1
|
Diallo K, Missa KF, Tuo KJ, Tiemele LS, Ouattara AF, Gboko KDT, Gragnon BG, Bla KB, Ngoi JM, Wilkinson RJ, Awandare GA, Bonfoh B. Spatiotemporal dynamics of the oropharyngeal microbiome in a cohort of Ivorian school children. Sci Rep 2024; 14:30895. [PMID: 39730689 DOI: 10.1038/s41598-024-81829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
The respiratory tract harbours microorganisms of the normal host microbiota which are also capable of causing invasive disease. Among these, Neisseria meningitidis a commensal bacterium of the oropharynx can cause meningitis, a disease with epidemic potential. The oral microbiome plays a crucial role in maintaining respiratory health. An imbalance in its composition is associated with increased risk of invasive disease. The main objective of this study was to evaluate changes in the spatio-temporal dynamics of the oropharyngeal microbiota considering meningococcal carriage in a cohort of 8-12-year-old school children within (Korhogo) and outside (Abidjan) of the meningitis belt of Côte d'Ivoire. A significant geographic difference in the oropharyngeal microbiome was identified between the two study sites in terms of bacterial abundance and diversity (p < 0.001), with greater diversity in children in Abidjan than in Korhogo. Meningococcal carriage was low in the cohort with eight Neisseria carriers identified in Korhogo (3.64%) including one Neisseria meningitidis (0.45%). No Neisseria were detected in Abidjan indicating geographical differences in carriage (p = 0.006). Negative correlations were also found between Neisseria abundance and humidity. Meningococcal carriage was very low during the study; however, Neisseria carriage differed between the two study areas, with a higher frequency in children in Korhogo. Analysis of the oropharyngeal microbiome showed significant differences between children followed in Abidjan and Korhogo with higher microbial diversity in Abidjan, which is generally associated with better health status. Significant correlations between Neisseria or other pathogens carriage and climatic variables (Temperature, Relative humidity, and Wind speed) were also demonstrated, indicating an important role of climate in the carriage of these bacteria; an important element to note in the current context of climate change.
Collapse
Affiliation(s)
- K Diallo
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire.
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Accra, Ghana.
| | - K F Missa
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody (UFHB), Abidjan, Côte d'Ivoire
| | - K J Tuo
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Laboratoire de Microbiologie, Biotechnologies et Bio-informatique, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - L S Tiemele
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| | - A F Ouattara
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
- Laboratoire de Cytologie et Biologie Animale, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - K D T Gboko
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| | - B G Gragnon
- Laboratoire National d'Appui au Développement Agricole (LANADA), Laboratoire Régional de Korhogo, Korhogo, Côte d'Ivoire
| | - K B Bla
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny de Cocody (UFHB), Abidjan, Côte d'Ivoire
| | - J M Ngoi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Accra, Ghana
| | - R J Wilkinson
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
| | - G A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Accra, Ghana
| | - B Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| |
Collapse
|
2
|
Hibstu Z, Mullu A, Mihret A, Mengist HM. Prevalence, Antibiogram, and Associated Factors of Bacteria Isolated From Presumptive Meningitis Patients at Debre Markos Comprehensive Specialized Hospital, Northwest Ethiopia. Cureus 2022; 14:e28500. [PMID: 36185882 PMCID: PMC9514544 DOI: 10.7759/cureus.28500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Bacterial meningitis (BM) is a public health threat with considerable mortality and morbidity worldwide; particularly in the meningitis belt of Africa where Ethiopia is located. The study aims to assess the prevalence, antibiogram, and associated factors of bacteria isolated from presumptive meningitis patients at Debre Markos Comprehensive Specialized Hospital (DMCSH), Northwest Ethiopia. METHODS We conducted a cross-sectional study between March 1, 2021, and May 30, 2021. Socio-demographic and clinical data were collected using structured questionnaires. Cerebrospinal fluid (CSF) was collected aseptically, and gram stain, culture, and biochemical tests were performed to identify bacterial isolates. An antimicrobial susceptibility test was conducted using the disc diffusion method on Mueller-Hinton agar (MHA). Data were entered into EpiData version 3.1 (Epidata Association, Denmark) and exported to SPSS version 23 software (IBM Corp., Armonk, NY) for analysis. P values ≤ 0.05 at 95% CI were considered statistically significant. RESULTS CSF samples from 152 study participants were analyzed and half (50%, 76/152) of them were males. Bacteria were isolated from 17 individuals with an overall prevalence rate of 11.2% (95% CI= 5.9-16.4). The predominant bacterial isolates were Staphylococcus aureus (S. aureus) and Klebsiella pneumonia (K. pneumoniae) each accounting for 29.4% (5/17). About 41% (7/17) of the isolated bacteria were found to be multi-drug resistant (MDR) with the predominance of gram-negative bacteria (6/7). Bacteria prevalence was significantly higher in individuals with stiff neck [adjusted odds ratio (AOR), 95% CI, 47.529 (3.2-10.92), P=0.023] and tonsillectomy [AOR, 95% CI, 137.015 (6.25-12.34), P=0.02]. CONCLUSION S. aureus and K. pneumoniae were the leading isolates among presumptive meningitis patients. The alarming presence of a high rate of MDR isolates mandates the need to implement the antibiotic stewardship program in the study setting.
Collapse
Affiliation(s)
- Zigale Hibstu
- Medical Laboratory Science, Debre Markos University, Debre Markos, ETH
| | | | - Adane Mihret
- Immunology, Armauer Hansen Research Institute, Addis Ababa, ETH
| | | |
Collapse
|
3
|
Kwambana-Adams BA, Cohen AL, Hampton L, Nhantumbo AA, Heyderman RS, Antonio M, Bita A, Mwenda JM. Toward Establishing Integrated, Comprehensive, and Sustainable Meningitis Surveillance in Africa to Better Inform Vaccination Strategies. J Infect Dis 2021; 224:S299-S306. [PMID: 34469559 PMCID: PMC8409533 DOI: 10.1093/infdis/jiab268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Large populations across sub-Saharan Africa remain at risk of devastating acute bacterial meningitis epidemics and endemic disease. Meningitis surveillance is a cornerstone of disease control, essential for describing temporal changes in disease epidemiology, the rapid detection of outbreaks, guiding vaccine introduction and monitoring vaccine impact. However, meningitis surveillance in most African countries is weak, undermined by parallel surveillance systems with little to no synergy and limited laboratory capacity. African countries need to implement comprehensive meningitis surveillance systems to adapt to the rapidly changing disease trends and vaccine landscapes. The World Health Organization and partners have developed a new investment case to restructure vaccine-preventable disease surveillance. With this new structure, countries will establish comprehensive and sustainable meningitis surveillance systems integrated with greater harmonization between population-based and sentinel surveillance systems. There will also be stronger linkage with existing surveillance systems for vaccine-preventable diseases, such as polio, measles, yellow fever, and rotavirus, as well as with other epidemic-prone diseases to leverage their infrastructure, transport systems, equipment, human resources and funding. The implementation of these concepts is currently being piloted in a few countries in sub-Saharan Africa with support from the World Health Organization and other partners. African countries need to take urgent action to improve synergies and coordination between different surveillance systems to set joint priorities that will inform action to control devastating acute bacterial meningitis effectively.
Collapse
Affiliation(s)
- Brenda Anna Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
- World Health Organization Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
| | - Adam L Cohen
- Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lee Hampton
- Gavi, The Vaccine Alliance, Global Health Campus, Geneva, Switzerland
| | - Aquino Albino Nhantumbo
- Laboratório Nacional de Referência de Microbiologia, Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Martin Antonio
- World Health Organization Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia
- Centre for Epidemic Preparedness and Response, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andre Bita
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Jason Mathiu Mwenda
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| |
Collapse
|
4
|
Okolie CE, Essien UC. Optimizing Laboratory Diagnostic Services for Infectious Meningitis in the Meningitis Belt of sub-Saharan Africa. ACS Infect Dis 2019; 5:1980-1986. [PMID: 31738509 DOI: 10.1021/acsinfecdis.9b00340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For longer than a century, the "meningitis belt" of sub-Saharan Africa has experienced the largest-ever global meningitis epidemic. Whereas HIV-associated immunosuppression drives higher susceptibility to environmental infectious organisms with tropism for the central nervous system (CNS), most diagnostic laboratories in the belt stick to N. meningitidis, H. influenzae, and S. pneumoniae. Cryptococcus neoformans has been the leading cause of death (incidence, 89%; death, 75%). To establish whether diagnostic services target geographically important pathogens, there is a need to know the current spectrum of etiology. Given Africa's agro-silvo-pastoralism, the One Health diagnostic approach is recommended. Considering multipathogen detection capacity, needed speed for corticosteroid therapy decision, and susceptibility/resistance to antimicrobials with improved CNS penetration, proposed laboratory categorization will help neurologists to choose suitable services.
