1
|
Huo H, Wang J, Li C, Xiao S, Wang H, Ge J, Zhong G, Wen Z, Wang C, Lang Q, Chen L, Wang Z, Wang J, Wang X, He X, Guan Y, Shuai L, Bu Z. Safety and immunogenicity of a SARS-CoV-2 mRNA vaccine (SYS6006) in minks, cats, blue foxes, and raccoon dogs. Front Cell Infect Microbiol 2024; 14:1468775. [PMID: 39364147 PMCID: PMC11446887 DOI: 10.3389/fcimb.2024.1468775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Minks, cats, and some other species of carnivores are susceptible of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have a high risk of transmitting SARS-CoV-2 to humans. The development of animal vaccines can be an effective measure to protect animals against SARS-CoV-2 and reduce the potential risk of human infection. We previously developed a messenger ribonucleic acid (mRNA) vaccine SYS6006 that has been proven to be an efficient coronavirus disease 2019 (COVID-19) vaccine widely used in humans. Here, we further evaluated the safety and immunogenicity of SYS6006 as an animal COVID-19 vaccine candidate for SARS-CoV-2 susceptible animals or wild animals. SYS6006 was safe and immunogenic in mice and completely protected mice against mouse-adapted SARS-CoV-2 infection in the upper and lower respiratory tracts. SYS6006 was able to induce neutralizing antibodies against the SARS-CoV-2 wild-type, Delta, and Omicron BA.2 strain on day 7 after prime immunization, and two doses of immunization could enhance the neutralizing antibody responses and produce long-lasting potent antibodies for more than 8 months in minks and cats, blue foxes, and raccoon dogs, while all immunized animals had no abnormal clinical signs during immunization. These results provided here warrant further development of this safe and efficacious mRNA vaccine platform against animal COVID-19.
Collapse
Affiliation(s)
- Hong Huo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chan Li
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Shuang Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Han Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinying Ge
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gongxun Zhong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiyuan Wen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiaoling Lang
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Lili Chen
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Zilong Wang
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Jinliang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun He
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntao Guan
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Shuai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Huang CY, Su SB, Chen KT. Surveillance strategies for SARS-CoV-2 infections through one health approach. Heliyon 2024; 10:e37128. [PMID: 39286214 PMCID: PMC11403048 DOI: 10.1016/j.heliyon.2024.e37128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), is an emergent disease that threatens global health. Public health structures and economic activities have been disrupted globally by the COVID-19 pandemic. Over 556.3 million confirmed cases and 6.3 million deaths have been reported. However, the exact mechanism of its emergence in humans remains unclear. SARS-CoV-2 is believed to have a zoonotic origin, suggesting a spillover route from animals to humans, which is potentially facilitated by wildlife farming and trade. The COVID-19 pandemic highlighted the importance of the One Health approach in managing threats of zoonosis in the human-animal-environment interaction. Implementing vigilant surveillance programs by adopting the One Health concept at the interfaces between wildlife, livestock, and humans is the most pertinent, practical, and actionable strategy for preventing and preparing for future pandemics of zoonosis, such as COVID-19 infection. This review summarizes the updated evidence of CoV infections in humans and animals and provides an appropriate strategy for preventive measures focused on surveillance systems through an On Health approach.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Li SA, Huang LY, Guo XD, Miao WY, Lin YS, Zhou DH. First identified Toxoplasma gondii Type I in market-sold ducks in Fujian province, China: a significant for public health. Poult Sci 2024; 103:104024. [PMID: 39013296 PMCID: PMC11305302 DOI: 10.1016/j.psj.2024.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is an intracellular protozoan that can cause toxoplasmosis in all warm-blooded hosts. This study focused on the prevalence and genetic characterize of T. gondii in ducks from Fujian province, China. Genomic DNA was extracted from duck tissue samples (heart, liver, lung, and muscle). To assess the genetic diversity of the T. gondii isolates, it was determined by using multilocus polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technology. A total of 586 ducks from 5 cities in Fujian province were tested, and 35 (6.0%) of which were found to be positive for the T. gondii B1 gene. Further genotyping of these positive samples at 10 genetic markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) using PCR-RFLP revealed that one tissue samples (heart samples from Fuzhou ducks) were identified as Type I (ToxoDB#10). This study is the first report on the prevalence and genetic characterization of T. gondii in ducks in Fujian province, and Type I (ToxoDB#10) is found in ducks in China for the first time. The findings document the genetic characterization of T. gondii in free-range ducks from Fujian Province, thereby enriching the understanding of T. gondii genetic diversity in China. Moreover, these results provide essential data support for further prospective studies and underscores the "One Health" concept, emphasizing the integral link among human, animal, and environmental health.
