1
|
Gueye A, Ngom EHM, Ndoye BB, Dione ML, Diouf B, Ndiaye EH, Sy FA, Guèye M, Niang M, Diallo D, Diallo M, Dia I. Insecticide Resistance and Target-Site Mutations kdr, N1575Y, and Ace-1 in Anopheles gambiae s.l. Populations in a Low-Malaria-Transmission Zone in the Sudanian Region of Senegal. Genes (Basel) 2024; 15:1331. [PMID: 39457455 PMCID: PMC11507339 DOI: 10.3390/genes15101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Significant progress in malaria control has been achieved through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), raising hopes for malaria elimination. However, emerging insecticide resistance threatens these gains. This study assessed the susceptibility of Anopheles gambiae s.l. populations to public health insecticides, examined the frequencies of kdr, Ace-1, and N1575Y mutations, and explored their associations with phenotypic resistance in Dielmo and Ndiop, Senegal. Methods: Anopheles larvae collected between September and December 2022 were reared to adulthood. Adult mosquitoes were exposed to discriminating concentrations of various insecticides following WHO guidelines. Knockdown times (KDT50 and KDT95) for pyrethroids were calculated using the Probit model. RT-qPCR detected target-site mutations (kdr: L1014F and L1014S, Ace-1, N1575Y) and assessed correlations with phenotypic resistance. Species-specific PCR identified species within the An. gambiae complex. Results/Conclusions: The populations of Dielmo and Ndiop showed susceptibility to pirimiphos-methyl and bendiocarb, with no Ace-1 mutation detected. Resistance to DDT and pyrethroids was observed. The knockdown times indicated that alphacypermethrin and lambdacyhalothrin were more effective than permethrin and deltamethrin. The L1014F allele was widespread, while L1014S was absent in Ndiop and low in Dielmo. The N1575Y mutation occurred only in populations with L1014F. The L1014S mutation was significantly associated with resistance to lambdacyhalothrin in both villages and to deltamethrin in Ndiop.
Collapse
Affiliation(s)
- Assiyatou Gueye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - El Hadji Malick Ngom
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - Baye Bado Ndoye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - Mamadou Lamine Dione
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - Babacar Diouf
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - El Hadji Ndiaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - Faty Amadou Sy
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - Marième Guèye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - Makhtar Niang
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar BP 220, Senegal;
| | - Diawo Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| | - Ibrahima Dia
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar BP 220, Senegal; (A.G.); (E.H.M.N.); (B.B.N.); (M.L.D.); (B.D.); (E.H.N.); (F.A.S.); (M.G.); (D.D.); (M.D.)
| |
Collapse
|
2
|
Perugini E, Pichler V, Guelbeogo WM, Micocci M, Poggi C, Manzi S, Ranson H, Della Torre A, Mancini E, Pombi M. Longitudinal survey of insecticide resistance in a village of central region of Burkina Faso reveals co-occurrence of 1014F, 1014S and 402L mutations in Anopheles coluzzii and Anopheles arabiensis. Malar J 2024; 23:250. [PMID: 39164725 PMCID: PMC11334353 DOI: 10.1186/s12936-024-05069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Pyrethroid resistance is one of the major threats for effectiveness of insecticide-treated bed nets (ITNs) in malaria vector control. Genotyping of mutations in the voltage gated sodium channel (VGSC) gene is widely used to easily assess the evolution and spread of pyrethroid target-site resistance among malaria vectors. L1014F and L1014S substitutions are the most common and best characterized VGSC mutations in major African malaria vector species of the Anopheles gambiae complex. Recently, an additional substitution involved in pyrethroid resistance, i.e. V402L, has been detected in Anopheles coluzzii from West Africa lacking any other resistance alleles at locus 1014. The evolution of target-site resistance mutations L1014F/S and V402L was monitored in An. coluzzii and Anopheles arabiensis specimens from a Burkina Faso village over a 10-year range after the massive ITN scale-up started in 2010. METHODS Anopheles coluzzii (N = 300) and An. arabiensis (N = 362) specimens collected both indoors and outdoors by different methods (pyrethrum spray catch, sticky resting box and human landing collections) in 2011, 2015 and 2020 at Goden village were genotyped by TaqMan assays and sequencing for the three target site resistance mutations; allele frequencies were statistically investigated over the years. RESULTS A divergent trend in resistant allele frequencies was observed in the two species: 1014F decreased in An. coluzzii (from 0.76 to 0.52) but increased in An. arabiensis (from 0.18 to 0.70); 1014S occurred only in An. arabiensis and slightly decreased over time (from 0.33 to 0.23); 402L increased in An. coluzzii (from 0.15 to 0.48) and was found for the first time in one An. arabiensis specimen. In 2020 the co-occurrence of different resistance alleles reached 43% in An. coluzzii (alleles 410L and 1014F) and 32% in An. arabiensis (alleles 1014F and 1014S). CONCLUSIONS Overall, an increasing level of target-site resistance was observed among the populations with only 1% of the two malaria vector species being wild type at both loci, 1014 and 402, in 2020. This, together with the co-occurrence of different mutations in the same specimens, calls for future investigations on the possible synergism between resistance alleles and their phenotype to implement local tailored intervention strategies.