Collapse
Affiliation(s)
- Charles E. Okolie
- Diagnostics for One Health, Department of Microbiology, College of Pure
and Applied Sciences, Landmark University, Km 4 Ipetu Road, Omu-Aran, Kwara State, Nigeria 251101
| | - Unyime C. Essien
- Department of Medical Laboratory Science, Faculty of Allied Sciences, College of Medical and Health Sciences, University of Jos, Jos, Plateau State, Nigeria 930222
| |
Collapse
|
5
|
Paye MF, Gamougame K, Payamps SK, Feagins AR, Moto DD, Moyengar R, Naïbeï N, Vuong J, Diallo AO, Tate A, Soeters HM, Wang X, Acyl MA. Implementation of Case-Based Surveillance and Real-time Polymerase Chain Reaction to Monitor Bacterial Meningitis Pathogens in Chad. J Infect Dis 2019; 220:S182-S189. [PMID: 31671450 PMCID: PMC6822964 DOI: 10.1093/infdis/jiz366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Meningococcal serogroup A conjugate vaccine (MACV) was introduced in Chad during 2011-2012. Meningitis surveillance has been conducted nationwide since 2003, with case-based surveillance (CBS) in select districts from 2012. In 2016, the MenAfriNet consortium supported Chad to implement CBS in 4 additional districts and real-time polymerase chain reaction (rt-PCR) at the national reference laboratory (NRL) to improve pathogen detection. We describe analysis of bacterial meningitis cases during 3 periods: pre-MACV (2010-2012), pre-MenAfriNet (2013-2015), and post-MenAfriNet (2016-2018). METHODS National surveillance targeted meningitis cases caused by Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae. Cerebrospinal fluid specimens, inoculated trans-isolate media, and/or isolates from suspected meningitis cases were tested via culture, latex, and/or rt-PCR; confirmed bacterial meningitis was defined by a positive result on any test. We calculated proportion of suspected cases with a specimen received by period, and proportion of specimens with a bacterial meningitis pathogen identified, by period, pathogen, and test. RESULTS The NRL received specimens for 6.8% (876/12813), 46.4% (316/681), and 79.1% (787/995) of suspected meningitis cases in 2010-2012, 2013-2015, and 2016-2018, respectively, with a bacterial meningitis pathogen detected in 33.6% (294/876), 27.8% (88/316), and 33.2% (261/787) of tested specimens. The number of N. meningitidis serogroup A (NmA) among confirmed bacterial meningitis cases decreased from 254 (86.4%) during 2010-2012 to 2 (2.3%) during 2013-2015, with zero NmA cases detected after 2014. In contrast, proportional and absolute increases were seen between 2010-2012, 2013-2015, and 2016-2018 in cases caused by S. pneumoniae (5.1% [15/294], 65.9% [58/88], and 52.1% [136/261]), NmX (0.7% [2/294], 1.1% [1/88], and 22.2% [58/261]), and Hib (0.3% [1/294], 11.4% [10/88], and 14.9% [39/261]). Of specimens received at the NRL, proportions tested during the 3 periods were 47.7% (418), 53.2% (168), and 9.0% (71) by latex; 81.4% (713), 98.4% (311), and 93.9% (739) by culture; and 0.0% (0), 0.0% (0), and 90.5% (712) by rt-PCR, respectively. During the post-MenAfriNet period (2016-2018), 86.1% (678) of confirmed cases were tested by both culture and rt-PCR, with 12.5% (85) and 32.4% (220) positive by culture and rt-PCR, respectively. CONCLUSIONS CBS implementation was associated with increased specimen referral. Increased detection of non-NmA cases could reflect changes in incidence or increased sensitivity of case detection with rt-PCR. Continued surveillance with the use of rt-PCR to monitor changing epidemiology could inform the development of effective vaccination strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nathan Naïbeï
- Centre de Support en Santé Internationale, N’Djamena, Chad
| | - Jeni Vuong
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alpha Oumar Diallo
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ashley Tate
- Centers for Disease Control and Prevention Foundation
| | - Heidi M Soeters
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xin Wang
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mahamat Ali Acyl
- Service de Surveillance Épidémiologique Intégrée, Ministère de la Santé Publique, N’Djamena, Chad
| |
Collapse
|
6
|
Bratcher HB, Rodrigues CMC, Finn A, Wootton M, Cameron JC, Smith A, Heath P, Ladhani S, Snape MD, Pollard AJ, Cunningham R, Borrow R, Trotter C, Gray SJ, Maiden MCJ, MacLennan JM. UKMenCar4: A cross-sectional survey of asymptomatic meningococcal carriage amongst UK adolescents at a period of low invasive meningococcal disease incidence. Wellcome Open Res 2019; 4:118. [PMID: 31544158 PMCID: PMC6749934 DOI: 10.12688/wellcomeopenres.15362.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2019] [Indexed: 01/02/2023] Open
Abstract
Carriage of
Neisseria meningitidis, the meningococcus, is a prerequisite for invasive meningococcal disease (IMD), a potentially devastating infection that disproportionately afflicts infants and children. Humans are the sole known reservoir for the meningococcus, and it is carried asymptomatically in the nasopharynx of ~10% of the population. Rates of carriage are dependent on age of the host and social and behavioural factors. In the UK, meningococcal carriage has been studied through large, multi-centre carriage surveys of adolescents in 1999, 2000, and 2001, demonstrating carriage can be affected by immunisation with the capsular group C meningococcal conjugate vaccine, inducing population immunity against carriage. Fifteen years after these surveys were carried out, invasive meningococcal disease incidence had declined from a peak in 1999. The UKMenCar4 study was conducted in 2014/15 to investigate rates of carriage amongst the adolescent population during a period of low disease incidence. The protocols and methodology used to perform UKMenCar4, a large carriage survey, are described here.
Collapse
Affiliation(s)
- Holly B Bratcher
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK
| | - Charlene M C Rodrigues
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS2 8AE, UK
| | - Mandy Wootton
- Division of Public Health Wales, Cardiff, CF10 3NW, UK
| | - J Claire Cameron
- NHS National Services Scotland, Health Protection Scotland, Glasgow, G2 6QE, UK
| | - Andrew Smith
- University of Glasgow Dental School, Glasgow, G2 3JZ, UK.,Scottish Microbiology Reference Laboratory, NHS Greater Glasgow & Clyde, Glasgow, G2 6QE, UK
| | - Paul Heath
- Paediatric Infectious Diseases Research Group, St George's, University of London, London, SW17 0QT, UK
| | - Shamez Ladhani
- Paediatric Infectious Diseases Research Group, St George's, University of London, London, SW17 0QT, UK.,Immunisation Department, Public Health England, London, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Richard Cunningham
- Microbiology Department, University Hospitals Plymouth NHS Trust, Plymouth, PL6 8DH, UK
| | - Raymond Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, M13 9WL, UK
| | - Caroline Trotter
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Stephen J Gray
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, M13 9WL, UK
| | - Martin C J Maiden
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK
| | - Jenny M MacLennan
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK
| |
Collapse
|
7
|
Bratcher HB, Rodrigues CMC, Finn A, Wootton M, Cameron JC, Smith A, Heath P, Ladhani S, Snape MD, Pollard AJ, Cunningham R, Borrow R, Trotter C, Gray SJ, Maiden MCJ, MacLennan JM. UKMenCar4: A cross-sectional survey of asymptomatic meningococcal carriage amongst UK adolescents at a period of low invasive meningococcal disease incidence. Wellcome Open Res 2019; 4:118. [PMID: 31544158 DOI: 10.12688/wellcomeopenres.15362.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
Carriage of Neisseria meningitidis, the meningococcus, is a prerequisite for invasive meningococcal disease (IMD), a potentially devastating infection that disproportionately afflicts infants and children. Humans are the sole known reservoir for the meningococcus, and it is carried asymptomatically in the nasopharynx of ~10% of the population. Rates of carriage are dependent on age of the host and social and behavioural factors. In the UK, meningococcal carriage has been studied through large, multi-centre carriage surveys of adolescents in 1999, 2000, and 2001, demonstrating carriage can be affected by immunisation with the capsular group C meningococcal conjugate vaccine, inducing population immunity against carriage. Fifteen years after these surveys were carried out, invasive meningococcal disease incidence had declined from a peak in 1999. The UKMenCar4 study was conducted in 2014/15 to investigate rates of carriage amongst the adolescent population during a period of low disease incidence. The protocols and methodology used to perform UKMenCar4, a large carriage survey, are described here.
Collapse
Affiliation(s)
- Holly B Bratcher
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK
| | - Charlene M C Rodrigues
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS2 8AE, UK
| | - Mandy Wootton
- Division of Public Health Wales, Cardiff, CF10 3NW, UK
| | - J Claire Cameron
- NHS National Services Scotland, Health Protection Scotland, Glasgow, G2 6QE, UK
| | - Andrew Smith
- University of Glasgow Dental School, Glasgow, G2 3JZ, UK.,Scottish Microbiology Reference Laboratory, NHS Greater Glasgow & Clyde, Glasgow, G2 6QE, UK
| | - Paul Heath
- Paediatric Infectious Diseases Research Group, St George's, University of London, London, SW17 0QT, UK
| | - Shamez Ladhani
- Paediatric Infectious Diseases Research Group, St George's, University of London, London, SW17 0QT, UK.,Immunisation Department, Public Health England, London, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Richard Cunningham
- Microbiology Department, University Hospitals Plymouth NHS Trust, Plymouth, PL6 8DH, UK
| | - Raymond Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, M13 9WL, UK
| | - Caroline Trotter
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Stephen J Gray
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, M13 9WL, UK
| | - Martin C J Maiden
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK
| | - Jenny M MacLennan
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK
| |
Collapse
|
8
|
Diallo K, MacLennan J, Harrison OB, Msefula C, Sow SO, Daugla DM, Johnson E, Trotter C, MacLennan CA, Parkhill J, Borrow R, Greenwood BM, Maiden MCJ. Genomic characterization of novel Neisseria species. Sci Rep 2019; 9:13742. [PMID: 31551478 PMCID: PMC6760525 DOI: 10.1038/s41598-019-50203-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Of the ten human-restricted Neisseria species two, Neisseria meningitidis, and Neisseria gonorrhoeae, cause invasive disease: the other eight are carried asymptomatically in the pharynx, possibly modulating meningococcal and gonococcal infections. Consequently, characterizing their diversity is important for understanding the microbiome in health and disease. Whole genome sequences from 181 Neisseria isolates were examined, including those of three well-defined species (N. meningitidis; N. gonorrhoeae; and Neisseria polysaccharea) and genomes of isolates unassigned to any species (Nspp). Sequence analysis of ribosomal genes, and a set of core (cgMLST) genes were used to infer phylogenetic relationships. Average Nucleotide Identity (ANI) and phenotypic data were used to define species clusters, and morphological and metabolic differences among them. Phylogenetic analyses identified two polyphyletic clusters (N. polysaccharea and Nspp.), while, cgMLST data grouped Nspp isolates into nine clusters and identified at least three N. polysaccharea clusters. ANI results classified Nspp into seven putative species, and also indicated at least three putative N. polysaccharea species. Electron microscopy identified morphological differences among these species. This genomic approach provided a consistent methodology for species characterization using distinct phylogenetic clusters. Seven putative novel Neisseria species were identified, confirming the importance of genomic studies in the characterization of the genus Neisseria.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre pour les Vaccins en Développement, Bamako, Mali.
