1
|
Wang Y, Cui X, Tian R, Wang P. The epidemiological characteristics of invasive pulmonary aspergillosis and risk factors for treatment failure: a retrospective study. BMC Pulm Med 2024; 24:559. [PMID: 39511508 PMCID: PMC11546561 DOI: 10.1186/s12890-024-03381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE The incidence of invasive pulmonary aspergillosis (IPA) is increasing gradually. This study analysed the epidemiological characteristics and prognostic factors of patients with IPA and explored the risk factors affecting prognosis. MATERIALS AND METHODS The clinical data and treatment of 92 patients with IPA were retrospectively analysed, and the patients were followed for 12 weeks. Patients were divided into an effective treatment group and an ineffective treatment group, and the risk factors affecting prognosis were discussed. RESULTS A total of 92 patients met the IPA inclusion criteria, and the most common genus of Aspergillus was Aspergillus fumigatus. The incidence of IPA was highest in patients with malignant tumours. IPA often coexisted with infections caused by other pathogens. We divided the patients into an effective treatment group and an ineffective treatment group according to prognosis. Compared with those in the effective treatment group, the procalcitonin (PCT) level, lactate dehydrogenase-to-albumin ratio (LDH/ALB) and neutrophil-to-lymphocyte ratio (NLR) in the ineffective treatment group were greater, the serum albumin level was lower, and the imaging findings revealed less nodules and bronchial wall thickening (P < 0.05). Among these factors, a decrease in the serum albumin concentration, an increase in the PCT level, coinfection and less bronchial wall thickening on imaging were independent risk factors for aspergillosis treatment failure. CONCLUSION A decreased albumin level, an elevated PCT level, coinfection, and less bronchial wall thickening were independent risk factors for treatment failure in patients with IPA. Attention should be given to the albumin level, coinfection status and imaging findings of patients.
Collapse
Affiliation(s)
- Yun Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Xiaoman Cui
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Ruixin Tian
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
2
|
Fernández-Ruiz M, Gioia F, Bodro M, Gutiérrez Martín I, Sabé N, Rodriguez-Álvarez R, Corbella L, López-Viñau T, Valerio M, Illaro A, Salto-Alejandre S, Cordero E, Arnaiz de Las Revillas F, Fariñas MC, Muñoz P, Vidal E, Carratalà J, Goikoetxea J, Ramos-Martínez A, Moreno A, Martín-Dávila P, Fortún J, Aguado JM. Isavuconazole Versus Voriconazole as the First-line Therapy for Solid Organ Transplant Recipients With Invasive Aspergillosis: Comparative Analysis of 2 Multicenter Cohort Studies. Transplantation 2024; 108:2260-2269. [PMID: 38773846 DOI: 10.1097/tp.0000000000005082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
BACKGROUND Isavuconazole (ISA) and voriconazole (VORI) are recommended as the first-line treatment for invasive aspergillosis (IA). Despite theoretical advantages of ISA, both triazole agents have not been compared in solid organ transplant recipients. METHODS We performed a post hoc analysis of 2 retrospective multicenter cohorts of solid organ transplant recipients with invasive fungal disease (the SOTIS [Solid Organ Transplantation and ISavuconazole] and DiasperSOT [DIagnosis of ASPERgillosis in Solid Organ Transplantation] studies). We selected adult patients with proven/probable IA that were treated for ≥48 h with ISA (n = 57) or VORI (n = 77) as first-line therapy, either in monotherapy or combination regimen. The primary outcome was the rate of clinical response at 12 wk from the initiation of therapy. Secondary outcomes comprised 12-wk all-cause and IA-attributable mortality and the rates of treatment-emergent adverse events and premature treatment discontinuation. RESULTS Both groups were comparable in their demographics and major clinical and treatment-related variables. There were no differences in the rate of 12-wk clinical response between the ISA and VORI groups (59.6% versus 59.7%, respectively; odds ratio [OR], 0.99; 95% confidence interval [CI], 0.49-2.00). This result was confirmed after propensity score adjustment (OR, 0.81; 95% CI, 0.32-2.05) and matching (OR, 0.79; 95% CI, 0.31-2.04). All-cause and IA-attributable mortality were also similar. Patients in the ISA group were less likely to experience treatment-emergent adverse events (17.5% versus 37.7%; P = 0.011) and premature treatment discontinuation (8.8% versus 23.4%; P = 0.027). CONCLUSIONS Front-line treatment with ISA for posttransplant IA led to similar clinical outcomes than VORI, with better tolerability and higher treatment completion.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesca Gioia
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta Bodro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Isabel Gutiérrez Martín
- Department of Internal Medicine, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahona, Spain
| | - Núria Sabé
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Laura Corbella
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Teresa López-Viñau
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Pharmacy, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Maricela Valerio
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Aitziber Illaro
- Department of Pharmacy, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Sonsoles Salto-Alejandre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
| | - Elisa Cordero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
| | - Francisco Arnaiz de Las Revillas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - María Carmen Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
- Department of Medicine, School of Medicine, Universidad de Cantabria, Santander, Spain
| | - Patricia Muñoz
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Vidal
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Medicine, School of Medicine, University of Córdoba, Córdoba, Spain
| | - Jordi Carratalà
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Josune Goikoetxea
- Unit of Infectious Diseases, Hospital Universitario de Cruces, Baracaldo, Spain
| | - Antonio Ramos-Martínez
- Unit of Infectious Diseases, Hospital Universitario Puerta de Hierro-Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHSA), Majadahonda, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Asunción Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Pilar Martín-Dávila
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Jesús Fortún
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad de Alcalá, Alcalá de Henares, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Kimura M, Rinaldi M, Kothari S, Giannella M, Anjan S, Natori Y, Phoompoung P, Gault E, Hand J, D'Asaro M, Neofytos D, Mueller NJ, Kremer AE, Rojko T, Ribnikar M, Silveira FP, Kohl J, Cano A, Torre-Cisneros J, San-Juan R, Aguado JM, Mansoor AER, George IA, Mularoni A, Russelli G, Luong ML, AlJishi YA, AlJishi MN, Hamandi B, Selzner N, Husain S. Invasive aspergillosis in liver transplant recipients in the current era. Am J Transplant 2024; 24:2092-2107. [PMID: 38801991 DOI: 10.1016/j.ajt.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/13/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Invasive aspergillosis (IA) is a rare but fatal disease among liver transplant recipients (LiTRs). We performed a multicenter 1:2 case-control study comparing LiTRs diagnosed with proven/probable IA and controls with no invasive fungal infection. We included 62 IA cases and 124 matched controls. Disseminated infection occurred only in 8 cases (13%). Twelve-week all-cause mortality of IA was 37%. In multivariate analyses, systemic antibiotic usage (adjusted odds ratio [aOR], 4.74; P = .03) and history of pneumonia (aOR, 48.7; P = .01) were identified as independent risk factors associated with the occurrence of IA. Moreover, reoperation (aOR, 5.99; P = .01), systemic antibiotic usage (aOR, 5.03; P = .04), and antimold prophylaxis (aOR, 11.9; P = .02) were identified as independent risk factors associated with the occurrence of early IA. Among IA cases, Aspergillus colonization (adjusted hazard ratio [aHR], 86.9; P < .001), intensive care unit stay (aHR, 3.67; P = .02), disseminated IA (aHR, 8.98; P < .001), and dialysis (aHR, 2.93; P = .001) were identified as independent risk factors associated with 12-week all-cause mortality, while recent receipt of tacrolimus (aHR, 0.11; P = .001) was protective. Mortality among LiTRs with IA remains high in the current era. The identified risk factors and protective factors may be useful for establishing robust targeted antimold prophylactic and appropriate treatment strategies against IA.
Collapse
Affiliation(s)
- Muneyoshi Kimura
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Matteo Rinaldi
- Infectious Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sagar Kothari
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Maddalena Giannella
- Infectious Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Shweta Anjan
- Miami Transplant Institute, Jackson Health System, Miami, Florida, USA; Division of Infectious Diseases, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yoichiro Natori
- Miami Transplant Institute, Jackson Health System, Miami, Florida, USA; Division of Infectious Diseases, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Pakpoom Phoompoung
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada; Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Emily Gault
- Ochsner Clinical School, University of Queensland School of Medicine, Louisiana, USA
| | - Jonathan Hand
- Ochsner Health, Ochsner Clinical School, University of Queensland School of Medicine, Louisiana, USA
| | - Matilde D'Asaro
- Transplant Infectious Diseases Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Dionysios Neofytos
- Transplant Infectious Diseases Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Nicolas J Mueller
- Swiss Transplant Cohort Study; Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas E Kremer
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Tereza Rojko
- Department of Infectious Diseases, University Medical Centre Ljubljana, Slovenia and Faculty of Medicine, University of Ljubljana, Slovenia
| | - Marija Ribnikar
- Department of Gastroenterology, University Medical Centre Ljubljana, Slovenia
| | - Fernanda P Silveira
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Joshua Kohl
- Clinical and Translational Science Institute, University of Pittsburgh, Pennsylvania, USA
| | - Angela Cano
- Centro de Investigación Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Córdoba, Spain
| | - Julian Torre-Cisneros
- Centro de Investigación Biomedica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Córdoba, Spain
| | - Rafael San-Juan
- CIBER-INFEC; Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Jose Maria Aguado
- CIBER-INFEC; Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Armaghan-E-Rehman Mansoor
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Ige Abraham George
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Alessandra Mularoni
- Department of Infectious Diseases, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (Scientific Hospitalization and Treatment Institute - Mediterranean Institute for Transplants and Highly Specialized Therapies), Palermo, Italy
| | - Giovanna Russelli
- Research Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (Scientific Hospitalization and Treatment Institute - Mediterranean Institute for Transplants and Highly Specialized Therapies), Palermo, Italy
| | - Me-Linh Luong
- Department of Medicine, Division of Infectious Diseases, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Yamama A AlJishi
- Section of Infectious diseases, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Maram N AlJishi
- Department of Medicine, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Bassem Hamandi
- Department of Pharmacy, University Health Network, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Nazia Selzner
- Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Alkan A, Buyukasik Y, Uzun O, Demir AU, Coplu L. Invasive fungal infections in patients with acute leukemia: A retrospective cohort study at a tertiary-care hospital. Medicine (Baltimore) 2024; 103:e39959. [PMID: 39465746 PMCID: PMC11460920 DOI: 10.1097/md.0000000000039959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 10/29/2024] Open
Abstract
Invasive fungal infection (IFI) is an important cause of morbidity and mortality in acute leukemia patients. In the past few decades, the incidence of IFI has dramatically increased. Nevertheless, the management of IFI has become more complicated owing to changes in the epidemiology of fungal diseases and therapeutic regimens. Therefore, it is important to establish an appropriate strategy for centers that provide the diagnosis and treatment of acute leukemia patients based on scientific data and with available resources. In this study we investigated the incidence of IFI, pathogens, the use of diagnostic methods, and risk factors for IFI in acute leukemia patients over a 17-year period. A total of 502 acute leukemia patients (male/female: 57%/43%, mean age: 57.7 ± 15.5 years) hospitalized at adult and oncology hospitals between 2003 and 2020 were reviewed retrospectively. The incidence of proven and probable IFI was 13.2% (33.1%, when possible cases were included). The most common IFI was aspergillosis (49 patients, 9.7%), followed by candidemia, mucormycosis, and Pneumocystis jirovecii pneumonia. The galactomannan antigen test was positive in the serum of 39 (23.5%) patients and in bronchoalveolar lavage (BAL) fluid in 6 (3.6%) patients. Thirteen (7.8%) sputum cultures (11 Aspergillus spp. and 2 Candida spp.) and 4 (2.4%) BAL fluid (1 Aspergillus spp., 2 Candida spp., 1 P jirovecii) were positive for a fungal pathogen. Neutropenia, intensive care unit (ICU) follow-up and mechanical ventilation (MV) increased the risk of IFI by 3.5, 2.5, and 1.8 times, respectively. The median survival was 5 (range: 1.9-8) months. ICU follow-up shortened the survival by 12 months and increased the death risk by 2.49-fold. MV shortened survival by 57 months and increased the death risk by 3.82-fold. IFI remains a significant contributor to the morbidity and mortality in acute leukemia patients. Pulmonary involvement is the most common site. Neutropenia, ICU follow-up and MV are associated with an increased risk for IFI and mortality. We recommend in the IFI approach, to be aware of IFI in patients receiving intensive chemotherapy and/or recipients of hematopoietic stem cell transplantation, and to evaluate with microbiological, serological and radiological tests during the clinical follow-up.
Collapse
Affiliation(s)
- Asli Alkan
- Ankara Etlik City Hospital, Chest Diseases Clinic, Ankara, Turkey
- Formerly Hacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey
| | - Yahya Buyukasik
- Hacettepe University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Omrum Uzun
- Hacettepe University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Ahmet Ugur Demir
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey
| | - Lutfi Coplu
- Hacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Turkey
| |
Collapse
|
5
|
Meyer E, Dhingra R, Berei T. Assessing the Impact of Posaconazole Cessation on Tacrolimus Serum Concentrations and Incident Cardiac Allograft Rejection: Take Caution. J Pharm Pract 2024; 37:1042-1043. [PMID: 38395741 DOI: 10.1177/08971900241237057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Invasive aspergillosis (IA) is a rare and often fatal complication of immunosuppression following orthotopic heart transplant. Prophylaxis plays a crucial role in preventing the emergence of this opportunistic infection. The azole class of medications are the bellwether agents utilized in this patient population. Unfortunately, given their impact on the Cytochrome P450 enzyme system, significant fluctuations in serum tacrolimus concentrations occur when initiating and stopping azole therapy, increasing the risk for prolonged periods of sub-optimal immunosuppression. While there are recommended dosing adjustments for these transition periods based on small data sets primarily with fluconazole, there is no published literature on recommended dosing adjustments for posaconazole. Given our institution utilizes posaconazole as the primary therapeutic for aspergillosis prophylaxis, we aimed to explore and report our local data to better guide dosing decisions during these transition periods.
