPCR without significant differences in detection sensitivity for all target pathogens at minimum to maximum genomic levels. Moreover, the primers and probes used in this system had highly specificity because the sets had not been detected pathogens other than the target and its taxonomically related pathogens. Furthermore, our data demonstrated that this system would be useful to detect a causative pathogen in the diagnosis using oral fluid from healthy pigs and lung tissue from pigs with respiratory disorders collected in the field. CONCLUSIONS The rapid detection of infected animals from the herd using our system will contribute to infection control and prompt treatment in the field.
Collapse
Affiliation(s)
- Yusuke Goto
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Kazuhiro Fukunari
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Shigekatsu Tada
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Satoki Ichimura
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Yuzumi Chiba
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 020-0605, Japan
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
5
|
Li C, Li S, Li S, Qiu M, Lin H, Sun Z, Qiu Y, Qi W, Feng B, Li J, Zheng W, Yu X, Tian K, Shang S, Fan K, Zhu J, Chen N. Efficacy of a porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) natural recombinant against a heterologous PRRSV-1 isolate both clustered within the subgroup of BJEU06-1-like isolates. Vet Microbiol 2023; 285:109847. [PMID: 37625255 DOI: 10.1016/j.vetmic.2023.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) has been prevalent in more than 20 provinces of China. However, no PRRSV-1-specific vaccine is commercially available in China. To evaluate the feasibility of using a low virulent PRRSV-1 isolate against potential outbreaks caused by virulent Chinese PRRSV-1 isolates, here we evaluated the efficacy of a low virulent PRRSV-1 HLJB1 strain isolated in 2014 as live vaccine against a virulent PRRSV-1 SD1291 strain isolated in 2022. Genome-based phylogenetic analysis showed that both HLJB1 and SD1291 were grouped within BJEU06-1-like isolates. However, they shared only 85.27% genomic similarity. Piglet inoculation and challenge study showed that HLJB1 inoculation could reduce viremia but did not significantly alleviate clinical signs and tissue lesions. Virus neutralization test indicated that HLJB1 inoculation could induce homologous neutralizing antibodies (NAbs) but no heterologous NAbs at 42 dpi. In addition, flow cytometric analyses showed that no memory T follicular helper (Tfh) cells against SD1291 and SD1291-specific IFN-γ secreting cells were induced by HLJB1 pre-inoculation. These results supported that HLJB1 inoculation only provides partial cross-protection against SD1291 infection even though they are clustered within the same PRRSV-1 subgroup, which is closely related to the failure in conferring cross-protective adaptive immune responses.
Collapse
Affiliation(s)
- Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kewei Fan
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of animal pathogen infection and Immunology of Fujian Province, Fuzhou 350002, China.
| |
Collapse
|
6
|
Ruan S, Ren W, Yu B, Yu X, Wu H, Li W, Jiang Y, He Q. Development and Implementation of a Quadruple RT-qPCR Method for the Identification of Porcine Reproductive and Respiratory Syndrome Virus Strains. Viruses 2023; 15:1946. [PMID: 37766352 PMCID: PMC10536281 DOI: 10.3390/v15091946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion in sows and respiratory distress in breeding pigs. In China, PRRSV1 and PRRSV2 are the two circulating genotypes in swine herds, with distinct virulence. PRRSV2 further consists of classical (C-PRRSV2), highly pathogenic (HP-PRRSV2), and NADC30-Like (N-PRRSV2) subtypes. The diversity of PRRSV poses challenges for control and eradication, necessitating reliable detection assays for differentiating PRRSV genotypes. METHODS A new TaqMan-based RT-qPCR assay with four sets of primers and probes targeting conserved regions of the ORF7 and NSP2 genes of PRRSV was developed, optimized, and evaluated by us. Reaction conditions such as annealing temperature, primer concentration, and probe concentration were optimized for the assay. Specificity, sensitivity, repeatability, stability, limit of detection (LOD), concordance with the reference method were evaluated for the assay. RESULTS The assay could detect and type PRRSV1, C-PRRSV2, HP-PRRSV2, and N-PRRSV2 simultaneously with 97.33% specificity, 96.00% sensitivity, 12 copies/μL LOD, 97.00% concordance with reference assays. We applied the assay to 321 clinical samples from swine farms in China. The assay successfully detected and typed 230 PRRSV-positive samples, with 24.78% (57/230) of them further confirmed by ORF5 gene sequencing. The prevalence of PRRSV subtypes among the positive samples was as follows: C-PRRSV2 (15.22%), HP-PRRSV2 (23.48%), and N-PRRSV2 (61.30%). Two samples showed coinfection with different PRRSV subtypes. CONCLUSION The quadruple RT-qPCR assay is a powerful tool for detecting and typing the currently circulating PRRSV strains in Chinese swine populations. It can assist in the surveillance of PRRSV prevalence and the implementation of prevention and control strategies.
Collapse
Affiliation(s)
- Shengnan Ruan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhui Ren
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuexiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunbo Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Li S, Li J, Tian Y, Liu J, Zhu J, Chen N, Shang S. A potent CD8 T-cell response may be associated with partial cross-protection conferred by an attenuated Chinese HP-PRRSV vaccine against NADC30-like PRRSV challenge. J Gen Virol 2023; 104. [PMID: 37159409 DOI: 10.1099/jgv.0.001850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating pathogens to the global swine industry. Many commercial PRRSV vaccines, originally designed to provide homologous protection, have shown partial protection against heterologous strains. However, the protective immune mechanisms mediated by these PRRSV vaccines are not fully understood. In this study, we investigated the factors responsible for partial protection conferred by an attenuated Chinese HP-PRRSV vaccine (TJM-F92) against heterologous NADC30-like PRRSV. By analysing peripheral T-cell responses induced by the TJM-F92 vaccine and local and systemic memory responses following challenge with NADC30-like PRRSV (SD17-38 strains) as well as neutralizing antibody response, we found that the TJM-F92 vaccine induced a significant expansion of CD8 T cells but not CD4 T cells or γδ T cells. The expanded CD8 T cells exhibited a phenotype of effector memory T cells and secreted IFN-γ upon restimulation with SD17-38 strains in vitro. In addition, only CD8 T cells in the prior immunized pigs rapidly expanded in the blood and spleen after heterologous challenge, with higher magnitude, compared to the unvaccinated pigs, showing a remarkable memory response. In contrast, no obvious humoral immune response was enhanced in the vaccinated and challenged pigs, and no heterologous neutralizing antibodies were detected throughout the experiment. Our results suggested that CD8 T cells elicited by the TJM-F92 vaccine may be responsible for partial heterologous protection against NADC30-like PRRSV strains and potentially recognize the conserved antigens among PRRSV strains.
Collapse
Affiliation(s)
- Shuai Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaqi Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yunfei Tian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiawei Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Nanhua Chen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Shaobin Shang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| |
Collapse
|
8
|
Tu T, Pang M, Jiang D, Zhou Y, Wu X, Yao X, Luo Y, Yang Z, Ren M, Lu A, Zhang G, Yu Y, Wang Y. Development of a Real-Time TaqMan RT-PCR Assay for the Detection of NADC34-like Porcine Reproductive and Respiratory Syndrome Virus. Vet Sci 2023; 10:vetsci10040279. [PMID: 37104434 PMCID: PMC10141196 DOI: 10.3390/vetsci10040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus first appeared in 2017 in a herd of pigs in Liaoning Province, China. The virus was subsequently found in other provinces. Given the potential for this virus to cause an epidemic, rapid, sensitive, and specific detection of NADC34-like PRRSV is required. The virus' ORF5 gene was artificially synthesized based on a Chinese reference strain, and specific primers/probes for the ORF5 gene were designed. Then, the amplified target fragment was cloned into the pMD19-T vector, and a series of diluted recombinant plasmids were used to generate a standard curve. An optimized real-time TaqMan RT-PCR method was established. The method was highly specific for NADC34-like PRRSV, without cross-reactions with other non-targeted pig viruses. The detection limit of this assay was 101 copies/μL. The method had an efficiency of 98.8%, a squared regression value (R2) of 0.999, and showed a linear range of 103-108 copies/μL of DNA per reaction. This method was shown to be analytically specific and sensitive with a low intra- and inter-assay coefficient of variation (<1.40%). A total of 321 clinical samples were tested using the established method, and four were shown to be positive (1.24%). This study confirmed the existence of NADC34-like PRRSV and HP-PRRSV co-infection in Sichuan and provided a promising alternative tool for the rapid detection of NADC34-like PRRSV.