- Department of Zoology, University of Oxford, Oxford, UK.
| | | | | | - Chisomo Msefula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Samba O Sow
- Centre pour les Vaccins en Développement, Bamako, Mali
| | | | - Errin Johnson
- Electron Microscopy Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Calman A MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester, UK
| | | | | |
Collapse
|
9
|
Arifin SMN, Zimmer C, Trotter C, Colombini A, Sidikou F, LaForce FM, Cohen T, Yaesoubi R. Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study. Med Decis Making 2019; 39:553-567. [PMID: 31268405 PMCID: PMC6786941 DOI: 10.1177/0272989x19859899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background. Despite the introduction of an effective serogroup A conjugate vaccine (MenAfriVac™), sporadic epidemics of other Neisseria meningitidis serogroups remain a concern in Africa. Polyvalent meningococcal conjugate (PMC) vaccines may offer alternatives to current strategies that rely on routine infant vaccination with MenAfriVac plus, in the event of an epidemic, district-specific reactive campaigns using polyvalent meningococcal polysaccharide (PMP) vaccines. Methods. We developed an agent-based transmission model of N. meningitidis in Niger to compare the health effects and costs of current vaccination practice and 3 alternatives. Each alternative replaces MenAfriVac in the infant vaccination series with PMC and either replaces PMP with PMC for reactive campaigns or implements a one-time catch up campaign with PMC for children and young adults. Results. Over a 28-year period, replacement of MenAfriVac with PMC in the infant immunization series and of PMP in reactive campaigns would avert 63% of expected cases (95% prediction interval 49%-75%) if elimination of serogroup A is not followed by serogroup replacement. At a PMC price of $4/dose, this would cost $1412 ($81-$3510) per disability-adjusted life-year (DALY) averted. If serogroup replacement occurs, the cost-effectiveness of this strategy improves to $662 (cost-saving, $2473) per DALY averted. Sensitivity analyses accounting for incomplete laboratory confirmation suggest that a catch-up PMC campaign would also meet standard cost-effectiveness thresholds. Limitations. The assumption that polyvalent vaccines offer similar protection against all serogroups is simplifying. Conclusions. The use of PMC vaccines to replace MenAfriVac in routine infant immunization and in district-specific reactive campaigns would have important health benefits and is likely to be cost-effective in Niger. An additional PMC catch-up campaign would also be cost-effective if we account for incomplete laboratory reporting.
Collapse
Affiliation(s)
- S M Niaz Arifin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Christoph Zimmer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Fati Sidikou
- Centre de Recherche Medicale et Sanitaire (CERMES), Niamey, NE, Niger
| | | | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Reza Yaesoubi
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
10
|
Greenwood BM, Aseffa A, Caugant DA, Diallo K, Kristiansen PA, Maiden MCJ, Stuart JM, Trotter CL. Narrative review of methods and findings of recent studies on the carriage of meningococci and other Neisseria species in the African Meningitis Belt. Trop Med Int Health 2019; 24:143-154. [PMID: 30461138 PMCID: PMC7380001 DOI: 10.1111/tmi.13185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To review the findings of studies of pharyngeal carriage of Neisseria meningitidis and related species conducted in the African meningitis belt since a previous review published in 2007. METHODS PubMed and Web of Science were searched in July 2018 using the terms 'meningococcal OR Neisseria meningitidis OR lactamica AND carriage AND Africa', with the search limited to papers published on or after 1st January 2007. We conducted a narrative review of these publications. RESULTS One hundred and thirteen papers were identified using the search terms described above, 20 of which reported new data from surveys conducted in an African meningitis belt country. These papers described 40 surveys conducted before the introduction of the group A meningococcal conjugate vaccine (MenAfriVacR ) during which 66 707 pharyngeal swabs were obtained. Carriage prevalence of N. meningitidis varied substantially by time and place, ranging from <1% to 24%. The mean pharyngeal carriage prevalence of N. meningitidis across all surveys was 4.5% [95% CI: 3.4%, 6.8%] and that of capsulated N. meningitidis was 2.8% [95% CI: 1.9%; 5.2%]. A study of households provided strong evidence for meningococcal transmission within and outside households. The introduction of MenAfriVac® led to marked reductions in carriage of the serogroup A meningococcus in Burkina Faso and Chad. CONCLUSIONS Recent studies employing standardised methods confirm the findings of older studies that carriage of N. meningitidis in the African meningitis belt is highly variable over time and place, but generally occurs with a lower prevalence and shorter duration than reported from industrialised countries.
Collapse
Affiliation(s)
| | | | | | - Kanny Diallo
- Department of BacteriologyNoguchi Memorial Research InstituteUniversity of LegonAccraLegon
| | | | | | | | | |
Collapse
|
11
|
Maiden MCJ. The Impact of Nucleotide Sequence Analysis on Meningococcal Vaccine Development and Assessment. Front Immunol 2019; 9:3151. [PMID: 30697213 PMCID: PMC6340965 DOI: 10.3389/fimmu.2018.03151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Since it became available as a routine tool in biology, the determination and analysis of nucleotide sequences has been applied to the design of vaccines and the investigation of their effectiveness. As vaccination is primarily concerned with the interaction of biological molecules with the immune system, the utility of sequence data is not immediately obvious and, indeed, nucleotide sequence data are most effective when used to complement more conventional immunological approaches. Here, the impact of sequencing on the field of vaccinology will be illustrated with reference to the development and implementation of vaccines against Neisseria meningitidis (the meningococcus) over the 30-year period from the late-1980s to the late-2010s. Nucleotide sequence-based studies have been important in the fight against this aggressive pathogen largely because of its high genetic and antigenic diversity, properties that were only fully appreciated because of sequence-based studies. Five aspects will be considered, the use of sequence data to: (i) discover vaccine antigens; (ii) assess the diversity and distribution of vaccine antigens; (iii) determine the evolutionary and population biology of the organism and their implications for immunization; and (iv) develop molecular approaches to investigate pre- and post-vaccine pathogen populations to assess vaccine impact. One of the great advantages of nucleotide sequence data has been its scalability, which has meant that increasingly large data sets have been available, which has proved invaluable in the investigation of an organism as diverse and enigmatic as the meningococcus.
Collapse
|
12
|
Diallo K, Coulibaly MD, Rebbetts LS, Harrison OB, Lucidarme J, Gamougam K, Tekletsion YK, Bugri A, Toure A, Issaka B, Dieng M, Trotter C, Collard JM, Sow SO, Wang X, Mayer LW, Borrow R, Greenwood BM, Maiden MCJ, Manigart O. Development of a PCR algorithm to detect and characterize Neisseria meningitidis carriage isolates in the African meningitis belt. PLoS One 2018; 13:e0206453. [PMID: 30517103 PMCID: PMC6281270 DOI: 10.1371/journal.pone.0206453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/12/2018] [Indexed: 12/25/2022] Open
Abstract
Improved methods for the detection and characterization of carried Neisseria meningitidis isolates are needed. We evaluated a multiplex PCR algorithm for the detection of a variety of carriage strains in the meningitis belt. To further improve the sensitivity and specificity of the existing PCR assays, primers for gel-based PCR assays (sodC, H, Z) and primers/probe for real-time quantitative PCR (qPCR) assays (porA, cnl, sodC, H, E, Z) were modified or created using Primer Express software. Optimized multiplex PCR assays were tested on 247 well-characterised carriage isolates from six countries of the African meningitis belt. The PCR algorithm developed enabled the detection of N. meningitidis species using gel-based and real-time multiplex PCR targeting porA, sodC, cnl and characterization of capsule genes through sequential multiplex PCR assays for genogroups (A, W, X, then B, C, Y and finally H, E and Z). Targeting both porA and sodC genes together allowed the detection of meningococci with a sensitivity of 96% and 89% and a specificity of 78% and 67%, for qPCR and gel-based PCR respectively. The sensitivity and specificity ranges for capsular genogrouping of N. meningitidis are 67% - 100% and 98%-100% respectively for gel-based PCR and 90%-100% and 99%-100% for qPCR. We developed a PCR algorithm that allows simple, rapid and systematic detection and characterisation of most major and minor N. meningitidis capsular groups, including uncommon capsular groups (H, E, Z).
Collapse
Affiliation(s)
- Kanny Diallo
- Centre pour le Développement des Vaccins (CVD), Bamako, Mali
- University of Oxford (Department of Zoology), Oxford, United Kingdom
| | | | - Lisa S. Rebbetts
- University of Oxford (Department of Zoology), Oxford, United Kingdom
| | - Odile B. Harrison
- University of Oxford (Department of Zoology), Oxford, United Kingdom
| | - Jay Lucidarme
- Public Health England, (PHE–Vaccine Evaluation Unit), Manchester, United Kingdom
| | - Kadidja Gamougam
- Centre de Support en Santé Internationale (CSSI), Ndjamena, Chad
| | | | - Akalifa Bugri
- Navrongo Health Research Centre (NHRC), Navrongo, Ghana
| | - Aliou Toure
- Centre pour le Développement des Vaccins (CVD), Bamako, Mali
| | - Bassira Issaka
- Centre de Recherche Médicale et Sanitaire (CERMES), Niamey, Niger
| | - Marietou Dieng
- Institut de Recherche pour le Développement (IRD), Dakar, Senegal
| | - Caroline Trotter
- University of Cambridge (Disease Dynamics Unit -Department of Veterinary Medicine), Cambridge, United Kingdom
| | | | - Samba O. Sow
- Centre pour le Développement des Vaccins (CVD), Bamako, Mali
| | - Xin Wang
- Centers for Disease Control and Prevention, Division of Bacterial Diseases, Atlanta, United States of America
| | - Leonard W. Mayer
- Centers for Disease Control and Prevention, Division of Bacterial Diseases, Atlanta, United States of America
| | - Ray Borrow
- Public Health England, (PHE–Vaccine Evaluation Unit), Manchester, United Kingdom
| | - Brian M. Greenwood
- London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | | | - Olivier Manigart
- London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
- * E-mail:
| | | |
Collapse
|
13
|
Household transmission of Neisseria meningitidis in the African meningitis belt: a longitudinal cohort study. LANCET GLOBAL HEALTH 2018; 4:e989-e995. [PMID: 27855873 DOI: 10.1016/s2214-109x(16)30244-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/28/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Information on transmission of meningococcal infection in the African meningitis belt is scarce. We aimed to describe transmission patterns of Neisseria meningitidis (meningococcus) in households in the African meningitis belt. METHODS Cross-sectional carriage surveys were done in seven African meningitis belt countries (Chad, Ethiopia, Ghana, Mali, Niger, Nigeria, and Senegal) between Aug 1, 2010, and Oct 15, 2012. Meningococcal carriers identified in these surveys and all available people in their households were recruited into this longitudinal cohort study. We took pharyngeal swabs at first visit and took further swabs twice a month for 2 months and then monthly for a further 4 months. We used conventional bacteriological and molecular techniques to identify and characterise meningococci. We estimated the rates of carriage acquisition and recovery using a multi-state Markov model. FINDINGS Meningococci were isolated from 241 (25%) of 980 members of 133 households in which a carrier had been identified in the cross-sectional survey or at the first household visit. Carriage was detected subsequently in another household member who was not an index carrier in 75 households. Transmission within a household, suggested by detection of a further carrier with the same strain as the index carrier, was found in 52 of these 75 households. Children younger than 5 years were the group that most frequently acquired carriage from other household members. The overall individual acquisition rate was 2·4% (95% CI 1·6-4·0) per month, varying by age and household carriage status. The mean duration of carriage was 3·4 months (95% CI 2·7-4·4). INTERPRETATION In the African meningitis belt, transmission of meningococci within households is important, particularly for young children, and periods of carriage are usually of short duration. FUNDING Bill & Melinda Gates Foundation, Wellcome Trust.
