1
|
Kong D, Zhang S, Guo M, Li S, Wang Q, Gou J, Wu Y, Chen Y, Yang Y, Dai C, Tian Z, Wee ATS, Liu Y, Wei D. Ultra-Fast Single-Nucleotide-Variation Detection Enabled by Argonaute-Mediated Transistor Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307366. [PMID: 37805919 DOI: 10.1002/adma.202307366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/03/2023] [Indexed: 10/09/2023]
Abstract
"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed. The Argonaute protein provides a nanoscale binding channel to preorganize the DNA probe, accelerating target binding and rapidly recognizing SNVs with single-nucleotide resolution in unamplified tumor-associated microRNA, circulating tumor DNA, virus RNA, and reverse transcribed cDNA when a mismatch occurs in the seed region. An integrated microchip simultaneously detects multiple SNVs in agreement with sequencing results within 5 min, achieving the fastest SNV detection in a "test-and-go" manner without the requirement of nucleic acid extraction, reverse transcription, and amplification.
Collapse
Affiliation(s)
- Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, P. R. China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai, 200335, P. R. China
| | - Qiang Wang
- Shanghai International Travel Healthcare Center, Shanghai, 200335, P. R. China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Zhengan Tian
- Shanghai International Travel Healthcare Center, Shanghai, 200335, P. R. China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Dong J, Tsui WNT, Leng X, Fu J, Lohman M, Anderson J, Hamill V, Lu N, Porter EP, Gray M, Sebhatu T, Brown S, Pogranichniy R, Wang H, Noll L, Bai J. Validation of a real-time PCR panel for detection and quantification of nine pathogens commonly associated with canine infectious respiratory disease. MethodsX 2023; 11:102476. [PMID: 38053622 PMCID: PMC10694560 DOI: 10.1016/j.mex.2023.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
Canine infectious respiratory disease (CIRD) is a complicated respiratory syndrome in dogs [1], [2], [3]. A panel PCR was developed [4] to detect nine pathogens commonly associated with CIRD: Mycoplasma cynos, Mycoplasma canis, Bordetella bronchiseptica; canine adenovirus type 2, canine herpesvirus 1, canine parainfluenza virus, canine distemper virus, canine influenza virus and canine respiratory coronavirus [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. To evaluate diagnostic performance of the assay, 740 nasal swab and lung tissue samples were collected and tested with the new assay, and compared to an older version of the assay detecting the same pathogens except that it does not differentiate the two Mycoplasma species. Results indicated that the new assay had the same level of specificity, but with higher diagnostic sensitivity and had identified additional samples with potential co-infections. To confirm the new assay is detecting the correct pathogens, samples with discrepant results between the two assays were sequence-confirmed. Spiking a high concertation target to samples carrying lower concentrations of other targets was carried out and the results demonstrated that there was no apparent interference among targets in the same PCR reaction. Another spike-in experiment was used to determine detection sensitivity between nasal swab and lung tissue samples, and similar results were obtained.•A nine-pathogen CIRD PCR panel assay had identified 139 positives from 740 clinical samples with 60 co-infections;•High-concentration target does not have apparent effect on detecting low-concentration targets;•Detection sensitivity were similar between nasal swab and lung tissue samples.
Collapse
Affiliation(s)
- Junsheng Dong
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Wai Ning Tiffany Tsui
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Xue Leng
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Jilin Agricultural University, Changchun, Jilin, China
| | - Jinping Fu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Molly Lohman
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Joseph Anderson
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Vaughn Hamill
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Division of Biology, Kansas State University, Manhattan, Kansas, United States
| | - Elizabeth Poulsen Porter
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Mark Gray
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Tesfaalem Sebhatu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, Kansas, United States
| | - Roman Pogranichniy
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Heng Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Lance Noll
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
3
|
Zaman N, Parvaiz N, Gul F, Yousaf R, Gul K, Azam SS. Dynamics of water-mediated interaction effects on the stability and transmission of Omicron. Sci Rep 2023; 13:20894. [PMID: 38017052 PMCID: PMC10684572 DOI: 10.1038/s41598-023-48186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
SARS-Cov-2 Omicron variant and its highly transmissible sublineages amidst news of emerging hybrid variants strengthen the evidence of its ability to rapidly spread and evolve giving rise to unprecedented future waves. Owing to the presence of isolated RBD, monomeric and trimeric Cryo-EM structures of spike protein in complex with ACE2 receptor, comparative analysis of Alpha, Beta, Gamma, Delta, and Omicron assist in a rational assessment of their probability to evolve as new or hybrid variants in future. This study proposes the role of hydration forces in mediating Omicron function and dynamics based on a stronger interplay between protein and solvent with each Covid wave. Mutations of multiple hydrophobic residues into hydrophilic residues underwent concerted interactions with water leading to variations in charge distribution in Delta and Omicron during molecular dynamics simulations. Moreover, comparative analysis of interacting moieties characterized a large number of mutations lying at RBD into constrained, homologous and low-affinity groups referred to as mutational drivers inferring that the probability of future mutations relies on their function. Furthermore, the computational findings reveal a significant difference in angular distances among variants of concern due 3 amino acid insertion (EPE) in Omicron variant that not only facilitates tight domain organization but also seems requisite for characterization of mutational processes. The outcome of this work signifies the possible relation between hydration forces, their impact on conformation and binding affinities, and viral fitness that will significantly aid in understanding dynamics of drug targets for Covid-19 countermeasures. The emerging scenario is that hydration forces and hydrophobic interactions are crucial variables to probe in mutational analysis to explore conformational landscape of macromolecules and reveal the molecular origins of protein behaviors.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fouzia Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rimsha Yousaf
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kainat Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
4
|
Ho KL, Ding J, Fan JS, Tsui WNT, Bai J, Fan SK. Digital Microfluidic Multiplex RT-qPCR for SARS-CoV-2 Detection and Variants Discrimination. MICROMACHINES 2023; 14:1627. [PMID: 37630161 PMCID: PMC10456927 DOI: 10.3390/mi14081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Continuous mutations have occurred in the genome of the SARS-CoV-2 virus since the onset of the COVID-19 pandemic. The increased transmissibility of the mutated viruses has not only imposed medical burdens but also prolonged the duration of the pandemic. A point-of-care (POC) platform that provides multitarget detection will help to track and reduce disease transmissions. Here we detected and discriminated three genotypes of SARS-CoV-2, including the wildtype and two variants of concern (VOCs), the Delta variant and Omicron variant, through reverse transcription quantitative polymerase chain reaction (RT-qPCR) on a digital microfluidics (DMF)-based cartridge. Upon evaluating with the RNA samples of Omicron variant, the DMF RT-qPCR presented a sensitivity of 10 copies/μL and an amplification efficiency of 96.1%, capable for clinical diagnosis. When spiking with SARS-CoV-2 RNA (wildtype, Delta variant, or Omicron variant) and 18S rDNA, the clinical analog samples demonstrated accurate detection and discrimination of different SARS-CoV-2 strains in 49 min.