Collapse
Affiliation(s)
- Si-Ang Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Yuan Huang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Dong Guo
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Yuan Miao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying-Sheng Lin
- Zhangzhou Animal Husbandry Technical Service Station, Zhangzhou, 363000, China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Martínez-Puchol S, Tarradas-Alemany M, Mejías-Molina C, Itarte M, Rusiñol M, Baliellas J, Abasolo N, Canela N, Monastiri A, López-Roig M, Serra-Cobo J, Abril JF, Bofill-Mas S. Target enrichment metaviromics enables comprehensive surveillance of coronaviruses in environmental and animal samples. Heliyon 2024; 10:e31556. [PMID: 38845944 PMCID: PMC11153099 DOI: 10.1016/j.heliyon.2024.e31556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
The COVID-19 pandemic has underscored the importance of understanding the role of animals in the transmission of coronaviruses (CoVs) and their impact on human health. A One Health approach, integrating human, animal, and environmental health, is essential for effective CoVs control. Next-generation sequencing has played a pivotal role in identifying and monitoring the evolution of novel CoVs strains, like SARS-CoV-2. However, viral occurrence and diversity studies in environmental and animal samples are challenging because of the complexity of viral communities and low abundance of viruses in these samples. Target enrichment sequencing (TES) has emerged as a valuable tool for investigating viral families in challenging samples. This approach involves the specific capture and enrichment of viral genomes using sequence-specific probes, thereby enhancing the efficiency of detection and characterization. In this study, we aimed to develop and validate a TES panel to study CoVs in various complex environmental and animal derived samples. The results demonstrated the panel's effectiveness in capturing and sequencing a wide diversity of CoVs providing valuable insights into their abundance and host diversity in urban wastewater, farm animal corpses lixiviates and bat guano samples. In sewage samples, CoVs were detected solely when TES was employed while in guano samples, sequencing of CoVs species was achieved in 2 out of 4 samples showing an almost three-logarithmic increase in the number of reads obtained in comparison with the untargeted approach. For animal lixiviates, only the TES application enabled the acquisition of CoVs reads. The information obtained can significantly contribute to early detection, surveillance, and control measures for CoVs, including viral discovery and potential spillover events. Additionally, this sequencing panel shows potential for studying other significant viral families and monitoring viral diversity in different animal populations.
Collapse
Affiliation(s)
- Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Vicerectorat de Recerca. Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria Tarradas-Alemany
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Nerea Abasolo
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Abir Monastiri
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Marc López-Roig
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Josep F. Abril
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Larska M, Tomana J, Krzysiak MK, Pomorska-Mól M, Socha W. Prevalence of coronaviruses in European bison (Bison bonasus) in Poland. Sci Rep 2024; 14:12928. [PMID: 38839918 PMCID: PMC11153543 DOI: 10.1038/s41598-024-63717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Coronaviruses have been confirmed to infect a variety of species, but only one case of associated winter dysentery of European bison has been described. The study aimed to analyze the prevalence, and define the impact on the species conservation, the source of coronavirus infection, and the role of the European bison in the transmission of the pathogen in Poland. Molecular and serological screening was performed on 409 European bison from 6 free-ranging and 14 captive herds over the period of 6 years (2017-2023). Presence of coronavirus was confirmed in one nasal swab by pancoronavirus RT-PCR and in 3 nasal swab samples by bovine coronavirus (BCoV) specific real time RT-PCR. The detected virus showed high (> 98%) homology in both RdRp and Spike genes to BCoV strains characterised recently in Polish cattle and strains isolated from wild cervids in Italy. Antibodies specific to BCoV were found in 6.4% of tested samples, all originating from free-ranging animals. Seroprevalence was higher in adult animals over 5 years of age (p = 0.0015) and in females (p = 0.09). Our results suggest that European bison play only a limited role as reservoirs of bovine-like coronaviruses. Although the most probable source of infections in the European bison population in Poland is cattle, other wild ruminants could also be involved. In addition, the zoonotic potential of bovine coronaviruses is quite low.