Collapse
|
14
|
Ispasanie E, Micoli F, Lamelas A, Keller D, Berti F, De Riccio R, Di Benedettoi R, Rondini S, Pluschke G. Spontaneous point mutations in the capsule synthesis locus leading to structural and functional changes of the capsule in serogroup A meningococcal populations. Virulence 2018; 9:1138-1149. [PMID: 30067453 PMCID: PMC6086313 DOI: 10.1080/21505594.2018.1467710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023] Open
Abstract
Whole genome sequencing analysis of 100 Neisseria meningitidis serogroup A isolates has revealed that the csaABCD-ctrABCD-ctrEF capsule polysaccharide synthesis locus represents a spontaneous point mutation hotspot. Structural and functional properties of the capsule of 11 carriage and two disease isolates with non-synonymous point mutations or stop codons in capsule synthesis genes were analyzed for their capsular polysaccharide expression, recognition by antibodies and sensitivity to bactericidal killing. Eight of eleven carriage isolates presenting capsule locus mutations expressed no or reduced amounts of capsule. One isolate with a stop codon in the O-acetyltransferase gene expressed non-O-acetylated polysaccharide, and was not recognized by anti-capsule antibodies. Capsule and O-acetylation deficient mutants were resistant to complement deposition and killing mediated by anti-capsular antibodies, but not by anti-lipopolysaccharide antibodies. Two capsule polymerase mutants, one carriage and one case isolate, showed capsule over-expression and increased resistance against bactericidal activity of both capsule- and lipopolysaccharide-specific antibodies. Meningococci have developed multiple strategies for changing capsule expression and structure, which is relevant both for colonization and virulence. Here we show that point mutations in the capsule synthesis genes substantially contribute to the repertoire of genetic mechanisms in natural populations leading to variability in capsule expression.
Collapse
Affiliation(s)
- Emma Ispasanie
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecologia, A.C., Veracruz, México
| | - Dominique Keller
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | | | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Molecular Immunology Unit, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Basta NE, Berthe A, Keita M, Onwuchekwa U, Tamboura B, Traore A, Hassan-King M, Manigart O, Nascimento M, Stuart JM, Trotter C, Blake J, Carr AD, Gray SJ, Newbold LS, Deng Y, Wolfson J, Halloran ME, Greenwood B, Borrow R, Sow SO. Meningococcal carriage within households in the African meningitis belt: A longitudinal pilot study. J Infect 2017; 76:140-148. [PMID: 29197599 PMCID: PMC5790055 DOI: 10.1016/j.jinf.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 10/29/2022]
Abstract
OBJECTIVES Carriers of Neisseria meningitidis are a key source of transmission. In the African meningitis belt, where risk of meningococcal disease is highest, a greater understanding of meningococcal carriage dynamics is needed. METHODS We randomly selected an age-stratified sample of 400 residents from 116 households in Bamako, Mali, and collected pharyngeal swabs in May 2010. A month later, we enrolled all 202 residents of 20 of these households (6 with known carriers) and collected swabs monthly for 6 months prior to MenAfriVac vaccine introduction and returned 10 months later to collect swabs monthly for 3 months. We used standard bacteriological methods to identify N. meningitidis carriers and fit hidden Markov models to assess acquisition and clearance overall and by sex and age. RESULTS During the cross-sectional study 5.0% of individuals (20/400) were carriers. During the longitudinal study, 73 carriage events were identified from 1422 swabs analyzed, and 16.3% of individuals (33/202) were identified as carriers at least once. The majority of isolates were non-groupable; no serogroup A carriers were identified. CONCLUSIONS Our results suggest that the duration of carriage with any N. meningitidis averages 2.9 months and that males and children acquire and lose carriage more frequently in an urban setting in Mali. Our study informed the design of a larger study implemented in seven countries of the African meningitis belt.
Collapse
Affiliation(s)
- Nicole E Basta
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55454, USA.
| | - Abdoulaye Berthe
- Centre pour les Vaccins en Developpement-Mali, Centre National d'Appui a la lutte contre la Maladie (CNAM) Ministère de la Santé, Ex-Institut Marchoux, BP 251, Bamako, Mali
| | - Mahamadou Keita
- Centre pour les Vaccins en Developpement-Mali, Centre National d'Appui a la lutte contre la Maladie (CNAM) Ministère de la Santé, Ex-Institut Marchoux, BP 251, Bamako, Mali
| | - Uma Onwuchekwa
- Centre pour les Vaccins en Developpement-Mali, Centre National d'Appui a la lutte contre la Maladie (CNAM) Ministère de la Santé, Ex-Institut Marchoux, BP 251, Bamako, Mali
| | - Boubou Tamboura
- Centre pour les Vaccins en Developpement-Mali, Centre National d'Appui a la lutte contre la Maladie (CNAM) Ministère de la Santé, Ex-Institut Marchoux, BP 251, Bamako, Mali
| | - Awa Traore
- Centre pour les Vaccins en Developpement-Mali, Centre National d'Appui a la lutte contre la Maladie (CNAM) Ministère de la Santé, Ex-Institut Marchoux, BP 251, Bamako, Mali
| | - Musa Hassan-King
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Olivier Manigart
- Centre pour les Vaccins en Developpement-Mali, Centre National d'Appui a la lutte contre la Maladie (CNAM) Ministère de la Santé, Ex-Institut Marchoux, BP 251, Bamako, Mali; London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Maria Nascimento
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - James M Stuart
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | - Jayne Blake
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, M13 9WL, United Kingdom
| | - Anthony D Carr
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, M13 9WL, United Kingdom
| | - Stephen J Gray
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, M13 9WL, United Kingdom
| | - Lynne S Newbold
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, M13 9WL, United Kingdom
| | - Yangqing Deng
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55454, USA
| | - Julian Wolfson
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55454, USA
| | - M Elizabeth Halloran
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA
| | - Brian Greenwood
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, M13 9WL, United Kingdom
| | - Samba O Sow
- Centre pour les Vaccins en Developpement-Mali, Centre National d'Appui a la lutte contre la Maladie (CNAM) Ministère de la Santé, Ex-Institut Marchoux, BP 251, Bamako, Mali
| |
Collapse
|
16
|
Cooper LV, Boukary RM, Aseffa A, Mihret W, Collard JM, Daugla D, Hodgson A, Sokhna C, Omotara B, Sow S, Quaye SL, Diallo K, Manigart O, Maiden MCJ, Findlow H, Borrow R, Stuart JM, Greenwood BM, Trotter CL. Investigation of correlates of protection against pharyngeal carriage of Neisseria meningitidis genogroups W and Y in the African meningitis belt. PLoS One 2017; 12:e0182575. [PMID: 28796795 PMCID: PMC5552120 DOI: 10.1371/journal.pone.0182575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Serum bactericidal antibody titres that correlate with protection against invasive meningococcal disease have been characterised. However, titres that are associated with protection against acquisition of pharyngeal carriage of Neisseria meningitidis are not known. METHODS Sera were obtained from the members of a household in seven countries of the African meningitis belt in which a pharyngeal carrier of N. meningitidis had been identified during a cross-sectional survey. Serum bactericidal antibody titres at baseline were compared between individuals in the household of the carrier who became a carrier of a meningococcus of the same genogroup during six months of subsequent follow-up and household members who did not become a carrier of a meningococcus of this genogroup during this period. RESULTS Serum bacterial antibody titres were significantly higher in carriers of a serogroup W or Y meningococcus at the time of recruitment than in those who were not a carrier of N. meningitidis of the same genogroup. Serum bactericidal antibody titres to a strain of N. meningitis of the same genogroup as the index cases were no different in individuals who acquired carriage with a meningococcus of the same genogroup as the index case than in those who did not become a carrier during six months of follow-up. CONCLUSION Serum bacterial antibody titres to N. meningitidis of genogroup W or Y in the range of those acquired by natural exposure to meningococci of these genogroups, or with cross-reactive bacteria, are not associated with protection against acquisition of carriage with meningococci of either of these genogroups.