Collapse
Affiliation(s)
- Ethan Meyer
- Department of Pharmacy, UW Health, Madison, WI, USA
| | - Ravi Dhingra
- Division of Cardiology, Section of Advanced Heart Failure and Transplant Cardiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | |
Collapse
|
6
|
Jiang J, Peng P, Wan Q. The predictors of fungal infections after liver transplantation and the influence of fungal infections on outcomes. Clin Exp Med 2024; 24:144. [PMID: 38960977 PMCID: PMC11222231 DOI: 10.1007/s10238-024-01419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The primary objective of this study was to assess the incidence, timing, risk factors of fungal infections (FIs) within 3 months after liver transplantation (LT). The secondary objective was to evaluate the impact of FIs on outcomes. Four hundred and ten patients undergoing LT from January 2015 until January 2023 in a tertiary university hospital were included in the present retrospective cohort study to investigate the risk factors of FIs and to assess the impacts of FIs on the prognosis of LT recipients using logistic regression. The incidence of FIs was 12.4% (51/410), and median time from LT to the onset of FIs was 3 days. By univariate analysis, advanced recipient age, prolonged hospital stay prior to LT, high Model for End Stage Liver Disease (MELD) score, use of broad-spectrum antibiotics, and elevated white blood cell (WBC) count, increased operating time, massive blood loss and red blood cell transfusion, elevated alanine aminotransferase on day 1 and creatinine on day 3 after LT, prolonged duration of urethral catheter, prophylactic antifungal therapy, the need for mechanical ventilation and renal replacement therapy were identified as factors of increased post-LT FIs risk. Multivariate logistic regression analysis identified that recipient age ≥ 55 years[OR = 2.669, 95%CI: 1.292-5.513, P = 0.008], MELD score at LT ≥ 22[OR = 2.747, 95%CI: 1.274-5.922, P = 0.010], pre-LT WBC count ≥ 10 × 109/L[OR = 2.522, 95%CI: 1.117-5.692, P = 0.026], intraoperative blood loss ≥ 3000 ml [OR = 2.691, 95%CI: 1.262-5.738, P = 0.010], post-LT duration of urethral catheter > 4 d [OR = 3.202, 95%CI: 1.553-6.602, P = 0.002], and post-LT renal replacement therapy [OR = 5.768, 95%CI: 1.822-18.263, P = 0.003] were independently associated with the development of post-LT FIs. Post-LT prophylactic antifungal therapy ≥ 3 days was associated with a lower risk of the development of FIs [OR = 0.157, 95%CI: 0.073-0.340, P < 0.001]. As for clinical outcomes, FIs had a negative impact on intensive care unit (ICU) length of stay ≥ 7 days than those without FIs [OR = 3.027, 95% CI: 1.558-5.878, P = 0.001] but had no impact on hospital length of stay and 1-month all-cause mortality after LT. FIs are frequent complications after LT and the interval between the onset of FIs and LT was short. Risk factors for post-LT FIs included high MELD score at LT, advanced recipient age, pre-LT WBC count, massive intraoperative blood loss, prolonged post-LT duration of urethral catheter, and the need for post-LT renal replacement therapy. However, post-LT prophylactic antifungal therapy was independently associated with the reduction in the risk of FIs. FIs had a significant negative impact on ICU length of stay.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Peng Peng
- Clinical Laboratory Medicine Center, Xiangya Hospital Zhuzhou of Central South University, Zhuzhou, 421007, China
| | - Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
7
|
Jjingo CJ, Bala S, Waack U, Needles M, Bensman TJ, McMaster O, Smith T, Blakely B, Chan IZ, Puthawala K, Dixon C, Kim Y, Lim R, Colangelo P, St Clair C, Nambiar S, Moss RB, Botgros R, Bazaz R, Denning DW, Marr KA, Husain S, Berman L, Christensen DJ, Keywood C, Clayton RG, Walsh TJ, Song HSE, Shukla SJ, Farley J. Food and Drug Administration Public Workshop Summary-Addressing Challenges in Inhaled Antifungal Drug Development. Clin Infect Dis 2024; 78:1564-1570. [PMID: 37802928 DOI: 10.1093/cid/ciad607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Allergic bronchopulmonary aspergillosis and invasive fungal diseases represent distinct infectious entities that cause significant morbidity and mortality. Currently, administered inhaled antifungal therapies are unapproved, have suboptimal efficacy, and are associated with considerable adverse reactions. The emergence of resistant pathogens is also a growing concern. Inhaled antifungal development programs are challenged by inadequate nonclinical infection models, highly heterogenous patient populations, low prevalence rates of fungal diseases, difficulties defining clinical trial enrollment criteria, and lack of robust clinical trial endpoints. On 25 September 2020, the US Food and Drug Administration (FDA) convened a workshop with experts in pulmonary medicine and infectious diseases from academia, industry, and other governmental agencies. Key discussion topics included regulatory incentives to facilitate development of inhaled antifungal drugs and combination inhalational devices, limitations of existing nonclinical models and clinical trial designs, patient perspectives, and industry insights.
Collapse
Affiliation(s)
- Caroline J Jjingo
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shukal Bala
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ursula Waack
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mark Needles
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy J Bensman
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Owen McMaster
- Division of Pharmacology/Toxicology for Infectious Diseases, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Thomas Smith
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Brandon Blakely
- Division of ENT, Sleep, Respiratory, and Anesthesia, Office of Health Technology 1, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Irene Z Chan
- Division of Medication Error Prevention and Analysis, Office of Medication Error Prevention and Risk Management, Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Khalid Puthawala
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Cheryl Dixon
- Division of Biometrics IV, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yongman Kim
- Division of Biometrics III, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Robert Lim
- Division of Pulmonology, Allergy, and Critical Care, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Philip Colangelo
- Division of Infectious Disease Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Christopher St Clair
- Division of Clinical Outcome Assessment, Office of Drug Evaluation Science, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sumathi Nambiar
- Division of Anti-Infectives, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard B Moss
- Department of Pediatrics, Lucile Packard Children's Hospital and Stanford Children's Health, Stanford University Medical Center, Palo Alto, California, USA
| | - Radu Botgros
- Office of Biological Health Threats and Vaccines Strategy, European Medicines Agency, Amsterdam, The Netherlands
| | - Rohit Bazaz
- National Aspergillosis Centre, University of Manchester, Manchester, United Kingdom
| | - David W Denning
- Global Action Fund for Fungal Infections, The University of Manchester, Manchester, United Kingdom
| | - Kieren A Marr
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shahid Husain
- Transplant Infectious Diseases Clinic, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine, New York, New York, USA
- Save Our Sick Kids Foundation, NewYork, New York, USA
| | | | - Sunita J Shukla
- Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - John Farley
- Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Elhaj Mahmoud D, Hérivaux A, Morio F, Briard B, Vigneau C, Desoubeaux G, Bouchara JP, Gangneux JP, Nevez G, Le Gal S, Papon N. The epidemiology of invasive fungal infections in transplant recipients. Biomed J 2024; 47:100719. [PMID: 38580051 PMCID: PMC11220536 DOI: 10.1016/j.bj.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024] Open
Abstract
Transplant patients, including solid-organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients, are exposed to various types of complications, particularly rejection. To prevent these outcomes, transplant recipients commonly receive long-term immunosuppressive regimens that in turn make them more susceptible to a wide array of infectious diseases, notably those caused by opportunistic pathogens. Among these, invasive fungal infections (IFIs) remain a major cause of mortality and morbidity in both SOT and HSCT recipients. Despite the continuing improvement in early diagnostics and treatments of IFIs, the management of these infections in transplant patients is still complicated. Here, we provide an overview concerning the most recent trends in the epidemiology of IFIs in SOT and HSCT recipients by describing the prominent yeast and mold species involved, the timing of post-transplant IFIs and the risk factors associated with their occurrence in these particularly weak populations. We also give special emphasis into basic research advances in the field that recently suggested a role of the global and long-term prophylactic regimen in orchestrating various biological disturbances in the organism and conditioning the emergence of the most adapted fungal strains to the particular physiological profiles of transplant patients.
Collapse
Affiliation(s)
- Dorra Elhaj Mahmoud
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Anaïs Hérivaux
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de L'Immunité, UR1155, Nantes, France
| | - Benoit Briard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France; CHRU Tours, Parasitologie-Mycologie Médicale-Médecine Tropicale, Tours, France
| | - Cécile Vigneau
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085, Rennes, France; Division of Nephrology, Rennes University Hospital, Rennes, France
| | - Guillaume Desoubeaux
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France; CHRU Tours, Parasitologie-Mycologie Médicale-Médecine Tropicale, Tours, France
| | - Jean-Philippe Bouchara
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085, Rennes, France; Laboratory of Parasitology and Medical Mycology, European Confederation of Medical Mycology (ECMM) Excellence Center, Centre National de Référence Aspergilloses Chroniques, Rennes University Hospital, Rennes, France
| | - Gilles Nevez
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France; University of Brest, University of Angers, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Brest, France
| | - Solène Le Gal
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France; University of Brest, University of Angers, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Brest, France
| | - Nicolas Papon
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France.
| |
Collapse
|
9
|
Pennington KM, Martin MJ, Murad MH, Sanborn D, Saddoughi SA, Gerberi D, Peters SG, Razonable RR, Kennedy CC. Risk Factors for Early Fungal Disease in Solid Organ Transplant Recipients: A Systematic Review and Meta-analysis. Transplantation 2024; 108:970-984. [PMID: 37953478 DOI: 10.1097/tp.0000000000004871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
BACKGROUND Invasive fungal infections are associated with high morbidity in solid organ transplant recipients. Risk factor modification may help with preventative efforts. The objective of this study was to identify risk factors for the development of fungal infections within the first year following solid organ transplant. METHODS We searched for eligible articles through February 3, 2023. Studies published after January 1, 2001, that pertained to risk factors for development of invasive fungal infections in solid organ transplant were reviewed for inclusion. Of 3087 articles screened, 58 were included. Meta-analysis was conducted using a random-effects model to evaluate individual risk factors for the primary outcome of any invasive fungal infections and invasive candidiasis or invasive aspergillosis (when possible) within 1 y posttransplant. RESULTS We found 3 variables with a high certainty of evidence and strong associations (relative effect estimate ≥ 2) to any early invasive fungal infections across all solid organ transplant groups: reoperation (odds ratio [OR], 2.92; confidence interval [CI], 1.79-4.75), posttransplant renal replacement therapy (OR, 2.91; CI, 1.87-4.51), and cytomegalovirus disease (OR, 2.97; CI, 1.78-4.94). Both posttransplant renal replacement therapy (OR, 3.36; CI, 1.78-6.34) and posttransplant cytomegalovirus disease (OR, 2.81; CI, 1.47-5.36) increased the odds of early posttransplant invasive aspergillosis. No individual variables could be pooled across groups for invasive candidiasis. CONCLUSIONS Several common risk factors exist for the development of any invasive fungal infections in solid organ transplant recipients. Additional risk factors for invasive candidiasis and aspergillosis may be unique to the pathogen, transplanted organ, or both.
Collapse
Affiliation(s)
- Kelly M Pennington
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Max J Martin
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - M Hassan Murad
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - David Sanborn
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Steve G Peters
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Raymund R Razonable
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN
| | - Cassie C Kennedy
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Fernández-Ruiz M. Pharmacological management of invasive mold infections in solid organ transplant recipients. Expert Opin Pharmacother 2024; 25:239-254. [PMID: 38436619 DOI: 10.1080/14656566.2024.2326507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Solid organ transplant (SOT) recipients face an increased susceptibility to invasive fungal infection (IFI) due to filamentous fungi. Post-transplant invasive aspergillosis (IA) and mucormycosis are related to exceedingly high mortality rates and graft loss risk, and its management involve a unique range of clinical challenges. AREAS COVERED First, the current treatment recommendations for IA and mucormycosis among SOT recipients are critically reviewed, including the supporting evidence. Next, we discussed particular concerns in this patient population, such as drug-drug interactions (DDIs) between triazoles and post-transplant immunosuppression or treatment-related toxicity. The role for immunomodulatory and host-targeted therapies is also considered, as well as the theoretical impact of the intrinsic antifungal activity of calcineurin inhibitors. Finally, a personal opinion is made on future directions in the pharmacological approach to post-transplant IFI. EXPERT OPINION Despite relevant advances in the treatment of mold IFIs in the SOT setting, such as the incorporation of isavuconazole (with lower incidence of DDIs and better tolerability than voriconazole), there remains a large room for improvement in areas such as the position of combination therapy or the optimal strategy for the reduction of baseline immunosuppression. Importantly, future studies should define the specific contribution of newer antifungal agents and classes.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Monforte A, Martin-Gomez MT, Los-Arcos I, Márquez-Algaba E, Berastegui C, Rosado J, Sacanell J, Gavaldà J, Len O. Effect of SARS-CoV-2 preventive measures on early lung transplant fungal acquisition: An observational study. Transpl Infect Dis 2024; 26:e14246. [PMID: 38269450 DOI: 10.1111/tid.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Affiliation(s)
- Arnau Monforte
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ibai Los-Arcos
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Márquez-Algaba
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Cristina Berastegui
- Department of Pneumology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Joel Rosado
- Department of Thoracic Surgery, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Judith Sacanell
- Intensive Care Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joan Gavaldà
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Ramírez-Sánchez IC, Diaz-Sanabria RA, Alza-Arcila J. Invasive pulmonary aspergillosis following human metapneumovirus infection in solid-organ transplant recipients: Another virus to add to the list. Transpl Infect Dis 2024; 26:e14188. [PMID: 37938791 DOI: 10.1111/tid.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
There is increasing recognition that respiratory viral infections such as influenza, respiratory syncytial virus, parainfluenza virus, adenovirus, and SARS-CoV-2 can promote the development of invasive fungal pulmonary coinfections, particularly invasive aspergillosis, both in immunocompetent and immunocompromised patients. To date, there are no case reports exploring the role of human metapneumovirus as a risk factor for fungal coinfection. Below, we describe the case of a 63-year-old woman who received a kidney transplant and developed invasive pulmonary aspergillosis after a human metapneumovirus infection and discuss the possible phenomena that could favor this association.
