1
|
Gallichotte EN, Bashor L, Erbeck K, Croft L, Stache K, Long J, VandeWoude S, Johnson JC, Pabilonia KL, Ebel GD. SARS-CoV-2 outbreak in lions, tigers, and hyenas at Denver Zoo. mSphere 2025; 10:e0098924. [PMID: 39912638 PMCID: PMC11853051 DOI: 10.1128/msphere.00989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
In late 2019, SARS-CoV-2 spilled over from an animal host into humans, where it efficiently spread, resulting in the COVID-19 pandemic. Through both natural and experimental infections, we learned that many animal species are susceptible to SARS-CoV-2. Importantly, animals in close proximity to humans, including companion, farmed, and those at zoos and aquariums, became infected, and many studies demonstrated transmission to/from humans in these settings. In this study, we first review the literature of SARS-CoV-2 infections in tigers and lions and compare species, sex, age, virus and antibody detection assay, and types, frequency, and length of clinical signs, demonstrating broad heterogeneity among infections. We then describe a SARS-CoV-2 outbreak in lions, tigers, and hyenas at Denver Zoo in late 2021. Animals were tested for viral RNA (vRNA) for 4 months. Lions had significantly more vRNA in nasal swabs than both tigers and hyenas, and many individual lions experienced viral recrudescence after weeks of undetectable vRNA. Infectious virus was correlated with high levels of vRNA and was more likely to be detected earlier during infection. Four months post-infection, all tested animals generated robust neutralizing antibody titers. Animals were infected with Delta lineage AY.20 identical to a variant circulating at less than 1% in Colorado humans at that time, suggesting a single spillover event from an infected human spread within and between species housed at the zoo. Better understanding of epidemiology and susceptibility of SARS-CoV-2 infections in animals is critical to limit the current and future spread and protect animal and human health.IMPORTANCESurveillance and experimental testing have shown many animal species, including companion, wildlife, and conservatory, are susceptible to SARS-CoV-2. Early in the COVID-19 pandemic, big cats at zoological institutions were among the first documented cases of naturally infected animals; however, challenges in the ability to collect longitudinal samples in zoo animals have limited our understanding of SARS-CoV-2 kinetics and clearance in these settings. We measured SARS-CoV-2 infections over 4 months in lions, tigers, and hyenas at Denver Zoo and detected viral RNA, infectious virus, neutralizing antibodies, and recrudescence after initial clearance. We found lions had longer and higher levels of virus compared to the other species. All animals were infected by a rare viral lineage circulating in the human population, suggesting a single spillover followed by interspecies transmission. These data are important in better understanding natural SARS-CoV-2 spillover, spread, and infection kinetics within multiple species of zoo animals.
Collapse
Affiliation(s)
- Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Laura Bashor
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Katelyn Erbeck
- Veterinary Diagnostic Laboratories, Colorado State University, Colorado, Fort Collins, USA
| | | | | | | | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Kristy L. Pabilonia
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Veterinary Diagnostic Laboratories, Colorado State University, Colorado, Fort Collins, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Kulkarni PM, Basagoudanavar SH, Gopinath S, Patangia H, Gupta PK, Sreenivasa BP, Senthilkumar D, Sharma R, Bhatia S, Sharma GK, Bhanuprakash V, Saikumar G, Yadav P, Singh RK, Sanyal A, Hosamani M. Characterization of monoclonal antibodies targeting SARS-CoV-2 spike glycoprotein: Reactivity against Delta and Omicron BA.1 variants. J Virol Methods 2024; 330:115027. [PMID: 39216601 DOI: 10.1016/j.jviromet.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The cross-species transmissibility of SARS-CoV-2 infection has necessitated development of specific reagents for detecting infection in various animal species. The spike glycoprotein of SARS-CoV-2, which is involved in viral entry, is a highly immunogenic protein. To develop assays targeting this protein, we generated eight monoclonal antibodies (mAbs) against the S1 and seven against the S1/S2 protein (ectodomain) of SARS CoV-2. Based on neutralization capability and reactivity profile observed in ELISA, the mAbs generated against the S1/S2 antigen exhibited a broader spectrum of epitope specificity than those produced against the S1 domain alone. The full-length ectodomain induced antibodies that could neutralize the two most important variants of the virus encountered during the pandemic, namely Delta and Omicron. The availability of these reagents could greatly enhance the development of precise diagnostics for detecting COVID-19 infections in various host species and contribute to the advancement of mAb-based therapeutics.