Collapse
Affiliation(s)
- Laura V. Cooper
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Wude Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Doumagoum Daugla
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | | | - Cheikh Sokhna
- Institut de Recherche pour le Développement, Dakar, Senegal
| | - Babatunji Omotara
- Department of Community Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Samba Sow
- Centre pour les Vaccins en Développement, Bamako, Mali
| | | | - Kanny Diallo
- Centre pour les Vaccins en Développement, Bamako, Mali
| | - Olivier Manigart
- Faculty of Infectious Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Helen Findlow
- Public Health England Vaccine Evaluation Unit, Manchester, United Kingdom
| | - Ray Borrow
- Public Health England Vaccine Evaluation Unit, Manchester, United Kingdom
| | - James M. Stuart
- Faculty of Infectious Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Brian M. Greenwood
- Faculty of Infectious Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline L. Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Carter MJ, Mitchell RM, Meyer Sauteur PM, Kelly DF, Trück J. The Antibody-Secreting Cell Response to Infection: Kinetics and Clinical Applications. Front Immunol 2017; 8:630. [PMID: 28620385 PMCID: PMC5451496 DOI: 10.3389/fimmu.2017.00630] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/12/2017] [Indexed: 01/15/2023] Open
Abstract
Despite the availability of advances in molecular diagnostic testing for infectious disease, there is still a need for tools that advance clinical care and public health. Current methods focus on pathogen detection with unprecedented precision, but often lack specificity. In contrast, the host immune response is highly specific for the infecting pathogen. Serological studies are rarely helpful in clinical settings, as they require acute and convalescent antibody testing. However, the B cell response is much more rapid and short-lived, making it an optimal target for determining disease aetiology in patients with infections. The performance of tests that aim to detect circulating antigen-specific antibody-secreting cells (ASCs) has previously been unclear. Test performance is reliant on detecting the presence of ASCs in the peripheral blood. As such, the kinetics of the ASC response to infection, the antigen specificity of the ASC response, and the methods of ASC detection are all critical. In this review, we summarize previous studies that have used techniques to enumerate ASCs during infection. We describe the emergence, peak, and waning of these cells in peripheral blood during infection with a number of bacterial and viral pathogens, as well as malaria infection. We find that the timing of antigen-specific ASC appearance and disappearance is highly conserved across pathogens, with a peak response between day 7 and day 8 of illness and largely absent following day 14 since onset of symptoms. Data show a sensitivity of ~90% and specificity >80% for pathogen detection using ASC-based methods. Overall, the summarised work indicates that ASC-based methods may be very sensitive and highly specific for determining the etiology of infection and have some advantages over current methods. Important areas of research remain, including more accurate definition of the timing of the ASC response to infection, the biological mechanisms underlying variability in its magnitude and the evolution and the B cell receptor in response to immune challenge. Nonetheless, there is potential of the ASC response to infection to be exploited as the basis for novel diagnostic tests to inform clinical care and public health priorities.
Collapse
Affiliation(s)
- Michael J Carter
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Ruth M Mitchell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.,University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
18
|
Diallo K, Gamougam K, Daugla DM, Harrison OB, Bray JE, Caugant DA, Lucidarme J, Trotter CL, Hassan-King M, Stuart JM, Manigart O, Greenwood BM, Maiden MCJ. Hierarchical genomic analysis of carried and invasive serogroup A Neisseria meningitidis during the 2011 epidemic in Chad. BMC Genomics 2017; 18:398. [PMID: 28532434 PMCID: PMC5441073 DOI: 10.1186/s12864-017-3789-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background Serogroup A Neisseria meningitidis (NmA) was the cause of the 2011 meningitis epidemics in Chad. This bacterium, often carried asymptomatically, is considered to be an “accidental pathogen”; however, the transition from carriage to disease phenotype remains poorly understood. This study examined the role genetic diversity might play in this transition by comparing genomes from geographically and temporally matched invasive and carried NmA isolates. Results All 23 NmA isolates belonged to the ST-5 clonal complex (cc5). Ribosomal MLST comparison with other publically available NmA:cc5 showed that isolates were closely related, although those from Chad formed two distinct branches and did not cluster with other NmA, based on their MLST profile, geographical and temporal location. Whole genome MLST (wgMLST) comparison identified 242 variable genes among all Chadian isolates and clustered them into three distinct phylogenetic groups (Clusters 1, 2, and 3): no systematic clustering by disease or carriage source was observed. There was a significant difference (p = 0.0070) between the mean age of the individuals from which isolates from Cluster 1 and Cluster 2 were obtained, irrespective of whether the person was a case or a carrier. Conclusions Whole genome sequencing provided high-resolution characterization of the genetic diversity of these closely related NmA isolates. The invasive meningococcal isolates obtained during the epidemic were not homogeneous; rather, a variety of closely related but distinct clones were circulating in the human population with some clones preferentially colonizing specific age groups, reflecting a potential age-related niche adaptation. Systematic genetic differences were not identified between carriage and disease isolates consistent with invasive meningococcal disease being a multi-factorial event resulting from changes in host-pathogen interactions along with the bacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3789-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre pour les Vaccins en Développement, Bamako, Mali. .,Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK.
| | | | | | - Odile B Harrison
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK
| | - James E Bray
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK
| | | | - Jay Lucidarme
- Vaccine Evaluation Unit, Public Health England, Manchester, UK
| | - Caroline L Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - James M Stuart
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Martin C J Maiden
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK
| |
Collapse
|
19
|
Tekin RT, Dinleyici EC, Ceyhan M, Karbuz A, Salman N, Sutçu M, Kurugol Z, Balliel Y, Celik M, Hacimustafaoglu M, Kuyucu N, Kondolot M, Sensoy G, Metin O, Kara SS, Dinleyici M, Kılıç O, Bayhan C, Gurbuz V, Aycan E, Memedova A, Karli A, Bozlu G, Celebi S. The prevalence, serogroup distribution and risk factors of meningococcal carriage in adolescents and young adults in Turkey. Hum Vaccin Immunother 2017; 13:1182-1189. [PMID: 28140784 PMCID: PMC5443366 DOI: 10.1080/21645515.2016.1268304] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
The serogroup epidemiology of invasive meningococcal disease (IMD), which varies considerably by geographic region and immunization schedule, changes continuously. Meningococcal carriage data are crucial for assessing IMD epidemiology and designing f potential vaccination strategies. Meningococcal seroepidemiology in Turkey differs from that in other countries: serogroups W and B are the predominant strains for IMD during childhood, whereas no serogroup C cases were identified over the last 10 y and no adolescent peak for IMD was found. There is a lack of data on meningococcal carriage that represents the whole population. The aims of this multicenter study (12 cities in Turkey) were to evaluate the prevalence of Neisseria meningitidis carriage, the serogroup distribution and the related risk factors (educational status, living in a dormitory or student house, being a household contact with Hajj pilgrims, smoking, completion of military service, attending bars/clubs) in 1518 adolescents and young adults aged 10-24 y. The presence of N. meningitidis DNA was tested, and a serogroup analysis was performed using polymerase chain reaction. The overall meningococcal carriage rate was 6.3% (n = 96) in the study population. A serogroup distribution of the 96 N. meningitidis strains isolated from the nasopharyngeal specimens revealed serogroup A in 5 specimens (5.2%), serogroup B in 9 specimens (9.4%), serogroup W in 64 specimens (66.6%), and serogroup Y in 4 specimens (4.2%); 14 were classified as non-grouped (14.4%). No serogroup C cases were detected. The nasopharyngeal meningococcal carriage rate was 5% in the 10-14 age group, 6.4% in the 15-17 age-group, and 4.7% in the 18-20 age group; the highest carriage rate was found in the 21-24 age group (9.1%), which was significantly higher than those of the other age groups (p < 0.05). The highest carriage rate was found in 17-year-old adolescents (11%). The carriage rate was higher among the participants who had had close contact with Hajj/Umrah pilgrims (p < 0.01) or a history of upper respiratory tract infections over the past 3 months (p < 0.05). The nasopharyngeal carriage rate was 6.3% among adolescents and young adults in Turkey and was similar to the recent rates observed in the same age groups in other countries. The most prevalent serogroup was W, and no serogroup C cases were found. In conclusion, the present study found that meningococcal carriage reaches its peak level by age 17, the highest carriage rate was found in 21 - to 24 - year-olds and the majority of the carriage cases were due to serogroup W. Adolescents and young adult carriers seem to be a potential reservoir for the disease, and further immunization strategies, including adolescent immunization, may play a role in the control of IMD.
Collapse
Affiliation(s)
- Rahmi Tuna Tekin
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Ener Cagri Dinleyici
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Mehmet Ceyhan
- Hacettepe University Faculty of Medicine, Pediatric Infectious Disease Unit, Ankara, Turkey
| | - Adem Karbuz
- Okmeydanı Training and Research Hospital, Pediatric Infectious Disease Unit, Istanbul, Turkey
| | - Nuran Salman
- Istanbul University Istanbul Faculty of Medicine, Pediatric Infectious Disease Unit, Istanbul, Turkey
| | - Murat Sutçu
- Istanbul University Istanbul Faculty of Medicine, Pediatric Infectious Disease Unit, Istanbul, Turkey
| | - Zafer Kurugol
- Ege University Faculty of Medicine, Pediatric Infectious Disease Unit, Izmir, Turkey
| | - Yasemin Balliel
- Muratpasa 1st Caybasi Family Practice Center, Antalya, Turkey
| | - Melda Celik
- Sanlıurfa Children Hospital, Sanliurfa, Turkey
| | | | - Necdet Kuyucu
- Mersin University Faculty of Medicine, Pediatric Infectious Disease Unit, Mersin, Turkey
| | - Meda Kondolot
- Erciyes University Faculty of Medicine, Department of Social Pediatrics, Kayseri, Turkey
| | - Gülnar Sensoy
- Konya Training and Research Hospital, Pediatric Infectious Disease Unit, Konya, Turkey
| | - Ozge Metin
- Ondokuz Mayıs University Faculty of Medicine, Pediatric Infectious Disease Unit, Samsun, Turkey
| | - Soner Sertan Kara
- Erzurum Training and Research Hospital, Pediatric Infectious Disease Unit, Erzurum, Turkey
| | - Meltem Dinleyici
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Omer Kılıç
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Cihangul Bayhan
- Hacettepe University Faculty of Medicine, Pediatric Infectious Disease Unit, Ankara, Turkey
| | - Venhar Gurbuz
- Hacettepe University Faculty of Medicine, Pediatric Infectious Disease Unit, Ankara, Turkey
| | - Emre Aycan
- Hacettepe University Faculty of Medicine, Pediatric Infectious Disease Unit, Ankara, Turkey
| | - Aygun Memedova
- Ege University Faculty of Medicine, Pediatric Infectious Disease Unit, Izmir, Turkey
| | - Arzu Karli
- Konya Training and Research Hospital, Pediatric Infectious Disease Unit, Konya, Turkey
| | - Gulçin Bozlu
- Mersin University Faculty of Medicine, Pediatric Infectious Disease Unit, Mersin, Turkey
| | - Solmaz Celebi
- Uludag University Faculty of Medicine, Pediatric Infectious Disease Unit, Bursa, Turkey
| |
Collapse
|
20
|
Metabolic shift in the emergence of hyperinvasive pandemic meningococcal lineages. Sci Rep 2017; 7:41126. [PMID: 28112239 PMCID: PMC5282872 DOI: 10.1038/srep41126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Hyperinvasive lineages of Neisseria meningitidis, which persist despite extensive horizontal genetic exchange, are a major cause of meningitis and septicaemia worldwide. Over the past 50 years one such lineage of meningococci, known as serogroup A, clonal complex 5 (A:cc5), has caused three successive pandemics, including epidemics in sub-Saharan Africa. Although the principal antigens that invoke effective immunity have remained unchanged, distinct A:cc5 epidemic clones have nevertheless emerged. An analysis of whole genome sequence diversity among 153 A:cc5 isolates identified eleven genetic introgression events in the emergence of the epidemic clones, which primarily involved variants of core genes encoding metabolic processes. The acquired DNA was identical to that found over many years in other, unrelated, hyperinvasive meningococci, suggesting that the epidemic clones emerged by acquisition of pre-existing metabolic gene variants, rather than ‘virulence’ associated or antigen-encoding genes. This is consistent with mathematical models which predict the association of transmission fitness with the emergence and maintenance of virulence in recombining commensal organisms.