Collapse
Affiliation(s)
- Isabel Cristina Ramírez-Sánchez
- Infectious Diseases Section, Internal Medicine Department, Hospital Pablo Tobón Uribe, Medical School, Medellín, Colombia
- Infectious Diseases Section, Internal Medicine Department, Universidad de Antioquia, Medical School, Medellín, Colombia
| | - Ricardo Augusto Diaz-Sanabria
- Infectious Diseases Section, Internal Medicine Department, Universidad de Antioquia, Medical School, Medellín, Colombia
| | - Jhongert Alza-Arcila
- Infectious Diseases Section, Internal Medicine Department, Universidad de Antioquia, Medical School, Medellín, Colombia
| |
Collapse
|
13
|
Alviz LF, Jones BA, Agnihotri SP, Thakur KT. Identifying CNS infections in transplantation and immunomodulatory therapy. Ther Adv Infect Dis 2024; 11:20499361241298456. [PMID: 39524986 PMCID: PMC11550508 DOI: 10.1177/20499361241298456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Opportunistic central nervous system (CNS) infections are a significant cause of morbidity and mortality in immunocompromized patients, including those undergoing transplantation and receiving immunomodulatory therapy. Particularly in these individuals, the clinical presentation of these infections may have atypical patterns, emphasizing the need to consider various diagnostic possibilities, including noninfectious conditions. Quick and accurate identification, along with prompt treatment, is crucial for improving patient outcomes. Therefore, understanding which pathogens are likely to cause infection based on factors such as timing post-transplantation, specific organ transplant, and the mechanism of action of immunomodulatory medications is essential. This review will provide a detailed description of the types of infections that may arise in the context of transplantation and immunomodulatory therapy.
Collapse
Affiliation(s)
- Luisa F. Alviz
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Benjamin A. Jones
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shruti P. Agnihotri
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kiran T. Thakur
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
14
|
Silva JT, Husain S, Aguado JM. Isavuconazole for Treating Invasive Mould Disease in Solid Organ Transplant Recipients. Transpl Int 2023; 36:11845. [PMID: 38161768 PMCID: PMC10754982 DOI: 10.3389/ti.2023.11845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
Solid organ transplant (SOT) recipients have a higher risk of developing invasive mould diseases (IMD). Isavuconazole is a novel broad-spectrum azole active against Aspergillus spp. and Mucor, well tolerated, with an excellent bioavailability and predictable pharmacokinetics, that penetrates in most tissues rapidly, and has few serious adverse effects, including hepatic toxicity. Contrary to other broad-spectrum azoles, such as voriconazole and posaconazole, isavuconazole appears to show significant smaller drug-drug interactions with anticalcineurin drugs. We have performed an extensive literature review of the experience with the use of isavuconazole in SOT, which included the SOTIS and the ISASOT studies, and published case reports. More than 140 SOT recipients treated with isavuconazole for IMD were included. Most patients were lung and kidney recipients treated for an Aspergillus infection. Isavuconazole was well tolerated (less than 10% of patients required treatment discontinuation). The clinical responses appeared comparable to that found in other high-risk patient populations. Drug-drug interactions with immunosuppressive agents were manageable after the reduction of tacrolimus and the adjustment of mTOR inhibitors at the beginning of treatment. In conclusion, isavuconazole appears to be a reasonable option for the treatment of IMD in SOT. More clinical studies are warranted.
Collapse
Affiliation(s)
- Jose Tiago Silva
- Unit of Infectious Diseases, University Hospital 12 de Octubre, Instituto de Investigación del Hospital 12 de Octubre (imas12), School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shahid Husain
- Department of Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - José María Aguado
- Unit of Infectious Diseases, University Hospital 12 de Octubre, Instituto de Investigación del Hospital 12 de Octubre (imas12), School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
15
|
Elalouf A, Elalouf H, Rosenfeld A. Modulatory immune responses in fungal infection associated with organ transplant - advancements, management, and challenges. Front Immunol 2023; 14:1292625. [PMID: 38143753 PMCID: PMC10748506 DOI: 10.3389/fimmu.2023.1292625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Organ transplantation stands as a pivotal achievement in modern medicine, offering hope to individuals with end-stage organ diseases. Advancements in immunology led to improved organ transplant survival through the development of immunosuppressants, but this heightened susceptibility to fungal infections with nonspecific symptoms in recipients. This review aims to establish an intricate balance between immune responses and fungal infections in organ transplant recipients. It explores the fundamental immune mechanisms, recent advances in immune response dynamics, and strategies for immune modulation, encompassing responses to fungal infections, immunomodulatory approaches, diagnostics, treatment challenges, and management. Early diagnosis of fungal infections in transplant patients is emphasized with the understanding that innate immune responses could potentially reduce immunosuppression and promise efficient and safe immuno-modulating treatments. Advances in fungal research and genetic influences on immune-fungal interactions are underscored, as well as the potential of single-cell technologies integrated with machine learning for biomarker discovery. This review provides a snapshot of the complex interplay between immune responses and fungal infections in organ transplantation and underscores key research directions.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, Israel
| | - Hadas Elalouf
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| | - Ariel Rosenfeld
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
16
|
Patel SN, Thompson D, Roth N, Grodstein E. Cutaneous and renal aspergillosis resulting from orthotopic liver transplantation. BMJ Case Rep 2023; 16:e256974. [PMID: 37993141 PMCID: PMC10668145 DOI: 10.1136/bcr-2023-256974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Affiliation(s)
- Shreeja Nirav Patel
- Medical School, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Dane Thompson
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Nitzan Roth
- Department of Hepatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Elliot Grodstein
- Department of Transplant Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
17
|
Crone CG, Wulff SM, Ledergerber B, Helweg-Larsen J, Bredahl P, Arendrup MC, Perch M, Helleberg M. Invasive Aspergillosis among Lung Transplant Recipients during Time Periods with Universal and Targeted Antifungal Prophylaxis-A Nationwide Cohort Study. J Fungi (Basel) 2023; 9:1079. [PMID: 37998886 PMCID: PMC10672607 DOI: 10.3390/jof9111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The optimal prevention strategy for invasive aspergillosis (IA) in lung transplant recipients (LTXr) is unknown. In 2016, the Danish guidelines were changed from universal to targeted IA prophylaxis. Previously, we found higher rates of adverse events in the universal prophylaxis period. In a Danish nationwide study including LTXr, for 2010-2019, we compared IA rates in time periods with universal vs. targeted prophylaxis and during person-time with vs. person-time without antifungal prophylaxis. IA hazard rates were analyzed in multivariable Cox models with adjustment for time after LTX. Among 295 LTXr, antifungal prophylaxis was initiated in 183/193 and 6/102 during the universal and targeted period, respectively. During the universal period, 62% discontinued prophylaxis prematurely. The median time on prophylaxis was 37 days (IQR 11-84). IA was diagnosed in 27/193 (14%) vs. 15/102 (15%) LTXr in the universal vs. targeted period, with an adjusted hazard ratio (aHR) of 0.94 (95% CI 0.49-1.82). The aHR of IA during person-time with vs. person-time without antifungal prophylaxis was 0.36 (95% CI 0.12-1.02). No difference in IA was found during periods with universal vs. targeted prophylaxis. Prophylaxis was protective of IA when taken. Targeted prophylaxis may be preferred over universal due to comparable IA rates and lower rates of adverse events.
Collapse
Affiliation(s)
- Cornelia Geisler Crone
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Signe Marie Wulff
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Bruno Ledergerber
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
| | - Jannik Helweg-Larsen
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Pia Bredahl
- Department of Thoracic Anesthesia, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark;
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark;
- Department of Clinical Microbiology, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| | - Michael Perch
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital —Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark; (S.M.W.); (B.L.); (J.H.-L.); (M.H.)
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen O, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark;
| |
Collapse
|
18
|
Wulff SM, Perch M, Helweg-Larsen J, Bredahl P, Arendrup MC, Lundgren J, Helleberg M, Crone CG. Associations between invasive aspergillosis and cytomegalovirus in lung transplant recipients: a nationwide cohort study. APMIS 2023; 131:574-583. [PMID: 37022293 DOI: 10.1111/apm.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
Cytomegalovirus (CMV) and invasive aspergillosis (IA) cause morbidity among lung transplant recipients (LTXr). Early diagnosis and treatment could improve outcomes. We examined rates of CMV after IA and vice versa to assess whether screening for one infection is warranted after detecting the other. All Danish LTXr, 2010-2019, were followed for IA and CMV for 2 years after transplantation. IA was defined using ISHLT criteria. Adjusted incidence rate ratios (aIRR) were estimated by Poisson regression adjusted for time after transplantation. We included 295 LTXr, among whom CMV and IA were diagnosed in 128 (43%) and 48 (16%). The risk of CMV was high the first 3 months after IA, IR 98/100 person-years of follow-up (95% CI 47-206). The risk of IA was significantly increased in the first 3 months after CMV, aIRR 2.91 (95% CI 1.32-6.44). Numbers needed to screen to diagnose one case of CMV after IA, and one case of IA after CMV was approximately seven and eight, respectively. Systematic screening for CMV following diagnosis of IA, and vice versa, may improve timeliness of diagnosis and outcomes for LTXr.
Collapse
Affiliation(s)
- Signe Marie Wulff
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Helweg-Larsen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pia Bredahl
- Department of Thoracic Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Maiken Cavling Arendrup
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Lundgren
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cornelia Geisler Crone
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
19
|
Tio SY, Chen SCA, Hamilton K, Heath CH, Pradhan A, Morris AJ, Korman TM, Morrissey O, Halliday CL, Kidd S, Spelman T, Brell N, McMullan B, Clark JE, Mitsakos K, Hardiman RP, Williams P, Campbell AJ, Beardsley J, Van Hal S, Yong MK, Worth LJ, Slavin MA. Invasive aspergillosis in adult patients in Australia and New Zealand: 2017-2020. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100888. [PMID: 37701716 PMCID: PMC10494171 DOI: 10.1016/j.lanwpc.2023.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Background New and emerging risks for invasive aspergillosis (IA) bring the need for contemporary analyses of the epidemiology and outcomes of IA, in order to improve clinical practice. Methods The study was a retrospective, multicenter, cohort design of proven and probable IA in adults from 10 Australasian tertiary centres (January 2017-December 2020). Descriptive analyses were used to report patients' demographics, predisposing factors, mycological characteristics, diagnosis and management. Accelerated failure-time model was employed to determine factor(s) associated with 90-day all-cause mortality (ACM). Findings Of 382 IA episodes, 221 (in 221 patients) fulfilled inclusion criteria - 53 proven and 168 probable IA. Median patient age was 61 years (IQR 51-69). Patients with haematologic malignancies (HM) comprised 49.8% of cases. Fifteen patients (6.8%) had no pre-specified immunosuppression and eleven patients (5.0%) had no documented comorbidity. Only 30% of patients had neutropenia. Of 170 isolates identified, 40 (23.5%) were identified as non-Aspergillus fumigatus species complex. Azole-resistance was present in 3/46 (6.5%) of A. fumigatus sensu stricto isolates. Ninety-day ACM was 30.3%. HM (HR 1.90; 95% CI 1.04-3.46, p = 0.036) and ICU admission (HR 4.89; 95% CI 2.93-8.17, p < 0.001) but not neutropenia (HR 1.45; 95% CI 0.88-2.39, p = 0.135) were associated with mortality. Chronic kidney disease was also a significant predictor of death in the HM subgroup (HR 3.94; 95% CI 1.15-13.44, p = 0.028). Interpretation IA is identified in high number of patients with mild/no immunosuppression in our study. The relatively high proportion of non-A. fumigatus species complex isolates and 6.5% azole-resistance rate amongst A. fumigatus sensu stricto necessitates accurate species identification and susceptibility testing for optimal patient outcomes. Funding This work is unfunded. All authors' financial disclosures are listed in detail at the end of the manuscript.