Collapse
Affiliation(s)
- Pratik M Kulkarni
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | | | - Shreya Gopinath
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - Harshita Patangia
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - P K Gupta
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - B P Sreenivasa
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - Dhanpal Senthilkumar
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - Rahul Sharma
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - Gaurav Kumar Sharma
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - V Bhanuprakash
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India
| | - G Saikumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Pragya Yadav
- ICMR-National Institute of Virology, 20/ A Dr. Ambedkar Road, Pune, Maharashtra 411001, India
| | - R K Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India
| | - Aniket Sanyal
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP 462021, India
| | - M Hosamani
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka 560024, India.
| |
Collapse
|
3
|
Oltjen H, Crook E, Lanier WA, Rettler H, Oakeson KF, Young EL, Torchetti M, Van Wettere AJ. SARS-CoV-2 delta variant in African lions (Panthera leo) and humans at Utah's Hogle Zoo, USA, 2021-22. Zoonoses Public Health 2024; 71:807-816. [PMID: 38825749 PMCID: PMC11455604 DOI: 10.1111/zph.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Abstract
AIMS We conducted a One Health investigation to assess the source and transmission dynamics of SARS-CoV-2 infection in African lions (Panthera leo) at Utah's Hogle Zoo in Salt Lake City from October 2021 to February 2022. METHODS AND RESULTS Following observation of respiratory illness in the lions, zoo staff collected pooled faecal samples and individual nasal swabs from four lions. All specimens tested positive for SARS-CoV-2 by reverse transcription-polymerase chain reaction (RT-PCR). The resulting investigation included: lion observation; RT-PCR testing of lion faeces every 1-7 days; RT-PCR testing of lion respiratory specimens every 2-3 weeks; staff interviews and RT-PCR testing; whole-genome sequencing of viruses from lions and staff; and comparison with existing SARS-CoV-2 human community surveillance sequences. In addition to all five lions, three staff displayed respiratory symptoms. All lions recovered and no hospitalizations or deaths were reported among staff. Three staff reported close contact with the lions in the 10 days before lion illness onset, one of whom developed symptoms and tested positive for SARS-CoV-2 on days 3 and 4, respectively, after lion illness onset. The other two did not report symptoms or test positive. Two staff who did not have close contact with the lions were symptomatic and tested positive on days 5 and 8, respectively, after lion illness onset. We detected SARS-CoV-2 RNA in lion faeces for 33 days and in lion respiratory specimens for 14 weeks after illness onset. The viruses from lions were genetically highly related to those from staff and two contemporaneous surveillance specimens from Salt Lake County; all were delta variants (AY.44). CONCLUSIONS We did not determine the sources of these infections, although human-to-lion transmission likely occurred. The observed period of respiratory shedding was longer than in previously documented SARS-CoV-2 infections in large felids, indicating the need to further assess duration and potential implications of shedding.
Collapse
Affiliation(s)
- Heather Oltjen
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | | | - William A. Lanier
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
- Centers for Disease Control and Prevention, Office of Readiness and Response, Division of State and Local Readiness, Career Epidemiology Field Officer Program, Atlanta, Georgia, USA
- US Public Health Service, Rockville, Maryland, USA
| | - Hannah Rettler
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Kelly F. Oakeson
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Erin L. Young
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Mia Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | | |
Collapse
|
4
|
Bashor L, Gallichotte EN, Galvan M, Erbeck K, Croft L, Stache K, Stenglein M, Johnson JG, Pabilonia K, VandeWoude S. SARS-CoV-2 within-host population expansion, diversification and adaptation in zoo tigers, lions and hyenas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620075. [PMID: 39484504 PMCID: PMC11527109 DOI: 10.1101/2024.10.24.620075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
SARS-CoV-2 rapidly adapts to new hosts following cross-species transmission; this is highly relevant as novel within-host variants have emerged following infection of susceptible wild and domestic animal species. Furthermore, SARS-CoV-2 transmission from animals (e.g., white-tailed deer, mink, domestic cats, and others) back to humans has also been observed, documenting the potential of novel animal-derived variants to infect humans. We investigated SARS-CoV-2 evolution and host-specific adaptation during an outbreak in Amur tigers (Panthera tigris altaica), African lions (Panthera leo), and spotted hyenas (Crocuta crocuta) at Denver Zoo in late 2021. SARS-CoV-2 genomes from longitudinal samples collected from 16 individuals were evaluated for within-host variation and genomic signatures of selection. The outbreak was likely initiated by a single spillover of a rare Delta sublineage subsequently transmitted from tigers to lions to hyenas. Within-host virus populations rapidly expanded and diversified. We detected signatures of purifying and positive selection, including strong positive selection in hyenas and in the nucleocapsid (N) gene in all animals. Four candidate species-specific adaptive mutations were identified: N A254V in lions and hyenas, and ORF1a E1724D, spike T274I, and N P326L in hyenas. These results reveal accelerated SARS-CoV-2 adaptation following host shifts in three non-domestic species in daily contact with humans.