Collapse
Affiliation(s)
- Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Maonan Pang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu 611130, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Development of a Multiplex Crystal Digital RT-PCR for Differential Detection of Classical, Highly Pathogenic, and NADC30-like Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2023; 13:ani13040594. [PMID: 36830384 PMCID: PMC9951750 DOI: 10.3390/ani13040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 (European genotype) and PRRSV type 2 (North American genotype) are prevalent all over the world. Nowadays, the North American genotype PRRSV (NA-PRRSV) has been widely circulating in China and has caused huge economic losses to the pig industry. In recent years, classical PRRSV (C-PRRSV), highly pathogenic PRRSV (HP-PRRSV), and NADC30-like PRRSV (NL-PRRSV) have been the most common circulating strains in China. In order to accurately differentiate the circulating strains of NA-PRRSV, three pairs of specific primers and corresponding probes were designed for the Nsp2 region of C-PRRSV, HP-PRRSV, and NL-PRRSV. After optimizing the annealing temperature, primer concentration, and probe concentration, a multiplex real-time quantitative RT-PCR (qRT-PCR) and a multiplex Crystal digital RT-PCR (cdRT-PCR) for the differential detection of C-PRRSV, HP-PRRSV, and NL-PRRSV were developed. The results showed that the two assays illustrated high sensitivity, with a limit of detection (LOD) of 3.20 × 100 copies/μL for the multiplex qRT-PCR and 3.20 × 10-1 copies/μL for the multiplex cdRT-PCR. Both assays specifically detected the targeted viruses, without cross-reaction with other swine viruses, and indicated excellent repeatability, with coefficients of variation (CVs) of less than 1.26% for the multiplex qRT-PCR and 2.68% for the multiplex cdRT-PCR. Then, a total of 320 clinical samples were used to evaluate the application of these assays, and the positive rates of C-PRRSV, HP-PRRSV, and NL-PRRSV by the multiplex qRT-PCR were 1.88%, 21.56%, and 9.69%, respectively, while the positive rates by the multiplex cdRT-PCR were 2.19%, 25.31%, and 11.56%, respectively. The high sensitivity, strong specificity, excellent repeatability, and reliability of these assays indicate that they could provide useful tools for the simultaneous and differential detection of the circulating strains of C-PRRSV, HP-PRRSV, and NL-PRRSV in the field.
Collapse
|
10
|
Ji C, Zhou L, Chen Y, Fang X, Liu Y, Du M, Lu X, Li Q, Wang H, Sun Y, Lan T, Ma J. Microfluidic-LAMP chip for the point-of-care detection of gene-deleted and wild-type African swine fever viruses and other four swine pathogens. Front Vet Sci 2023; 10:1116352. [PMID: 36876016 PMCID: PMC9978214 DOI: 10.3389/fvets.2023.1116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Different pathogens causing mixed infection are now threatening the pig industry in the context of the African Swine Fever (ASF) circulating especially in China, and it is crucial to achieving the early diagnosis of these pathogens for disease control and prevention. Methods Here we report the development of a rapid, portable, sensitive, high-throughput, and accurate microfluidic-LAMP chip detection system for simultaneous detection and differentiation of gene-deleted type and wild-type African swine fever virus (ASFV), pseudorabie virus (PRV), porcine parvovirus (PPV), porcine circovirus type 2 (PCV2), and porcine reproductive and respiratory syndrome (PRRSV). Results and discussion The newly developed system was shown to be sensitive with detection limits of 101 copies/μl for ASFV-MGF505-2R/P72, PPV, and PCV2, 102 copies/μl for ASFV-CD2v, PRV, and PRRSV. The system was highly specific (100%) and stable (C.V.s < 5%) in its ability to detect different pathogens. A total 213 clinical samples and 15 ASFV nucleic acid samples were collected to assess the performance of the detection system, showing highly effective diagnosis. Altogether, the developed microfluidic-LAMP chip system provides a rapid, sensitive, high-throughput and portable diagnostic tool for the accurate detection of multiple swine pathogens.
Collapse
Affiliation(s)
- Chihai Ji
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Zhou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yonghui Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanhong Liu
- Ningbo iGene Technology Co., Ltd., Ningbo, China
| | - Mengkan Du
- Hangzhou Xiaoshan District Animal Husbandry and Veterinary Development Center, Xiaoshan Bureau of Animal Husbandry and Veterinary, Hangzhou, China
| | - Xiandong Lu
- Ningbo iGene Technology Co., Ltd., Ningbo, China
| | - Qianniu Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuan Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tian Lan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingyun Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Yang G, Zhou B, Chen K, Hu Z, Guo W, Wang X, Du C. Diagnostic Performance of Competitive ELISA and Western Blot Methods for the Detection of Antibodies against Theileria equi and Babesia caballi. Microorganisms 2022; 11:microorganisms11010021. [PMID: 36677312 PMCID: PMC9862631 DOI: 10.3390/microorganisms11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Theileria equi (T. equi) and Babesia caballi (B. caballi) are the causative pathogens of Equine piroplasmosis (EP), a disease that has brought huge economic losses and great restrictions to the global equine industry. Rapid and accurate diagnostic methods are critical for the effective monitoring of the disease. In this study, we developed novel competitive ELISA methods and western blot assays based on the EMA1 or Bc48 proteins to detect antibodies against T. equi or B. caballi, respectively. In the novel cELISA, horseradish peroxidase (HRP)-labeled monoclonal antibodies are used in place of enzyme-conjugated secondary antibodies, in order to speed up the entire procedure. These methods have high sensitivity and no cross-reactivity with antibodies against other equine diseases. In the newly developed western blot assays, we optimized the dilution of T. equi or B. caballi positive serum samples to 1:200. Compared with the commercially available kit, both the novel cELISA assay and the western blot assay showed high coincidence rates in detecting antibodies against T. equi and B. caballi. Taken together, the novel cELISA and the western blot assays for detecting antibodies against T. equi or B. caballi have the potential to rapidly test for T. equi or B. caballi and to contribute to the surveillance and control of this disease.
Collapse
|
12
|
Cui X, Xia D, Huang X, Sun Y, Shi M, Zhang J, Li G, Yang Y, Wang H, Cai X, An T. Analysis of Recombinant Characteristics Based on 949 PRRSV-2 Genomic Sequences Obtained from 1991 to 2021 Shows That Viral Multiplication Ability Contributes to Dominant Recombination. Microbiol Spectr 2022; 10:e0293422. [PMID: 36073823 PMCID: PMC9602502 DOI: 10.1128/spectrum.02934-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 01/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases affecting the pig-raising industry. The PRRS virus (PRRSV) has high genetic diversity, partly owing to viral recombination. Some individual recombinant type 2 PRRSV (PRRSV-2) strains have been detected; however, the sequence composition characteristics of recombination hot spots and potential driving forces for recombinant PRRSV-2 are still unreported. Therefore, all available genomic sequences of PRRSV-2 (n = 949, including 29 genomes sequenced in this study) from 11 countries from 1991 to 2021 were collected and analyzed. The results revealed that the dominant major recombinant parent has been converted from lineage 3 (L3) to L1 since 2012. The recombination hot spots were located at nucleotides (nt) 7900 to 8200 (in NSP9, encoding viral RNA-dependent RNA polymerase) and nt 12500 to nt 13300 (in ORF2-ORF4, mean ORF2 to ORF4); no AU-rich characteristics were found in the recombination hot spots. Based on infectious clones of L1 and L8 PRRSV-2, recombinant PRRSVs were generated by switching complete or partial NSP9 (harboring the recombination hot spot). The results showed that recombinant PRRSVs based on the L1 backbone, but not the L8 backbone, acquired a higher replication capacity in pig primary alveolar macrophages. These findings will help to understand the reason behind the dominance of L1-based recombination in PRRSV-2 strains and provide new clues for an in-depth study of the recombination mechanism of PRRSV-2. IMPORTANCE Recombination is an important driver of the genetic shifts that are tightly linked to the evolution of RNA viruses. Viral recombination contributes substantially to the emergence of new variants, alterations in virulence, and pathogenesis. PRRSV is genetically diverse, partly because of extensive recombination. In this study, we analyzed interlineage recombination based on available genomic sequences of PRRSV-2 from 1991 to 2021. The study revealed the temporal and geographical distribution of recombinant PRRSVs and the recombination hot spot's location and showed that artificially constructed recombinant PRRSVs (harboring a high-frequency region) had more viral genomic copies than their parental virus, indicating that dominant recombination was shaped by a tendency to benefit viral replication. This finding will enrich our understanding of PRRSV recombination and provide new clues for an in-depth study of the recombination mechanism.