Collapse
Affiliation(s)
- Shio Yen Tio
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- National Centre for Infections in Cancer, Melbourne, Australia
- Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- School of Medicine, University of Sydney, Australia
| | - Kate Hamilton
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Christopher H. Heath
- Department of Microbiology, PathWest Laboratory Medicine, Murdoch, Western Australia, Australia
- Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Department of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Alyssa Pradhan
- Prince of Wales Hospital, Southeast Sydney LHD, NSW Health Pathology, Australia
- School of Medicine, University of Sydney, Australia
| | - Arthur J. Morris
- Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Tony M. Korman
- Monash University and Monash Health, Clayton, Victoria, Australia
| | - Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- School of Medicine, University of Sydney, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology & Infectious Diseases, SA Pathology, Adelaide, South Australia, Australia
| | - Timothy Spelman
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Nadiya Brell
- Prince of Wales Hospital, Southeast Sydney LHD, NSW Health Pathology, Australia
- University of New South Wales, Australia
| | - Brendan McMullan
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Australia
| | - Julia E. Clark
- Infection Management Service, Queensland Children’s Hospital, Children’s Health Queensland, Brisbane 4101, Australia
- School of Clinical Medicine, CHQCU, University of Queensland, Australia
| | - Katerina Mitsakos
- Department of Infectious Disease and Microbiology, Royal North Shore Hospital, Sydney, Australia
| | - Robyn P. Hardiman
- Department of Infectious Disease and Microbiology, Royal North Shore Hospital, Sydney, Australia
| | - Phoebe Williams
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, Australia
- School of Public Health, Faculty of Medicine, The University of Sydney, Australia
| | - Anita J. Campbell
- Department of Infectious Diseases, Perth Children’s Hospital, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Western Australia, Australia
| | - Justin Beardsley
- University of Sydney Infectious Disease Institute, Australia
- Westmead Hospital, Western Sydney LHD, NSW Health, Australia
- Westmead Institute for Medical Research, Australia
| | - Sebastiaan Van Hal
- School of Medicine, University of Sydney, Australia
- Department of Infectious Diseases and Microbiology Royal Prince Alfred Hospital, Australia
| | - Michelle K. Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- National Centre for Infections in Cancer, Melbourne, Australia
- Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Leon J. Worth
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- National Centre for Infections in Cancer, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Monica A. Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- National Centre for Infections in Cancer, Melbourne, Australia
- Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| |
Collapse
|
20
|
Casutt A, Lamoth F, Lortholary O, Prior JO, Tonglet A, Manuel O, Bergeron A, Beigelman-Aubry C. Atypical imaging patterns during lung invasive mould diseases: lessons for clinicians. Eur Respir Rev 2023; 32:230086. [PMID: 37758271 PMCID: PMC10523149 DOI: 10.1183/16000617.0086-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/13/2023] [Indexed: 09/30/2023] Open
Abstract
Imaging of pulmonary invasive mould diseases (IMDs), which represents a cornerstone in their work-up, is mainly based on computed tomography (CT). The purpose of this review is to discuss their CT features, mainly those related to aspergillosis and mucormycosis. We will especially focus on atypical radiological presentations that are increasingly observed among non-neutropenic emerging populations of patients at risk, such as those receiving novel anticancer therapies or those in the intensive care unit. We will also discuss the interest of other available imaging techniques, mainly positron emission tomography/CT, that may play a role in the diagnosis as well as evaluation of disease extent and follow-up. We will show that any new airway-centred abnormality or caveated lesion should evoke IMDs in mildly immunocompromised hosts. Limitations in their recognition may be due to potential underlying abnormalities that increase the complexity of interpretation of lung imaging, as well as the non-specificity of imaging features. In this way, the differentials of all morphological/metabolic aspects must be kept in mind for the optimal management of patients, as well as the benefit of evaluation of the vascular status.
Collapse
Affiliation(s)
- Alessio Casutt
- Division of Pulmonology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Division of Pulmonology, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratories, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Olivier Lortholary
- University Paris Cité, Necker Enfants Malades University Hospital, AP-HP, IHU Imagine, Paris, France
- Institut Pasteur, National Reference Center for Invasive Mycoses and Antifungals, Paris, France
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Andrea Tonglet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Transplantation Center, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anne Bergeron
- Department of Pulmonology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
- A. Bergeron and C. Beigelman-Aubry contributed equally to this work
| | - Catherine Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- A. Bergeron and C. Beigelman-Aubry contributed equally to this work
| |
Collapse
|
21
|
Farahani A, Ghiasvand F, Davoudi S, Ahmadinejad Z. Invasive aspergillosis in liver transplant recipients, an infectious complication with low incidence but significant mortality. World J Transplant 2023; 13:264-275. [PMID: 37746042 PMCID: PMC10514749 DOI: 10.5500/wjt.v13.i5.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Infections, including invasive fungal infections (IFIs), are among the leading causes of mortality in liver transplant recipients during the first year post-transplantation. AIM To investigate the epidemiology, clinical manifestations, risk factors, treatment outcomes, and mortality rate of post-liver transplantation invasive aspergillosis (IA). METHODS In this case-control study, 22 patients with IA were identified by reviewing the archived and electronic medical records of 850 patients who received liver transplants at the Imam Khomeini Hospital complex in Tehran, Iran, between 2014 and 2019. The control group comprised 38 patients without IA infection matched for age and sex. The information obtained included the baseline characteristics of liver transplant patients, operative reports, post-transplantation characteristics of both groups and information about the fungal infection of the patient group. RESULTS The prevalence rate of IA among liver transplant recipients at Imam Khomeini Hospital was 2.7%. The risk factors of IA among studied patients included high serum creatinine levels before and post-transplant, renal replacement therapy, antithymocyte globulin induction therapy, post-transplant bile leakage, post-transplant hepatic artery thrombosis, repeated surgery within 30 d after the transplant, bacterial pneumonia before the aspergillosis diagnosis, receiving systemic antibiotics before the aspergillus infection, cytomegalovirus infection, and duration of post-transplant hospitalization in the intensive care unit. The most prevalent form of infection was invasive pulmonary aspergillosis, and the most common chest computed tomography scan findings were nodules, pleural effusion, and the halo sign. In the case group, prophylactic antifungal therapy was administered more frequently than in the control group. The antifungal therapy response rate at 12 wk was 63.7%. The 3- and 12- mo mortality rates of the patients with IA were 36.4% and 45.4%, respectively (compared with the mortality rate of the control group in 12 mo, which was zero). CONCLUSION In this study, the prevalence of IA among liver transplant recipients was relatively low. However, it was one of the leading causes of mortality following liver transplantation. Targeted antifungal therapy may be a factor in the low incidence of infections at our facility. Identifying the risk factors of IFIs, maintaining an elevated level of clinical suspicion, and initiating early antifungal treatment may significantly improve the prognosis and reduce the mortality rate of liver transplant recipients.
Collapse
Affiliation(s)
- Azam Farahani
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| | - Fereshteh Ghiasvand
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| | - Setareh Davoudi
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| | - Zahra Ahmadinejad
- Liver Transplantation Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1478714466, Iran
| |
Collapse
|
22
|
Barros N, Rosenblatt RE, Phipps MM, Fomin V, Mansour MK. Invasive fungal infections in liver diseases. Hepatol Commun 2023; 7:e0216. [PMID: 37639701 PMCID: PMC10462082 DOI: 10.1097/hc9.0000000000000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/07/2023] [Indexed: 08/31/2023] Open
Abstract
Patients with liver diseases, including decompensated cirrhosis, alcohol-associated hepatitis, and liver transplant recipients are at increased risk of acquiring invasive fungal infections (IFIs). These infections carry high morbidity and mortality. Multiple factors, including host immune dysfunction, barrier failures, malnutrition, and microbiome alterations, increase the risk of developing IFI. Candida remains the most common fungal pathogen causing IFI. However, other pathogens, including Aspergillus, Cryptococcus, Pneumocystis, and endemic mycoses, are being increasingly recognized. The diagnosis of IFIs can be ascertained by the direct observation or isolation of the pathogen (culture, histopathology, and cytopathology) or by detecting antigens, antibodies, or nucleic acid. Here, we provide an update on the epidemiology, pathogenesis, diagnosis, and management of IFI in patients with liver disease and liver transplantation.
Collapse
Affiliation(s)
- Nicolas Barros
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Infectious Diseases, Department of Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Russell E. Rosenblatt
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Meaghan M. Phipps
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Vladislav Fomin
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Michael K. Mansour
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Sprute R, Nacov JA, Neofytos D, Oliverio M, Prattes J, Reinhold I, Cornely OA, Stemler J. Antifungal prophylaxis and pre-emptive therapy: When and how? Mol Aspects Med 2023; 92:101190. [PMID: 37207579 DOI: 10.1016/j.mam.2023.101190] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The growing pool of critically ill or immunocompromised patients leads to a constant increase of life-threatening invasive infections by fungi such as Aspergillus spp., Candida spp. and Pneumocystis jirovecii. In response to this, prophylactic and pre-emptive antifungal treatment strategies have been developed and implemented for high-risk patient populations. The benefit by risk reduction needs to be carefully weighed against potential harm caused by prolonged exposure against antifungal agents. This includes adverse effects and development of resistance as well as costs for the healthcare system. In this review, we summarise evidence and discuss advantages and downsides of antifungal prophylaxis and pre-emptive treatment in the setting of malignancies such as acute leukaemia, haematopoietic stem cell transplantation, CAR-T cell therapy, and solid organ transplant. We also address preventive strategies in patients after abdominal surgery and with viral pneumonia as well as individuals with inherited immunodeficiencies. Notable progress has been made in haematology research, where strong recommendations regarding antifungal prophylaxis and pre-emptive treatment are backed by data from randomized controlled trials, whereas other critical areas still lack high-quality evidence. In these areas, paucity of definitive data translates into centre-specific strategies that are based on interpretation of available data, local expertise, and epidemiology. The development of novel immunomodulating anticancer drugs, high-end intensive care treatment and the development of new antifungals with new modes of action, adverse effects and routes of administration will have implications on future prophylactic and pre-emptive approaches.
Collapse
Affiliation(s)
- Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia A Nacov
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Dionysios Neofytos
- Division of Infectious Diseases, Transplant Infectious Disease Service, University Hospital of Geneva, Geneva, Switzerland
| | - Matteo Oliverio
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Juergen Prattes
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Medical University of Graz, Department of Internal Medicine, Division of Infectious Disease, Excellence Center for Medical Mycology (ECMM), Graz, Austria
| | - Ilana Reinhold
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Espinosa-Leon JP, Feng T, de Lima A, O'Gara BP. Early-Onset Invasive Pulmonary Aspergillosis in a Liver Transplant Patient: A Case Report. Cureus 2023; 15:e42554. [PMID: 37637622 PMCID: PMC10460166 DOI: 10.7759/cureus.42554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Invasive pulmonary aspergillosis (IPA) in liver transplant patients remains rare but exceedingly fatal. The diagnostic challenges associated with this condition are compounded by its infrequent onset within the first two weeks following transplantation. Moreover, therapeutic management is complex due to the intricate drug interactions between triazole antifungals and calcineurin inhibitor immunosuppressants. We present the case of a 63-year-old male who underwent uncomplicated liver transplantation (LT) and developed early-onset IPA. Despite maximal efforts, the patient expired. This report aims to underscore the vital importance of timely diagnosis and therapy in preventing the insidious progression of invasive disease and subsequent mortality.
Collapse
Affiliation(s)
- Juan P Espinosa-Leon
- Anesthesiology, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Theresa Feng
- Anesthesiology, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Andres de Lima
- Anesthesiology, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Brian P O'Gara
- Anesthesiology, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
25
|
Escamilla JE, January SE, Vazquez Guillamet R. Diagnosis and Treatment of Fungal Infections in Lung Transplant Recipients. Pathogens 2023; 12:pathogens12050694. [PMID: 37242364 DOI: 10.3390/pathogens12050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Fungal infections are a significant source of morbidity in the lung transplant population via direct allograft damage and predisposing patients to the development of chronic lung allograft dysfunction. Prompt diagnosis and treatment are imperative to limit allograft damage. This review article discusses incidence, risk factors, and symptoms with a specific focus on diagnostic and treatment strategies in the lung transplant population for fungal infections caused by Aspergillus, Candida, Coccidioides, Histoplasma, Blastomyces, Scedosporium/Lomentospora, Fusarium, and Pneumocystis jirovecii. Evidence for the use of newer triazole and inhaled antifungals to treat isolated pulmonary fungal infections in lung transplant recipients is also discussed.
Collapse
Affiliation(s)
- Jesus E Escamilla
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Spenser E January
- Department of Pharmacy, Barnes-Jewish Hospital, Saint Louis, MO 63110, USA
| | - Rodrigo Vazquez Guillamet
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Rodrigo Vazquez Guillamet, 4921 Parkview Place, Saint Louis, MO 63110, USA
| |
Collapse
|
26
|
Bosetti D, Neofytos D. Invasive Aspergillosis and the Impact of Azole-resistance. CURRENT FUNGAL INFECTION REPORTS 2023; 17:1-10. [PMID: 37360857 PMCID: PMC10024029 DOI: 10.1007/s12281-023-00459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review IA (invasive aspergillosis) caused by azole-resistant strains has been associated with higher clinical burden and mortality rates. We review the current epidemiology, diagnostic, and therapeutic strategies of this clinical entity, with a special focus on patients with hematologic malignancies. Recent Findings There is an increase of azole resistance in Aspergillus spp. worldwide, probably due to environmental pressure and the increase of long-term azole prophylaxis and treatment in immunocompromised patients (e.g., in hematopoietic stem cell transplant recipients). The therapeutic approaches are challenging, due to multidrug-resistant strains, drug interactions, side effects, and patient-related conditions. Summary Rapid recognition of resistant Aspergillus spp. strains is fundamental to initiate an appropriate antifungal regimen, above all for allogeneic hematopoietic cell transplantation recipients. Clearly, more studies are needed in order to better understand the resistance mechanisms and optimize the diagnostic methods to identify Aspergillus spp. resistance to the existing antifungal agents/classes. More data on the susceptibility profile of Aspergillus spp. against the new classes of antifungal agents may allow for better treatment options and improved clinical outcomes in the coming years. In the meantime, continuous surveillance studies to monitor the prevalence of environmental and patient prevalence of azole resistance among Aspergillus spp. is absolutely crucial.