Collapse
Affiliation(s)
- Laura Bashor
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Michelle Galvan
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Colorado State University Veterinary Diagnostic Laboratories
| | | | | | - Mark Stenglein
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| | | | | | - Sue VandeWoude
- Dept. of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
5
|
Leonardi-Cattolica A, Kayastha S, Miller M, Guag J, Tkachenko A, Lowe J, Allender M, Terio K, Wang L. Evaluation of Fecal Sample Pooling for Real-Time RT-PCR Testing SARS-CoV-2 in Animals. Viruses 2024; 16:1651. [PMID: 39599766 PMCID: PMC11599033 DOI: 10.3390/v16111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
During the COVID-19 pandemic, veterinary diagnostic laboratories tested both human and animal samples and needed to ensure that they could accurately perform large numbers of diagnostic tests in a timely manner. Sample pooling, a methodology used effectively for over 80 years as a surveillance tool for screening large numbers of potentially infected individuals, was employed. Given its sensitivity, real-time polymerase chain reaction (PCR) is more suitable for employing this strategy, as compared to other less sensitive testing methods. In this study, we evaluated the capability of detecting SARS-CoV-2 in both 5-sample and 10-sample pools of feces using real-time reverse transcriptase polymerase chain reaction (rRT-PCR) as well as determined the level of sensitivity. A blinded method test (BMT) by an independent laboratory was conducted to assess the five-sample fecal pool. To complement detection capability, the stability of the genome within a PBS fecal suspension was measured under various time and temperature conditions across a 28-day period. Our results showed that the limit of detection for 5-sample and 10-sample fecal pools is 12.8 and 6.4 genome copies in a 25 µL PCR, respectively. The 5-sample and 10-sample pooling resulted in a cycle threshold (Ct) value loss of 2.35 and 3.45, as compared to Ct values of known positive individual samples, but consistent detection was still achieved in pools containing positive samples with an original Ct below 36 and 34, respectively. The simulation of clinical five-sample pooling showed that all positive samples could be detected regardless of the number (1-3) of positive samples in each pool. The BMT results demonstrated excellent sensitivity (100 copies/reaction) in five-sample pools for the detection of SARS-CoV-2 RNA even though a fecal matrix effect was observed. Finally, our results show that the SARS-CoV-2 genome remains stable over a wide range of time and temperature variations. Overall, our findings provide solid data to scale up SARS-CoV-2 testing capacity in veterinary diagnostic laboratories.
Collapse
Affiliation(s)
- Antonio Leonardi-Cattolica
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, USA
| | - Sandipty Kayastha
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| | - Megan Miller
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jake Guag
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Andriy Tkachenko
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - James Lowe
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, USA
| | - Matthew Allender
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| | - Karen Terio
- Zoological Pathology Program, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL 61802, USA
| |
Collapse
|
6
|
Gallichotte EN, Bashor L, Erbeck K, Croft L, Stache K, Long J, VandeWoude S, Johnson JG, Pabilonia KL, Ebel GD. SARS-CoV-2 outbreak in lions, tigers and hyenas at Denver Zoo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617443. [PMID: 39464021 PMCID: PMC11507794 DOI: 10.1101/2024.10.14.617443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In late 2019, SARS-CoV-2 spilled-over from an animal host into humans, where it efficiently spread, resulting in the COVID-19 pandemic. Through both natural and experimental infections, we learned that many animal species are susceptible to SARS-CoV-2. Importantly, animals in close proximity to humans, including companion, farmed, and those at zoos and aquariums, became infected, and many studies demonstrated transmission to/from humans in these settings. In this study, we first review the literature of SARS-CoV-2 infections in tigers and lions, and compare species, sex, age, virus and antibody detection assay, and types, frequency and length of clinical signs, demonstrating broad heterogeneity amongst infections. We then describe a SARS-CoV-2 outbreak in lions, tigers and hyenas at Denver Zoo in late 2021. Animals were tested for viral RNA (vRNA) for four months. Lions had significantly more viral RNA in nasal swabs than both tigers and hyenas, and many individual lions experienced viral recrudescence after weeks of undetectable vRNA. Infectious virus was correlated with high levels of vRNA and was more likely to be detected earlier during infection. Four months post-infection, all tested animals generated robust neutralizing antibody titers. Animals were infected with Delta lineage AY.20 identical to a variant circulating at less than 1% in Colorado humans at that time, suggesting a single spillover event from an infected human spread within and between species housed at the zoo. Better understanding of epidemiology and susceptibility of SARS-CoV-2 infections in animals is critical to limit the current and future spread and protect animal and human health.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | - Laura Bashor
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | - Katelyn Erbeck
- Veterinary Diagnostic Laboratories, Colorado State University
| | | | | | | | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University
| | | | - Kristy L Pabilonia
- Department of Microbiology, Immunology and Pathology, Colorado State University
- Veterinary Diagnostic Laboratories, Colorado State University
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University
| |
Collapse
|
7
|
Fernández-Bastit L, Cano-Terriza D, Caballero-Gómez J, Beato-Benítez A, Fernández A, García-Párraga D, Domingo M, Sierra C, Canales R, Borragan S, de la Riva-Fraga M, Molina-López R, Cabezón Ó, Puig-Ribas M, Espunyes J, Vázquez-Calero DB, Vergara-Alert J, García-Bocanegra I, Segalés J. Survey of severe acute respiratory syndrome coronavirus 2 in captive and free-ranging wildlife from Spain. Vet Res 2024; 55:90. [PMID: 39030652 PMCID: PMC11264983 DOI: 10.1186/s13567-024-01348-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), considered a zoonotic agent of wildlife origin, can infect various animal species, including wildlife in free-range and captive environments. Detecting susceptible species and potential reservoirs is crucial for preventing the transmission, spread, genetic evolution, and further emergence of viral variants that are major threats to global health. This study aimed to detect exposure or acute infection by SARS-CoV-2 in 420 animals from 40 different wildlife species, including terrestrial and aquatic mammals, from different regions of Spain during the 2020-2023 coronavirus disease 19 (COVID-19) pandemic. In total, 8/137 animals were positive for SARS-CoV-2 antibodies against the receptor binding domain and/or viral nucleoprotein according to independent ELISAs. However, only one ELISA-positive sample of a captive bottlenose dolphin (Tursiops truncatus) tested positive for SARS-CoV-2 neutralizing antibodies with a low titre (SNT50 38.15) according to a virus neutralization test. Cetaceans are expected to have a high risk of infection with SARS-CoV-2 according to early predictive studies due to the similarity of their angiotensin converting enzyme 2 cell receptor to that of humans. Moreover, of 283 animals analysed for SARS-CoV-2 RNA using RT-qPCR, none tested positive. Our results reinforce the importance of considering cetaceans at risk for SARS-CoV-2 infection and support taking preventive biosecurity measures when interacting with them, especially in the presence of individuals with suspected or confirmed COVID-19. Although most animals in this study tested negative for acute infection or viral exposure, ongoing surveillance of wildlife species and potentially susceptible animals is important to prevent future spillover events and detect potential novel reservoirs.