Collapse
Affiliation(s)
- Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dasong Xia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yongbo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
13
|
Zhang X, Zheng C, Lv Z, Xue S, Chen Y, Liu Y, Huang X, Luo G, Yang X, Dai A. Genetic and epidemic characteristics of porcine parvovirus 7 in the Fujian and Guangdong regions of southern China. Front Vet Sci 2022; 9:949764. [PMID: 36061123 PMCID: PMC9428481 DOI: 10.3389/fvets.2022.949764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine parvovirus (PPV) is the primary cause of reproductive disorders in pigs. The porcine parvovirus 7 (PPV7) subtype was first identified in the United States in 2016. In this study, PPV7 was detected in different porcine samples, including serum, feces, saliva, and milk, from 69 pig farms in the Fujian and Guangdong regions of South China, and its coinfection with porcine circovirus 2 (PCV2), porcine circovirus 3 (PCV3), and porcine reproductive and respiratory syndrome virus (PRRSV) was determined. Whole-genome sequencing, phylogenetic analysis, and recombination analysis were performed on seven isolates, with each selected isolate originating from a different farm. There was a high rate of PPV7 positivity in blood, stool, and saliva but PPV7 DNA was absent from breast milk. The findings also showed that PPV7-positive samples had a high rate of coinfection with PCV2, PCV3, and PRRSV. Real-time PCR was used to determine the viral copy numbers of PCV2, PCV3, PRRSV, and PPV7 in serum samples and to assess whether PPV7 affected PCV2, PCV3, and PRRSV viral loads. Phylogenetic analysis showed that PPV7e and PPV7f were the most prevalent and widespread subtypes in the Fujian and Guangdong regions, respectively. While the PPV7a, PPV7b, PPV7c, and PPV7f subtypes were most prevalent in Fujian Province, PPV7a-e subtypes were prevalent in Guangdong, indicating that PPV7 has rich genetic diversity in these regions. A putative recombinant strain, 21FJ09, was identified using SimPlot and the Recombination Detection Program 4 software.
Collapse
Affiliation(s)
- Xinjie Zhang
- College of Life Sciences, Longyan University, Longyan, China
| | - Canyang Zheng
- College of Life Sciences, Longyan University, Longyan, China
| | - Zixin Lv
- College of Life Sciences, Longyan University, Longyan, China
| | - Shaohua Xue
- College of Life Sciences, Longyan University, Longyan, China
| | - Yuxuan Chen
- College of Life Sciences, Longyan University, Longyan, China
| | - Yanru Liu
- College of Life Sciences, Longyan University, Longyan, China
| | - Xirong Huang
- College of Life Sciences, Longyan University, Longyan, China
| | - Guoqing Luo
- College of Life Sciences, Longyan University, Longyan, China
| | - Xiaoyan Yang
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Engineering Research Center for Swine Disease Control and Prevention, Longyan, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
- *Correspondence: Xiaoyan Yang
| | - Ailing Dai
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Engineering Research Center for Swine Disease Control and Prevention, Longyan, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
- Ailing Dai
| |
Collapse
|
14
|
Cui XY, Xia DS, Huang XY, Tian XX, Wang T, Yang YB, Wang G, Wang HW, Sun Y, Xiao YH, Tian ZJ, Cai XH, An TQ. Recombinant characteristics, pathogenicity, and viral shedding of a novel PRRSV variant derived from twice inter-lineage recombination. Vet Microbiol 2022; 271:109476. [DOI: 10.1016/j.vetmic.2022.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
15
|
Pathogenic and metagenomic evaluations reveal the correlations of porcine epidemic diarrhea virus, porcine kobuvirus and porcine astroviruses with neonatal piglet diarrhea. Microb Pathog 2022; 170:105703. [DOI: 10.1016/j.micpath.2022.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022]
|
16
|
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to be prevalent in China since 2018 and became one of the main epidemic strains in some areas of China. Yet, the pathogenicity of NADC34-like PRRSV tested by experimental infection has seldomly been investigated. In this study, we infected pigs with JS2021NADC34 PRRSV, a Chinese NADC34-like PRRSV isolated in Jiangsu province in 2021, to study the pathogenicity of this virus strain. Pigs infected with this virus had lasting fever and reduced body weight with high morbidity and mortality. Histopathological changes, including interstitial pneumonia, lymphocyte depletion, acute hemorrhage, and infiltration of neutrophils in the lymphoid tissues, were observed with the viral proteins detected by immunohistochemistry staining using PRRSV-specific antibody. These results suggested that JS2021NADC34 PRRSV is highly pathogenic to pigs. As it is the latest emerging PRRSV strain in China, the prevalence and pathogenicity of NADC34-like PRRSV need to be further investigated. IMPORTANCE NADC34 PRRSV was initially reported in the United States in 2018. Subsequently, this virus strain spread to other countries, including Peru, South Korea, and China. The virus was first found circulating in Northeast China and then spread to more than 10 provinces in China. NADC34 PRRSV causes severe abortion of sows and high mortality of piglets, which lead to huge economic losses to the Chinese pig industry. However, the pathogenicity of NADC34 PRRSV was rarely experimentally evaluated on pigs. In this study, pigs were infected with JS2021NADC34 PRRSV, a Chinese NADC34-like PRRSV isolated in Jiangsu province in 2021. The infected pigs had lasting fever and reduced body weight with high morbidity and mortality. Interstitial pneumonia, lymphocyte depletion, acute hemorrhage, and infiltration of neutrophils were observed in the lymphoid tissues, and high virus load was proved by immunohistochemistry staining. The above results indicated that NADC34 PRRSV has high pathogenicity on pigs.