Collapse
Affiliation(s)
- Davide Bosetti
- Division of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland
| |
Collapse
|
27
|
Melenotte C, Aimanianda V, Slavin M, Aguado JM, Armstrong-James D, Chen YC, Husain S, Van Delden C, Saliba F, Lefort A, Botterel F, Lortholary O. Invasive aspergillosis in liver transplant recipients. Transpl Infect Dis 2023:e14049. [PMID: 36929539 DOI: 10.1111/tid.14049] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver transplantation is increasing worldwide with underlying pathologies dominated by metabolic and alcoholic diseases in developed countries. METHODS We provide a narrative review of invasive aspergillosis (IA) in liver transplant (LT) recipients. We searched PubMed and Google Scholar for references without language and time restrictions. RESULTS The incidence of IA in LT recipients is low (1.8%), while mortality is high (∼50%). It occurs mainly early (<3 months) after LT. Some risk factors have been identified before (corticosteroid, renal, and liver failure), during (massive transfusion and duration of surgical procedure), and after transplantation (intensive care unit stay, re-transplantation, re-operation). Diagnosis can be difficult and therefore requires full radiological and clinicobiological collaboration. Accurate identification of Aspergillus species is recommended due to the cryptic species, and susceptibility testing is crucial given the increasing resistance of Aspergillus fumigatus to azoles. It is recommended to reduce the dose of tacrolimus (50%) and to closely monitor the trough level when introducing voriconazole, isavuconazole, and posaconazole. Surgery should be discussed on a case-by-case basis. Antifungal prophylaxis is recommended in high-risk patients. Environmental preventative measures should be implemented to prevent outbreaks of nosocomial aspergillosis in LT recipient units. CONCLUSION IA remains a very serious disease in LT patients and should be promptly sought and, if possible, prevented by clinicians when risk factors are identified.
Collapse
Affiliation(s)
- Cléa Melenotte
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France
| | - Monica Slavin
- Department of Infectious Diseases, National Center for Infections in Cancer, Sir Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Oncology, Sir Peter MacCallum Cancer Center, University of Melbourne, Melbourne, Australia
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shahid Husain
- Department of Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Christian Van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Francoise Botterel
- EA Dynamyc 7380 UPEC, ENVA, Faculté de Médecine, Créteil, France.,Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie, DHU VIC, CHU Henri Mondor, Créteil, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France.,Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France.,Paris University, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, IHU Imagine, Paris, France
| |
Collapse
|
28
|
Fernández-Ruiz M, Bodro M, Gutiérrez Martín I, Rodriguez-Álvarez R, Ruiz-Ruigómez M, Sabé N, López-Viñau T, Valerio M, Illaro A, Fortún J, Salto-Alejandre S, Cordero E, Fariñas MDC, Muñoz P, Vidal E, Carratalà J, Goikoetxea J, Ramos-Martínez A, Moreno A, Aguado JM. Isavuconazole for the Treatment of Invasive Mold Disease in Solid Organ Transplant Recipients: A Multicenter Study on Efficacy and Safety in Real-life Clinical Practice. Transplantation 2023; 107:762-773. [PMID: 36367924 DOI: 10.1097/tp.0000000000004312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Isavuconazole has theoretical advantages over other mold-active triazoles for the treatment of invasive aspergillosis and mucormycosis after solid organ transplantation (SOT). The available clinical experience, nevertheless, is scarce. METHODS We performed a retrospective study including all adult SOT recipients with proven or probable invasive mold disease (IMD) that received isavuconazole for ≥24 h as first-line or salvage therapy at 10 Spanish centers between September 2017 and November 2021. The primary efficacy outcome was clinical response (complete or partial resolution of attributable symptoms and findings) by weeks 6 and 12. Safety outcomes included the rates of treatment-emergent adverse events and premature isavuconazole discontinuation. RESULTS We included 81 SOT recipients that received isavuconazole for a median of 58.0 days because of invasive aspergillosis (n = 71) or mucormycosis (n = 10). Isavuconazole was used as first-line (72.8%) or salvage therapy due because of previous treatment-emergent toxicity (11.1%) or refractory IMD (7.4%). Combination therapy was common (37.0%), mainly with an echinocandin or liposomal amphotericin B. Clinical response by weeks 6 and 12 was achieved in 53.1% and 54.3% of patients, respectively, and was more likely when isavuconazole was administered as first-line single-agent therapy. At least 1 treatment-emergent adverse event occurred in 17.3% of patients, and 6.2% required premature discontinuation. Daily tacrolimus dose was reduced in two-thirds of patients by a median of 50.0%, although tacrolimus levels remained stable throughout the first month of therapy. CONCLUSIONS Isavuconazole is a safe therapeutic option for IMD in SOT recipients, with efficacy comparable to other patient groups.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Bodro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Isabel Gutiérrez Martín
- Department of Internal Medicine, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | | | - María Ruiz-Ruigómez
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Núria Sabé
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa López-Viñau
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Maricela Valerio
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Aitziber Illaro
- Department of Pharmacy, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
| | - Jesús Fortún
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Sonsoles Salto-Alejandre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
| | - Elisa Cordero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville, Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
| | - María Del Carmen Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla, Santander, Spain
- Department of Medicine, School of Medicine, Universidad de Cantabria, Santander, Spain
| | - Patricia Muñoz
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Vidal
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Department of Medicine, School of Medicine, University of Córdoba, Córdoba, Spain
| | - Jordi Carratalà
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Josune Goikoetxea
- Unit of Infectious Diseases, Hospital Universitario de Cruces, Baracaldo, Spain
| | - Antonio Ramos-Martínez
- Unit of Infectious Diseases, Hospital Universitario Puerta de Hierro-Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Asunción Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Clinic, Instituto de Investigaciones Biomédicas August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Lamoth F, Calandra T. Pulmonary aspergillosis: diagnosis and treatment. Eur Respir Rev 2022; 31:31/166/220114. [DOI: 10.1183/16000617.0114-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/18/2022] [Indexed: 12/05/2022] Open
Abstract
Aspergillusspecies are the most frequent cause of fungal infections of the lungs with a broad spectrum of clinical presentations including invasive pulmonary aspergillosis (IPA) and chronic pulmonary aspergillosis (CPA). IPA affects immunocompromised populations, which are increasing in number and diversity with the advent of novel anti-cancer therapies. Moreover, IPA has emerged as a complication of severe influenza and coronavirus disease 2019 in apparently immunocompetent hosts. CPA mainly affects patients with pre-existing lung lesions and is recognised increasingly frequently among patients with long-term survival following cure of tuberculosis or lung cancer. The diagnosis of pulmonary aspergillosis is complex as it relies on the presence of clinical, radiological and microbiological criteria, which differ according to the type of pulmonary aspergillosis (IPA or CPA) and the type of patient population. The management of pulmonary aspergillosis is complicated by the limited number of treatment options, drug interactions, adverse events and the emergence of antifungal resistance.
Collapse
|
30
|
Punia A, Choudhary P, Sharma N, Dahiya S, Gulia P, Chhillar AK. Therapeutic Approaches for Combating Aspergillus Associated Infection. Curr Drug Targets 2022; 23:1465-1488. [PMID: 35748549 DOI: 10.2174/1389450123666220623164548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/25/2023]
Abstract
Now-a-days fungal infection emerges as a significant problem to healthcare management systems due to high frequency of associated morbidity, mortality toxicity, drug-drug interactions, and resistance of the antifungal agents. Aspergillus is the most common mold that cause infection in immunocompromised hosts. It's a hyaline mold that is cosmopolitan and ubiquitous in nature. Aspergillus infects around 10 million population each year with a mortality rate of 30-90%. Clinically available antifungal formulations are restricted to four classes (i.e., polyene, triazole, echinocandin, and allylamine), and each of them have their own limitations associated with the activity spectrum, the emergence of resistance, and toxicity. Consequently, novel antifungal agents with modified and altered chemical structures are required to combat these invasive fungal infections. To overcome these limitations, there is an urgent need for new antifungal agents that can act as potent drugs in near future. Currently, some compounds have shown effective antifungal activity. In this review article, we have discussed all potential antifungal therapies that contain old antifungal drugs, combination therapies, and recent novel antifungal formulations, with a focus on the Aspergillus associated infections.
Collapse
Affiliation(s)
- Aruna Punia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Choudhary
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Namita Sharma
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Sweety Dahiya
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Prity Gulia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Anil K Chhillar
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
31
|
Zhao S, Martin-Vicente A, Colabardini AC, Pereira Silva L, Rinker DC, Fortwendel JR, Goldman GH, Gibbons JG. Genomic and Molecular Identification of Genes Contributing to the Caspofungin Paradoxical Effect in Aspergillus fumigatus. Microbiol Spectr 2022; 10:e0051922. [PMID: 36094204 PMCID: PMC9603777 DOI: 10.1128/spectrum.00519-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus is a deadly opportunistic fungal pathogen responsible for ~100,000 annual deaths. Azoles are the first line antifungal agent used against A. fumigatus, but azole resistance has rapidly evolved making treatment challenging. Caspofungin is an important second-line therapy against invasive pulmonary aspergillosis, a severe A. fumigatus infection. Caspofungin functions by inhibiting β-1,3-glucan synthesis, a primary and essential component of the fungal cell wall. A phenomenon termed the caspofungin paradoxical effect (CPE) has been observed in several fungal species where at higher concentrations of caspofungin, chitin replaces β-1,3-glucan, morphology returns to normal, and growth rate increases. CPE appears to occur in vivo, and it is therefore clinically important to better understand the genetic contributors to CPE. We applied genomewide association (GWA) analysis and molecular genetics to identify and validate candidate genes involved in CPE. We quantified CPE across 67 clinical isolates and conducted three independent GWA analyses to identify genetic variants associated with CPE. We identified 48 single nucleotide polymorphisms (SNPs) associated with CPE. We used a CRISPR/Cas9 approach to generate gene deletion mutants for seven genes harboring candidate SNPs. Two null mutants, ΔAfu3g13230 and ΔAfu4g07080 (dscP), resulted in reduced basal growth rate and a loss of CPE. We further characterized the dscP phosphatase-null mutant and observed a significant reduction in conidia production and extremely high sensitivity to caspofungin at both low and high concentrations. Collectively, our work reveals the contribution of Afu3g13230 and dscP in CPE and sheds new light on the complex genetic interactions governing this phenotype. IMPORTANCE This is one of the first studies to apply genomewide association (GWA) analysis to identify genes involved in an Aspergillus fumigatus phenotype. A. fumigatus is an opportunistic fungal pathogen that causes hundreds of thousands of infections and ~100,000 deaths each year, and antifungal resistance has rapidly evolved in this species. A phenomenon called the caspofungin paradoxical effect (CPE) occurs in some isolates, where high concentrations of the drug lead to increased growth rate. There is clinical relevance in understanding the genetic basis of this phenotype, since caspofungin concentrations could lead to unintended adverse clinical outcomes in certain cases. Using GWA analysis, we identified several interesting candidate polymorphisms and genes and then generated gene deletion mutants to determine whether these genes were important for CPE. Two of these mutant strains (ΔAfu3g13230 and ΔAfu4g07080/ΔdscP) displayed a loss of the CPE. This study sheds light on the genes involved in clinically important phenotype CPE.
Collapse
Affiliation(s)
- Shu Zhao
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David C. Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jarrod R. Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - John G. Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
32
|
Bielicki JA, Manuel O. Antimicrobial stewardship programs in solid-organ transplant recipients in Switzerland. Transpl Infect Dis 2022; 24:e13902. [PMID: 36254517 PMCID: PMC9788035 DOI: 10.1111/tid.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Antimicrobial stewardship programs (ASPs) are essential for minimizing the emergence of antimicrobial resistance, while improving patient outcomes. The current status of ASP in the field of organ transplantation in Switzerland has not been well characterized. METHODS We describe in this article the current status of ASP and discuss challenges and opportunities of implementing ASP dedicated to solid-organ transplant (SOT) recipients in Switzerland. RESULTS ASP have been implemented in the Swiss healthcare system over the last years, although specific strategies for SOT recipients are mostly based on transplant infectious diseases (TID) consultations rather than structured institutional interventions. Even so, there is a unique opportunity for developing a successful ASP in Switzerland that also specifically addresses areas of practice relevant to SOT recipients. This is due to the existent network of TID specialists in close collaboration with transplant physicians, the small number of centers involved in the care of transplant recipients, and the development of the Swiss Transplant Cohort Study (STCS), a prospective nationwide cohort of SOT recipients in Switzerland. The STCS can identify actual challenges through the updated reports on the epidemiology on transplant infections, accurately monitor the impact of potential antimicrobial stewardship interventions, and represent an opportunity for nesting of pragmatic randomized controlled trials to address key questions about optimized antibiotic use for SOT recipients. CONCLUSIONS Although ASP in SOT recipients rely more on specific TID consultations than in general antimicrobial stewardship teams, we identified several opportunities for the implementation of a successful ASP in Switzerland.