Collapse
Affiliation(s)
- Eleonora Perugini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Verena Pichler
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et Formation Sur le Paludisme, Ouagadougou, Burkina Faso
| | - Martina Micocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cristiana Poggi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sara Manzi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Department of Vector Biology, Liverpool, UK
| | - Alessandra Della Torre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Emiliano Mancini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Marco Pombi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Laojun S, Changbunjong T, Chaiphongpachara T. Insights into the mitochondrial cytochrome oxidase I (mt-COI) gene and wing morphometrics of Anopheles baimaii (Diptera: Culicidae) in malaria-endemic islands of Thailand. Parasitol Res 2024; 123:171. [PMID: 38530429 DOI: 10.1007/s00436-024-08195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Anopheles baimaii (Diptera: Culicidae) significantly contributes to the transmission of parasites causing malaria in Southeast Asia and South Asia. This study examined the morphological (wing shape) and molecular (mitochondrial gene) variations of An. baimaii in four of Thailand's border islands, and also investigated the presence of Plasmodium parasites in these mosquitoes. No Plasmodium infections were detected in the samples. Significant differences in wing shape were observed in most island populations (p < 0.05). A single-linkage tree, constructed using Mahalanobis distances, clustered the populations into two groups based on geographical locations. Genetic variation in An. baimaii was also analyzed through cytochrome c oxidase subunit I (COI) gene sequences. This analysis identified 22 segregating sites and a low nucleotide diversity of 0.004. Furthermore, 18 distinct haplotypes were identified, indicating a high haplotype diversity of 0.825. Neutrality tests for the overall population revealed a significantly negative Fu's Fs value (-5.029), indicating a population expansion. In contrast, Tajima's D yielded a negative value (-1.028) that did not reach statistical significance. The mismatch distribution analysis exhibited a bimodal pattern, and the raggedness index was 0.068, showing no significant discrepancy (p = 0.485) between observed and expected distributions. Pairwise genetic differentiation assessments demonstrated significant differences between all populations (p < 0.05). These findings provide valuable insights into the COI gene and wing morphometric variations in An. baimaii across Thailand's islands, offering critical information for understanding the adaptations of this malaria vector and guiding future comprehensive research.
Collapse
Affiliation(s)
- Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand.
| |
Collapse
|
4
|
Jeon J, Ryu J, Choi KS. Distribution and frequency of ace-1 and kdr mutations of Culex pipiens subgroup in the Republic of Korea. Acta Trop 2024; 249:107058. [PMID: 37913971 DOI: 10.1016/j.actatropica.2023.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
Mosquitoes in the Culex pipiens subgroup are the primary vectors of the West Nile virus. Two members, Culex pallens and Culex pipiens f. molestus, are present in the Republic of Korea (ROK). Because the Culex pipiens subgroup occurs in large amounts, often near human habitation, it is frequently exposed to various insecticides, which is probably responsible for the rapid evolution of insecticide resistance traits. Experiments related to insecticide resistance in the Culex pipiens subgroup conducted in the ROK have been performed without discrimination below the species level. This study categorized Culex pipiens mosquitoes subgroup from 13 regions in the ROK into Culex pallens and Culex pipiens f. molestus, and target site genotypes for acetylcholinesterase-1 (ace-1) and voltage-gated sodium channel (vgsc) genes were identified for each taxon. Screening for ace-1 did not identify a resistant allele (G119S) in Cx. pipiens f. molestus, and heterozygous resistance (AGC/GGC) was identified in one Cx. pallens collected in Mokpo. In vgsc, knockdown resistance (kdr) mutations [TTT(L1014F) and TCA(L1014S)] were present in both taxa, with Cx. pipiens f. molestus having homozygous resistance (TTT/TTT): 44%, heterozygous resistance (TTT/TTA): 28%, and homozygous susceptibility (TTA/TTA): 28%, whereas Cx. pallens showed homozygous resistance (TTT/TTT or TCA/TCA): 26%, heterozygous resistance (TTT/TTA, TTT/TCA, or TCA/TTA): 26%, and homozygous susceptibility (TTA/TTA): 48%. Furthermore, the unique vgsc allele was present in both Cx. pipiens f. molestus and Cx. pallens. This was the first experiment to analyze the Culex pipiens subgroup living in the ROK below the species level, and its results could be used in the future for more detailed mosquito control.