Collapse
|
17
|
Huang X, Wu W, Tian X, Hou X, Cui X, Xiao Y, Jiao Q, Zhou P, Liu L, Shi W, Chen L, Sun Y, Yang Y, Chen J, Zhang G, Liu J, Holmes EC, Cai X, An T, Shi M. A total infectome approach to understand the etiology of infectious disease in pigs. MICROBIOME 2022; 10:73. [PMID: 35538563 PMCID: PMC9086151 DOI: 10.1186/s40168-022-01265-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The global pork industry is continuously affected by infectious diseases that can result in large-scale mortality, trade restrictions, and major reductions in production. Nevertheless, the cause of many infectious diseases in pigs remains unclear, largely because commonly used diagnostic tools fail to capture the full diversity of potential pathogens and because pathogen co-infection is common. RESULTS We used a meta-transcriptomic approach to systematically characterize the pathogens in 136 clinical cases representing different disease syndromes in pigs, as well as in 12 non-diseased controls. This enabled us to simultaneously determine the diversity, abundance, genomic information, and detailed epidemiological history of a wide range of potential pathogens. We identified 34 species of RNA viruses, nine species of DNA viruses, seven species of bacteria, and three species of fungi, including two novel divergent members of the genus Pneumocystis. While most of these pathogens were only apparent in diseased animals or were at higher abundance in diseased animals than in healthy animals, others were present in healthy controls, suggesting opportunistic infections. Importantly, most of the cases examined here were characterized by co-infection with more than two species of viral, bacterial, or fungal pathogens, some with highly correlated occurrence and abundance levels. Examination of clinical signs and necropsy results in the context of relevant pathogens revealed that a multiple-pathogen model was better associated with the data than a single-pathogen model was. CONCLUSIONS Our data demonstrate that most of the pig diseases examined were better explained by the presence of multiple rather than single pathogens and that infection with one pathogen can facilitate infection or increase the prevalence/abundance of another. Consequently, it is generally preferable to consider the cause of a disease based on a panel of co-infecting pathogens rather than on individual infectious agents. Video abstract.
Collapse
Affiliation(s)
- Xinyi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weichen Wu
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiaoxiao Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Hou
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yihong Xiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Qiulin Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liqiang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Weilin Shi
- Harbin Weike Biotechnology Development Company, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yue Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongbo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinling Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Mang Shi
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
18
|
Qiu M, Li S, Ye M, Li J, Sun Z, Li X, Xu Y, Xiao Y, Li C, Feng B, Lin H, Zheng W, Yu X, Tian K, Zhu J, Chen N. Systemic Homologous Neutralizing Antibodies Are Inadequate for the Evaluation of Vaccine Protective Efficacy against Coinfection by High Virulent PEDV and PRRSV. Microbiol Spectr 2022; 10:e0257421. [PMID: 35315711 PMCID: PMC9045284 DOI: 10.1128/spectrum.02574-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
G2 porcine epidemic diarrhea virus (G2 PEDV) and highly pathogenic porcine reproductive and respiratory syndrome virus 2 (HP-PRRSV2) are two of the most prevalent swine pathogens in China's swine herds, and their coinfection occurs commonly. Several PED and PRRS vaccines have been utilized in China for decades, and systemic homologous neutralizing antibodies (shnAbs) in serum are frequently used to evaluate the protective efficacy of PED and PRRS vaccines. To develop a vaccine candidate against G2 PEDV and HP-PRRSV2 coinfection, in this study, we generated a chimeric virus (rJSTZ1712-12-S) expressing S protein of G2 PEDV using an avirulent HP-PRRSV2 rJSTZ1712-12 infectious clone as the viral vector. The rJSTZ1712-12-S strain has similar replication efficacies as the parental rJSTZ1712-12 virus. In addition, animal inoculation indicated that rJSTZ1712-12-S is not pathogenic to piglets and can induce shnAbs against both G2 PEDV and HP-PRRSV2 isolates after prime-boost immunization. However, passive transfer study in neonatal piglets deprived of sow colostrum showed that rJSTZ1712-12-S-induced shnAbs may only decrease PEDV and PRRSV viremia but cannot confer sufficient protection against dual challenge of high virulent G2 PEDV XJ1904-34 strain and HP-PRRSV2 XJ17-5 isolate. Overall, this study provides the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for the evaluation of protective efficacy of PED and PRRS bivalent vaccine (especially for the PED vaccine). IMPORTANCE Porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) coinfection occurs commonly and can synergistically reduce feed intake and pig growth. Vaccination is an effective strategy utilized for PED and PRRS control, and systemic homologous neutralizing antibodies (shnAbs) in serum are commonly used for protective efficacy evaluation of PED and PRRS vaccines. Currently, no commercial vaccine is available against PEDV and PRRSV coinfection. This study generated a chimeric vaccine candidate against the coinfection of prevalent PEDV and PRRSV in China. The chimeric strain can induce satisfied shnAbs against both PEDV and PRRSV after prime-boost inoculation in pigs. But the shnAbs cannot confer sufficient protection against PEDV and PRRSV coinfection in neonatal piglets. To the best of our knowledge, these findings provide the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for evaluating PED and PRRS bivalent vaccine protective efficacy.
Collapse
Affiliation(s)
- Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yulin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
19
|
Li J, Li S, Qiu M, Li X, Li C, Feng B, Lin H, Zheng W, Zhu J, Chen N. Minor and major envelope proteins of PRRSV play synergistic roles in inducing heterologous neutralizing antibodies and conferring cross protection. Virus Res 2022; 315:198789. [PMID: 35487365 DOI: 10.1016/j.virusres.2022.198789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
High genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) isolates is a major obstacle for the development of effective PRRS vaccines. A chimeric highly pathogenic PRRSV2 (HP-PRRSV2) strain containing the consensus sequence of ORF2-6 genes was constructed in our previous study, which could induce broadly neutralizing antibodies (bnAbs) and confer satisfied cross protection against virulent NADC30-like isolate. To further elucidate the roles of minor and major envelope proteins encoded by ORF2-4 and ORF5-6 genes in conferring cross protection, two chimeric HP-PRRSV2 strains (rJS-ORF2-4-CON and rJS-ORF5-6-CON) containing consensus sequences of ORF2-4 or ORF5-6 were constructed and rescued in this study. The rJS-ORF5-6-CON strain has similar replication efficiency as the backbone HP-PRRSV2 rJSTZ1712-12 virus, while rJS-ORF2-4-CON has significantly lower in vitro and in vivo replication efficiency comparing to rJS-ORF5-6-CON. Animal inoculation indicated that both rJS-ORF2-4-CON and rJS-ORF5-6-CON did not cause obvious clinical signs in piglets and could induce heterologous nAbs after immunization. Challenge with a virulent heterologous NADC30-like SD17-38 isolate showed that even though both immunized groups presented lower viremia, faster virus elimination, less fever and alleviated lung gross lesions when compared with the only challenged pigs, rJS-ORF2-4-CON and rJS-ORF5-6-CON could not confer enough cross protection. Considering the bnAbs and satisfied cross protection induced by the chimeric virus containing ORF2-6 consensus sequence, our results support that minor and major envelope proteins play synergistic roles in inducing broader nAbs and conferring better cross protection.
Collapse
Affiliation(s)
- Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratories of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratories of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratories of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
20
|
Zou T, Deng J, Li X, Zhang S, Chen L, Hao L, Zhuang J, Wang H, Zhang G, Ge S, Tian K. Development of a fluorescent probe hydrolysis-insulated isothermal PCR for rapid and sensitive on-site detection of African swine fever virus. Virol Sin 2022; 37:462-464. [PMID: 35257964 PMCID: PMC9243616 DOI: 10.1016/j.virs.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
A probe-based insulated isothermal PCR (iiPCR) assay was developed for rapid and onsite detection of ASFV. The developed iiPCR showed similar sensitivity and specificity with OIE recommended real-time PCR. Blood samples could be directly applied as PCR template in iiPCR without DNA extraction.