Collapse
Affiliation(s)
- Leira Fernández-Bastit
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Caballero-Gómez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Maimonides Institute for Biomedical Research of Cordoba, Reina Sofía University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - Adrián Beato-Benítez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014, Córdoba, Spain
| | - Antonio Fernández
- Atlantic Cetacean Research Center, Institute of Animal Health, University of Las Palmas de Gran Canaria, 35001, Las Palmas, Trasmontaña, Spain
| | - Daniel García-Párraga
- Research Department, Fundación Oceanografic de la Comunitat Valenciana, Ciudad de las Artes y las Ciencias, 46013, Valencia, Spain
| | - Mariano Domingo
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- Veterinary Pathology Diagnostic Service, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
- Departament de Sanitat I Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Cecilia Sierra
- Selwo Aventura, 29680, Estepona, Málaga, Spain
- Selwo Marina, 29630, Benalmádena, Málaga, Spain
| | | | - Santiago Borragan
- Parque de la Naturaleza de Cabárceno, 39690, Obregón, Cantabria, Spain
| | | | - Rafael Molina-López
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna I Flora, Forestal Catalana, 08130, Santa Perpètua de Mogoda, Barcelona, Spain
| | - Óscar Cabezón
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina I Cirugia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Maria Puig-Ribas
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina I Cirugia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Johan Espunyes
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina I Cirugia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014, Córdoba, Spain.
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08139, Bellaterra, Barcelona, Spain.
- Veterinary Pathology Diagnostic Service, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
- Departament de Sanitat I Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
8
|
Abay Z, Sadikaliyeva S, Nurpeisova A, Jekebekov K, Shorayeva K, Yespembetov B, Nurabayev S, Kerimbayev A, Khairullin B, Yoo H, Kutumbetov L, Kassenov M, Zakarya K. Breaking the Barrier: SARS-CoV-2 Infections in Wild and Companion Animals and Their Implications for Public Health. Viruses 2024; 16:956. [PMID: 38932248 PMCID: PMC11209598 DOI: 10.3390/v16060956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of the novel coronavirus SARS-CoV-2 has led to significant interest in its potential transmission between animals and humans, especially pets. This review article summarises the literature on coronavirus infections in domestic animals, emphasising epidemiology, transmission dynamics, clinical manifestations, and public health implications. This article highlights current understandings of the relationship between infections in companion animals and humans, identifies research gaps, and suggests directions for future research. Cases of disease in cats, dogs, and other domestic animals, often occurring through close contact with infected owners, are reviewed, raising concerns about possible zoonotic and reverse zoonotic transmission. Precautions and recommendations for pet owners and healthcare workers are also discussed. The scientific evidence presented in the article highlights the need for a One Health approach that considers the health of people, animals, and the environment to combat future pandemics.
Collapse
Affiliation(s)
- Zhandos Abay
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | | | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kuanysh Jekebekov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kamshat Shorayeva
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Bolat Yespembetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Sergazy Nurabayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Aslan Kerimbayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Berik Khairullin
- MVA Group Scientific-Research Production Center Ltd., Almaty 050046, Kazakhstan
| | - Hansang Yoo
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Lespek Kutumbetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| |
Collapse
|
9
|
Seekings AH, Shipley R, Byrne AMP, Shukla S, Golding M, Amaya-Cuesta J, Goharriz H, Vitores AG, Lean FZX, James J, Núñez A, Breed A, Frost A, Balzer J, Brown IH, Brookes SM, McElhinney LM. Detection of SARS-CoV-2 Delta Variant (B.1.617.2) in Domestic Dogs and Zoo Tigers in England and Jersey during 2021. Viruses 2024; 16:617. [PMID: 38675958 PMCID: PMC11053977 DOI: 10.3390/v16040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020-2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020-2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human-animal interface and to assess their role as potential animal reservoirs.