Collapse
Affiliation(s)
- Kuan-Lun Ho
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA; (K.-L.H.); (J.D.)
| | - Jing Ding
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA; (K.-L.H.); (J.D.)
| | - Jia-Shao Fan
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA;
| | - Wai Ning Tiffany Tsui
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (W.N.T.T.); (J.B.)
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA; (W.N.T.T.); (J.B.)
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Shih-Kang Fan
- Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA; (K.-L.H.); (J.D.)
| |
Collapse
|
5
|
Song J, Zhang L, Zeng L, Xu X. Visualized Lateral Flow Assay for Dual Viral RNA Fragment Detection. Anal Chem 2023. [PMID: 37463852 DOI: 10.1021/acs.analchem.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In this technical note, we report an easy-to-produce, reverse-transcription-free, and protein-enzyme-free lateral flow assay for detection of viral RNA fragments by taking SARS-CoV-2 ORF1ab and N as target models. Catalytic hairpin assembly is utilized for dual RNA fragment orthogonal reaction to generate copious amounts of opened hairpin duplexes, which bridge DNA-modified gold nanoparticles and capture strands on the strip to induce coloration. The dual RNA fragments are simultaneously visualized during one time of sample flow, and single-base-mismatched nontarget sequences can be differentiated. The test strip can be flexibly adapted to detect evolutional SARS-CoV-2 variants such as Delta and Omicron. It also shows potential in visually detecting long-sequence virus simulants and achieves a sensitivity comparable to that of RT-qPCR by incorporation with upstream sample amplification. The lateral flow assay should offer a convenient and reliable technique for viral nucleic acid detection.
Collapse
Affiliation(s)
- Juanjuan Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Liangwen Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Luhao Zeng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
SARS-CoV-2 detection enabled by a portable and label-free photoelectrochemical genosensor using graphitic carbon nitride and gold nanoparticles. Electrochim Acta 2023; 451:142271. [PMID: 36974119 PMCID: PMC10024957 DOI: 10.1016/j.electacta.2023.142271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023]
Abstract
Fast, sensitive, simple, and cheap sensors are highly desirable to be applied in the health system because they improve point-of-care diagnostics, which can reduce the number of cases of infection or even deaths. In this context, here we report the development of a label-free genosensor using a screen-printed electrode modified with 2D-carbonylated graphitic carbon nitride (c-g-C3N4), poly(diallyldimethylammonium) chloride (PDDA), and glutathione-protected gold nanoparticles (GSH-AuNPs) for photoelectrochemical (PEC) detection of SARS-CoV-2. We also made use of Arduino and 3D printing to miniaturize the sensor device. The electrode surface was characterized by AFM and SEM techniques, and the gold nanoparticles by UV–Vis spectrophotometry. For SARS-CoV-2 detection, capture probe DNA was immobilized on the electrode surface. The hybridization of the final genosensor was tested with a synthetic single-strand DNA target and with natural saliva samples using the photoelectrochemistry method. The device presented a linear range from 1 to 10,000 fmol L−1 and a limit of detection of 2.2 and 3.4 fmol L−1 using cpDNA 1A and 3A respectively. The sensibility and accuracy found for the genosensor using cpDNA 1A using biological samples were 93.3 and 80% respectively, indicating the potential of the label-free and portable genosensor to detect SARS-CoV-2 RNA in saliva samples.