Collapse
Affiliation(s)
- Julia A. Bielicki
- Department of Paediatric PharmacologyUniversity of Basel Children's Hospital (UKBB)BaselSwitzerland,Department of Infectious Diseases and VaccinologyUniversity of Basel Children's Hospital (UKBB)BaselSwitzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation CenterLausanne University Hospital (CHUV) and University of LausanneLausanneSwitzerland
| | | |
Collapse
|
33
|
Ju C, Lian Q, Chen A, Zhao B, Zhou S, Cai Y, Xie H, Wei L, Li S, He J. Antifungal prophylactic effectiveness and intrapulmonary concentrations of voriconazole versus posaconazole in lung transplant recipients. Med Mycol 2022; 60:6678431. [PMID: 36036471 PMCID: PMC9437723 DOI: 10.1093/mmy/myac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Invasive fungal diseases (IFDs) are one of the leading causes of death in lung transplant recipients. This study aimed to compare the antifungal prophylactic effectiveness, intrapulmonary and plasma levels of voriconazole with posaconazole in lung transplant recipients. This retrospective cohort study analyzed adult recipients who underwent lung transplantation between June 2017 and December 2020. Voriconazole oral tablets or posaconazole oral suspension were used for prophylaxis against posttransplant IFD. Drug concentrations in bronchoalveolar lavage fluid (BALF) and plasma were measured by using liquid chromatography-mass spectrometry. The 182 recipients included 142 in the voriconazole group and 40 in the posaconazole group. The trough plasma levels were comparable between voriconazole and posaconazole (1.65 ± 0.09 vs. 1.69 ± 0.03 μg/ml, p = 0.55). However, the BALF levels were significantly higher for posaconazole than voriconazole (17.47 ± 11.51 vs. 0.56 ± 0.49 μg/ml, p < 0.001). There was no significant difference in the total incidence of breakthrough IFDs between the voriconazole and posaconazole groups (10.6% vs. 7.5%, p = 0.77). The intrapulmonary concentrations of posaconazole were significantly higher than voriconazole. The two agents had comparable antifungal prophylactic effectiveness.
Collapse
Affiliation(s)
- Chunrong Ju
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaoyan Lian
- Department of Organ Transplant, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ao Chen
- Department of Organ Transplant, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shouning Zhou
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhang Cai
- Department of Organ Transplant, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Xie
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
34
|
Liu Y, Lan C, Qin S, Qin Z, Zhang ZQ, Zhang P, Cao W. Efficacy of Anti-fungal Agents for Invasive Fungal Infection prophylaxis in Liver Transplant Recipients: A Network Meta-Analysis. Mycoses 2022; 65:906-917. [PMID: 35899464 DOI: 10.1111/myc.13508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
At present, there is still a lack of effective invasive fungal prophylaxis therapy in liver transplant recipients (LTRs). This study aimed to analysis the latest evidence on efficacy of current prophylactic anti-fungal therapy, and systematically compare between anti-fungal agents and placebo by a fixed-effects meta-analysis in all randomized controlled trials. A network meta-analysis was performed for invasive fungal infection (IFI) among different agents in 14 randomized controlled trials, in which 10 anti-fungal approaches were identified. Overall, anti-fungal prophylaxis reduced the rate of IFI (RR 0.30, 95% CI 0.18-0.52) and proven IFI (RR 0.27, 95% CI 0.14-0.53) when compared to placebo. In the network meta-analysis, an equivalent reduction in the rate of IFI was observed in fluconazole (OR 4.70, 95% CI 1.22-18.10), itraconazole (OR 5.82, 95% CI 1.10-30.71) and Liposomal amphotericin B (LAmB, OR 5.74, 95% CI 1.29-25.58) groups when compared with placebo. Anidulafungin might be the most effective agents in IFI prevention, however, this superiority did not meet statistically significance. Our study indicated that fluconazole, echinocandins and LAmB are equivalent in efficacy. Of which, fluconazole is recommended for the prevention of IFI in LTRs due to its efficacy, economics and compliance.
Collapse
Affiliation(s)
- Yusi Liu
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Chunhai Lan
- Department of Orthopedic Surgery, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Sibei Qin
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Zhuo Qin
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Zhi Qiang Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
35
|
Hatter MJ, Beyer RS, Camino-Willhuber G, Franklin A, Brown NJ, Hashmi S, Oh M, Bhatia N, Lee YP. Primary spinal infections in patients with solid organ transplant: a systematic literature review and illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE22157. [PMID: 35855206 PMCID: PMC9237658 DOI: 10.3171/case22157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Primary spinal infections (PSIs) are a group of uncommon but serious infectious diseases considered more prevalent and aggressive among patients with chronic immunocompromised states. Association of PSI and solid organ transplant has not been systematically analyzed. The authors performed a systematic review analyzing clinical presentation and mortality of patients with PSI in the setting of solid organ transplant. OBSERVATIONS PSIs in patients with immunosuppressive therapy, such as those with solid organ transplant, may behave differently in terms of epidemiology, clinical presentation, and outcomes compared with nonimmunosuppressed patients. Overall PSI in solid organ transplant patients is associated with a high rate of neurological compromise, postoperative complications, and mortality. LESSONS Accurate diagnosis and appropriate treatment of PSI require a multidisciplinary effort. Localized pain is the most frequently reported symptom associated with PSI. As opposed to PSI in patients without transplant, inflammatory and infectious markers such as white blood cells and C-reactive protein are often not elevated. Furthermore, the causative microorganism profile varies significantly when compared to pyogenic spinal infection in patients without transplant. Aspergillus species was responsible for spondylodiscitis in transplant patients in more than 50% of cases, and the incidence of Aspergillus infection is projected to rise in the coming years.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Oh
- Neurosurgery, University of California, Irvine, Irvine, California
| | | | | |
Collapse
|
36
|
González-García P, Alonso-Sardón M, Rodríguez-Alonso B, Almeida H, Romero-Alegría Á, Vega-Rodríguez VJ, López-Bernús A, Muñoz-Bellido JL, Muro A, Pardo-Lledías J, Belhassen-García M. How Has the Aspergillosis Case Fatality Rate Changed over the Last Two Decades in Spain? J Fungi (Basel) 2022; 8:jof8060576. [PMID: 35736059 PMCID: PMC9225319 DOI: 10.3390/jof8060576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Aspergillus produces high morbidity and mortality, especially in at-risk populations. In Spain, the evolution of mortality in recent years due to this fungus is not well established. The aim of this study was to estimate the case fatality rate of aspergillosis in inpatients from 1997 to 2017 in Spain. (2) Methodology: A retrospective descriptive study was conducted with records of inpatients admitted to the National Health System with a diagnosis of aspergillosis. (3) Principal findings: Of 32,960 aspergillosis inpatients, 24.5% of deaths were registered, and 71% of the patients who died were men. The percentage of deaths increased progressively with age. The case fatality rate progressively decreased over the period, from 25.4 and 27.8% in 1997–1998 to values of 20.6 and 20.8% in 2016 and 2017. Influenza and pneumonia occurrence/association significantly increased case fatality rates in all cases. (4) Conclusions: Our study shows that lethality significantly decreased in the last two decades despite the increase in cases. This highlights the fact that patients with solid and/or hematological cancer do not have a much higher mortality rate than the group of patients with pneumonia or influenza alone, these two factors being the ones that cause the highest CFRs. We also need studies that analyze the causes of mortality to decrease it and studies that evaluate the impact of COVID-19.
Collapse
Affiliation(s)
- Pablo González-García
- Servicio de Medicina Interna, Hospital Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, 39008 Santander, Spain; (P.G.-G.); (J.P.-L.)
| | - Montserrat Alonso-Sardón
- Área de Medicina Preventiva, Epidemiología y Salud Pública, IBSAL, CIETUS, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Beatriz Rodríguez-Alonso
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas CAUSA, IBSAL, CIETUS, 37007 Salamanca, Spain; (B.R.-A.); (Á.R.-A.); (A.L.-B.)
| | - Hugo Almeida
- Serviçio de Medicina Interna, Unidade Local de Saúde de Guarda, 6300 Guarda, Portugal;
| | - Ángela Romero-Alegría
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas CAUSA, IBSAL, CIETUS, 37007 Salamanca, Spain; (B.R.-A.); (Á.R.-A.); (A.L.-B.)
| | | | - Amparo López-Bernús
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas CAUSA, IBSAL, CIETUS, 37007 Salamanca, Spain; (B.R.-A.); (Á.R.-A.); (A.L.-B.)
| | - Juan Luis Muñoz-Bellido
- Servicio de Microbiología y Parasitología, CAUSA, CIETUS, IBSAL, Departamento de Ciencias Biomédicas y del Diagnóstico, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain;
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain;
| | - Javier Pardo-Lledías
- Servicio de Medicina Interna, Hospital Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, 39008 Santander, Spain; (P.G.-G.); (J.P.-L.)
| | - Moncef Belhassen-García
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas CAUSA, IBSAL, CIETUS, 37007 Salamanca, Spain; (B.R.-A.); (Á.R.-A.); (A.L.-B.)
- Correspondence: ; Tel.: +34-923291100 (ext. 306)
| |
Collapse
|
37
|
van den Bogaart L, Lang BM, Rossi S, Neofytos D, Walti LN, Khanna N, Mueller NJ, Boggian K, Garzoni C, Mombelli M, Manuel O. Central Nervous System Infections in Solid Organ Transplant Recipients: Results from the Swiss Transplant Cohort Study. J Infect 2022; 85:1-7. [PMID: 35605804 DOI: 10.1016/j.jinf.2022.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/25/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To describe the epidemiology and clinical presentation of central nervous system (CNS) infections in solid organ transplant (SOT) recipients in the current era of transplantation. METHODS Patients from the Swiss Transplant Cohort Study (STCS) transplanted between 2008 and 2018 were included with a median follow-up of 3.8 years. Epidemiological, microbiological, and clinical data were extracted from the STCS database and patients' medical records. We calculated incidence rates and 90-day survival of transplant recipients with CNS infection. RESULTS Among 4762 patients, 42 episodes of CNS infection in 41 (0.8%) SOT recipients were identified, with an overall incidence rate of 2.06 per 1000 patient-years. Incidence of CNS infections was similar across all types of transplantations. Time to CNS infection onset ranged from 0.6 to 97 months after transplant. There were 22/42 (52.4%) cases of viral infections, 11/42 (26.2%) of fungal infections, 5/42 (11.9%) of bacterial infections and 4/42 (9.5%) of probable viral/bacterial etiology. Clinical presentation was meningitis/encephalitis in 25 cases (59.5%) and brain-space occupying lesions in 17 cases (40.5%). Twenty-three cases (60.5%) were considered opportunistic infections. Diagnosis were achieved mainly by brain biopsy/necropsy (15/42, 36%) or by cerebrospinal fluid analysis (20/42, 48%). Up to 40% of cases (17/42) had concurrent extra-neurological disease localizations. Overall, 90-day mortality rate was 29.0% (73.0% for fungal, 14.0% for viral and 11.0% for bacterial and probable infections, p<0.0001). CONCLUSIONS CNS infections were rare in the STCS, with viral meningoencephalitis being the most common disease. Fungal infections were associated with a high mortality.
Collapse
Affiliation(s)
- Lorena van den Bogaart
- Service of Infectious Diseases and Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland.
| | - Brian M Lang
- Transplantationsimmunologie and Nephrologie Data Center of Swiss Transplant Cohort Study, Basel University Hospital, Basel, Switzerland
| | - Simona Rossi
- Transplantationsimmunologie and Nephrologie Data Center of Swiss Transplant Cohort Study, Basel University Hospital, Basel, Switzerland
| | - Dionysios Neofytos
- Transplant Infectious Diseases Unit, Geneva University Hospital, Geneva, Switzerland
| | - Laura N Walti
- Department of Infectious Diseases, Inselspital Bern University Hospital, Bern, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, Basel University Hospital, Basel, Switzerland
| | - Nicolas J Mueller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Katia Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, Lugano, Switzerland
| | - Matteo Mombelli
- Service of Infectious Diseases and Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Oriol Manuel
- Service of Infectious Diseases and Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | | |
Collapse
|
38
|
Egger M, Hoenigl M, Thompson GR, Carvalho A, Jenks JD. Let's talk about Sex Characteristics - as a Risk Factor for Invasive Fungal Diseases. Mycoses 2022; 65:599-612. [PMID: 35484713 DOI: 10.1111/myc.13449] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
Abstract
Biological sex, which comprises differences in host sex hormone homeostasis and immune responses, can have a substantial impact on the epidemiology of infectious diseases. Comprehensive data on sex distributions in invasive fungal diseases (IFDs) is lacking. In this review we performed a literature search of in vitro/animal studies, clinical studies, systematic reviews, and meta-analyses of invasive fungal infections. Females represented 51.2% of invasive candidiasis cases, mostly matching the proportions of females among the general population in the United States and Europe (>51%). In contrast, other IFDs were overrepresented in males, including invasive aspergillosis (51% males), mucormycosis (60%), cryptococcosis (74%), coccidioidomycosis (70%), histoplasmosis (61%), and blastomycosis (66%). Behavioral variations, as well as differences related to biological sex, may only in part explain these findings. Further investigations concerning the association between biological sex/gender and the pathogenesis of IFDs is warranted.