Collapse
|
21
|
Alternative Molecular Methods for Improved Detection of Meningococcal Carriage and Measurement of Bacterial Density. J Clin Microbiol 2016; 54:2743-2748. [PMID: 27582517 PMCID: PMC5078552 DOI: 10.1128/jcm.01428-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022] Open
Abstract
Conventional methods for detecting pharyngeal carriage of Neisseria meningitidis are complex. There is a need for simpler methods with improved performance. We have investigated two alternative approaches. Three pharyngeal swabs were collected from 999 pupils aged 10 to 18 years in The Gambia. Carriage of N. meningitidis was investigated by using three different methods: (i) plating on Thayer-Martin selective medium and testing by conventional microbiological methods followed by PCR testing; (ii) seeding in Todd-Hewitt broth (THB) and, after culture overnight, testing by PCR; and (iii) compression of the swab on filter paper and, after DNA concentration, testing by PCR. PCR after culture in THB was more than twice as sensitive as conventional methods in detecting N. meningitidis (13.2% versus 5.7%; P < 0.0001). PCR after DNA extraction from filter paper had a sensitivity similar to that of conventional methods (4.9% versus 5.7%; P = 0.33). Capsular genogroups detected by broth culture were genogroups W (21 isolates), B (12 isolates), Y (8 isolates), E (3 isolates), and X (2 isolates), and 68 meningococci had the capsule-null intergenic region. The distributions of genogroups and of capsule-null organisms were similar with each of the three methods. The carriage density in samples extracted from filter paper ranged from 1 to 25,000 DNA copies. PCR of broth cultures grown overnight doubled the yield of N. meningitidis carriage isolates compared with conventional methods. This approach could improve the efficiency of carriage studies. Collection on filter paper followed by quantitative PCR could be useful for density measurement and for carriage studies in areas with limited resources.
Collapse
|
22
|
Basta NE, Borrow R, Berthe A, Onwuchekwa U, Dembélé ATE, Almond R, Frankland S, Patel S, Wood D, Nascimento M, Manigart O, Trotter CL, Greenwood B, Sow SO. Higher Tetanus Toxoid Immunity 2 Years After PsA-TT Introduction in Mali. Clin Infect Dis 2016; 61 Suppl 5:S578-85. [PMID: 26553691 PMCID: PMC4639490 DOI: 10.1093/cid/civ513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background. In 2010, mass vaccination with a then-new meningococcal A polysaccharide–tetanus toxoid protein conjugate vaccine (PsA-TT, or MenAfriVac) was undertaken in 1- to 29-year-olds in Bamako, Mali. Whether vaccination with PsA-TT effectively boosts tetanus immunity in a population with heterogeneous baseline tetanus immunity is not known. We assessed the impact of PsA-TT on tetanus toxoid (TT) immunity by quantifying age- and sex-specific immunity prior to and 2 years after introduction. Methods. Using a household-based, age-stratified design, we randomly selected participants for a prevaccination serological survey in 2010 and a postvaccination survey in 2012. TT immunoglobulin G (IgG) antibodies were quantified and geometric mean concentrations (GMCs) pre- and postvaccination among all age groups targeted for vaccination were compared. The probability of TT IgG levels ≥0.1 IU/mL (indicating short-term protection) and ≥1.0 IU/mL (indicating long-term protection) by age and sex was determined using logistic regression models. Results. Analysis of 793 prevaccination and 800 postvaccination sera indicated that while GMCs were low pre–PsA-TT, significantly higher GMCs in all age–sex strata were observed 2 years after PsA-TT introduction. The percentage with short-term immunity increased from 57.1% to 88.4% (31.3-point increase; 95% confidence interval [CI], 26.6–36.0;, P < .0001) and with long-term immunity increased from 20.0% to 58.5% (38.5-point increase; 95% CI, 33.7–43.3; P < .0001) pre- and postvaccination. Conclusions. Significantly higher TT immunity was observed among vaccine-targeted age groups up to 2 years after Mali's PsA-TT mass vaccination campaign. Our results, combined with evidence from clinical trials, strongly suggest that conjugate vaccines containing TT such as PsA-TT should be considered bivalent vaccines because of their ability to boost tetanus immunity.
Collapse
Affiliation(s)
- Nicole E Basta
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, United Kingdom
| | - Abdoulaye Berthe
- Centre pour le Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| | - Uma Onwuchekwa
- Centre pour le Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| | | | - Rachael Almond
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, United Kingdom
| | - Sarah Frankland
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, United Kingdom
| | - Sima Patel
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, United Kingdom
| | - Daniel Wood
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, United Kingdom
| | - Maria Nascimento
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Olivier Manigart
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom Medical Research Council Unit, Fajara, The Gambia
| | - Caroline L Trotter
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - Brian Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Samba O Sow
- Centre pour le Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| |
Collapse
|
23
|
Diallo K, Trotter C, Timbine Y, Tamboura B, Sow SO, Issaka B, Dano ID, Collard JM, Dieng M, Diallo A, Mihret A, Ali OA, Aseffa A, Quaye SL, Bugri A, Osei I, Gamougam K, Mbainadji L, Daugla DM, Gadzama G, Sambo ZB, Omotara BA, Bennett JS, Rebbetts LS, Watkins ER, Nascimento M, Woukeu A, Manigart O, Borrow R, Stuart JM, Greenwood BM, Maiden MCJ. Pharyngeal carriage of Neisseria species in the African meningitis belt. J Infect 2016; 72:667-677. [PMID: 27018131 PMCID: PMC4879866 DOI: 10.1016/j.jinf.2016.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/29/2022]
Abstract
Objectives Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. Methods Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and characterized at the rplF locus to determine species and at the variable region of the fetA antigen gene. Prevalence and risk factors for carriage were analyzed. Results A total of 4694 isolates of Neisseria were obtained from 46,034 pharyngeal swabs, a carriage prevalence of 10.2% (95% CI, 9.8–10.5). Five Neisseria species were identified, the most prevalent NPN being Neisseria lactamica. Six hundred and thirty-six combinations of rplF/fetA_VR alleles were identified, each defined as a Neisseria strain type. There was an inverse relationship between carriage of N. meningitidis and of NPNs by age group, gender and season, whereas carriage of both N. meningitidis and NPNs was negatively associated with a recent history of meningococcal vaccination. Conclusion Variations in the prevalence of NPNs by time, place and genetic type may contribute to the particular epidemiology of meningococcal disease in the African meningitis belt. A prevalence of 10.2% of Neisseria infection was observed during the study. Five Neisseria species were identified in nasopharyngeal samples. High level of genetic diversity was observed in carried isolates. Inverse relationship between carriage of Neisseria meningitidis and non-pathogenic Neisseria.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre pour les Vaccins en Développement, Bamako, Mali; Department of Zoology, University of Oxford, Oxford, UK.
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Samba O Sow
- Centre pour les Vaccins en Développement, Bamako, Mali
| | - Bassira Issaka
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Ibrahim D Dano
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | | | - Marietou Dieng
- Institut de Recherche pour le Développement, Dakar, Senegal
| | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Oumer A Ali
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Isaac Osei
- Navrongo Health Research Centre, Navrongo, Ghana
| | | | | | | | | | | | | | | | | | | | | | - Arouna Woukeu
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester, UK
| | - James M Stuart
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | |
Collapse
|
24
|
Manigart O, Trotter C, Findlow H, Assefa A, Mihret W, Moti Demisse T, Yeshitela B, Osei I, Hodgson A, Quaye SL, Sow S, Coulibaly M, Diallo K, Traore A, Collard JM, Moustapha Boukary R, Djermakoye O, Mahamane AE, Jusot JF, Sokhna C, Alavo S, Doucoure S, Ba EH, Dieng M, Diallo A, Daugla DM, Omotara B, Chandramohan D, Hassan-King M, Nascimento M, Woukeu A, Borrow R, Stuart JM, Greenwood B. A Seroepidemiological Study of Serogroup A Meningococcal Infection in the African Meningitis Belt. PLoS One 2016; 11:e0147928. [PMID: 26872255 PMCID: PMC4752490 DOI: 10.1371/journal.pone.0147928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
The pattern of epidemic meningococcal disease in the African meningitis belt may be influenced by the background level of population immunity but this has been measured infrequently. A standardised enzyme-linked immunosorbent assay (ELISA) for measuring meningococcal serogroup A IgG antibodies was established at five centres within the meningitis belt. Antibody concentrations were then measured in 3930 individuals stratified by age and residence from six countries. Seroprevalence by age was used in a catalytic model to determine the force of infection. Meningococcal serogroup A IgG antibody concentrations were high in each country but showed heterogeneity across the meningitis belt. The geometric mean concentration (GMC) was highest in Ghana (9.09 μg/mL [95% CI 8.29, 9.97]) and lowest in Ethiopia (1.43 μg/mL [95% CI 1.31, 1.57]) on the margins of the belt. The force of infection was lowest in Ethiopia (λ = 0.028). Variables associated with a concentration above the putative protective level of 2 μg/mL were age, urban residence and a history of recent vaccination with a meningococcal vaccine. Prior to vaccination with the serogroup A meningococcal conjugate vaccine, meningococcal serogroup A IgG antibody concentrations were high across the African meningitis belt and yet the region remained susceptible to epidemics.