Collapse
|
7
|
Chen J, Gu C, Ruan Z, Tang M. Competition of SARS-CoV-2 variants on the pandemic transmission dynamics. CHAOS, SOLITONS, AND FRACTALS 2023; 169:113193. [PMID: 36817403 PMCID: PMC9915129 DOI: 10.1016/j.chaos.2023.113193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
SARS-CoV-2 has produced various variants during its ongoing evolution. The competitive behavior driven by the co-transmission of these variants has influenced the pandemic transmission dynamics. Therefore, studying the impact of competition between SARS-CoV-2 variants on pandemic transmission dynamics is of considerable practical importance. In order to formalize the mechanism of competition between SARS-CoV-2 variants, we propose an epidemic model that takes into account the co-transmission of competing variants. The model focuses on how cross-immunity influences the transmission dynamics of SARS-CoV-2 through competitive mechanisms between strains. We found that inter-strain competition affects not only both the final size and the replacement time of the variants, but also the invasive behavior of new variants in the future. Due to the limited extent of cross-immunity in previous populations, we predict that the new strain may infect the largest number of individuals in China without control interventions. Moreover, we also observed the possibility of periodic outbreaks in the same lineage and the possibility of the resurgence of previous lineages. Without the invasion of a new variant, the previous variant (Delta variant) is projected to resurgence as early as 2023. However, its resurgence may be prevented by a new variant with a greater competitive advantage.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Changgui Gu
- Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongyuan Ruan
- Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Ming Tang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
8
|
Zhang X, Chen Y, Pan Y, Ma X, Hu G, Li S, Deng Y, Chen Z, Chen H, Wu Y, Jiang Z, Li Z. Research progress of severe acute respiratory syndrome coronavirus 2 on aerosol collection and detection. CHINESE CHEM LETT 2023; 35:108378. [PMID: 37362323 PMCID: PMC10039702 DOI: 10.1016/j.cclet.2023.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 06/28/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 has negatively affected people's lives and productivity. Because the mode of transmission of SARS-CoV-2 is of great concern, this review discusses the sources of virus aerosols and possible transmission routes. First, we discuss virus aerosol collection methods, including natural sedimentation, solid impact, liquid impact, centrifugal, cyclone and electrostatic adsorption methods. Then, we review common virus aerosol detection methods, including virus culture, metabolic detection, nucleic acid-based detection and immunology-based detection methods. Finally, possible solutions for the detection of SARS-CoV-2 aerosols are introduced. Point-of-care testing has long been a focus of attention. In the near future, the development of an instrument that integrates sampling and output results will enable the real-time, automatic monitoring of patients.
Collapse
Affiliation(s)
- Xinyu Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yuting Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yueying Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xinye Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Gui Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yanqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Shenzhen Lemniscare Med Technol Co. Ltd., Shenzhen, 518000, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Zhiyang Li
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
9
|
Akib TBA, Mostufa S, Rana MM, Hossain MB, Islam MR. A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2. OPTICAL AND QUANTUM ELECTRONICS 2023; 55:448. [PMID: 37008732 PMCID: PMC10039361 DOI: 10.1007/s11082-023-04700-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/18/2023] [Indexed: 06/19/2023]
Abstract
This paper presents a performance comparison of heterostructure surface plasmon resonance (SPR) biosensors for the application of Novel Coronavirus SARS-CoV-2 diagnosis. The comparison is performed and compared with the existing literature based on the performance parameters in terms of several prisms such as BaF2, BK7, CaF2, CsF, SF6, and SiO2, several adhesion layers such as TiO2, Chromium, plasmonic metals such as Ag, Au, and two-dimensional (2D) transition metal dichalcogenides materials such as BP, Graphene, PtSe2 MoS2, MoSe2, WS2, WSe2. To study the performance of the heterostructure SPR sensor, the transfer matrix method is applied, and to analyses, the electric field intensity near the graphene-sensing layer contact, the finite-difference time-domain approach is utilized. Numerical results show that the heterostructure comprised of CaF2/TiO2/Ag/BP/Graphene/Sensing-layer has the best sensitivity and detection accuracy. The proposed sensor has an angle shift sensitivity of 390°/refractive index unit (RIU). Furthermore, the sensor achieved a detection accuracy of 0.464, a quality factor of 92.86/RIU, a figure of merit of 87.95, and a combined sensitive factor of 85.28. Furthermore, varied concentrations (0-1000 nM) of biomolecule binding interactions between ligands and analytes have been observed for the prospects of diagnosis of the SARS-CoV-2 virus. Results demonstrate that the proposed sensor is well suited for real-time and label-free detection particularly SARS-CoV-2 virus detection.
Collapse
Affiliation(s)
- Tarik Bin Abdul Akib
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
- Department of Electrical and Electronic Engineering, Bangladesh Army University of Engineering and Technology, Rajshahi, 6431 Bangladesh
| | - Shahriar Mostufa
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
| | - Md. Masud Rana
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
| | - Md. Biplob Hossain
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
- Department of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Rabiul Islam
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| |
Collapse
|
10
|
Rasheed MK, Awrahman HA, Amin Al‐Jaf SM, Niranji SS. Identification of SARS CoV-2 Omicron BA.1 and a novel Delta lineage by rapid methods and partial spike protein sequences in Sulaymaniyah Province, Iraq. Immun Inflamm Dis 2023; 11:e801. [PMID: 36988244 PMCID: PMC10022420 DOI: 10.1002/iid3.801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Five variants of concern (VOCs) of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) have been globally recorded including Alpha, Beta, Gamma, Delta, and Omicron. The Omicron variant has outcompeted the other variants including the Delta variant. Molecular screenings of VOCs are important for surveillance, treatment, and vaccination programs. This study aimed to identify VOCs by using rapid inexpensive methods and partial sequencing of the virus's spike gene. METHODS Mutation-specific rRT PCR probes were used for both D614G and K417N mutations to potentially discriminate between Delta and Omicron variants. These were followed by sequencing of a fragment of spike gene (748 nucleotides), which covers the most notable VOC mutations in the receptor binding domain of SARS CoV-2. RESULTS Rapid methods showed that out of 24 SARS CoV-2 positive samples, 19 carried the N417 mutation, which is present in the Omicron variant. Furthermore, 3 samples carried K417 wildtype, which is present in the Delta variant. Additionally, 2 samples containing both K417 and N417 suggested mixed infections between the two variants. The D614G mutation was present in all samples. Among the 4 samples sequenced, 3 samples carried 13 mutations, which are present in Omicron BA.1. The fourth sample contained the two common mutations (T478K and L452R) present in Delta, in addition to two more rare mutations (F456L and F490S), which are not commonly seen in Delta. Our data suggested that both Omicron variant BA.1 and a novel Delta variant might have circulated in this region that needs further investigations.