Collapse
Affiliation(s)
- Jiseung Jeon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jihun Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Shik Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Hardy H, Harte SJ, Hopkins RJ, Mnyone L, Hawkes FM. The influence of manure-based organic fertilisers on the oviposition behaviour of Anopheles arabiensis. Acta Trop 2023:106954. [PMID: 37244404 DOI: 10.1016/j.actatropica.2023.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
The rice agroecosystem provides suitable breeding habitat for many malaria vector species, and rice-adjacent communities are consequently exposed to a greater malaria transmission risk than non-rice-associated communities. As part of efforts to expand rice production in Africa, sustainable and climate-adapted practices such as the System of Rice Intensification (SRI) are being promoted. SRI encourages the use of organic fertilisers (OFs) such as cow and chicken dung, as opposed to inorganic industrially produced fertilisers, due to their lower resource cost, apparent benefit to the rice agroecosystem and as a means to reduce the greenhouse gas emissions associated with the production of industrial fertilisers. However, the impact of OFs on mosquito fauna is not well documented and may have knock-on consequences on malaria transmission risk. Here, we demonstrate, using dual choice egg count assays, that both cow and chicken dung modulate the oviposition behaviour of Anopheles arabiensis, a major malaria vector in Sub-Saharan Africa. A significantly reduced proportion of eggs were laid in water treated with either cow or chicken dung compared to untreated water, with higher dung concentrations resulting in further reduced proportions. When presented in competition, significantly fewer eggs were laid in water treated with chicken dung than with cow dung. Moreover, there was no evidence of egg retention in any experiment, including in no-choice experiments where only dung-containing dishes were available. These results suggest both cow and chicken dung may act as oviposition deterrents to malaria vector species and that the application of manure-based OFs in rice agriculture may modulate the oviposition behaviour of An. gambiae s.l. within agroecosystems. Quantification of the ammonia present in dung-infused water showed higher concentrations were present in the chicken dung infusion, which may be one contributing factor to the difference in observed deterrence between the two dung types. Deterrence of mosquito oviposition in OF-treated farms may potentially affect the overall production of malaria vectors within rice fields and their contribution to local malaria transmission.
Collapse
Affiliation(s)
- Harrison Hardy
- Natural Resources Institute, University of Greenwich, UK..
| | - Steven J Harte
- Natural Resources Institute, University of Greenwich, UK..
| | | | - Ladslaus Mnyone
- Institute of Pest Management, Sokoine University of Agriculture, Tanzania.; Department of Science, Technology and Innovation, Ministry of Education, Science and Technology, Tanzania..
| | | |
Collapse
|
6
|
Liu K, Ma S, Zhang K, Gao R, Jin H, Cao P, Yuchi Z, Wu S. Functional Characterization of Knockdown Resistance Mutation L1014S in the German Cockroach, Blattella germanica (Linnaeus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2734-2744. [PMID: 36701428 DOI: 10.1021/acs.jafc.2c05625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The effectiveness of pyrethroid insecticides is seriously threatened by knockdown resistance (kdr), which is induced in insects by inherited single-nucleotide polymorphisms in the voltage-gated sodium channel (VGSC) gene. VGSC's L1014F substitution results in the classic kdr mutation, which is found in many pest species. Other substitutions of the L1014 locus, such as L1014S, L1014C, L1014W, and L1014H, were also reported. In 2022, a new amino acid substitute L1014S of Blattella germanica was first discovered in China. We modified the BgNav1-1 sodium channel from cockroaches with the L1014S mutation to study how pyrethroid sensitivity and channel gating were affected in Xenopus oocytes. The L1014S mutation reduced the half-maximal activation voltage (V1/2,act) from -19.0 (wild type) to -15.5 mV while maintaining the voltage dependency of activation. Moreover, the voltage dependence of inactivation in the hyperpolarizing shifts from -48.3 (wild type) to -50.9 mV. However, compared with wild type, the mutation L1014S did not cause a significant shift in the half activation voltage (V1/2,act). Notably, the voltage dependency of activation was unaffected greatly by the L1014S mutation. Tail currents are induced by two types of pyrethroids (1 μM): type I (permethrin, bifenthrin) and type II (deltamethrin, λ-cyhalothrin). All four pyrethroids produced tail currents, and significant differences were found in the percentages of channel modifications between variants and wild types. Further computer modeling showed that the L1014S mutation allosterically modifies pyrethroid binding and action on B. germanica VGSC, with some residues playing a critical role in pyrethroid binding. This study elucidated the pyrethroid resistance mechanism of B. germanica and predicted the residues that may confer the risk of pyrethroid resistance, providing a molecular basis for understanding the resistance mechanisms conferred by mutations at the 1014 site in VGSC.