Collapse
Affiliation(s)
- Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | | | - Michał K Krzysiak
- Sub-Department of Parasitology and Invasive Diseases, Veterinary Faculty, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, Poznan, Poland
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, Puławy, Poland.
| |
Collapse
|
6
|
Yaglom HD, Roth A, Alvarez C, Corbus E, Ghai RR, Ferguson S, Ritter JM, Hecht G, Rekant S, Engelthaler DM, Venkat H, Tygielski S. DETECTION OF SARS-COV-2 IN A SQUIRREL MONKEY ( SAIMIRI SCIUREUS): A ONE HEALTH INVESTIGATION AND RESPONSE. J Zoo Wildl Med 2024; 55:471-478. [PMID: 38875205 PMCID: PMC11247420 DOI: 10.1638/2023-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 06/16/2024] Open
Abstract
Through collaborative efforts, One Health partners have responded to outbreaks of COVID-19 among animals, including those in human care at zoos. Zoos have been faced with numerous challenges, including the susceptibility of many mammalian species, and therefore the need to heighten biosecurity measures rapidly. Robust One Health collaborations already exist in Arizona to address endemic and emerging zoonoses, but these have rarely included zoos. The pandemic shed light on this, and Arizona subsequently expanded its SARS-CoV-2 surveillance efforts to include zoo animals. Testing and epidemiologic support was provided to expedite the detection of and response to zoonotic SARS-CoV-2 infection in zoo animals, as well as to understand possible transmission events. Resulting from this program, SARS-CoV-2 was detected from a rectal swab collected from an 8-yr-old squirrel monkey (Saimiri sciureus) from a zoo in Southern Arizona. The animal had rapidly become ill with nonrespiratory symptoms and died in July 2022. Genomic sequencing from the swab revealed mutations consistent with the Omicron (BA.2) lineage. An epidemiologic investigation identified an animal caretaker in close proximity to the affected squirrel monkey who tested positive for COVID-19 the same day the squirrel monkey died. Critical One Health partners provided support to the zoo through engagement of local, state, and federal agencies. Necropsy and pathologic evaluation showed significant necrotizing colitis; the overall clinical and histopathological findings did not implicate SARS-CoV-2 infection alone as a causal or contributing factor in the squirrel monkey's illness and death. This report documents the first identification of SARS-CoV-2 in a squirrel monkey and highlights a successful and timely One Health investigation conducted through multisectoral collaboration.
Collapse
Affiliation(s)
- Hayley D Yaglom
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA,
| | | | | | | | - Ria R Ghai
- One Health Office, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sylvia Ferguson
- Veterinary Diagnostic Pathology Center, Midwestern University, Glendale, AZ 85308, USA
| | - Jana M Ritter
- Infectious Diseases Pathology Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Gavriella Hecht
- Arizona Department of Health Services, Office of Infectious Disease Control, Phoenix, AZ 85007, USA
| | - Steven Rekant
- Office of Interagency Coordination, United States Department of Agriculture, Animal and Plant Health Inspection Service, Riverdale, MD 20737, USA
| | - David M Engelthaler
- Translational Genomics Research Institute, Pathogen and Microbiome Division, Flagstaff, AZ 86005, USA
| | - Heather Venkat
- Arizona Department of Health Services, Office of Infectious Disease Control, Phoenix, AZ 85007, USA
- Center for Preparedness and Response, Career Epidemiology Field Officer Program, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | |
Collapse
|
7
|
Wang A. Integrating Fréchet distance and AI reveals the evolutionary trajectory and origin of SARS-CoV-2. J Med Virol 2024; 96:e29557. [PMID: 38506190 DOI: 10.1002/jmv.29557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
A genome, composed of a precisely ordered sequence of four nucleotides (ATCG), encompasses a multitude of specific genome features like AAA motif. Mutations occurring within a genome disrupt the sequential order and composition of these features, thereby influencing the evolutionary trajectories and yielding variants. The evolutionary relatedness between a variant and its ancestor can be estimated by assessing evolutionary distances across a spectrum of genome features. This study develops a novel, alignment-free algorithm that considers both the sequential order and composition of genome features, enabling computation of the Fréchet distance (Fr) across multiple genome features to quantify the evolutionary status of a variant. Integrating this algorithm with an artificial recurrent neural network (RNN) reveals the quantitative evolutionary trajectory and origin of SARS-CoV-2, a puzzle unsolved by alignment-based phylogenetics. The RNN generates the evolutionary trajectory from Fr data at two levels: genome sequence mutations and organism variants. At the genome sequence level, SARS-CoV-2 evolutionarily shortens its genome to enhance its infectious capacity. Mutating signature features, such as TTA and GCT, increases its infectious potential and drives its evolution. At the organism level, variants mutating a single biomarker possess low infectious potential. However, mutating multiple markers dramatically increases their infectious capacity, propelling the COVID-19 pandemic. SARS-CoV-2 likely originates from mink coronavirus variants, with its origin trajectory traced as follows: mink, cat, tiger, mouse, hamster, dog, lion, gorilla, leopard, bat, and pangolin. Together, mutating multiple signature features and biomarkers delineates the evolutionary trajectory of mink-origin SARS-CoV-2, leading to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anyou Wang