Collapse
Affiliation(s)
- Olivier Manigart
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Medical Research Council Unit, Fajara, The Gambia
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Helen Findlow
- Public Health England Vaccine Evaluation Unit, Manchester, United Kingdom
| | - Abraham Assefa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Wude Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Isaac Osei
- Navrongo Health Research Centre, Navrongo, Ghana
| | | | | | - Samba Sow
- Centre pour les Vaccins en Développement, Bamako, Mali
| | | | - Kanny Diallo
- Centre pour les Vaccins en Développement, Bamako, Mali
| | - Awa Traore
- Centre pour les Vaccins en Développement, Bamako, Mali
| | | | | | | | | | | | - Cheikh Sokhna
- Institut de Recherche pour le Développement, Dakar, Senegal
| | - Serge Alavo
- Institut de Recherche pour le Développement, Dakar, Senegal
| | | | - El Hadj Ba
- Institut de Recherche pour le Développement, Dakar, Senegal
| | - Mariétou Dieng
- Institut de Recherche pour le Développement, Dakar, Senegal
| | | | | | - Babatunji Omotara
- Department of Community Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Daniel Chandramohan
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Musa Hassan-King
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Maria Nascimento
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Arouna Woukeu
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ray Borrow
- Public Health England Vaccine Evaluation Unit, Manchester, United Kingdom
| | - James M. Stuart
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Brian Greenwood
- Faculty of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
The Diversity of Meningococcal Carriage Across the African Meningitis Belt and the Impact of Vaccination With a Group A Meningococcal Conjugate Vaccine. J Infect Dis 2015; 212:1298-307. [PMID: 25858956 PMCID: PMC4577048 DOI: 10.1093/infdis/jiv211] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/25/2015] [Indexed: 12/27/2022] Open
Abstract
Background. Study of meningococcal carriage is essential to understanding the epidemiology of Neisseria meningitidis infection. Methods. Twenty cross-sectional carriage surveys were conducted in 7 countries in the African meningitis belt; 5 surveys were conducted after introduction of a new serogroup A meningococcal conjugate vaccine (MenAfriVac). Pharyngeal swab specimens were collected, and Neisseria species were identified by microbiological and molecular techniques. Results. A total of 1687 of 48 490 participants (3.4%; 95% confidence interval [CI], 3.2%–3.6%) carried meningococci. Carriage was more frequent in individuals aged 5–14 years, relative to those aged 15–29 years (adjusted odds ratio [OR], 1.41; 95% CI, 1.25–1.60); in males, relative to females (adjusted OR, 1.17; 95% CI, 1.10–1.24); in individuals in rural areas, relative to those in urban areas (adjusted OR, 1.44; 95% CI, 1.28–1.63); and in the dry season, relative to the rainy season (adjusted OR, 1.54; 95% CI, 1.37–1.75). Forty-eight percent of isolates had genes encoding disease-associated polysaccharide capsules; genogroup W predominated, and genogroup A was rare. Strain diversity was lower in countries in the center of the meningitis belt than in Senegal or Ethiopia. The prevalence of genogroup A fell from 0.7% to 0.02% in Chad following mass vaccination with MenAfriVac. Conclusions. The prevalence of meningococcal carriage in the African meningitis belt is lower than in industrialized countries and is very diverse and dynamic, even in the absence of vaccination.
Collapse
|
26
|
Ferraro CF, Trotter CL, Nascimento MC, Jusot JF, Omotara BA, Hodgson A, Ali O, Alavo S, Sow S, Daugla DM, Stuart JM. Household crowding, social mixing patterns and respiratory symptoms in seven countries of the African meningitis belt. PLoS One 2014; 9:e101129. [PMID: 24988195 PMCID: PMC4079295 DOI: 10.1371/journal.pone.0101129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/03/2014] [Indexed: 12/24/2022] Open
Abstract
Objectives To describe the variation in household crowding and social mixing patterns in the African meningitis belt and to assess any association with self-reported recent respiratory symptoms. Methods In 2010, the African Meningococcal Carriage Consortium (MenAfriCar) conducted cross-sectional surveys in urban and rural areas of seven countries. The number of household members, rooms per household, attendance at social gatherings and meeting places were recorded. Associations with self-reported recent respiratory symptoms were analysed by univariate and multivariate regression models. Results The geometric mean people per room ranged from 1.9 to 2.8 between Ghana and Ethiopia respectively. Attendance at different types of social gatherings was variable by country, ranging from 0.5 to 1.5 per week. Those who attended 3 or more different types of social gatherings a week (frequent mixers) were more likely to be older, male (OR 1.27, p<0.001) and live in urban areas (OR 1.45, p<0.001). Frequent mixing and young age, but not increased household crowding, were associated with higher odds of self-reported respiratory symptoms (aOR 2.2, p<0.001 and OR 2.8, p<0.001 respectively). A limitation is that we did not measure school and workplace attendance. Conclusion There are substantial variations in household crowding and social mixing patterns across the African meningitis belt. This study finds a clear association between age, increased social mixing and respiratory symptoms. It lays the foundation for designing and implementing more detailed studies of social contact patterns in this region.
Collapse
Affiliation(s)
- Claire F. Ferraro
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline L. Trotter
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Maria C. Nascimento
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jean-François Jusot
- Unité d'Epidémiologie, Centre de Recherches Médicales et Sanitaires (CERMES), Niamey, Niger
| | | | - Abraham Hodgson
- Navrongo Health Research Centre, Navrongo, Ghana
- Research and Development Division, Ghana Health Service, Ghana
| | - Oumer Ali
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Serge Alavo
- L'institut de recherche pour le développement, Dakar, Senegal
| | - Samba Sow
- Center for Vaccine Development-Mali (CVD-MALI), Bamako, Mali
| | | | - James M. Stuart
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
27
|
The impact of pre-existing antibody on subsequent immune responses to meningococcal A-containing vaccines. Vaccine 2014; 32:4220-7. [PMID: 24863486 DOI: 10.1016/j.vaccine.2014.04.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022]
Abstract
Major epidemics of serogroup A meningococcal meningitis continue to affect the African meningitis belt. The development of an affordable conjugate vaccine against the disease became a priority for World Health Organization (WHO) in the late 1990s. Licensing of meningococcal vaccines has been based on serological correlates of protection alone, but such correlates might differ in different geographical regions. If high pre-vaccination antibody concentrations/titers impacts on the response to vaccination and possibly vaccine efficacy, is not clearly understood. We set out to define the pre-vaccination Meningococcal group A (Men A) antibody concentrations/titers in The Gambia and study their impact on the immunogenicity of Men A containing vaccines. Data from subjects originally enrolled in studies to test the safety and immunogenicity of the MenA vaccine recently developed for Africa meningococcal A polysaccharide conjugated to tetanus toxoid, MenAfriVac(®) (PsA-TT) were analyzed. Participants had been randomized to receive either the study vaccine PsA-TT or the reference quadrivalent plain polysaccharide vaccine containing meningococcal groups A, C, W, and Y, Mencevax(®) ACWY, GlaxoSmithKline (PsACWY) in a 2:1 ratio. Venous blood samples were collected before and 28 days after vaccination. Antibodies were assayed by enzyme-linked immunosorbent assay (ELISA) for geometric mean concentrations and serum bactericidal antibody (SBA) for functional antibody. The inter age group differences were compared using ANOVA and the pre and post-vaccination differences by t test. Over 80% of the ≥19 year olds had pre-vaccination antibody concentrations above putatively protective concentrations as compared to only 10% of 1-2 year olds. Ninety-five percent of those who received the study vaccine had ≥4-fold antibody responses if they had low pre-vaccination concentrations compared to 76% of those with high pre-vaccination concentrations. All subjects with low pre-vaccination titers attained ≥4-fold responses as compared to 76% with high titers where study vaccine was received. Our data confirm the presence of high pre-vaccination Men A antibody concentrations/titers within the African meningitis belt, with significantly higher concentrations in older individuals. Although all participants had significant increase in antibody levels following vaccination, the four-fold or greater response in antibody titers were significantly higher in individuals with lower pre-existing antibody titers, especially after receiving PsA-TT. This finding may have some implications for vaccination strategies adopted in the future.
Collapse
|
28
|
Bennett JS, Watkins ER, Jolley KA, Harrison OB, Maiden MCJ. Identifying Neisseria species by use of the 50S ribosomal protein L6 (rplF) gene. J Clin Microbiol 2014; 52:1375-81. [PMID: 24523465 PMCID: PMC3993661 DOI: 10.1128/jcm.03529-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/03/2014] [Indexed: 02/05/2023] Open
Abstract
The comparison of 16S rRNA gene sequences is widely used to differentiate bacteria; however, this gene can lack resolution among closely related but distinct members of the same genus. This is a problem in clinical situations in those genera, such as Neisseria, where some species are associated with disease while others are not. Here, we identified and validated an alternative genetic target common to all Neisseria species which can be readily sequenced to provide an assay that rapidly and accurately discriminates among members of the genus. Ribosomal multilocus sequence typing (rMLST) using ribosomal protein genes has been shown to unambiguously identify these bacteria. The PubMLST Neisseria database (http://pubmlst.org/neisseria/) was queried to extract the 53 ribosomal protein gene sequences from 44 genomes from diverse species. Phylogenies reconstructed from these genes were examined, and a single 413-bp fragment of the 50S ribosomal protein L6 (rplF) gene was identified which produced a phylogeny that was congruent with the phylogeny reconstructed from concatenated ribosomal protein genes. Primers that enabled the amplification and direct sequencing of the rplF gene fragment were designed to validate the assay in vitro and in silico. Allele sequences were defined for the gene fragment, associated with particular species names, and stored on the PubMLST Neisseria database, providing a curated electronic resource. This approach provides an alternative to 16S rRNA gene sequencing, which can be readily replicated for other organisms for which more resolution is required, and it has potential applications in high-resolution metagenomic studies.