Collapse
Affiliation(s)
- Tianli Zou
- Beijing Wantai Biopharmaceutical Co., Ltd, Beijing, 102206, China
| | - Junhua Deng
- Luoyang Putai Bio-Tech Co. Ltd, Luoyang, 471003, China
| | - Xiangdong Li
- National Research Center for Veterinary Medicine, Luoyang, 471003, China
| | - Shiyin Zhang
- School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lingyan Chen
- Luoyang Putai Bio-Tech Co. Ltd, Luoyang, 471003, China
| | - Liying Hao
- Luoyang Putai Bio-Tech Co. Ltd, Luoyang, 471003, China
| | | | - Heng Wang
- ASFV Regional Reference Laboratory in Guangzhou, South China Agricultural University, Guangzhou, 510642, China
| | - Guihong Zhang
- ASFV Regional Reference Laboratory in Guangzhou, South China Agricultural University, Guangzhou, 510642, China
| | - Shengxiang Ge
- School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Kegong Tian
- Luoyang Putai Bio-Tech Co. Ltd, Luoyang, 471003, China; National Research Center for Veterinary Medicine, Luoyang, 471003, China.
| |
Collapse
|
21
|
Chen K, Hu Z, Yang G, Guo W, Qi T, Liu D, Wang Y, Du C, Wang X. Development of a duplex real-time PCR assay for simultaneous detection and differentiation of Theileria equi and Babesia caballi. Transbound Emerg Dis 2022; 69:e1338-e1349. [PMID: 35089645 DOI: 10.1111/tbed.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Abstract
Equine piroplasmosis (EP) is a tick-borne disease caused by three apicomplexan protozoan parasites, Theileria equi (T. equi), Babesia caballi (B. caballi) and T. haneyi, which can cause similar clinical symptoms. There are five known 18S rRNA genotypes of T. equi group (including T. haneyi) and three of B. caballi. Real-time PCR methods for detecting EP based on 18S rRNA analysis have been developed, but these methods cannot detect all genotypes of EP in China, especially genotype A of T. equi. In this study, a duplex real-time PCR detection method was developed for the simultaneous detection and differentiation of T. equi and B. caballi. The primers and probes for this duplex real-time PCR assay were designed based on the conserved 18S rRNA gene sequences of all genotypes of T. equi and B. caballi including Chinese strain. Double-quenched probes were used in this method, which provide less background and more signal to decrease the number of false positives relative to single-quenched probes. The newly developed real-time PCR assays exhibited good specificity, sensitivity, repeatability and reproducibility. The real-time PCR assays were further validated by comparison with a nested PCR assay and a previous developed real-time PCR for EP and sequencing results in the analysis of 506 clinical samples collected from 2019 to 2020 in eleven provinces and regions of China. Based on clinical performance, the agreements between the duplex real-time PCR assay and the nPCR assay or the previous developed real-time PCR assay were 92.5% (T. equi) and 99.4% (B. caballi) or 87.4% (T. equi) and 97.2% (B. caballi). The detection results showed that the positivity rate of T. equi was 43.87% (222/506) (10 genotype A, 1 genotype B, 4 genotype C, 207 genotype E), while that of B. caballi was 5.10% (26/506) (26 genotype A), and the rate of T. equi and B. caballi coinfection was 2.40% (12/506). The established method could contribute to the accurate diagnosis, pathogenic surveillance and epidemiological investigation of T. equi and B. caballi infections in horses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kewei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guangpu Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yaoxin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
22
|
Tian XX, Wang T, Cui XY, Huang XY, Sun Y, Xia DS, Yang YB, Cai XH, An TQ. Rapid visual detection of porcine reproductive and respiratory syndrome virus via recombinase polymerase amplification combined with a lateral flow dipstick. Arch Virol 2022; 167:493-499. [PMID: 34997320 PMCID: PMC8741141 DOI: 10.1007/s00705-021-05349-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases in the global swine industry. A rapid and sensitive on-site detection method for PRRS virus (PRRSV) is critically important for diagnosing PRRS. In this study, we established a method that combines reverse transcription recombinase polymerase amplification (RT-RPA) with a lateral flow dipstick (LFD) for detecting North American PRRSV (PRRSV-2). The primers and probe were designed based on the conserved region of all complete PRRSV-2 genomic sequences available in China (n = 512) from 1996 to 2020. The detection limit of the assay was 5.6 × 10-1 median tissue culture infection dose (TCID50) per reaction within 30 min at 42 °C, which was more sensitive than that of reverse transcription polymerase chain reaction (RT-PCR) (5.6 TCID50 per reaction). The assay was highly specific for the epidemic lineages of PRRSV-2 in China and did not cross-react with pseudorabies virus, porcine circovirus 2, classical swine fever virus, or porcine epidemic diarrhea virus. The assay performance was evaluated by testing 179 samples and comparing the results with those of quantitative RT-PCR (RT-qPCR). The results showed that the detection coincidence rate of RT-RPA and RT-qPCR was 100% when the cycle threshold values of RT-qPCR were < 32. The assay provides a new alternative for simple and reliable detection of PRRSV-2 and has great potential for application in the field.
Collapse
Affiliation(s)
- Xiao-Xiao Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Tao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xing-Yang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xin-Yi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yue Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Da-Song Xia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yong-Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
23
|
A Systematic Investigation Unveils High Coinfection Status of Porcine Parvovirus Types 1 through 7 in China from 2016 to 2020. Microbiol Spectr 2021; 9:e0129421. [PMID: 34851175 PMCID: PMC8635132 DOI: 10.1128/spectrum.01294-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Porcine parvovirus genotype 1 (PPV1) causes reproductive disorder in swine and is prevalent in China. Recently, six new genotypes of PPVs (PPV2 through PPV7) have also been detected in Chinese swine herds. However, the coinfection status of all these seven genotypes of PPVs (PPV1-7) in China was not clarified yet. In this study, we developed a panel of PPV1–7 PCR assays with satisfied specificity, sensitivity and reproducibility and then applied to the detection of PPV1–7 in 435 clinical samples collected from eight provinces of China in 2016–2020. A total of 55.40% samples (241 out of 435) were PPV positive, while PPV2 and PPV3 (both 22.53%) belonging to the genus of Tetraparvovirus were the most prevalent genotypes. Noticeably, PPV1–7 strains were more prevalent in nursery and finishing pigs than in suckling pigs. In addition, coinfection could be detected in all eight provinces and 27.36% (119/435) samples were coinfected with two to five genotypes of PPVs. Meanwhile, the coinfection of PPVs with PCV2 was 22.30% (97/435). Twenty complete genomes of representative PPV1–7 were determined, and phylogenetic analysis confirmed the genotyping results by sequence comparisons and PCR assays. Remarkably, the PPV7 HBTZ20180519-152 strain from domestic pig was recombined from parental JX15-like and JX38-like isolates from wild boars. Selective pressure analysis based on VP2 sequences of PPV1–7 showed that they were predominantly under negative selection, while few positive selection sites could be detected in VP2 of PPV7. Overall, this systematic investigation unveils high prevalence and coinfection of PPV1–7 in China from 2016 to 2020. IMPORTANCE Porcine parvoviruses (PPVs) are prevalent in China associating with reproductive failure in swine. The coinfection of seven genotypes of PPVs (PPV1-7) might have synergistic effects on PPV1 associated SMEDI syndrome. However, the coinfection status of PPV1–7 in China is not clear yet. This study showed that PPV1–7 strains are highly prevalent (55.40%) in China and mainly in nursery and finishing pigs in recent years. In addition, the coinfections of different genotypes of PPVs (27.36%) and PPVs with PCV2 (22.30%) are common. Geographic analysis indicated that different genotypes of PPVs are widely cocirculating in China. Intriguingly, a PPV7 strain from the domestic pig was detected as a recombinant from two wild boar isolates. Selective pressure analyses showed that PPV1–7 are mainly under purifying selection. Our findings provide the first systematic investigation on the prevalence, coinfection, and evolution of PPV1 through PPV7 in Chinese swineherds from 2016 to 2020.