- Feinstone Center for Genomic Research, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Alisoltani A, Simons LM, Agnes MFR, Heald-Sargent TA, Muller WJ, Kociolek LK, Hultquist JF, Lorenzo-Redondo R, Ozer EA. Resurgence of SARS-CoV-2 Delta after Omicron variant superinfection in an immunocompromised pediatric patient. Virol J 2023; 20:246. [PMID: 37891657 PMCID: PMC10604949 DOI: 10.1186/s12985-023-02186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Persistent SARS-CoV-2 infection in immunocompromised hosts is thought to contribute to viral evolution by facilitating long-term natural selection and viral recombination in cases of viral co-infection or superinfection. However, there are limited data on the longitudinal intra-host population dynamics of SARS-CoV-2 co-infection/superinfection, especially in pediatric populations. Here, we report a case of Delta-Omicron superinfection in a hospitalized, immunocompromised pediatric patient. METHODS We conducted Illumina whole genome sequencing (WGS) for longitudinal specimens to investigate intra-host dynamics of SARS-CoV-2 strains. Topoisomerase PCR cloning of Spike open-reading frame and Sanger sequencing of samples was performed for four specimens to validate the findings. Analysis of publicly available SARS-CoV-2 sequence data was performed to investigate the co-circulation and persistence of SARS-CoV-2 variants. RESULTS Results of WGS indicate the patient was initially infected with the SARS-CoV-2 Delta variant before developing a SARS-CoV-2 Omicron variant superinfection, which became predominant. Shortly thereafter, viral loads decreased below the level of detection before resurgence of the original Delta variant with no residual trace of Omicron. After 54 days of persistent infection, the patient tested negative for SARS-CoV-2 but ultimately succumbed to a COVID-19-related death. Despite protracted treatment with remdesivir, no antiviral resistance mutations emerged. These results indicate a unique case of persistent SARS-CoV-2 infection with the Delta variant interposed by a transient superinfection with the Omicron variant. Analysis of publicly available sequence data suggests the persistence and ongoing evolution of Delta subvariants despite the global predominance of Omicron, potentially indicative of continued transmission in an unknown population or niche. CONCLUSION A better understanding of SARS-CoV-2 intra-host population dynamics, persistence, and evolution during co-infections and/or superinfections will be required to continue optimizing patient care and to better predict the emergence of new variants of concern.
Collapse
Affiliation(s)
- Arghavan Alisoltani
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Lacy M Simons
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Maria Francesca Reyes Agnes
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | | | - William J Muller
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Larry K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Wang Q, Noettger S, Xie Q, Pastorio C, Seidel A, Müller JA, Jung C, Jacob T, Sparrer KMJ, Zech F, Kirchhoff F. Determinants of species-specific utilization of ACE2 by human and animal coronaviruses. Commun Biol 2023; 6:1051. [PMID: 37848611 PMCID: PMC10582019 DOI: 10.1038/s42003-023-05436-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Utilization of human ACE2 allowed several bat coronaviruses (CoVs), including the causative agent of COVID-19, to infect humans directly or via intermediate hosts. However, the determinants of species-specific differences in ACE2 usage and the frequency of the ability of animal CoVs to use human ACE2 are poorly understood. Here we applied VSV pseudoviruses to analyze the ability of Spike proteins from 26 human or animal CoVs to use ACE2 receptors across nine reservoir, potential intermediate and human hosts. We show that SARS-CoV-2 Omicron variants evolved towards more efficient ACE2 usage but mutation of R493Q in BA.4/5 and XBB Spike proteins disrupts utilization of ACE2 from Greater horseshoe bats. Variations in ACE2 residues 31, 41 and 354 govern species-specific differences in usage by coronaviral Spike proteins. Mutation of T403R allows the RaTG13 bat CoV Spike to efficiently use all ACE2 orthologs for viral entry. Sera from COVID-19 vaccinated individuals neutralize the Spike proteins of various bat Sarbecoviruses. Our results define determinants of ACE2 receptor usage of diverse CoVs and suggest that COVID-19 vaccination may protect against future zoonoses of bat coronaviruses.