Collapse
Affiliation(s)
- Julia S Bennett
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Hedari CP, Khinkarly RW, Dbaibo GS. Meningococcal serogroups A, C, W-135, and Y tetanus toxoid conjugate vaccine: a new conjugate vaccine against invasive meningococcal disease. Infect Drug Resist 2014; 7:85-99. [PMID: 24729718 PMCID: PMC3979687 DOI: 10.2147/idr.s36243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Invasive meningococcal disease is a serious infection that occurs worldwide. It is caused by Neisseria meningitidis, of which six serogroups (A, B, C, W-135, X, and Y) are responsible for most infections. The case fatality rate of meningococcal disease remains high and can lead to significant sequelae. Vaccination remains the best strategy to prevent meningococcal disease. Polysaccharide vaccines were initially introduced in the late 1960s but their limitations (poor immunogenicity in infants and toddlers and hyporesponsiveness after repeated doses) have led to the development and use of meningococcal conjugate vaccines, which overcome these limitations. Two quadrivalent conjugated meningococcal vaccines – MenACWY-DT (Menactra®) and MenACWY-CRM197 (Menveo®) – using diphtheria toxoid or a mutant protein, respectively, as carrier proteins have already been licensed in the US. Recently, a quadrivalent meningococcal vaccine conjugated to tetanus toxoid (MenACWY-TT; Nimenrix®) was approved for use in Europe in 2012. The immunogenicity of MenACWY-TT, its reactogenicity and safety profile, as well as its coadministration with other vaccines are discussed in this review. Clinical trials showed that MenACWY-TT was immunogenic in children above the age of 12 months, adolescents, and adults, and has an acceptable reactogenicity and safety profile. Its coadministration with several other vaccines that are commonly used in children, adolescents, and adults did not affect the immunogenicity of MenACWY-TT or the coadministered vaccine, nor did it affect its reactogenicity and safety. Other studies are now ongoing in order to determine the immunogenicity, reactogenicity, and safety of MenACWY-TT in infants from the age of 6 weeks.
Collapse
Affiliation(s)
- Carine P Hedari
- Center for Infectious Diseases Research, Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rima W Khinkarly
- Center for Infectious Diseases Research, Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghassan S Dbaibo
- Center for Infectious Diseases Research, Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
30
|
Daugla DM, Gami JP, Gamougam K, Naibei N, Mbainadji L, Narbé M, Toralta J, Kodbesse B, Ngadoua C, Coldiron ME, Fermon F, Page AL, Djingarey MH, Hugonnet S, Harrison OB, Rebbetts LS, Tekletsion Y, Watkins ER, Hill D, Caugant DA, Chandramohan D, Hassan-King M, Manigart O, Nascimento M, Woukeu A, Trotter C, Stuart JM, Maiden M, Greenwood BM. Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study [corrected]. Lancet 2014; 383:40-47. [PMID: 24035220 PMCID: PMC3898950 DOI: 10.1016/s0140-6736(13)61612-8] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND A serogroup A meningococcal polysaccharide-tetanus toxoid conjugate vaccine (PsA-TT, MenAfriVac) was licensed in India in 2009, and pre-qualified by WHO in 2010, on the basis of its safety and immunogenicity. This vaccine is now being deployed across the African meningitis belt. We studied the effect of PsA-TT on meningococcal meningitis and carriage in Chad during a serogroup A meningococcal meningitis epidemic. METHODS We obtained data for the incidence of meningitis before and after vaccination from national records between January, 2009, and June, 2012. In 2012, surveillance was enhanced in regions where vaccination with PsA-TT had been undertaken in 2011, and in one district where a reactive vaccination campaign in response to an outbreak of meningitis was undertaken. Meningococcal carriage was studied in an age-stratified sample of residents aged 1-29 years of a rural area roughly 13-15 and 2-4 months before and 4-6 months after vaccination. Meningococci obtained from cerebrospinal fluid or oropharyngeal swabs were characterised by conventional microbiological and molecular methods. FINDINGS Roughly 1·8 million individuals aged 1-29 years received one dose of PsA-TT during a vaccination campaign in three regions of Chad in and around the capital N'Djamena during 10 days in December, 2011. The incidence of meningitis during the 2012 meningitis season in these three regions was 2·48 per 100,000 (57 cases in the 2·3 million population), whereas in regions without mass vaccination, incidence was 43·8 per 100,000 (3809 cases per 8·7 million population), a 94% difference in crude incidence (p<0·0001), and an incidence rate ratio of 0·096 (95% CI 0·046-0·198). Despite enhanced surveillance, no case of serogroup A meningococcal meningitis was reported in the three vaccinated regions. 32 serogroup A carriers were identified in 4278 age-stratified individuals (0·75%) living in a rural area near the capital 2-4 months before vaccination, whereas only one serogroup A meningococcus was isolated in 5001 people living in the same community 4-6 months after vaccination (adjusted odds ratio 0·019, 95% CI 0·002-0·138; p<0·0001). INTERPRETATION PSA-TT was highly effective at prevention of serogroup A invasive meningococcal disease and carriage in Chad. How long this protection will persist needs to be established. FUNDING The Bill & Melinda Gates Foundation, the Wellcome Trust, and Médecins Sans Frontères.
Collapse
Affiliation(s)
- D M Daugla
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - J P Gami
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - K Gamougam
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - N Naibei
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - L Mbainadji
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - M Narbé
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - J Toralta
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - B Kodbesse
- Centre de Support en Santé International (CSSI), N'Djamena, Chad
| | - C Ngadoua
- Ministry of Public Health, N'Djamena, Chad
| | - M E Coldiron
- Epicentre, Médecins sans Frontères, Paris, France
| | - F Fermon
- Epicentre, Médecins sans Frontères, Paris, France
| | - A-L Page
- Epicentre, Médecins sans Frontères, Paris, France
| | - M H Djingarey
- WHO Intercountry Support Team, Ougadougou, Burkina Faso
| | - S Hugonnet
- Department of Pandemic and Epidemic Diseases, WHO, Geneva, Switzerland
| | - O B Harrison
- Department of Zoology, University of Oxford, Oxford, UK
| | - L S Rebbetts
- Department of Zoology, University of Oxford, Oxford, UK
| | - Y Tekletsion
- Department of Zoology, University of Oxford, Oxford, UK
| | - E R Watkins
- Department of Zoology, University of Oxford, Oxford, UK
| | - D Hill
- Department of Zoology, University of Oxford, Oxford, UK
| | - D A Caugant
- Norwegian Institute for Public Health, Oslo, Norway
| | - D Chandramohan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M Hassan-King
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - O Manigart
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M Nascimento
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - A Woukeu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - C Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - J M Stuart
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - McJ Maiden
- Department of Zoology, University of Oxford, Oxford, UK
| | - B M Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
31
|
Basta NE, Stuart JM, Nascimento MC, Manigart O, Trotter C, Hassan-King M, Chandramohan D, Sow SO, Berthe A, Bedru A, Tekletsion YK, Collard JM, Jusot JF, Diallo A, Basséne H, Daugla DM, Gamougam K, Hodgson A, Forgor AA, Omotara BA, Gadzama GB, Watkins ER, Rebbetts LS, Diallo K, Weiss NS, Halloran ME, Maiden MCJ, Greenwood B. Methods for identifying Neisseria meningitidis carriers: a multi-center study in the African meningitis belt. PLoS One 2013; 8:e78336. [PMID: 24194921 PMCID: PMC3806823 DOI: 10.1371/journal.pone.0078336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/19/2013] [Indexed: 11/21/2022] Open
Abstract
Objective Detection of meningococcal carriers is key to understanding the epidemiology of Neisseria meningitidis, yet no gold standard has been established. Here, we directly compare two methods for collecting pharyngeal swabs to identify meningococcal carriers. Methods We conducted cross-sectional surveys of schoolchildren at multiple sites in Africa to compare swabbing the posterior pharynx behind the uvula (U) to swabbing the posterior pharynx behind the uvula plus one tonsil (T). Swabs were cultured immediately and analyzed using molecular methods. Results One thousand and six paired swab samples collected from schoolchildren in four countries were analyzed. Prevalence of meningococcal carriage was 6.9% (95% CI: 5.4-8.6%) based on the results from both swabs, but the observed prevalence was lower based on one swab type alone. Prevalence based on the T swab or the U swab alone was similar (5.2% (95% CI: 3.8-6.7%) versus 4.9% (95% CI: 3.6-6.4%) respectively (p=0.6)). The concordance between the two methods was 96.3% and the kappa was 0.61 (95% CI: 0.50-0.73), indicating good agreement. Conclusions These two commonly used methods for collecting pharyngeal swabs provide consistent estimates of the prevalence of carriage, but both methods misclassified carriers to some degree, leading to underestimates of the prevalence.
Collapse
Affiliation(s)
- Nicole E. Basta
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Research and Policy for Infectious Disease Dynamics, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - James M. Stuart
- Faculty of Infectious and Tropical Diseases, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Maria C. Nascimento
- Faculty of Infectious and Tropical Diseases, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Olivier Manigart
- Faculty of Infectious and Tropical Diseases, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Musa Hassan-King
- Faculty of Infectious and Tropical Diseases, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Daniel Chandramohan
- Faculty of Infectious and Tropical Diseases, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Samba O. Sow
- Centre pour le Développement des Vaccins, Bamako, Mali
| | | | - Ahmed Bedru
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Yenenesh K. Tekletsion
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | | - Aldiouma Diallo
- Instiutut de Recherche pour le Développement, Dakar, Senegal
| | - Hubert Basséne
- Instiutut de Recherche pour le Développement, Dakar, Senegal
| | | | | | - Abraham Hodgson
- Research and Development Division, Ghana Health Service, Accra, Ghana
| | | | - Babatunji A. Omotara
- Department of Community Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Galadima B. Gadzama
- Department of Medical Microbiology, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | | | - Lisa S. Rebbetts
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kanny Diallo
- Centre pour le Développement des Vaccins, Bamako, Mali
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Noel S. Weiss
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - M. Elizabeth Halloran
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | | | - Brian Greenwood
- Faculty of Infectious and Tropical Diseases, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|