Collapse
|
24
|
Development of a Nanobody-Based Competitive Enzyme-Linked Immunosorbent Assay for Efficiently and Specifically Detecting Antibodies against Genotype 2 Porcine Reproductive and Respiratory Syndrome Viruses. J Clin Microbiol 2021; 59:e0158021. [PMID: 34524888 PMCID: PMC8601240 DOI: 10.1128/jcm.01580-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes considerable economic loss to the global pig industry. Efficient detection assay is very important for the prevention of the virus infection. Nanobodies are the advantages of small molecular weight, simple genetic engineering, and low production cost for promising diagnostic application. In this study, to develop a nanobody-based competitive ELISA (cELISA) for specifically detecting antibodies against PRRSV, three nanobodies against PRRSV-N protein were screened by camel immunization, library construction, and phage display. Subsequently, a recombinant HEK293S cell line stably secreting nanobody-horseradish peroxidase (HRP) fusion protein against PRRSV-N protein was successfully constructed using the lentivirus transduction assay. Using the cell lines, the fusion protein was easily produced. Then, a novel cELISA was developed using the nanobody-HRP fusion protein for detecting antibodies against PRRSV in pig sera, exhibiting a cut-off value of 23.19% and good sensitivity, specificity, and reproducibility. Importantly, the cELISA specifically detect anti-genotype 2 PRRSV antibodies. The cELISA showed more sensitive than the commercial IDEXX ELISA kit by detecting the sequential sera from the challenged pigs. The compliance rate of cELISA with the commercial IDEXX ELISA kit was 96.4%. In addition, the commercial IDEXX ELISA kit can be combined with the developed cELISA for the differential detection of antibodies against genotype 1 and 2 PRRSV in pig sera. Collectively, the developed nanobody-based cELISA showed advantages of simple operation and low production cost and can be as an assay for epidemiological investigation of genotype 2 PRRSV infection in pigs and evaluation after vaccination.
Collapse
|
25
|
Zhao D, Yang B, Yuan X, Shen C, Zhang D, Shi X, Zhang T, Cui H, Yang J, Chen X, Hao Y, Zheng H, Zhang K, Liu X. Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine. Front Vet Sci 2021; 8:699561. [PMID: 34513970 PMCID: PMC8426627 DOI: 10.3389/fvets.2021.699561] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen causing epidemics of porcine reproductive and respiratory syndrome (PRRS), and is present in every major swine-farming country in the world. Previous studies have demonstrated that PRRSV infection leads to a range of consequences, such as persistent infection, secondary infection, and co-infection, and is common among pigs in the field. In recent years, coinfection of PRRSV and other porcine pathogens has occurred often, making it more difficult to define and diagnose PRRSV-related diseases. The study of coinfections may be extremely suitable for the current prevention and control in the field. However, there is a limited understanding of coinfection. Therefore, in this review, we have focused on the epidemiology of PRRSV coinfection with other pathogens in swine, both in vivo and in vitro.
Collapse
Affiliation(s)
- Dengshuai Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xingguo Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Chaochao Shen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Huimei Cui
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Jinke Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xuehui Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Yu Hao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| |
Collapse
|
26
|
Li S, Li X, Qiu M, Li J, Xiao Y, Lin H, Zheng W, Zhu J, Chen N. Transcriptomic profiling reveals different innate immune responses in primary alveolar macrophages infected by two highly homologous porcine reproductive and respiratory syndrome viruses with distinct virulence. Microb Pathog 2021; 158:105102. [PMID: 34298124 DOI: 10.1016/j.micpath.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) isolates show high genetic and pathogenic diversity. The mechanisms underlying different virulence of PRRSV isolates are still not fully clarified. Two highly homologous PRRSV isolates (XJ17-5 and JSTZ1712-12) with distinct virulence were identified in our previous study. To evaluate the association between host responses and different virulence, here we investigated the transcriptomic profiles of porcine alveolar macrophages (PAMs) infected with these two isolates. RNA-Seq results showed that there are 1932 differential expression genes (DEGs) between two PRRSV infected groups containing 1067 upregulation and 865 downregulation genes. Compared with the avirulent JSTZ1712-12 infected group, GO analysis identified significant enrichment gene sets not only associated with virus infection but also innate immune response in the virulent XJ17-5 infected group. In addition, KEGG analysis indicated significantly enriched genes associated with NOD-like and RIG-I-like receptor signaling pathways in XJ17-5 vs JSTZ1712-12 group. Furthermore, XJ17-5 isolate induced significantly higher levels of innate immune response associated genes (IL-1β, CXCL2, S100A8, OAS2, MX1, IFITM3, ISG15 and IFI6) than JSTZ1712-12 isolate, which were further confirmed by real-time PCR. Given that these two isolates share similar replication efficiency in vivo and in vitro, our results indicated that distinct virulence of PRRSV isolates is associated with different host innate immune responses.
Collapse
Affiliation(s)
- Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
27
|
Chen N, Li S, Tian Y, Li X, Li S, Li J, Qiu M, Sun Z, Xiao Y, Yan X, Lin H, Yu X, Tian K, Shang S, Zhu J. Chimeric HP-PRRSV2 containing an ORF2-6 consensus sequence induces antibodies with broadly neutralizing activity and confers cross protection against virulent NADC30-like isolate. Vet Res 2021; 52:74. [PMID: 34044890 PMCID: PMC8161975 DOI: 10.1186/s13567-021-00944-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/03/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the substantial genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV), commercial PRRS vaccines fail to provide sufficient cross protection. Previous studies have confirmed the existence of PRRSV broadly neutralizing antibodies (bnAbs). However, bnAbs are rarely induced by either natural infection or vaccination. In this study, we designed and synthesized a consensus sequence of PRRSV2 ORF2-6 genes (ORF2-6-CON) encoding all envelope proteins based on 30 representative Chinese PRRSV isolates. The ORF2-6-CON sequence shared > 90% nucleotide identities to all four lineages of PRRSV2 isolates in China. A chimeric virus (rJS-ORF2-6-CON) containing the ORF2-6-CON was generated using the avirulent HP-PRRSV2 JSTZ1712-12 infectious clone as a backbone. The rJS-ORF2-6-CON has similar replication efficiency as the backbone virus in vitro. Furthermore, pig inoculation and challenge studies showed that rJS-ORF2-6-CON is not pathogenic to piglets and confers better cross protection against the virulent NADC30-like isolate than a commercial HP-PRRS modified live virus (MLV) vaccine. Noticeably, the rJS-ORF2-6-CON strain could induce bnAbs while the MLV strain only induced homologous nAbs. In addition, the lineages of VDJ repertoires potentially associated with distinct nAbs were also characterized. Overall, our results demonstrate that rJS-ORF2-6-CON is a promising candidate for the development of a PRRS genetic engineered vaccine conferring cross protection.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yunfei Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xilin Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
28
|
Farkas K, Hillary LS, Thorpe J, Walker DI, Lowther JA, McDonald JE, Malham SK, Jones DL. Concentration and Quantification of SARS-CoV-2 RNA in Wastewater Using Polyethylene Glycol-Based Concentration and qRT-PCR. Methods Protoc 2021; 4:17. [PMID: 33672247 PMCID: PMC8005995 DOI: 10.3390/mps4010017] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Wastewater-based epidemiology has become an important tool for the surveillance of SARS-CoV-2 outbreaks. However, the detection of viruses in sewage is challenging and to date there is no standard method available which has been validated for the sensitive detection of SARS-CoV-2. In this paper, we describe a simple concentration method based on polyethylene glycol (PEG) precipitation, followed by RNA extraction and a one-step quantitative reverse transcription PCR (qRT-PCR) for viral detection in wastewater. PEG-based concentration of viruses is a simple procedure which is not limited by the availability of expensive equipment and has reduced risk of disruption to consumable supply chains. The concentration and RNA extraction steps enable 900-1500× concentration of wastewater samples and sufficiently eliminates the majority of organic matter, which could inhibit the subsequent qRT-PCR assay. Due to the high variation in the physico-chemical properties of wastewater samples, we recommend the use of process control viruses to determine the efficiency of each step. This procedure enables the concentration and the extraction the DNA/RNA of different viruses and hence can be used for the surveillance of different viral targets for the comprehensive assessment of viral diseases in a community.
Collapse
Affiliation(s)
- Kata Farkas
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK; (L.S.H.); (J.T.); (J.E.M.); (D.L.J.)
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK;
| | - Luke S. Hillary
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK; (L.S.H.); (J.T.); (J.E.M.); (D.L.J.)
| | - Jamie Thorpe
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK; (L.S.H.); (J.T.); (J.E.M.); (D.L.J.)