Collapse
Affiliation(s)
- Mariwan Kadir Rasheed
- College of Health ScienceUniversity of Human DevelopmentSulaymaniyahIraq
- Sulaimani Veterinary DirectorateSulaimaniIraq
| | - Harem Abdalla Awrahman
- Hiwa Hospital, Sulaymaniyah General Directory of HealthMinistry of HealthSulaymaniyahIraq
| | - Sirwan M. Amin Al‐Jaf
- College of MedicineUniversity of GarmianKalarIraq
- Coronavirus Research and Identification LabUniversity of GarmianKalarIraq
| | - Sherko S. Niranji
- College of MedicineUniversity of GarmianKalarIraq
- Coronavirus Research and Identification LabUniversity of GarmianKalarIraq
| |
Collapse
|
11
|
Han T, Luo Z, Ji L, Wu P, Li G, Liu X, Lai Y. Identification of natural compounds as SARS-CoV-2 inhibitors via molecular docking and molecular dynamic simulation. Front Microbiol 2023; 13:1095068. [PMID: 36817101 PMCID: PMC9930647 DOI: 10.3389/fmicb.2022.1095068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
Abstract
Background Base mutations increase the contagiousness and transmissibility of the Delta and Lambda strains and lead to the severity of the COVID-19 pandemic. Molecular docking and molecular dynamics (MD) simulations are frequently used for drug discovery and relocation. Small molecular compounds from Chinese herbs have an inhibitory effect on the virus. Therefore, this study used computational simulations to investigate the effects of small molecular compounds on the spike (S) protein and the binding between them and angiotensin-converting enzyme 2 (ACE2) receptors. Methods In this study, molecular docking, MD simulation, and protein-protein analysis were used to explore the medicinal target inhibition of Chinese herbal medicinal plant chemicals on SARS-CoV-2. 12,978 phytochemicals were screened against S proteins of SARS-CoV-2 Lambda and Delta mutants. Results Molecular docking showed that 65.61% and 65.28% of the compounds had the relatively stable binding ability to the S protein of Lambda and Delta mutants (docking score ≤ -6). The top five compounds with binding energy with Lambda and Delta mutants were clematichinenoside AR2 (-9.7), atratoglaucoside,b (-9.5), physalin b (-9.5), atratoglaucoside, a (-9.4), Ochnaflavone (-9.3) and neo-przewaquinone a (-10), Wikstrosin (-9.7), xilingsaponin A (-9.6), ardisianoside G (-9.6), and 23-epi-26-deoxyactein (-9.6), respectively. Four compounds (Casuarictin, Heterophylliin D, Protohypericin, and Glansrin B) could interact with S protein mutation sites of Lambda and Delta mutants, respectively, and MD simulation results showed that four plant chemicals and spike protein have good energy stable complex formation ability. In addition, protein-protein docking was carried out to evaluate the changes in ACE2 binding ability caused by the formation of four plant chemicals and S protein complexes. The analysis showed that the binding of four plant chemicals to the S protein could reduce the stability of the binding to ACE2, thereby reducing the replication ability of the virus. Conclusion To sum up, the study concluded that four phytochemicals (Casuarictin, Heterophylliin D, Protohypericin, and Glansrin B) had significant effects on the binding sites of the SARS-CoV-2 S protein. This study needs further in vitro and in vivo experimental validation of these major phytochemicals to assess their potential anti-SARS-CoV-2. Graphical abstract.
Collapse
Affiliation(s)
- Tiantian Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziqing Luo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lichun Ji
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Geng Li, ✉
| | - Xiaohong Liu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China,Xiaohong Liu, ✉
| | - Yanni Lai
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China,Yanni Lai, ✉
| |
Collapse
|
12
|
Niranji SS, Amin Al‐Jaf SM. In response to: Disease severity and efficacy of homologous vaccination among patients infected with SARS-CoV-2 Delta or Omicron VOCs, compared to unvaccinated using main biomarkers. J Med Virol 2023; 95:e28213. [PMID: 36224626 PMCID: PMC9874565 DOI: 10.1002/jmv.28213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Sherko S. Niranji
- College of MedicineUniversity of GarmianKalarIraq,Coronavirus Research and Identification LabUniversity of GarmianKalarIraq
| | - Sirwan M. Amin Al‐Jaf
- College of MedicineUniversity of GarmianKalarIraq,Coronavirus Research and Identification LabUniversity of GarmianKalarIraq
| |
Collapse
|
13
|
Xie L, Li J, Ai Y, He H, Chen X, Yin M, Li W, Huang W, Luo MY, He J. Current strategies for SARS-CoV-2 molecular detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4625-4642. [PMID: 36349688 DOI: 10.1039/d2ay01313d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular detection of SARS-CoV-2 is extremely important for the discovery and prevention of pandemic dissemination. Because SARS-CoV-2 is not always present in the samples that can be collected, the sample chosen for testing has inevitably become the key to the SARS-CoV-2 positive cases screening. The nucleotide amplification strategy mainly includes Q-PCR assays and isothermal amplification assays. The Q-PCR assay is the most used SARS-CoV-2 detection assay. Due to heavy expenditures and other drawbacks, isothermal amplification cannot replace the dominant position of the Q-PCR assay. The antibody-based detection combined with Q-PCR can help to find more positive cases than only using nucleotide amplification-based assays. Pooled testing based on Q-PCR significantly increases efficiency and reduces the cost of massive-scale screening. The endless stream of variants emerging across the world poses a great challenge to SARS-CoV-2 molecular detection. The multi-target assays and several other strategies have proved to be efficient in the detection of mutated SARS-CoV-2 variants. Further research work should concentrate on: (1) identifying more ideal sample plucking strategies, (2) ameliorating the Q-PCR primer and probes targeted toward mutated SARS-CoV-2 variants, (3) exploring more economical and precise isothermal amplification assays, and (4) developing more advanced strategies for antibody/antigen or engineered antibodies to ameliorate the antibody/antigen-based strategy.