Collapse
Affiliation(s)
- Qingxing Wang
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Qinya Xie
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Institute of Virology, Philipps University Marburg, 35043, Marburg, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
10
|
Italiya J, Bhavsar T, Černý J. Assessment and strategy development for SARS-CoV-2 screening in wildlife: A review. Vet World 2023; 16:1193-1200. [PMID: 37577208 PMCID: PMC10421538 DOI: 10.14202/vetworld.2023.1193-1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 08/15/2023] Open
Abstract
Coronaviruses (members of the Coronaviridae family) are prominent in veterinary medicine, with several known infectious agents commonly reported. In contrast, human medicine has disregarded coronaviruses for an extended period. Within the past two decades, coronaviruses have caused three major outbreaks. One such outbreak was the coronavirus disease 2019 (COVID-19) caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Over the 3-year COVID-19 outbreak, several instances of zooanthroponosis have been documented, which pose risks for virus modifications and possible re-emergence of the virus into the human population, causing a new epidemic and possible threats for vaccination or treatment failure. Therefore, widespread screening of animals is an essential technique for mitigating future risks and repercussions. However, mass detection of SARS-CoV-2 in wild animals might be challenging. In silico prediction modeling, experimental studies conducted on various animal species, and natural infection episodes recorded in various species might provide information on the potential threats to wildlife. They may be useful for diagnostic and mass screening purposes. In this review, the possible methods of wildlife screening, based on experimental data and environmental elements that might play a crucial role in its effective implementation, are reviewed.
Collapse
Affiliation(s)
- Jignesh Italiya
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| | - Tanvi Bhavsar
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague – Suchdol, Czechia
| |
Collapse
|
11
|
Boeger WA, Brooks DR, Trivellone V, Agosta SJ, Hoberg EP. Ecological super-spreaders drive host-range oscillations: Omicron and risk space for emerging infectious disease. Transbound Emerg Dis 2022; 69:e1280-e1288. [PMID: 35411706 PMCID: PMC9115439 DOI: 10.1111/tbed.14557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
Abstract
The unusual genetic diversity of the Omicron strain has led to speculation about its origin. The mathematical modelling platform developed for the Stockholm Paradigm (SP) indicates strongly that it has retro-colonized humans from an unidentified nonhuman mammal, likely originally infected by humans. The relationship between Omicron and all other SARS-CoV-2 variants indicates oscillations among hosts, a core part of the SP. Such oscillations result from the emergence of novel variants following colonization of new hosts, replenishing and expanding the risk space for disease emergence. The SP predicts that pathogens colonize new hosts using pre-existing capacities. Those events are thus predictable to a certain extent. Novel variants emerge after a colonization and are not predictable. This makes it imperative to take proactive measures for anticipating emerging infectious diseases (EID) and mitigating their impact. The SP suggests a policy protocol, DAMA, to accomplish this goal. DAMA comprises: DOCUMENT to detect pathogens before they emerge in new places or colonize new hosts; ASSESS to determine risk; MONITOR to detect changes in pathogen populations that increase the risk of outbreaks and ACT to prevent outbreaks when possible and minimize their impact when they occur.