Collapse
Affiliation(s)
- Amanda H. Seekings
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Rebecca Shipley
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alexander M. P. Byrne
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- Worldwide Influenza Centre, The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Shweta Shukla
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Megan Golding
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joan Amaya-Cuesta
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Hooman Goharriz
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ana Gómez Vitores
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Fabian Z. X. Lean
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Joe James
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Núñez
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Alistair Breed
- Government of Jersey, Infrastructure Housing and Environment, Howard Davis Farm, La Route de la Trinité, Trinity, Jersey JE3 5JP, UK
| | - Andrew Frost
- One Health, Animal Health and Welfare Advice Team, Animal and Plant Health Agency, Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Jörg Balzer
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Humboldtstraße 2, 70806 Kornwestheim, Germany
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Sharon M. Brookes
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Lorraine M. McElhinney
- Department of Virology, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
- National Reference Laboratory for SARS-CoV-2 in Animals, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
10
|
Nederlof RA, de la Garza MA, Bakker J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Vet Sci 2024; 11:78. [PMID: 38393096 PMCID: PMC10893009 DOI: 10.3390/vetsci11020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a zoological institution were initially reported in March 2020. Since then, at least 94 peer-reviewed cases have been reported in zoos worldwide. Among the affected animals, nonhuman primates, carnivores, and artiodactyls appear to be most susceptible to infection, with the Felidae family accounting for the largest number of reported cases. Clinical symptoms tend to be mild across taxa; although, certain species exhibit increased susceptibility to disease. A variety of diagnostic tools are available, allowing for initial diagnostics and for the monitoring of infectious risk. Whilst supportive therapy proves sufficient in most cases, monoclonal antibody therapy has emerged as a promising additional treatment option. Effective transmission of SARS-CoV-2 in some species raises concerns over potential spillover and the formation of reservoirs. The occurrence of SARS-CoV-2 in a variety of animal species may contribute to the emergence of variants of concern due to altered viral evolutionary constraints. Consequently, this review emphasizes the need for effective biosecurity measures and surveillance strategies to prevent and control SARS-CoV-2 infections in zoological institutions.
Collapse
Affiliation(s)
| | - Melissa A. de la Garza
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
11
|
Liu W, Huang Z, Xiao J, Wu Y, Xia N, Yuan Q. Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness. Viruses 2024; 16:184. [PMID: 38399960 PMCID: PMC10893260 DOI: 10.3390/v16020184] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Over the last three years, the pandemic of COVID-19 has had a significant impact on people's lives and the global economy. The incessant emergence of variant strains has compounded the challenges associated with the management of COVID-19. As the predominant variant from late 2021 to the present, Omicron and its sublineages, through continuous evolution, have demonstrated iterative viral fitness. The comprehensive elucidation of the biological implications that catalyzed this evolution remains incomplete. In accordance with extant research evidence, we provide a comprehensive review of subvariants of Omicron, delineating alterations in immune evasion, cellular infectivity, and the cross-species transmission potential. This review seeks to clarify the underpinnings of biology within the evolution of SARS-CoV-2, thereby providing a foundation for strategic considerations in the post-pandemic era of COVID-19.
Collapse
Affiliation(s)
- Wenhao Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Zehong Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Jin Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Yangtao Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361000, China; (W.L.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
12
|
Zhuang J, Yan Z, Zhou T, Li Y, Wang H. The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs. Arch Virol 2024; 169:35. [PMID: 38265497 DOI: 10.1007/s00705-023-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/19/2023] [Indexed: 01/25/2024]
Abstract
The pandemic caused by SARS-CoV-2, which has proven capable of infecting over 30 animal species, highlights the critical need for understanding the mechanisms of cross-species transmission and the emergence of novel coronavirus strains. The recent discovery of CCoV-HuPn-2018, a recombinant alphacoronavirus from canines and felines that can infect humans, along with evidence of SARS-CoV-2 infection in pig cells, underscores the potential for coronaviruses to overcome species barriers. This review investigates the origins and cross-species transmission of both human and porcine coronaviruses, with a specific emphasis on the instrumental role receptors play in this process.