Collapse
Affiliation(s)
- Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Ying Ai
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Haolan He
- Guangzhou Eighth People's Hospital, Guangzhou 510080, China
| | - Xiuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Mingyu Yin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Wanxi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Wenguan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Min-Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Jinyang He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| |
Collapse
|
14
|
Alhabbab RY. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. MICROMACHINES 2022; 13:1901. [PMID: 36363922 PMCID: PMC9694796 DOI: 10.3390/mi13111901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 05/28/2023]
Abstract
Abundant immunological assays currently exist for detecting pathogens and identifying infected individuals, making detection of diseases at early stages integral to preventing their spread, together with the consequent emergence of global health crises. Lateral flow immunoassay (LFIA) is a test characterized by simplicity, low cost, and quick results. Furthermore, LFIA testing does not need well-trained individuals or laboratory settings. Therefore, it has been serving as an attractive tool that has been extensively used during the ongoing COVID-19 pandemic. Here, the LFIA strip's available formats, reporter systems, components, and preparation are discussed. Moreover, this review provides an overview of the current LFIAs in detecting infectious viral antigens and humoral responses to viral infections.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Berno G, Fabeni L, Matusali G, Gruber CEM, Rueca M, Giombini E, Garbuglia AR. SARS-CoV-2 Variants Identification: Overview of Molecular Existing Methods. Pathogens 2022; 11:1058. [PMID: 36145490 PMCID: PMC9504725 DOI: 10.3390/pathogens11091058] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of COVID-19 pandemic the Real Time sharing of genome sequences of circulating virus supported the diagnostics and surveillance of SARS-CoV-2 and its transmission dynamics. SARS-CoV-2 straightaway showed its tendency to mutate and adapt to the host, culminating in the emergence of variants; so it immediately became of crucial importance to be able to detect them quickly but also to be able to monitor in depth the changes on the whole genome to early identify the new possibly emerging variants. In this scenario, this manuscript aims to provide an overview of the existing methods for the identification of SARS-CoV-2 variants (from rapid method based on identification of one or more specific mutations to Whole Genome sequencing approach-WGS), taking into account limitations, advantages and applications of them in the field of diagnosis and surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy
| |
Collapse
|
16
|
Blumenfeld NR, Bolene MAE, Jaspan M, Ayers AG, Zarrandikoetxea S, Freudman J, Shah N, Tolwani AM, Hu Y, Chern TL, Rogot J, Behnam V, Sekhar A, Liu X, Onalir B, Kasumi R, Sanogo A, Human K, Murakami K, Totapally GS, Fasciano M, Sia SK. Multiplexed reverse-transcriptase quantitative polymerase chain reaction using plasmonic nanoparticles for point-of-care COVID-19 diagnosis. NATURE NANOTECHNOLOGY 2022; 17:984-992. [PMID: 35879456 DOI: 10.1038/s41565-022-01175-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) offers the capabilities of real-time monitoring of amplified products, fast detection, and quantitation of infectious units, but poses technical hurdles for point-of-care miniaturization compared with end-point polymerase chain reaction. Here we demonstrate plasmonic thermocycling, in which rapid heating of the solution is achieved via infrared excitation of nanoparticles, successfully performing reverse-transcriptase qPCR (RT-qPCR) in a reaction vessel containing polymerase chain reaction chemistry, fluorescent probes and plasmonic nanoparticles. The method could rapidly detect SARS-CoV-2 RNA from human saliva and nasal specimens with 100% sensitivity and 100% specificity, as well as two distinct SARS-CoV-2 variants. The use of small optical components for both thermocycling and multiplexed fluorescence monitoring renders the instrument amenable to point-of-care use. Overall, this study demonstrates that plasmonic nanoparticles with compact optics can be used to achieve real-time and multiplexed RT-qPCR on clinical specimens, towards the goal of rapid and accurate molecular clinical diagnostics in decentralized settings.