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK;
| | - David I. Walker
- UK National Reference Laboratory for Foodborne Viruses, Centre for Environment, Fisheries and Aquaculture Science, Weymouth DT4 8UB, UK; (D.I.W.); (J.A.L.)
| | - James A. Lowther
- UK National Reference Laboratory for Foodborne Viruses, Centre for Environment, Fisheries and Aquaculture Science, Weymouth DT4 8UB, UK; (D.I.W.); (J.A.L.)
| | - James E. McDonald
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK; (L.S.H.); (J.T.); (J.E.M.); (D.L.J.)
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK;
| | - Davey L. Jones
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK; (L.S.H.); (J.T.); (J.E.M.); (D.L.J.)
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
29
|
Chen N, Li X, Xiao Y, Li S, Zhu J. Characterization of four types of MLV-derived porcine reproductive and respiratory syndrome viruses isolated in unvaccinated pigs from 2016 to 2020. Res Vet Sci 2020; 134:102-111. [PMID: 33360570 DOI: 10.1016/j.rvsc.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Modified live vaccines (MLVs) have been utilized to combat porcine reproductive and respiratory syndrome (PRRS), which raises a serious concern about the MLV-derived PRRS virus (PRRSV) isolates. During the routine investigation of PRRSV in China, four lung samples collected from unvaccinated diseased pigs from 2016 to 2020 were detected as PRRSV positive. The PRRSVs shared high ORF5 identities to CH-1R, JXA1-R, TJM-F92 and RespPRRS MLV vaccines, respectively. The viruses were isolated in Marc-145 cells and denominated as SD1612-1, JS1703-21, JSTZ1907-714 and JSYC20-05-1. Genome comparison confirmed that these isolates share the highest genomic homologies to CH-1R (97.96%), JXA1-R (99.64%), TJM-F92 (99.00%) and RespPRRS MLV (99.57%) than any other known isolates. Genome-based phylogenetic analysis showed that SD1612-1 and CH-1R, JS1703-21 and JXA1-R, JSTZ1907-714 and TJM-F92, JSYC20-05-1 and RespPRRS MLV were grouped in the same branches. In addition, amino acids unique to corresponding vaccine attenuations were also identified in our isolates. Noticeably, amino-acids potentially associated with the virulence revision from MLV strains to parental virulent viruses were also identified in the MLV-derived isolates. Our results confirm that the four types of MLV-derived isolates are circulating and evolving in Chinese swine herds for years, which highlights the necessity for the fair use of PRRS MLVs.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
30
|
Kashyap SP, Hiremath J, Vinutha S, Patil SS, Suresh KP, Roy P, Hemadri D. Development of recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay for sero-survey of porcine reproductive and respiratory syndrome. Vet World 2020; 13:2587-2595. [PMID: 33487975 PMCID: PMC7811545 DOI: 10.14202/vetworld.2020.2587-2595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background and Aim: Porcine reproductive and respiratory syndrome (PRRS) is a disease endemic in many countries and is of economic importance. India was free from PRRS until the first outbreak was reported from a North-East Indian state in 2013. Since then, disease outbreaks have been reported from North-East India and the pilot study conducted earlier showed that it is gradually spreading to the rest of India. Considering there are no locally developed population screening tests available for PRRS and imported diagnostic/screening tests are expensive, the present study was aimed at developing recombinant nucleocapsid (rN) protein-based indirect enzyme-linked immunosorbent assay (iELISA). Materials and Methods: The rN protein of PRRS virus (PRRSV) was produced following standard cloning, expression, and purification procedures. Using this antigen, iELISA was optimized for the detection of serum antibodies to PRRSV. The sensitivity and specificity of the test were assessed by comparing it with a commercial PRRSV antibody detection kit. Result: A total of 745 serum samples from ten different states of India were screened using the developed iELISA. The iELISA had a relative specificity of 76.18% and sensitivity of 82.61% compared to the commercial ELISA (Priocheck PRRSV ELISA kit, Thermo Fisher Scientific, USA). Conclusion: The iELISA, which deployed rN protein from Indian PRRSV, was found to be suitable in the serological survey and may be a useful tool in future disease surveillance programs.
Collapse
Affiliation(s)
- S Phani Kashyap
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, P.B. No. 6450, Yelahanka, Bengaluru, Karnataka, India.,Department of Microbiology and Biotechnology, Jain University, Bengaluru, Karnataka, India
| | - Jagadish Hiremath
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, P.B. No. 6450, Yelahanka, Bengaluru, Karnataka, India
| | - S Vinutha
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, P.B. No. 6450, Yelahanka, Bengaluru, Karnataka, India.,Department of Microbiology and Biotechnology, Jain University, Bengaluru, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, P.B. No. 6450, Yelahanka, Bengaluru, Karnataka, India
| | - Kuralayanapalya P Suresh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, P.B. No. 6450, Yelahanka, Bengaluru, Karnataka, India
| | - Parimal Roy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, P.B. No. 6450, Yelahanka, Bengaluru, Karnataka, India
| | - Divakar Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, P.B. No. 6450, Yelahanka, Bengaluru, Karnataka, India
| |
Collapse
|
31
|
Chen N, Xiao Y, Li X, Li S, Xie N, Yan X, Li X, Zhu J. Development and application of a quadruplex real-time PCR assay for differential detection of porcine circoviruses (PCV1 to PCV4) in Jiangsu province of China from 2016 to 2020. Transbound Emerg Dis 2020; 68:1615-1624. [PMID: 32931644 DOI: 10.1111/tbed.13833] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
To date, four species of porcine circoviruses (PCVs), including PCV1-4, have been reported to exist in the clinical cases. Fast and effective differential detection is critical to monitor the infection and co-infection status of PCVs for adopting reliable control strategies. However, currently available methods cannot simultaneously differentiate the four species of PCV strains. In this study, a quadruplex real-time PCR assay based on TaqMan probes was developed for differential detection of PCV1-4. The new quadruplex real-time PCR assay exhibited satisfied specificity, sensitivity, repeatability and reproducibility. In addition, the new assay was applied to the detection of 120 clinical samples collected from 2016 to 2020 in Jiangsu province of China and compared with previously reported PCV1-4 singleplex conventional PCR assays. Based on the clinical performance, the results from the quadruplex real-time PCR and conventional PCR assays showed 100% agreement. A total of 47 samples were detected as PCV positive by the quadruplex real-time PCR assay, including 1, 2, 1 samples were co-infected with PCV1 and PCV4, PCV2 and PCV3, PCV2 and PCV4, respectively. Full-length ORF2 sequencing and phylogenetic analysis supported the real-time PCR results that 5, 34, 8 and 4 of the 51 PCV sequences were PCV1, PCV2, PCV3 and PCV4, respectively. This study provides a promising alternative tool for rapid differential detection of PCVs and confirms the coexistence of all species of PCV1-4 strains in Jiangsu province in recent years.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, P.R. China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Ningjun Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xilin Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, P.R. China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
32
|
Wang Y, Yim-Im W, Porter E, Lu N, Anderson J, Noll L, Fang Y, Zhang J, Bai J. Development of a bead-based assay for detection and differentiation of field strains and four vaccine strains of type 2 porcine reproductive and respiratory syndrome virus (PRRSV-2) in the USA. Transbound Emerg Dis 2020; 68:1414-1423. [PMID: 32816334 DOI: 10.1111/tbed.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically devastating diseases in swine population in the United States of America. Due to high mutation rate of the PRRS virus (PRRSV) genome, it is difficult to develop an accurate diagnostic assay with high strain coverage. Differentiation of field strains from the four vaccines that have been used in the USA, namely Ingelvac PRRS MLV, Ingelvac ATP, Fostera PRRS and Prime Pac PRRS, adds an additional challenge. It is difficult to use current real-time PCR systems to detect and differentiate the field strains from the vaccine strains. Luminex xTAG technology allows us to detect more molecular targets in a single reaction with a cost similar to a single real-time PCR reaction. By analysing all available 678 type 2 PRRSV (PRRSV-2) complete genome sequences, including the 4 vaccine strains, two pairs of detection primers were designed targeting the conserved regions of ORF4-ORF7, with strain coverage of 98.8% (670/678) based on in silico analysis. The virus strains sharing ≥98% identity of the complete genomes with the vaccine strains were considered vaccine or vaccine-like strains. One pair of primers for each vaccine strain were designed targeting the nsp2 region. In silico analysis showed the assay matched 94.7% (54/57) of Ingelvac PRRS® MLV (MLV) strain and the MLV-like strains, and 100% of the other three vaccine strains. Analytical sensitivity of the Luminex assay was one to two logs lower than that of the reverse transcription real-time PCR assay. Evaluated with 417 PRRSV-2 positive clinical samples, 95% were detected by the Luminex assay. Compared to ORF5 sequencing results, the Luminex assay detected 92.4% (73/79) of MLV strains, 78.3% (18/23) of Fostera strains and 50% (2/4) of ATP strains. None of the 472 samples were the Prime Pac strain tested by either ORF5 sequencing or the Luminex assay.