Collapse
Affiliation(s)
- Walter A. Boeger
- Biological InteractionsUniversidade Federal do ParanáCuritibaBrazil
| | - Daniel R. Brooks
- Eötvös Loránd Research NetworkCentre for Ecological ResearchInstitute of EvolutionBudapestHungary
- Stellenbosch Institute for Advanced StudyStellenboschSouth Africa
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Valeria Trivellone
- Illinois Natural History SurveyPrairie Research InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Salvatore J. Agosta
- Stellenbosch Institute for Advanced StudyStellenboschSouth Africa
- Center for Environmental StudiesVCU Life SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Eric P. Hoberg
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Museum of Southwestern BiologyDepartment of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
12
|
Sayeed MA, Ferdous J, Saha O, Islam S, Choudhury SD, Abedin J, Hassan MM, Islam A. Transmission Dynamics and Genomic Epidemiology of Emerging Variants of SARS-CoV-2 in Bangladesh. Trop Med Infect Dis 2022; 7:197. [PMID: 36006289 PMCID: PMC9414541 DOI: 10.3390/tropicalmed7080197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
With the progression of the global SARS-CoV-2 pandemic, the new variants have become more infectious and continue spreading at a higher rate than pre-existing ones. Thus, we conducted a study to explore the epidemiology of emerging variants of SARS-CoV-2 that circulated in Bangladesh from December 2020 to September 2021, representing the 2nd and 3rd waves. We collected new cases and deaths per million daily data with the reproduction rate. We retrieved 928 SARS-CoV-2 sequences from GISAID and performed phylogenetic tree construction and mutation analysis. Case counts were lower initially at the end of 2020, during January-February and April-May 2021, whereas the death toll reached the highest value of 1.587 per million on the first week of August and then started to decline. All the variants (α, β, δ, η) were prevalent in the capital city, Dhaka, with dispersion to large cities, such as Sylhet and Chattogram. The B.1.1.25 lineage was prevalent during December 2020, but the B.1.617.2/δ variant was later followed by the B.1.351/β variant. The phylogeny revealed that the various strains found in Bangladesh could be from numerous countries. The intra-cluster and inter-cluster communication began in Bangladesh soon after the virus arrived. The prominent amino acid substitution was D614G from December 2020 to July 2021 (93.5 to 100%). From February-April, one of the VOC's important mutations, N501Y substitution, was also estimated at 51.8%, 76.1%, and 65.1% for the α, β and γ variants, respectively. The γ variant's unique mutation K417T was detected only at 1.8% in February. Another frequent mutation was P681R, a salient feature of the δ variant, detected in June (88.2%) and July (100%). Furthermore, only one γ variant was detected during the entire second and third wave, whereas no η variant was observed in this period. This rapid growth in the number of variants identified across Bangladesh shows virus adaptation and a lack of strict quarantine, prompting periodic genomic surveillance to foresee the spread of new variants, if any, and to take preventive measures as soon as possible.
Collapse
Affiliation(s)
- Md. Abu Sayeed
- EcoHealth Alliance New York, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Jinnat Ferdous
- EcoHealth Alliance New York, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shariful Islam
- EcoHealth Alliance New York, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Shusmita Dutta Choudhury
- EcoHealth Alliance New York, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Josefina Abedin
- EcoHealth Alliance New York, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Ariful Islam
- EcoHealth Alliance New York, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Melbourne, VIC 3216, Australia
| |
Collapse
|
13
|
No Evidence of SARS-CoV-2 Infection in Wild Mink (Mustela lutreola and Neogale vison) from Northern Spain during the First Two Years of Pandemic. Animals (Basel) 2022; 12:ani12151971. [PMID: 35953960 PMCID: PMC9367499 DOI: 10.3390/ani12151971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing coronavirus disease-2019 (COVID-19) is a betacoronavirus (β-CoV) closely related to Severe Acute Respiratory Syndrome (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV), which have also caused severe outbreaks of disease in human populations. Human-to-animal transmission events during the COVID-19 pandemic have been documented in several countries. Different animal species have been proven to be susceptible to infection with SARS-CoV-2 both naturally and by experimental infection, including mustelids such as ferrets, otters, and American mink (Neogale vison). In this sense, infected farmed American mink develop respiratory signs associated with viral pneumonia. This study evaluates the presence of SARS-CoV-2 in European mink (Mustela lutreola) and American mink from Spain, by enzyme-linked immunosorbent assay (ELISA) using the receptor binding domain (RBD) of Spike protein antigen in serum samples and/or by RT-qPCR assays in oropharyngeal and rectal swabs. From January 2020 to February 2022, a total of 162 animals (127 European mink and 35 American mink) with no evidence of SARS-CoV-2 infection were included in the study. Of the 126 serum samples analysed by serology, anti-SARS-CoV-2 antibodies were not detected in the mink included in this study. In the same way, SARS-CoV-2 RNA has not been detected in any of the 160 swabs samples analysed by RT-qPCR. This study shows the absence of the wild mink exposure to SARS-CoV-2 in a geographic area seriously affected by COVID-19. With these results, it can be considered that the probability that the virus is circulating in wild mink is low. With this, the risk of virus transmission to humans by this route is also considered improbable. Abstract The impact of the SARS-CoV-2 pandemic on wildlife is largely unevaluated, and extended surveillance of animal species is needed to reach a consensus on the role of animals in the emergence and maintenance of SARS-CoV-2. This infection has been detected in farmed and domestic animals and wild animals, mainly in captivity. The interactions or shared resources with wildlife could represent a potential transmission pathway for the SARS-CoV-2 spill over to other wild species and could lead to health consequences or the establishment of new reservoirs in susceptible hosts. This study evaluated the presence of SARS-CoV-2 in European mink (Mustela lutreola) and American mink (Neogale vison) in Spain by enzyme-linked immunosorbent assay (ELISA) using the receptor binding domain (RBD) of Spike antigen in serum samples and/or by RT-qPCR assays in oropharyngeal and rectal swabs. From January 2020 to February 2022, a total of 162 animals (127 European mink and 35 American mink) with no evidence of SARS-CoV-2 infection were included in the study. Antibodies against the SARS-CoV-2 were not found in the serum samples analysed (n = 126), nor was the virus amplified by RT-qPCR (n = 160 swabs). Our results suggest that the potential role of wild mink and the European mink bred in captivity and released to the wild as dispersers of SARS-CoV-2 is so far low. However, wildlife surveillance for early detection of human and animal risks should be continued. In this sense, epidemiological monitoring measures, including serology and molecular analysis, are necessary.