Collapse
Affiliation(s)
- Nicole R Blumenfeld
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Rover Diagnostics, New York, NY, USA
| | - Michael Anne E Bolene
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Rover Diagnostics, New York, NY, USA
| | | | - Abigail G Ayers
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sabin Zarrandikoetxea
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Rover Diagnostics, New York, NY, USA
| | | | - Nikhil Shah
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Rover Diagnostics, New York, NY, USA
| | - Angela M Tolwani
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Rover Diagnostics, New York, NY, USA
| | - Yuhang Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Rover Diagnostics, New York, NY, USA
| | - Terry L Chern
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Vira Behnam
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Aditya Sekhar
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Xinyi Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Rover Diagnostics, New York, NY, USA
| | | | - Robert Kasumi
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Abdoulaye Sanogo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kelia Human
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kasey Murakami
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Goutham S Totapally
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Tsui WNT, Hamill V, Noll L, Lu N, Porter EP, Harbidge D, Cox E, Richardson C, Gray M, Sebhatu T, Goerl K, Brown S, Hanzlicek G, Retallick J, Bai J. Molecular detection of SARS-CoV-2 and differentiation of Omicron and Delta variant strains. Transbound Emerg Dis 2022; 69:e1618-e1631. [PMID: 35218683 PMCID: PMC9115370 DOI: 10.1111/tbed.14497] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022]
Abstract
The SARS-CoV-2 virus is the causative agent of COVID-19 and has undergone continuous mutations throughout the pandemic. The more transmissible Omicron variant has quickly spread and is replacing the Delta variant as the most prevalent strain globally, including in the United States. A new molecular assay that can detect and differentiate both the Delta and Omicron variants was developed. A collection of 660,035 SARS-CoV-2 full- or near-full genomes, including 169,454 Delta variant and 24,202 Omicron variant strains, were used for primer and probe designs. In silico data analysis predicted an assay coverage of >99% of all strains, including >99% of the Delta and >99% of Omicron strains. The Omicron variant differential test was designed based on the Δ31-33 aa deletion in the N-gene, which is present in the original B.1.1.529 main genotype, BA.1, as well as in BA.2 and BA.3 subtypes. Therefore, the assay should detect the majority of all Omicron variant strains. Standard curves generated with human clinical samples indicated that the PCR amplification efficiencies were 104%, 90.7% and 90.4% for the Omicron, Delta, and non-Delta/non-Omicron wild-type genotypes, respectively. Correlation coefficients of the standard curves were all >0.99. The detection limit of the assay was 14.3, 32.0, and 21.5 copies per PCR reaction for Omicron, Delta, and wild-type genotypes, respectively. The assay was designed to specifically detect SAR-CoV-2 strains. Selected samples with Omicron, Delta and wild-type genotypes identified by the RT-qPCR assay were also confirmed by sequencing. The assay did not detect any animal coronavirus-positive samples that were tested. Human nasal swab samples that previously tested positive (n = 182) or negative (n = 42) for SARS-CoV-2 by the ThermoFisher TaqPath COVID-19 Combo Kit, produced the same result with the new assay. Among positive samples, 55.5% (101/182), 23.1% (42/182), and 21.4% (39/182) were identified as Omicron, Delta, and non-Omicron/non-Delta wild-type genotypes, respectively.
Collapse
Affiliation(s)
- Wai Ning Tiffany Tsui
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
| | - Vaughn Hamill
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
| | - Lance Noll
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
- Department of Diagnostic Medicine/PathobiologyKansas State UniversityManhattanKansasUSA
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
- Division of BiologyKansas State UniversityManhattanKansasUSA
| | | | - Donald Harbidge
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
| | - Emily Cox
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
| | - Claire Richardson
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
| | - Mark Gray
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
| | - Tesfaalem Sebhatu
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
| | - Kyle Goerl
- Lafene Health CenterKansas State UniversityManhattanKansasUSA
| | - Susan Brown
- Division of BiologyKansas State UniversityManhattanKansasUSA
| | - Gregg Hanzlicek
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
- Department of Diagnostic Medicine/PathobiologyKansas State UniversityManhattanKansasUSA
| | - Jamie Retallick
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
- Department of Diagnostic Medicine/PathobiologyKansas State UniversityManhattanKansasUSA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic LaboratoryKansas State UniversityManhattanKansasUSA
- Department of Diagnostic Medicine/PathobiologyKansas State UniversityManhattanKansasUSA
| |
Collapse
|
18
|
Noll LW, Highland MA, Hamill VA, Tsui WNT, Porter EP, Lu N, Sebhatu T, Brown S, Herndon DR, Grossman PC, Bai J. Development of a real-time PCR assay for detection and differentiation of Mycoplasma ovipneumoniae and a novel respiratory-associated Mycoplasma species in domestic sheep and goats. Transbound Emerg Dis 2022; 69:e1460-e1468. [PMID: 35166453 PMCID: PMC9790229 DOI: 10.1111/tbed.14477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
A novel respiratory-associated Mycoplasma species (M. sp. nov.) of unknown clinical significance was recently identified that causes false positive results with multiple published PCR methods reported to specifically detect Mycoplasma ovipneumonaie, a well-known respiratory pathogen in small ruminants. This necessitates our objective to develop a real-time PCR (qPCR) assay for improved specificity and sensitivity, and more rapid detection and differentiation of M. ovipneumoniae and the M. sp. nov. in domestic sheep (DS) and domestic goat (DG) samples, as compared to a conventional PCR and sequencing (cPCR-seq) assay. Primers and probes were designed based on available M. ovipneumoniae 16S rRNA gene sequences in the GenBank database, and partial 16S rRNA gene sequences provided by the United States Department of Agriculture, Agricultural Research Service (USDA-ARS) for M. ovipneumoniae and M. sp. nov. USDA-ARS provided DS (n = 153) and DG (n = 194) nasal swab nucleic acid that previously tested positive for either M. ovipneumoniae (n = 117) or M. sp. nov. (n = 138), or negative for both targets (n = 92) by cPCR-seq. A host 18S rRNA gene was included as an internal control to monitor for the failure of nucleic acid extraction and possible PCR inhibition. For samples positive by cPCR-seq, qPCR agreement was 88.0% (103/117; κ = 0.81) and 89.9% (124/138; κ = 0.84) for M. ovipneumoniae and M. sp. nov., respectively; 12 of 255 (4.7%) cPCR-seq positive samples were qPCR positive for both targets. Of samples negative by cPCR for both mycoplasmas, qPCR detected M. ovipneumoniae and M. sp. nov. in 6.5% (6/92) and 4.3% (4/92), respectively. Samples with discordant results between the cPCR and sequencing assay and the new qPCR were analyzed by target sequencing; successfully sequenced samples had identity matches that confirmed the qPCR result. The increased target specificity of this qPCR is predicted to increase testing accuracy as compared to other published assays.