Collapse
Affiliation(s)
- Jie Zhuang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhiwei Yan
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Huinuan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
13
|
Stone HM, Unal E, Romano TA, Turner PE. Beluga whale and bottlenose dolphin ACE2 proteins allow cell entry mediated by spike protein from three variants of SARS-CoV-2. Biol Lett 2023; 19:20230321. [PMID: 38053365 PMCID: PMC10698476 DOI: 10.1098/rsbl.2023.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses infect numerous non-human species. Spillover of SARS-CoV-2 into novel animal reservoirs may present a danger to host individuals of these species, particularly worrisome in populations already endangered or threatened by extinction. In addition, emergence in new reservoirs could pose spillback threats to humans, especially in the form of virus variants that further mutate when infecting other animal hosts. Previous work suggests beluga whales (Delphinapterus leucas) and bottlenose dolphins (Tursiops truncatus) may be at risk owing to their formation of social groups, contact with humans, exposure to contaminated wastewater, and structure of their angiotensin-converting enzyme 2 (ACE2) proteins, which SARS-CoV-2 uses as a cellular receptor. We examined marine-mammal susceptibility to virus infection by challenging 293T cells expressing beluga or dolphin ACE2 with pseudovirions bearing the SARS-CoV-2 spike protein. Beluga and dolphin ACE2 were sufficient to allow cell entry by an early pandemic isolate (Wuhan-Hu-1) and two evolved variants (Delta B.1.617.2 and Omicron BA.1 strains). We conclude that SARS-CoV-2 poses a potential threat to marine mammal reservoirs that should be considered in surveillance efforts.
Collapse
Affiliation(s)
- H. M. Stone
- Graduate Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - E. Unal
- Sea Research Foundation, Inc. d/b/a Mystic Aquarium, Mystic, CT 06355, USA
- Department of Marine Sciences, University of Connecticut Avery Point Campus, Groton, CT 06340, USA
| | - T. A. Romano
- Sea Research Foundation, Inc. d/b/a Mystic Aquarium, Mystic, CT 06355, USA
- Department of Marine Sciences, University of Connecticut Avery Point Campus, Groton, CT 06340, USA
| | - P. E. Turner
- Graduate Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Fernández-Bastit L, Vergara-Alert J, Segalés J. Transmission of severe acute respiratory syndrome coronavirus 2 from humans to animals: is there a risk of novel reservoirs? Curr Opin Virol 2023; 63:101365. [PMID: 37793299 DOI: 10.1016/j.coviro.2023.101365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic virus able to infect humans and multiple nonhuman animal species. Most natural infections in companion, captive zoo, livestock, and wildlife species have been related to a reverse transmission, raising concern about potential generation of animal reservoirs due to human-animal interactions. To date, American mink and white-tailed deer are the only species that led to extensive intraspecies transmission of SARS-CoV-2 after reverse zoonosis, leading to an efficient spread of the virus and subsequent animal-to-human transmission. Viral host adaptations increase the probability of new SARS-CoV-2 variants' emergence that could cause a major global health impact. Therefore, applying the One Health approach is crucial to prevent and overcome future threats for human, animal, and environmental fields.
Collapse
Affiliation(s)
- Leira Fernández-Bastit
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain.
| |
Collapse
|
15
|
Tewari D, Miller R, Livengood J, Wang L, Killian ML, Bustamante F, Kessler C, Thirumalapura N, Terio K, Torchetti M, Lantz K, Rosenberg J. SARS-CoV-2 Infection Dynamics in the Pittsburgh Zoo Wild Felids with Two Viral Variants (Delta and Alpha) during the 2021-2022 Pandemic in the United States. Animals (Basel) 2023; 13:3094. [PMID: 37835700 PMCID: PMC10571823 DOI: 10.3390/ani13193094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported in multiple animal species besides humans. The goal of this study was to report clinical signs, infection progression, virus detection and antibody response in a group of wild felids housed in adjacent but neighboring areas at the Pittsburgh Zoo. Initially, five African lions (Panthera leo krugeri) housed together exhibited respiratory clinical signs with viral shedding in their feces in March of 2021 coinciding with infection of an animal keeper. During the second infection wave in December 2021, four Amur tigers (Panthera tigris altaica) and a Canadian lynx (Lynx canadensis) showed clinical signs and tested positive for viral RNA in feces. In infected animals, viral shedding in feces was variable lasting up to 5 weeks and clinical signs were observed for up to 4 weeks. Despite mounting an antibody response to initial exposure, lions exhibited respiratory clinical signs during the second infection wave, but none shed the virus in their feces. The lions were positive for alpha variant (B.1.1.7 lineage) during the first wave and the tiger and lynx were positive for delta variant (AY.25.1. lineage) during the second wave. The viruses recovered from felids were closely related to variants circulating in human populations at the time of the infection. Cheetahs (Acinonyx jubatus) in the park did not show either the clinical signs or the antibody response.
Collapse
Affiliation(s)
- Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Ryan Miller
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Julia Livengood
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Leyi Wang
- Illinois Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
| | - Mary Lea Killian
- National Veterinary Services Laboratory, United States Department of Agriculture, Ames, IA 50010, USA; (M.L.K.); (M.T.); (K.L.)
| | - Felipe Bustamante
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Candy Kessler
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Nagaraja Thirumalapura
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, PA 17110, USA (J.L.); (F.B.); (N.T.)
| | - Karen Terio
- Zoological Pathology Program, University of Illinois, Brookfield, IL 60513, USA;
| | - Mia Torchetti
- National Veterinary Services Laboratory, United States Department of Agriculture, Ames, IA 50010, USA; (M.L.K.); (M.T.); (K.L.)
| | - Kristina Lantz
- National Veterinary Services Laboratory, United States Department of Agriculture, Ames, IA 50010, USA; (M.L.K.); (M.T.); (K.L.)