Collapse
Affiliation(s)
- Matthias Egger
- Division of Infectious Diseases, Medical University of Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Austria.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Clinical and Translational Fungal - Working Group, University of California San Diego, La Jolla, CA, USA
| | - George R Thompson
- University of California Davis Center for Valley Fever, California, USA.,Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, California, USA.,Department of Medical Microbiology and Immunology, University of California Davis, California, USA
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
39
|
Calero AL, Alonso R, Gadea I, Vega MDM, García MM, Muñoz P, Machado M, Bouza E, García-Rodríguez J. Comparison of the Performance of Two Galactomannan Detection Tests: Platelia Aspergillus Ag and Aspergillus Galactomannan Ag Virclia Monotest. Microbiol Spectr 2022; 10:e0262621. [PMID: 35262395 PMCID: PMC9045373 DOI: 10.1128/spectrum.02626-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
The use of nonculture-based biomarkers such as the determination of galactomannan is sought for the diagnosis of invasive aspergillosis. To investigate the comparative yield of two tests for the detection of galactomannan in patients with or without proven or probable invasive aspergillosis. Overall, 327 samples (327 patients) were analyzed in a retrospective/prospective study performed in 3 hospitals in Madrid, comparing the determination results in serum or bronchoalveolar lavage of two techniques for galactomannan detection, namely, Platelia Aspergillus Ag (Bio-Rad) and Aspergillus galactomannan Ag Virclia Monotest (Vircell S.L.), following the manufacturer's instructions. Both techniques can automate the process, but the second technique has the advantage of individual processing and assembly of each sample without the need for the additional expense of single-dose strips in controls. In total, 288 of the 327 tests performed showed concordant results between both techniques. The agreement between both methods was к = 0.722, and the correlation between indices was ρ = 0.718. Only 39 samples showed discordant results. In those 39 cases, there were 15 patients with proven or probable invasive aspergillosis criteria. For the samples with clinical criteria as a reference, the areas under the curve of the receiver operating characteristic (ROC) curve were 0.962 for Platelia and 0.968 for VirClia. The VirClia test has been proven to be an alternative for diagnosis due to its friendlier automated format than that of the usual Platelia routine test. The VirClia test also allows individual action and, therefore, a more immediate clinical response. IMPORTANCE Invasive mycoses are increasingly present in immunosuppressed or hospitalized patients with serious illnesses, leading to high rates of morbidity and mortality. Invasive aspergillosis is an infection caused, in a percentage greater than 50%, by the genus Aspergillus. It is vitally important to make an early diagnosis that leads to the application of antifungals in the initial stage of the infection. Therefore, tools are required to help with the early diagnosis of the infection. This comparative study of two enzyme immunoassays is based on the detection of galactomannan antigen in serum and bronchoalveolar lavage samples. A new design based on chemiluminescence and presented in an automated single-dose format is compared to a conventional ELISA technique marketed for years. The results obtained from the prospective and retrospective study indicate a high correlation and degree of agreement between both techniques, as well as in their diagnostic performance.
Collapse
Affiliation(s)
- Alba Leyva Calero
- Department of Biochemistry, Immunology and Molecular Parasitology, Universidad de Granada, Granada, Spain
| | - Roberto Alonso
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Biosanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Enfermedades Respiratorias CIBERES, Barcelona, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Fundación Jimenez Díaz, Autonomous University, Madrid, Spain
| | | | - Marta Martín García
- Department of Clinical Microbiology, Fundación Jimenez Díaz, Autonomous University, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Biosanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Enfermedades Respiratorias CIBERES, Barcelona, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Marina Machado
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Biosanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Enfermedades Respiratorias CIBERES, Barcelona, Spain
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Biosanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Enfermedades Respiratorias CIBERES, Barcelona, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Julio García-Rodríguez
- Department of Clinical Microbiology, Hospital La Paz, Autonomous University, Madrid, Spain
| |
Collapse
|
40
|
Kluge S, Strauß R, Kochanek M, Weigand MA, Rohde H, Lahmer T. Aspergillosis: Emerging risk groups in critically ill patients. Med Mycol 2021; 60:6408468. [PMID: 34677613 DOI: 10.1093/mmy/myab064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Information on invasive aspergillosis (IA) and other invasive filamentous fungal infections is limited in non-neutropenic patients admitted to the intensive care unit (ICU) and presenting with no classic IA risk factors. This review is based on the critical appraisal of relevant literature, on the authors' own experience and on discussions that took place at a consensus conference. It aims to review risk factors favoring aspergillosis in ICU patients, with a special emphasis on often overlooked or neglected conditions. In the ICU patients, corticosteroid use to treat underlying conditions such as chronic obstructive pulmonary disease (COPD), sepsis, or severe COVID-19, represents a cardinal risk factor for IA. Important additional host risk factors are COPD, decompensated cirrhosis, liver failure, and severe viral pneumonia (influenza, COVID-19). Clinical observations indicate that patients admitted to the ICU because of sepsis or acute respiratory distress syndrome are more likely to develop probable or proven IA, suggesting that sepsis could also be a possible direct risk factor for IA, as could small molecule inhibitors used in oncology. There are no recommendations for prophylaxis in ICU patients; posaconazole mold-active primary prophylaxis is used in some centers according to guidelines for other patient populations and IA treatment in critically ill patients is basically the same as in other patient populations. A combined evaluation of clinical signs and imaging, classical biomarkers such as the GM assay, and fungal cultures examination, remain the best option to assess response to treatment. LAY SUMMARY The use of corticosteroids and the presence of co-morbidities such as chronic obstructive pulmonary disease, acute or chronic advanced liver disease, or severe viral pneumonia caused by influenza or Covid-19, may increase the risk of invasive aspergillosis in intensive care unit patients.
Collapse
Affiliation(s)
- Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg - Eppendorf, Hamburg, D-20246, Germany
| | - Richard Strauß
- Department of Medicine 1, Medizinische Klinik 1, University Hospital Erlangen, Erlangen, D-91054, Germany
| | - Matthias Kochanek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, D-50937, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, D-69120, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Tobias Lahmer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität Munich, Munich, D-81675, Germany
| |
Collapse
|
41
|
Klein J, Rello J, Dimopoulos G, Bulpa P, Blot K, Vogelaers D, Blot S. Invasive pulmonary aspergillosis in solid-organ transplant patients in the intensive care unit. Transpl Infect Dis 2021; 24:e13746. [PMID: 34843161 DOI: 10.1111/tid.13746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Solid-organ transplantation (SOT) is a well-known risk factor for invasive pulmonary aspergillosis (IPA). We report on the epidemiology and outcome of SOT patients with IPA in an intensive care unit (ICU) setting. METHODS This is a secondary study based on a subset of SOT patients from a prospective observational multicenter cohort (the AspICU project) including ICU patients with at least one Aspergillus spp. positive culture. Cases were classified as proven, probable, or putative IPA, or as Aspergillus-colonized. Mortality was reported at 12 weeks. RESULTS The study included 52 SOT patients (of which 18 lung, 17 liver, 12 kidney, and five heart transplants). Sixteen patients had proven IPA, 28 were categorized as putative IPA (of which only five reached a probable IPA diagnosis according to the European Organization for Research and Treatment of Cancer/Mycosis Study Group and Research Consortium criteria), and eight as Aspergillus-colonization. Among patients with IPA, 20 (45.5%) developed IPA during their ICU stay following transplantation whereas 24 patients (54.5%) had a medical ICU admission. Regarding medical imaging, nearly all IPA cases presented with non-specific findings as only nine demonstrated robust findings suggestive for invasive fungal disease. Overall, severity of the disease was reflected by a high prevalence of underlying conditions and acute organ derangements. Mortality among patients with IPA was 68%. Lung transplantation was associated with better survival (50%). CONCLUSION IPA in SOT patients in the ICU develops in the presence of overall high severity of the disease. It rarely presents with suggestive medical imaging thereby hampering diagnosis. IPA in ICU patients with SOT carries a grim prognosis.
Collapse
Affiliation(s)
- Joachim Klein
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis, Vall d'Hebron Institute of Research, Barcelona, Spain.,Clinical Research, CHRU Nimes, Nimes, France
| | - George Dimopoulos
- Department of Critical Care, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pierre Bulpa
- Department of Intensive Care Unit, Mont-Godinne University Hospital, CHU UCL Namur, Namur, Belgium
| | - Koen Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Dirk Vogelaers
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of General Internal Medicine and Infectious Diseases, AZ Delta, Roeselare, Belgium
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Burns, Trauma and Critical Care Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Cointault O, Joly M, Cassaing S, Labaste F, Danet C, Porte L, Guitard J, Kamar N, Faguer S. Weekly high-dose liposomal amphotericin B prevents invasive aspergillosis after heart transplantation. Transpl Infect Dis 2021; 23:e13745. [PMID: 34657372 DOI: 10.1111/tid.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preventive strategies for invasive aspergillosis (IA) have still not been determined in heart transplant recipients whereas IA leads to a high mortality rate at 12 months posttransplantation. The use of voriconazole or echinocandins was proposed but can favor emergence of Aspergillus or Candida sp. resistant strains or promote neurological and liver disorders in some patients. OBJECTIVES To assess whether universal prophylaxis with weekly high-dose of liposomal amphotericin-B (L-AmB) can safely prevent IA in heart transplant recipients. PATIENTS/METHODS Retrospective before/after study that included 142 patients who received heart transplantation between 2010 and 2019 at the University Hospital of Toulouse (France). Weekly high dose of L-AmB (7.5 mg/kg/week) was used as universal prophylaxis from 2016 because of high environmental exposure to Aspergillus sp. and high incidence of IA. RESULTS Cumulative 1-year incidence of IA decreased from 23% to 5% after introduction of L-Amb prophylaxis. Multivariate analysis (Cox model) identified L-AmB prophylaxis as a protective factor against IA (hazard ratio [HR] 0.21 [95% confidence interval 0; 0.92], p = .04), whereas postoperative renal replacement therapy was associated with IA (HR 3.6 [95% confidence interval 1.38; 9.3], p = .001), after correction for confounding effects (induction regimen, methylprednisolone pulses and history of hematological malignancy). The incidence of acute kidney injury requiring renal replacement therapy was similar in the two groups, suggesting a low risk of kidney toxicity when L-AmB is used weekly. No patient developed severe kidney electrolyte loss nor L-AmB-related anaphylaxis. CONCLUSIONS Once-weekly high-dose L-AmB is safe and may prevent the development of IA after heart transplantation.
Collapse
Affiliation(s)
- Olivier Cointault
- Département de Néphrologie et Transplantation d'organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marine Joly
- Département de Néphrologie et Transplantation d'organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Sophie Cassaing
- Laboratoire de Mycologie-Parasitologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - François Labaste
- Département d'Anesthésie et Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Chloé Danet
- Service de Pharmacologie Clinique, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Lydie Porte
- Service des Maladie Infectieuses et Tropicales, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Joelle Guitard
- Département de Néphrologie et Transplantation d'organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Nassim Kamar
- Département de Néphrologie et Transplantation d'organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Université Paul Sabatier-Toulouse 3, Toulouse, France.,Institut National de la Santé et de la Recherche Médicale, U1043, IFR-BMT, Hôpital Purpan, Toulouse, France
| | - Stanislas Faguer
- Département de Néphrologie et Transplantation d'organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Département d'Anesthésie et Réanimation, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France
| | -
- Département de Néphrologie et Transplantation d'organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
43
|
Shaheen SK, Juvvadi PR, Allen J, Shwab EK, Cole DC, Asfaw YG, Kapoor M, Shaw KJ, Steinbach WJ. In Vitro Activity of APX2041, a New Gwt1 Inhibitor, and In Vivo Efficacy of the Prodrug APX2104 against Aspergillus fumigatus. Antimicrob Agents Chemother 2021; 65:e0068221. [PMID: 34310205 PMCID: PMC8448089 DOI: 10.1128/aac.00682-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis (IA) due to Aspergillus fumigatus is a deadly infection for which new antifungal therapies are needed. Here, we demonstrate the efficacy of a Gwt1 inhibitor, APX2041, and its prodrug, APX2104, against A. fumigatus. The wild-type, azole-resistant, and echinocandin-resistant A. fumigatus strains were equally susceptible to APX2041 in vitro. APX2104 treatment in vivo significantly prolonged survival of neutropenic mice challenged with the wild-type and azole-resistant strains, revealing APX2104 as a potentially promising therapeutic against IA.
Collapse
Affiliation(s)
- Shareef K. Shaheen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Praveen R. Juvvadi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - John Allen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - E. Keats Shwab
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - D. Christopher Cole
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Yohannes G. Asfaw
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Mili Kapoor
- Amplyx Pharmaceuticals, San Diego, California, USA
| | | | - William J. Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
44
|
Central nervous system infections after solid organ transplantation. Curr Opin Infect Dis 2021; 34:207-216. [PMID: 33741794 DOI: 10.1097/qco.0000000000000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Significant advances to our understanding of several neuroinfectious complications after a solid organ transplant (SOT) have occurred in the last few years. Here, we review the central nervous system (CNS) infections that are relevant to SOT via a syndromic approach with a particular emphasis on recent updates in the field. RECENT FINDINGS A few key studies have advanced our understanding of the epidemiology and clinical characteristics of several CNS infections in SOT recipients. Risk factors for poor prognosis and protective effects of standard posttransplant prophylactic strategies have been better elucidated. Newer diagnostic modalities which have broad clinical applications like metagenomic next-generation sequencing, as well as those that help us better understand esoteric concepts of disease pathogenesis have been studied. Finally, several studies have provided newer insights into the treatment of these diseases. SUMMARY Recent findings reflect the steady progress in our understanding of CNS infections post SOT. They provide several avenues for improvement in the prevention, early recognition, and therapeutic outcomes of these diseases.
Collapse
|
45
|
Wilmes D, Coche E, Rodriguez-Villalobos H, Kanaan N. Fungal pneumonia in kidney transplant recipients. Respir Med 2021; 185:106492. [PMID: 34139578 DOI: 10.1016/j.rmed.2021.106492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Fungal pneumonia is a dreaded complication encountered after kidney transplantation, complicated by increased mortality and often associated with graft failure. Diagnosis can be challenging because the clinical presentation is non-specific and diagnostic tools have limited sensitivity and specificity in kidney transplant recipients and must be interpreted in the context of the clinical setting. Management is difficult due to the increased risk of dissemination and severity, multiple comorbidities, drug interactions and reduced immunosuppression which should be applied as an important adjunct to therapy. This review will focus on the main causes of fungal pneumonia in kidney transplant recipients including Pneumocystis, Aspergillus, Cryptococcus, mucormycetes and Histoplasma. Epidemiology, clinical presentation, laboratory and radiographic features, specific characteristics will be discussed with an update on diagnostic procedures and treatment.