Collapse
Affiliation(s)
- Yin Wang
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wannarat Yim-Im
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Elizabeth Porter
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Bioinformatics Center, Kansas State University, Manhattan, KS, USA
| | - Joe Anderson
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Lance Noll
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Ying Fang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
33
|
Chen N, Li S, Li X, Ye M, Xiao Y, Yan X, Li X, Zhu J. The infectious cDNA clone of commercial HP-PRRS JXA1-R-attenuated vaccine can be a potential effective live vaccine vector. Transbound Emerg Dis 2020; 67:1820-1827. [PMID: 32304348 DOI: 10.1111/tbed.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
Multiple commercial porcine reproductive and respiratory syndrome (PRRS) modified live vaccines are currently utilized in Chinese swine herds due to the limited cross-protection of vaccines and coexistence of different PRRS viruses. In this study, an infectious cDNA clone of the highly pathogenic PRRS (HP-PRRS) vaccine JXA1-R strain was generated. We successfully rescued the virus from direct in vitro DNA transfection of rJXA1-R clone, which has similar growth kinetics to the parental JXA1-R virus in Marc-145 cells. To further evaluate the potential use of the cloned rJXA1-R virus as a live vector for foreign gene expression, the enhanced green fluorescent protein (EGFP) was inserted between non-structural and structural genes. Our results showed that the dynamic expression of EGFP can be visualized by live cell imaging system during the infection in Marc-145 cells. The availability of our cloned JXA1-R viruses provides a crucial platform to study the fundamental biology of HP-PRRS virus vaccine and also serves as a potential effective vector for developing live vector vaccines against swine pathogens.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qindao, P.R. China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, P.R. China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xilin Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P.R. China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, P.R. China
| |
Collapse
|
34
|
Wang Y, Cui Y, Li Y, Zhang D, Sun J, Guo X, Liu G, Jiang S, Li Y. Development of an SYBR Green I-based real-time PCR assay for the rapid detection of canine kobuvirus. J Virol Methods 2020; 285:113944. [PMID: 32730841 PMCID: PMC7385718 DOI: 10.1016/j.jviromet.2020.113944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/26/2023]
Abstract
The first development a SYBR Green I-based real-time PCR assay to detect canine kobuvirus. Canine kobuvirus (CaKoV) was detected at a rate of 8.7 % in the Anhui province. This method has implications for the prevention and control of CaKoV-infect in dogs.
Canine kobuvirus (CaKoV) is a causative agent of gastroenteritis in dogs. Rapid detection of CaKoV is important for preventing and controlling this condition. In this study, an SYBR Green I-based quantitative real-time PCR assay was established for CaKoV detection. Specific primers targeting a highly conserved region of the CaKoV 3D gene were developed. After optimization, the method detected a minimum of 1 × 101 copies/μL with high specificity, stability, and repeatability. Moreover, the entire process only required approximately 1.5 h for completion. Our results were supported by those obtained for clinical samples, in which our developed method was successfully applied. The newly established real-time PCR is a rapid, sensitive, specific, and repeatable method for the quantitative detection of CaKoV and can, therefore, be used in epidemiological studies.
Collapse
Affiliation(s)
- Yong Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yongqiu Cui
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yeqiu Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Da Zhang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jianfei Sun
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xu Guo
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shudong Jiang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Yongdong Li
- Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, PR China.
| |
Collapse
|
35
|
Chen N, Xiao Y, Ye M, Li X, Li S, Xie N, Wei Y, Wang J, Zhu J. High genetic diversity of Chinese porcine reproductive and respiratory syndrome viruses from 2016 to 2019. Res Vet Sci 2020; 131:38-42. [PMID: 32289611 DOI: 10.1016/j.rvsc.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/07/2020] [Accepted: 04/02/2020] [Indexed: 11/25/2022]
Abstract
High genetic diversity and limited cross-protection are two major reasons for ineffective control of porcine reproductive and respiratory syndrome virus (PRRSV) infection. Therefore, it's important to dynamically monitor the prevalence of PRRSV for adopting appropriate control strategy. In this study, we analyzed PRRSV infection by detecting 712 clinical samples collected from 2016 to 2019 in China. Totally 100 samples were detected as PRRSV positive, including 2 and 98 samples were infected with PRRSV1 and PRRSV2, respectively. In addition, two out of the 98 PRRSV2 positive samples were co-infected with two distinct viruses. ORF5-based phylogenetic analysis showed that JXA1-like HP-PRRSV2 (lineage 8) and NADC30-like PRRSV2 (lineage 1) isolates are currently predominant, but QYYZ-like PRRSV2, CH-1a-like PRRSV2 and PRRSV1 isolates also co-exist in Chinese swine herds. In addition, two commercial MLV-derived viruses (TJM-F92-like and JXA1-R-like) were frequently detected. GP5 alignment also detected insertion and deletion in the extravirion domain. Our study presents the up-to-date PRRSV infection status and highlights the high genetic diversity of PRRSV currently circulating in China.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China.
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ningjun Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yue Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jialin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
36
|
Chen N, Ye M, Huang Y, Li S, Xiao Y, Li X, Li S, Li X, Yu X, Tian K, Zhu J. Identification of Two Porcine Reproductive and Respiratory Syndrome Virus Variants Sharing High Genomic Homology but with Distinct Virulence. Viruses 2019; 11:v11090875. [PMID: 31540541 PMCID: PMC6783987 DOI: 10.3390/v11090875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic loss to the global swine industry. Even though several control strategies have been applied, PRRS is still not effectively controlled due to the continuous emergence of new variants and limited cross-protection by current vaccines. During the routine epidemiological investigation in 2017, two PRRSV variants were identified from a severe abortion farm and a clinically healthy farm, respectively. The viruses were isolated and denominated as XJ17-5 and JSTZ1712-12. Genomic sequencing indicated that their genomes are both 14,960 bp in length sharing 99.45% nucleotide identity. Sequence alignments identified a discontinuous 30-amino-acid deletion and a continuous 120-amino-acid deletion in nsp2 of both isolates. Genome-based phylogenetic analysis confirmed that XJ17-5 and JSTZ1712-12 belong to the HP-PRRSV subtype but form a new branch with other isolates containing the same 150-amino-acid deletion in nsp2. Pathogenic analysis showed that XJ17-5 is highly virulent causing 60% mortality, while JSTZ1712-12 is avirulent for piglets. Furthermore, fragment comparisons identified 34-amino-acid differences between XJ17-5 and JSTZ1712-12 that might be associated with the distinct virulence. The identification of highly homologous HP-PRRSV variants with new genetic feature and distinct virulence contributes to further analyze the pathogenesis and evolution of PRRSV in the field.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yucheng Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiangdong Li
- National Research Center for Veterinary Medicine, High-Tech District, Luoyang, Henan 471003, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, High-Tech District, Luoyang, Henan 471003, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, High-Tech District, Luoyang, Henan 471003, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|