Collapse
Affiliation(s)
- Lance W. Noll
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Margaret A. Highland
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Vaughn A. Hamill
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Wai Ning Tiffany Tsui
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Elizabeth P. Porter
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA,Bioinformatics CenterKansas State UniversityManhattanKansasUSA
| | - Tesfaalem Sebhatu
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Susan Brown
- Bioinformatics CenterKansas State UniversityManhattanKansasUSA
| | - David R. Herndon
- United States Department of Agriculture, Agricultural Research ServiceAnimal Disease Research UnitPullmanWashingtonUSA
| | - Paige C. Grossman
- Department of Veterinary Microbiology and Pathology, College of Veterinary MedicineWashington State UniversityPullmanWashingtonUSA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| |
Collapse
|
19
|
Li J, Gao Z, Chen J, Cheng R, Niu J, Zhang J, Yang Y, Yuan X, Xia J, Mao G, Liu H, Dong Y, Wu C. Development of a panel of three multiplex allele-specific qRT-PCR assays for quick differentiation of recombinant variants and Omicron subvariants of SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:953027. [PMID: 36061868 PMCID: PMC9433905 DOI: 10.3389/fcimb.2022.953027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Quick differentiation of the circulating variants and the emerging recombinant variants of SARS-CoV-2 is essential to monitor their transmission. However, the widely used gene sequencing method is time-consuming and costly when facing the viral recombinant variants, because partial or whole genome sequencing is required. Allele-specific real time RT-PCR (qRT-PCR) represents a quick and cost-effective method in SNP genotyping and has been successfully applied for SARS-CoV-2 variant screening. In the present study, we developed a panel of 3 multiplex allele-specific qRT-PCR assays targeting 12 key differential mutations for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2). Two parallel multiplex qRT-PCR reactions were designed to separately target the protype allele and the mutated allele of the four mutations in each allele-specific qRT-PCR assay. The variation of Cp values (ΔCp) between the two multiplex qRT-PCR reactions was applied for mutation determination. The developed multiplex allele-specific qRT-PCR assays exhibited outstanding analytical sensitivities (with limits of detection [LoDs] of 2.97-27.43 copies per reaction), wide linear detection ranges (107-100 copies per reaction), good amplification efficiencies (82% to 95%), good reproducibility (Coefficient of Variations (CVs) < 5% in both intra-assay and inter-assay tests) and clinical performances (99.5%-100% consistency with Sanger sequencing). The developed multiplex allele-specific qRT-PCR assays in this study provide an alternative tool for quick differentiation of SARS-CoV-2 recombinant variants (XD and XE) and Omicron subvariants (BA.1 and BA.2).
Collapse
Affiliation(s)
- Jianguo Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Jianguo Li, ; Changxin Wu,
| | - Zefeng Gao
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jing Chen
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, China
| | - Ruiling Cheng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiahui Niu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jialei Zhang
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - You Yang
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Ximei Yuan
- College of Life Sciences, Shanxi University, Taiyuan, China
| | - Juan Xia
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Guoli Mao
- Laboratory, Shanxi Guoxin Caregeno Biotechnology Co., Ltd, Taiyuan, China
| | - Hulong Liu
- Laboratory, Shanxi Guoxin Caregeno Biotechnology Co., Ltd, Taiyuan, China
| | - Yongkang Dong
- Administrative Office, the Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Jianguo Li, ; Changxin Wu,
| |
Collapse
|
20
|
Yeung PSW, Wang H, Sibai M, Solis D, Yamamoto F, Iwai N, Jiang B, Hammond N, Truong B, Bihon S, Santos S, Mar M, Mai C, Mfuh KO, Miller JA, Huang C, Sahoo MK, Zehnder JL, Pinsky BA. Evaluation of a Rapid and Accessible Reverse Transcription-Quantitative PCR Approach for SARS-CoV-2 Variant of Concern Identification. J Clin Microbiol 2022; 60:e0017822. [PMID: 35465708 PMCID: PMC9119066 DOI: 10.1128/jcm.00178-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
The ability to distinguish between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) is of ongoing interest due to differences in transmissibility, responses to vaccination, clinical prognosis, and therapy. Although detailed genetic characterization requires whole-genome sequencing (WGS), targeted nucleic acid amplification tests can serve a complementary role in clinical settings, as they are more rapid and accessible than sequencing in most laboratories. We designed and analytically validated a two-reaction multiplex reverse transcription-quantitative PCR (RT-qPCR) assay targeting spike protein mutations L452R, E484K, and N501Y in reaction 1 and del69-70, K417N, and T478K in reaction 2. This assay had 95 to 100% agreement with WGS for 502 upper respiratory tract swab samples collected between 26 April 2021 and 1 August 2021, consisting of 43 Alpha, 2 Beta, 20 Gamma, 378 Delta, and 59 non-VOC infections. Validation in a separate group of 230 WGS-confirmed Omicron variant samples collected in December 2021 and January 2022 demonstrated 100% agreement. This RT-qPCR-based approach can be implemented in clinical laboratories already performing SARS-CoV-2 nucleic acid amplification tests to assist in local epidemiological surveillance and clinical decision-making.