| | | |
Collapse
|
16
|
Zhao Z, Xie Y, Bai B, Luo C, Zhou J, Li W, Meng Y, Li L, Li D, Li X, Li X, Wang X, Sun J, Xu Z, Sun Y, Zhang W, Fan Z, Zhao X, Wu L, Ma J, Li OY, Shang G, Chai Y, Liu K, Wang P, Gao GF, Qi J. Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants. Nat Commun 2023; 14:4405. [PMID: 37479708 PMCID: PMC10362042 DOI: 10.1038/s41467-023-39942-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/29/2023] [Indexed: 07/23/2023] Open
Abstract
Multiple SARS-CoV-2 Omicron sub-variants, such as BA.2, BA.2.12.1, BA.4, and BA.5, emerge one after another. BA.5 has become the dominant strain worldwide. Additionally, BA.2.75 is significantly increasing in some countries. Exploring their receptor binding and interspecies transmission risk is urgently needed. Herein, we examine the binding capacities of human and other 28 animal ACE2 orthologs covering nine orders towards S proteins of these sub-variants. The binding affinities between hACE2 and these sub-variants remain in the range as that of previous variants of concerns (VOCs) or interests (VOIs). Notably, R493Q reverse mutation enhances the bindings towards ACE2s from humans and many animals closely related to human life, suggesting an increased risk of cross-species transmission. Structures of S/hACE2 or RBD/hACE2 complexes for these sub-variants and BA.2 S binding to ACE2 of mouse, rat or golden hamster are determined to reveal the molecular basis for receptor binding and broader interspecies recognition.
Collapse
Affiliation(s)
- Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunliang Luo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jingya Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumin Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Xiaoxiong Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Xiaoyun Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Junqing Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yeping Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Fan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- Chinese National Microbiology Data Center (NMDC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juncai Ma
- Chinese National Microbiology Data Center (NMDC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Odel Y Li
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Guijun Shang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Peiyi Wang
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
17
|
Dusseldorp F, Bruins-van-Sonsbeek LGR, Buskermolen M, Niphuis H, Dirven M, Whelan J, Oude Munnink BB, Koopmans M, Fanoy EB, Sikkema RS, Tjon-A-Tsien A. SARS-CoV-2 in lions, gorillas and zookeepers in the Rotterdam Zoo, the Netherlands, a One Health investigation, November 2021. Euro Surveill 2023; 28:2200741. [PMID: 37440347 PMCID: PMC10347891 DOI: 10.2807/1560-7917.es.2023.28.28.2200741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/07/2023] [Indexed: 07/15/2023] Open
Abstract
In November 2021, seven western lowland gorillas and four Asiatic lions were diagnosed with COVID-19 at Rotterdam Zoo. An outbreak investigation was undertaken to determine the source and extent of the outbreak and to identify possible transmission routes. Interviews were conducted with staff to identify human and animal contacts and cases, compliance with personal protective equipment (PPE) and potential transmission routes. Human and animal contacts and other animal species suspected to be susceptible to SARS-CoV-2 were tested for SARS-CoV-2 RNA. Positive samples were subjected to sequencing. All the gorillas and lions that could be tested (3/7 and 2/4, respectively) were RT-PCR positive between 12 November and 10 December 2021. No other animal species were SARS-CoV-2 RNA positive. Forty direct and indirect human contacts were identified. Two direct contacts tested RT-PCR positive 10 days after the first COVID-19 symptoms in animals. The zookeepers' viral genome sequences clustered with those of gorillas and lions. Personal protective equipment compliance was suboptimal at instances. Findings confirm transmission of SARS-CoV-2 among animals and between humans and animals but source and directionality could not be established. Zookeepers were the most likely source and should have periodic PPE training. Sick animals should promptly be tested and isolated/quarantined.