Collapse
|
14
|
Effectiveness of controlling COVID-19 epidemic by implementing soft lockdown policy and extensive community screening in Taiwan. Sci Rep 2022; 12:12053. [PMID: 35835796 PMCID: PMC9282154 DOI: 10.1038/s41598-022-16011-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
Strict and repeated lockdowns have caused public fatigue regarding policy compliance and had a large impact on several countries’ economies. We aimed to evaluate the effectiveness of a soft lockdown policy and the strategy of active community screening for controlling COVID-19 in Taiwan. We used village-based daily confirmed COVID-19 statistics in Taipei City and New Taipei City, between May 2, 2021, and July 17, 2021. The temporal Gi* statistic was used to compute the spatiotemporal hotspots. Simple linear regression was used to evaluate the trend of the epidemic, positivity rate from community screening, and mobility changes in COVID-19 cases and incidence before and after a level three alert in both cities. We used a Bayesian hierarchical zero-inflated Poisson model to estimate the daily infection risk. The cities accounted for 11,403 (81.17%) of 14,048 locally confirmed cases. The mean effective reproduction number (Re) surged before the level three alert and peaked on May 16, 2021, the day after the level three alert in Taipei City (Re = 3.66) and New Taipei City (Re = 3.37). Mobility reduction and a lower positive rate were positively associated with a lower number of cases and incidence. In the spatiotemporal view, seven major districts were identified with a radial spreading pattern from one hard-hit district. Villages with a higher inflow degree centrality among people aged ≥ 60 years, having confirmed cases, specific land-use types, and with a higher aging index had higher infection risks than other villages. Early soft lockdown policy and detection of infected patients showed an effective strategy to control COVID-19 in Taiwan.
Collapse
|
15
|
Hao M, Wang D, Xia Q, Kan S, Chang L, Liu H, Yang Z, Liu W. Pathogenic Mechanism and Multi-omics Analysis of Oral Manifestations in COVID-19. Front Immunol 2022; 13:879792. [PMID: 35860279 PMCID: PMC9290522 DOI: 10.3389/fimmu.2022.879792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease that seriously threatens human life. The clinical manifestations of severe COVID-19 include acute respiratory distress syndrome and multiple organ failure. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, spreads through contaminated droplets. SARS-CoV-2 particles have been detected in the saliva of COVID-19 patients, implying that the virus can infect and damage the oral cavity. The oral manifestations of COVID-19 include xerostomia and gustatory dysfunction. Numerous studies showed that the four structural proteins of SARS-CoV-2 are its potential pathogenic factors, especially the S protein, which binds to human ACE2 receptors facilitating the entry of the virus into the host cells. Usually, upon entry into the host cell, a pathogen triggers the host’s immune response. However, a mount of multi-omics and immunological analyses revealed that COVID-19 is caused by immune dysregulation. A decrease in the number and phenotypes of immune cells, IFN-1 production and excessive release of certain cytokines have also been reported. In conclusion, this review summarizes the oral manifestations of COVID-19 and multi-omics analysis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qianyun Xia
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Weiwei Liu,
| |
Collapse
|
16
|
Dakroub H, Russo D, Cistrone L, Serra F, Fusco G, De Carlo E, Amoroso MG. A First Assessment of SARS-CoV-2 Circulation in Bats of Central-Southern Italy. Pathogens 2022; 11:742. [PMID: 35889988 PMCID: PMC9319265 DOI: 10.3390/pathogens11070742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
One serious concern associated with the SARS-CoV-2 pandemic is that the virus might spill back from humans to wildlife, which would render some animal species reservoirs of the human virus. We assessed the potential circulation of SARS-CoV-2 caused by reverse infection from humans to bats, by performing bat surveillance from different sites in Central-Southern Italy. We restricted our survey to sampling techniques that are minimally invasive and can therefore be broadly applied by non-medical operators such as bat workers. We collected 240 droppings or saliva from 129 bats and tested them using specific and general primers for SARS-CoV-2 and coronaviruses, respectively. All samples (127 nasal swabs and 113 faecal droppings) were negative for SARS-CoV-2, and these results were confirmed by testing the samples with the Droplet Digital PCR. Additionally, pancoronavirus end-point RT-PCR was performed, and no sample showed specific bands. This outcome is a first step towards a better understanding of the reverse transmission of this virus to bats. Although the occurrence of a reverse zoonotic pattern can only be fully established by serological testing, the latter might represent an in-depth follow-up to a broad-scale preliminary assessment performed with our approach. We encourage the systematic surveillance of bats to help prevent reverse zoonotic episodes that would jeopardize human health, as well as biodiversity conservation and management.