Collapse
Affiliation(s)
- D Wilmes
- Division of Internal Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - E Coche
- Division of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - H Rodriguez-Villalobos
- Division of Microbiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - N Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
46
|
Tomiyama T, Motomura T, Iseda N, Morinaga A, Shimagaki T, Kurihara T, Wang H, Toshima T, Nagao Y, Itoh S, Harada N, Yoshizumi T, Mori M. Acute death caused by invasive aspergillosis after living-donor liver transplantation despite good graft function: a case report. Surg Case Rep 2021; 7:118. [PMID: 33978845 PMCID: PMC8116460 DOI: 10.1186/s40792-021-01203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Invasive aspergillosis (IA) is one of the most serious causes of death after liver transplantation (LT). IA is the second most common fungal infection, and its mortality rate exceeds 80%. Case presentation A 67-year-old man presented to our hospital because of fulminant hepatitis caused by hepatitis B virus. Candidiasis was detected in his sputum, and micafungin had already been administered. Living-donor LT was performed using a right lobe graft donated from his daughter with no intraoperative complications. Although he appeared to have good graft function, his oxygenation was inadequate, and a chest radiograph showed many invasive shadows on postoperative day 1. A computed tomography scan also showed many invasive shadows with the halo sign. A blood examination revealed positivity for Aspergillus antigen, and Aspergillus species were detected in his sputum. IA was diagnosed. The antifungal therapy was soon modified to amphotericin B combined with caspofungin. Despite good graft blood flow through the portal vein and hepatic artery and good graft function, the patient died of IA on postoperative day 3. The median time from LT to IA among reports published to date ranges from 18 to 25 days. Conclusions The present report describes the first case of very early onset of IA after LT.
Collapse
Affiliation(s)
- Takahiro Tomiyama
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takashi Motomura
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Norifumi Iseda
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Akinari Morinaga
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Tomonari Shimagaki
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeshi Kurihara
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Huanlin Wang
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeo Toshima
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yoshihiro Nagao
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Shinji Itoh
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Noboru Harada
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaki Mori
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University Hospital, Kyushu University, 3 Chome-1-1 Maidashi, Higashiku, Fukuoka, Fukuoka, 812-8582, Japan
| |
Collapse
|
47
|
Gioia F, Filigheddu E, Corbella L, Fernández-Ruiz M, López-Medrano F, Pérez-Ayala A, Aguado JM, Fariñas MC, Arnaiz F, Calvo J, Cifrian JM, Gonzalez-Rico C, Vidal E, Torre-Cisneros J, Ras MM, Pérez S, Sabe N, López-Soria LM, Rodríguez-Alvarez RJ, Montejo JM, Valerio M, Machado M, Muñoz P, Linares L, Bodro M, Moreno A, Fernández-Cruz A, Cantón R, Moreno S, Martin-Davila P, Fortún J. Invasive aspergillosis in solid organ transplantation: Diagnostic challenges and differences in outcome in a Spanish national cohort (Diaspersot study). Mycoses 2021; 64:1334-1345. [PMID: 33934405 DOI: 10.1111/myc.13298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The diagnosis of invasive aspergillosis (IA) can be problematic in solid organ transplantation (SOT). The prognosis greatly varies according to the type of transplant, and the impact of prophylaxis is not well defined. PATIENTS AND METHODS The Diaspersot cohort analyses the impact of IA in SOT in Spain during the last 10 years. Proven and probable/putative IA was included. RESULTS We analysed 126 cases of IA. The incidences of IA were as follows: 6.5%, 2.9%, 1.8% and 0.6% for lung, heart, liver and kidney transplantation, respectively. EORTC/MSG criteria confirmed only 49.7% of episodes. Tree-in-bud sign or ground-glass infiltrates were present in 56.3% of patients, while serum galactomannan (optical density index >0.5) was positive in 50.6%. A total of 41.3% received combined antifungal therapy. Overall mortality at 3 months was significantly lower (p < 0.001) in lung transplant recipients (14.8%) than in all other transplants [globally: 48.6%; kidney 52.0%, liver 58.3%, heart 31.2%, and combined 42.9%]. Fifty-four percent of episodes occurred despite the receipt of antifungal prophylaxis, and in 10%, IA occurred during prophylaxis (breakthrough infection), with both nebulised amphotericin (in lung transplant recipients) and candins (in the rest). CONCLUSIONS Invasive aspergillosis diagnostic criteria, applied to SOT patients, may differ from those established for haematological patients. IA in lung transplants has a higher incidence, but is associated with a better prognosis than other transplants. Combination therapy is frequently used for IA in SOT. Prophylactic measures require optimisation of its use within this population.
Collapse
Affiliation(s)
- Francesca Gioia
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain
| | - Eta Filigheddu
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain
| | - Laura Corbella
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Fernández-Ruiz
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco López-Medrano
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Pérez-Ayala
- Microbiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Jose María Aguado
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Carmen Fariñas
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Unit, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Francisco Arnaiz
- Infectious Diseases Unit, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Jorge Calvo
- Microbiology Department, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Jose Maria Cifrian
- Pneumology Department, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Claudia Gonzalez-Rico
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Unit, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Elisa Vidal
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), Hospital Universitario Reina Sofía-IMIBIC-Universidad de Cordoba, Cordoba, Spain
| | - Julian Torre-Cisneros
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), Hospital Universitario Reina Sofía-IMIBIC-Universidad de Cordoba, Cordoba, Spain
| | - Maria Mar Ras
- Infectious Disease Department, Hospital Universitari Bellvitge, University of Barcelona, Barcelona, Spain
| | - Sandra Pérez
- Infectious Disease Department, Hospital Universitari Bellvitge, University of Barcelona, Barcelona, Spain
| | - Nuria Sabe
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Disease Department, Hospital Universitari Bellvitge, University of Barcelona, Barcelona, Spain
| | | | | | - José Miguel Montejo
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Disease Unit, Hospital Universitario Cruces, Barakaldo, Spain
| | - Maricela Valerio
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Marina Machado
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Linares
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, Spain
| | - Marta Bodro
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, Spain
| | - Asuncion Moreno
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, Spain
| | - Ana Fernández-Cruz
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario Puerta de Hierro-Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Rafael Cantón
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.,Microbiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Santiago Moreno
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain
| | - Pilar Martin-Davila
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Fortún
- Infectious Diseases Department, Hospital Ramón y Cajal, IRYCIS (Instituto Ramón y Cajal de Investigación Sanitaria), Universidad de Alcalá, Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
48
|
van Delden C, Stampf S, Hirsch HH, Manuel O, Meylan P, Cusini A, Hirzel C, Khanna N, Weisser M, Garzoni C, Boggian K, Berger C, Nadal D, Koller M, Saccilotto R, Mueller NJ. Burden and Timeline of Infectious Diseases in the First Year After Solid Organ Transplantation in the Swiss Transplant Cohort Study. Clin Infect Dis 2021; 71:e159-e169. [PMID: 31915816 PMCID: PMC7583409 DOI: 10.1093/cid/ciz1113] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background The burden and timeline of posttransplant infections are not comprehensively documented in the current era of immunosuppression and prophylaxis. Methods In this prospective study nested within the Swiss Transplant Cohort Study (STCS), all clinically relevant infections were identified by transplant–infectious diseases physicians in persons receiving solid organ transplant (SOT) between May 2008 and December 2014 with ≥12 months of follow-up. Results Among 3541 SOT recipients, 2761 (1612 kidney, 577 liver, 286 lung, 213 heart, and 73 kidney-pancreas) had ≥12 months of follow-up; 1520 patients (55%) suffered 3520 infections during the first year posttransplantation. Burden and timelines of clinically relevant infections differed between transplantations. Bacteria were responsible for 2202 infections (63%) prevailing throughout the year, with a predominance of Enterobacteriaceae (54%) as urinary pathogens in heart, lung, and kidney transplant recipients, and as digestive tract pathogens in liver transplant recipients. Enterococcus spp (20%) occurred as urinary tract pathogens in kidney transplant recipients and as digestive tract pathogens in liver transplant recipients, and Pseudomonas aeruginosa (9%) in lung transplant recipients. Among 1039 viral infections, herpesviruses predominated (51%) in kidney, liver, and heart transplant recipients. Among 263 fungal infections, Candida spp (60%) prevailed as digestive tract pathogens in liver transplant recipients. Opportunistic pathogens, including Aspergillus fumigatus (1.4%) and cytomegalovirus (6%), were rare, scattering over 12 months across all SOT recipients. Conclusions In the current era of immunosuppression and prophylaxis, SOT recipients experience a high burden of infections throughout the first year posttransplantation, with rare opportunistic pathogens and a predominance of bacteria.
Collapse
Affiliation(s)
- Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Susanne Stampf
- Clinic for Transplantation Immunology and Nephrology (Swiss Transplant Cohort Study), University Hospital of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation and Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Meylan
- Institute of Microbiology and Infectious Diseases Service, University Hospital and Medical School, Lausanne, Switzerland
| | - Alexia Cusini
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cédric Hirzel
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nina Khanna
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Maja Weisser
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Christian Garzoni
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland.,Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese, Lugano, Switzerland
| | - Katja Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Christoph Berger
- Division of Infectious Diseases and Hospital Epidemiology and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - David Nadal
- Division of Infectious Diseases and Hospital Epidemiology and Children's Research Center, University Children's Hospital, Zürich, Switzerland
| | - Michael Koller
- Clinic for Transplantation Immunology and Nephrology (Swiss Transplant Cohort Study), University Hospital of Basel, Basel, Switzerland
| | - Ramon Saccilotto
- Clinic for Transplantation Immunology and Nephrology (Swiss Transplant Cohort Study), University Hospital of Basel, Basel, Switzerland
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zürich, Switzerland
| | | |
Collapse
|
49
|
Does Post-Transplant Cytomegalovirus Increase the Risk of Invasive Aspergillosis in Solid Organ Transplant Recipients? A Systematic Review and Meta-Analysis. J Fungi (Basel) 2021; 7:jof7050327. [PMID: 33922773 PMCID: PMC8145336 DOI: 10.3390/jof7050327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Cytomegalovirus (CMV) and invasive aspergillosis (IA) cause high morbidity and mortality in solid organ transplant (SOT) recipients. There are conflicting data with respect to the impact of CMV on IA development in SOT recipients. Methods: A literature search was conducted from existence through to 2 April 2021 using MEDLINE, Embase, and ISI Web of Science databases. This review contained observational studies including cross-sectional, prospective cohort, retrospective cohort, and case-control studies that reported SOT recipients with post-transplant CMV (exposure) and without post-transplant CMV (non-exposure) who developed or did not develop subsequent IA. A random-effects model was used to calculate the pooled effect estimate. Results: A total of 16 studies were included for systematic review and meta-analysis. There were 5437 SOT patients included in the study, with 449 SOT recipients developing post-transplant IA. Post-transplant CMV significantly increased the risk of subsequent IA with pORs of 3.31 (2.34, 4.69), I2 = 30%. Subgroup analyses showed that CMV increased the risk of IA development regardless of the study period (before and after 2003), types of organ transplantation (intra-thoracic and intra-abdominal transplantation), and timing after transplant (early vs. late IA development). Further analyses by CMV definitions showed CMV disease/syndrome increased the risk of IA development, but asymptomatic CMV viremia/infection did not increase the risk of IA. Conclusions: Post-transplant CMV, particularly CMV disease/syndrome, significantly increased the risks of IA, which highlights the importance of CMV prevention strategies in SOT recipients. Further studies are needed to understand the impact of programmatic fungal surveillance or antifungal prophylaxis to prevent this fungal-after-viral phenomenon.
Collapse
|
50
|
Neofytos D, Garcia-Vidal C, Lamoth F, Lichtenstern C, Perrella A, Vehreschild JJ. Invasive aspergillosis in solid organ transplant patients: diagnosis, prophylaxis, treatment, and assessment of response. BMC Infect Dis 2021; 21:296. [PMID: 33761875 PMCID: PMC7989085 DOI: 10.1186/s12879-021-05958-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is a rare complication in solid organ transplant (SOT) recipients. Although IA has significant implications on graft and patient survival, data on diagnosis and management of this infection in SOT recipients are still limited. METHODS Discussion of current practices and limitations in the diagnosis, prophylaxis, and treatment of IA and proposal of means of assessing treatment response in SOT recipients. RESULTS Liver, lung, heart or kidney transplant recipients have common as well as different risk factors to the development of IA, thus each category needs a separate evaluation. Diagnosis of IA in SOT recipients requires a high degree of awareness, because established diagnostic tools may not provide the same sensitivity and specificity observed in the neutropenic population. IA treatment relies primarily on mold-active triazoles, but potential interactions with immunosuppressants and other concomitant therapies need special attention. CONCLUSIONS Criteria to assess response have not been sufficiently evaluated in the SOT population and CT lesion dynamics, and serologic markers may be influenced by the underlying disease and type and severity of immunosuppression. There is a need for well-orchestrated efforts to study IA diagnosis and management in SOT recipients and to develop comprehensive guidelines for this population.
Collapse
Affiliation(s)
- Dionysios Neofytos
- Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland.
| | - Carolina Garcia-Vidal
- Servicio de Enfermedades Infecciosas, Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, FungiCLINIC Research group (AGAUR), Barcelona, Spain
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
- Department of Laboratories, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christoph Lichtenstern
- Department of Anaesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Germany
| | - Alessandro Perrella
- VII Department of Infectious Disease and Immunology, Hospital D. Cotugno, Naples, Italy
- CLSE-Liver Transplant Unit, Hospital A. Cardarelli, Naples, Italy
| | - Jörg Janne Vehreschild
- Medical Department II, Hematology and Oncology, University Hospital of Frankfurt, Frankfurt, Germany
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|