Collapse
Affiliation(s)
- Priscilla S.-W. Yeung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Hannah Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mamdouh Sibai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Fumiko Yamamoto
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Naomi Iwai
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Becky Jiang
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Nathan Hammond
- Clinical Genomics Laboratory, Stanford Health Care, Stanford, California, USA
| | - Bernadette Truong
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Selamawit Bihon
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Suzette Santos
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Marilyn Mar
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Claire Mai
- Clinical Genomics Laboratory, Stanford Health Care, Stanford, California, USA
| | - Kenji O. Mfuh
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Jacob A. Miller
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - James L. Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Borillo GA, Kagan RM, Marlowe EM. Rapid and Accurate Identification of SARS-CoV-2 Variants Using Real Time PCR Assays. Front Cell Infect Microbiol 2022; 12:894613. [PMID: 35619652 PMCID: PMC9127862 DOI: 10.3389/fcimb.2022.894613] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Background Genomic surveillance efforts for SARS-CoV-2 are needed to understand the epidemiology of the COVID-19 pandemic. Viral variants may impact routine diagnostic testing, increase viral transmissibility, cause differences in disease severity, have decreased susceptibility to therapeutics, and/or confer the ability to evade host immunity. While viral whole-genome sequencing (WGS) has played a leading role in surveillance programs, many laboratories lack the expertise and resources for performing WGS. This study describes the performance of multiplexed real-time reverse transcription-PCR (RT-PCR) assays for identification of SARS-CoV-2 variants. Methods SARS-CoV-2 specimens were tested for spike-gene variants using a combination of allele-specific primer and allele-specific detection technology (PlexPrime® and PlexZyme®). Targeted detection of spike gene mutations by RT-PCR was compared to variant detection in positive specimens by WGS, including the recently emerged SARS-CoV-2 Omicron variant. Results A total of 398 SAR-CoV-2 RT-PCR positive and 39 negative specimens previously tested by WGS were re-tested by RT-PCR genotyping. PCR detection of spike gene mutations N501Y, E484K, and S982A correlated 100% with WGS for the 29 lineages represented, including Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P.1). Incorporating the P681R spike gene mutation also allowed screening for the SARS-CoV-2 Delta variant (B.1.617.2 and AY sublineages). Further sampling of 664 specimens that were screened by WGS between June and August 2021 and then re-tested by RT-PCR showed strong agreement for Delta variant positivity: 34.5% for WGS vs 32.9% for RT-PCR in June; 100% vs 97.8% in August. In a blinded panel of 16 Omicron and 16 Delta specimens, results of RT-PCR were 100% concordant with WGS results. Conclusions These data demonstrate that multiplexed real-time RT-PCR genotyping has strong agreement with WGS and may provide additional SARS-CoV-2 variant screening capabilities when WGS is unavailable or cost-prohibitive. RT-PCR genotyping assays may also supplement existing sequencing efforts while providing rapid results at or near the time of diagnosis to help guide patient management.
Collapse
|
22
|
Choi KE, Kim JM, Rhee JE, Park AK, Kim EJ, Yoo CK, Kang NS. Molecular Dynamics Studies on the Structural Stability Prediction of SARS-CoV-2 Variants Including Multiple Mutants. Int J Mol Sci 2022; 23:ijms23094956. [PMID: 35563345 PMCID: PMC9106056 DOI: 10.3390/ijms23094956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused the Coronavirus Disease (COVID-19) pandemic worldwide. The spike protein in SARS-CoV-2 fuses with and invades cells in the host respiratory system by binding to angiotensin-converting enzyme 2 (ACE2). The spike protein, however, undergoes continuous mutation from a D614G single mutant to an omicron variant, including multiple mutants. In this study, variants, including multiple mutants (double, triple mutants, B.1.620, delta, alpha, delta_E484Q, mu, and omicron) were investigated in patients. The 3D structure of the full-length spike protein was used in conformational analysis depending on the SARS-CoV-2 variants. The structural stability of the variant types was analyzed based on the distance between the receptor-binding domain (RBD) of each chain in the spike protein and the binding free energy between the spike protein and bound ACE2 in the one-, two-, and three-open-complex forms using molecular dynamics (MD) simulation. Omicron variants, the most prevalent in the recent history of the global pandemic, which consist of 32 mutations, showed higher stability in all open-complex forms compared with that of the wild type and other variants. We suggest that the conformational stability of the spike protein is the one of the important determinants for the differences in viral infectivity among variants, including multiple mutants.
Collapse
Affiliation(s)
- Kwang-Eun Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Jeong-Min Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.-M.K.); (J.E.R.); (A.K.P.); (E.-J.K.)
| | - Jee Eun Rhee
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.-M.K.); (J.E.R.); (A.K.P.); (E.-J.K.)
| | - Ae Kyung Park
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.-M.K.); (J.E.R.); (A.K.P.); (E.-J.K.)
| | - Eun-Jin Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea; (J.-M.K.); (J.E.R.); (A.K.P.); (E.-J.K.)
| | - Cheon Kwon Yoo
- Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Korea;
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-42-821-8626
| |
Collapse
|