Collapse
Affiliation(s)
- Hiba Dakroub
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, 80055 Portici, Italy; (H.D.); (D.R.)
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute,2, 80055 Portici, Italy; (F.S.); (G.F.); (E.D.C.)
| | - Danilo Russo
- Wildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, 80055 Portici, Italy; (H.D.); (D.R.)
| | - Luca Cistrone
- Forestry and Conservation, Via Botticelli, 14, 03043 Cassino, Italy;
| | - Francesco Serra
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute,2, 80055 Portici, Italy; (F.S.); (G.F.); (E.D.C.)
| | - Giovanna Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute,2, 80055 Portici, Italy; (F.S.); (G.F.); (E.D.C.)
| | - Esterina De Carlo
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute,2, 80055 Portici, Italy; (F.S.); (G.F.); (E.D.C.)
| | - Maria Grazia Amoroso
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute,2, 80055 Portici, Italy; (F.S.); (G.F.); (E.D.C.)
| |
Collapse
|
17
|
Hossain ME, Islam A, Islam S, Rahman MK, Miah M, Alam MS, Rahman MZ. Detection and Molecular Characterization of Canine Alphacoronavirus in Free-Roaming Dogs, Bangladesh. Viruses 2021; 14:67. [PMID: 35062271 PMCID: PMC8778797 DOI: 10.3390/v14010067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023] Open
Abstract
Canine coronavirus (CCoV) is widespread among the dog population and causes gastrointestinal disorders, and even fatal cases. As the zoonotic transmission of viruses from animals to humans has become a worldwide concern nowadays, it is necessary to screen free-roaming dogs for their common pathogens due to their frequent interaction with humans. We conducted a cross-sectional study to detect and characterize the known and novel Corona, Filo, Flavi, and Paramyxoviruses in free-roaming dogs in Bangladesh. Between 2009-10 and 2016-17, we collected swab samples from 69 dogs from four districts of Bangladesh, tested using RT-PCR and sequenced. None of the samples were positive for Filo, Flavi, and Paramyxoviruses. Only three samples (4.3%; 95% CI: 0.9-12.2) tested positive for Canine Coronavirus (CCoV). The CCoV strains identified were branched with strains of genotype CCoV-II with distinct distances. They are closely related to CCoVs from the UK, China, and other CoVs isolated from different species, which suggests genetic recombination and interspecies transmission of CCoVs. These findings indicate that CCoV is circulating in dogs of Bangladesh. Hence, we recommend future studies on epidemiology and genetic characterization with full-genome sequencing of emerging coronaviruses in companion animals in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Enayet Hossain
- International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (M.E.H.); (M.M.); (M.S.A.); (M.Z.R.)
| | - Ariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (S.I.); (M.K.R.)
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, VIC 3216, Australia
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212, Bangladesh
| | - Shariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (S.I.); (M.K.R.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212, Bangladesh
| | - Md Kaisar Rahman
- EcoHealth Alliance, New York, NY 10001-2320, USA; (S.I.); (M.K.R.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212, Bangladesh
| | - Mojnu Miah
- International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (M.E.H.); (M.M.); (M.S.A.); (M.Z.R.)
| | - Md Shaheen Alam
- International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (M.E.H.); (M.M.); (M.S.A.); (M.Z.R.)
| | - Mohammed Ziaur Rahman
- International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (M.E.H.); (M.M.); (M.S.A.); (M.Z.R.)
| |
Collapse
|