Collapse
Affiliation(s)
| | | | | | - Henk Niphuis
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | | | - Jane Whelan
- Public Health Services Rotterdam Rijnmond, the Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Ewout B Fanoy
- Public Health Services Rotterdam Rijnmond, the Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | | |
Collapse
|
18
|
Liew AY, Carpenter A, Moore TA, Wallace RM, Hamer SA, Hamer GL, Fischer RSB, Zecca IB, Davila E, Auckland LD, Rooney JA, Killian ML, Tell RM, Rekant SI, Burrell SD, Ghai RR, Behravesh CB. Clinical and epidemiologic features of SARS-CoV-2 in dogs and cats compiled through national surveillance in the United States. J Am Vet Med Assoc 2023; 261:480-489. [PMID: 36595371 PMCID: PMC10038921 DOI: 10.2460/javma.22.08.0375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To characterize clinical and epidemiologic features of SARS-CoV-2 in companion animals detected through both passive and active surveillance in the US. ANIMALS 204 companion animals (109 cats, 95 dogs) across 33 states with confirmed SARS-CoV-2 infections between March 2020 and December 2021. PROCEDURES Public health officials, animal health officials, and academic researchers investigating zoonotic SARS-CoV-2 transmission events reported clinical, laboratory, and epidemiologic information through a standardized One Health surveillance process developed by the CDC and partners. RESULTS Among dogs and cats identified through passive surveillance, 94% (n = 87) had reported exposure to a person with COVID-19 before infection. Clinical signs of illness were present in 74% of pets identified through passive surveillance and 27% of pets identified through active surveillance. Duration of illness in pets averaged 15 days in cats and 12 days in dogs. The average time between human and pet onset of illness was 10 days. Viral nucleic acid was first detected at 3 days after exposure in both cats and dogs. Antibodies were detected starting 5 days after exposure, and titers were highest at 9 days in cats and 14 days in dogs. CLINICAL RELEVANCE Results of the present study supported that cats and dogs primarily become infected with SARS-CoV-2 following exposure to a person with COVID-19, most often their owners. Case investigation and surveillance that include both people and animals are necessary to understand transmission dynamics and viral evolution of zoonotic diseases like SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | - Sarah A Hamer
- 2Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Gabriel L Hamer
- 3Department of Entomology, Texas A&M University, College Station, TX
| | | | - Italo B Zecca
- 1CDC, Atlanta, GA
- 2Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Edward Davila
- 2Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Lisa D Auckland
- 2Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | | | - Mary Lea Killian
- 6National Veterinary Services Laboratories, APHIS, USDA, Ames, IA
| | - Rachel M Tell
- 6National Veterinary Services Laboratories, APHIS, USDA, Ames, IA
| | | | | | | | | | | |
Collapse
|
19
|
Mollentze N, Keen D, Munkhbayar U, Biek R, Streicker DG. Variation in the ACE2 receptor has limited utility for SARS-CoV-2 host prediction. eLife 2022; 11:e80329. [PMID: 36416537 PMCID: PMC9683784 DOI: 10.7554/elife.80329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022] Open
Abstract
Transmission of SARS-CoV-2 from humans to other species threatens wildlife conservation and may create novel sources of viral diversity for future zoonotic transmission. A variety of computational heuristics have been developed to pre-emptively identify susceptible host species based on variation in the angiotensin-converting enzyme 2 (ACE2) receptor used for viral entry. However, the predictive performance of these heuristics remains unknown. Using a newly compiled database of 96 species, we show that, while variation in ACE2 can be used by machine learning models to accurately predict animal susceptibility to sarbecoviruses (accuracy = 80.2%, binomial confidence interval [CI]: 70.8-87.6%), the sites informing predictions have no known involvement in virus binding and instead recapitulate host phylogeny. Models trained on host phylogeny alone performed equally well (accuracy = 84.4%, CI: 75.5-91.0%) and at a level equivalent to retrospective assessments of accuracy for previously published models. These results suggest that the predictive power of ACE2-based models derives from strong correlations with host phylogeny rather than processes which can be mechanistically linked to infection biology. Further, biased availability of ACE2 sequences misleads projections of the number and geographic distribution of at-risk species. Models based on host phylogeny reduce this bias, but identify a very large number of susceptible species, implying that model predictions must be combined with local knowledge of exposure risk to practically guide surveillance. Identifying barriers to viral infection or onward transmission beyond receptor binding and incorporating data which are independent of host phylogeny will be necessary to manage the ongoing risk of establishment of novel animal reservoirs of SARS-CoV-2.
Collapse
Affiliation(s)
- Nardus Mollentze
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Deborah Keen
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Uuriintuya Munkhbayar
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Roman Biek
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Daniel G Streicker
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- Medical Research Council – University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| |
Collapse
|
20
|
Pappas G, Vokou D, Sainis I, Halley JM. SARS-CoV-2 as a Zooanthroponotic Infection: Spillbacks, Secondary Spillovers, and Their Importance. Microorganisms 2022; 10:2166. [PMID: 36363758 PMCID: PMC9696655 DOI: 10.3390/microorganisms10112166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 10/06/2023] Open
Abstract
In the midst of a persistent pandemic of a probable zoonotic origin, one needs to constantly evaluate the interplay of SARS-CoV-2 (severe acute respiratory syndrome-related coronavirus-2) with animal populations. Animals can get infected from humans, and certain species, including mink and white-tailed deer, exhibit considerable animal-to-animal transmission resulting in potential endemicity, mutation pressure, and possible secondary spillover to humans. We attempt a comprehensive review of the available data on animal species infected by SARS-CoV-2, as presented in the scientific literature and official reports of relevant organizations. We further evaluate the lessons humans should learn from mink outbreaks, white-tailed deer endemicity, zoo outbreaks, the threat for certain species conservation, the possible implication of rodents in the evolution of novel variants such as Omicron, and the potential role of pets as animal reservoirs of the virus. Finally, we outline the need for a broader approach to the pandemic and epidemics, in general, incorporating the principles of One Health and Planetary Health.
Collapse
Affiliation(s)
- Georgios Pappas
- Institute of Continuing Medical Education of Ioannina, 45333 Ioannina, Greece
| | - Despoina Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Sainis
- Medical School, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - John M. Halley
- Laboratory of Ecology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|