Collapse
Affiliation(s)
- Kaiyang Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya572024, China
- College of Tropical Crops, Hainan University, Haikou570228, China
| | - Shuyue Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin30072, China
| | - Kun Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya572024, China
- College of Plant Protection, Hainan University, Haikou570228, China
| | - Ruibo Gao
- Sanya Nanfan Research Institute, Hainan University, Sanya572024, China
- College of Plant Protection, Hainan University, Haikou570228, China
| | - Haifeng Jin
- Sanya Nanfan Research Institute, Hainan University, Sanya572024, China
- College of Plant Protection, Hainan University, Haikou570228, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing210023, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin30072, China
| | - Shaoying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya572024, China
- College of Plant Protection, Hainan University, Haikou570228, China
| |
Collapse
|
7
|
Joseph Matiya D, Philbert AB, Kidima WB, Matowo JJ. The Effect of Plasmodium falciparum (Welch) (Haemospororida: Plasmodiidae) Infection on the Susceptibility of Anopheles gambiae s.l. and Anopheles funestus (Diptera: Culicidae) to Pyrethroid Insecticides in the North-Western and South-Eastern, Tanzania. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:112-121. [PMID: 36287642 DOI: 10.1093/jme/tjac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 06/16/2023]
Abstract
The rapid development of insecticide resistance in malaria vectors threatens insecticide-based interventions. It is hypothesized that infection of insecticide-resistant vectors with Plasmodium parasites increases their vulnerability to insecticides, thus assuring the effectiveness of insecticide-based strategies for malaria control. Nonetheless, there is limited field data to support this. We investigated the effect of the Plasmodium falciparum infection on the susceptibility of Anopheles gambiae s.l. and Anopheles funestus to pyrethroids in south-eastern (Kilombero) and north-western (Muleba), Tanzania. The wild-collected mosquitoes were tested against 0.05% deltamethrin and 0.75% permethrin, then assessed for sporozoite rate and resistant gene (kdr) mutations. All Anopheles gambiae s.l. from Kilombero were An. arabiensis (Patton, 1905) while those from Muleba were 87% An. gambiae s.s (Giles, 1902) and 13% An. Arabiensis. High levels of pyrethroid resistance were observed in both areas studied. The kdr mutation was only detected in An. gambiae s.s. at the frequency of 100% in survivors and 97% in dead mosquitoes. The P. falciparum sporozoite rates were slightly higher in susceptible than in resistant mosquitoes. In Muleba, sporozoite rates in An. gambiae s.l. were 8.1% and 6.4% in dead mosquitoes and survivors, respectively (SRR = 1.28, p = 0.19). The sporozoite rates in Kilombero were 1.3% and 0.7% in the dead and survived mosquitoes, respectively (sporozoite rate ratio (SRR) = 1.9, p = 0.33). In An. funestus group sporozoite rates were 6.2% and 4.4% in dead and survived mosquitoes, respectively (SRR = 1.4, p = 0.54). These findings indicate that insecticides might still be effective in malaria control despite the rapid development of insecticide resistance in malaria vectors.
Collapse
Affiliation(s)
- Deokary Joseph Matiya
- Dar es Salaam University College of Education (DUCE), PO Box 2329, Dar es Salaam, Tanzania
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Anitha B Philbert
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Winifrida B Kidima
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Johnson J Matowo
- Kilimanjaro Christian Medical University College (KCMUCo), PO Box 2240, Moshi, Tanzania
| |
Collapse
|
8
|
Chanyalew T, Natea G, Amenu D, Yewhalaw D, Simma EA. Composition of mosquito fauna and insecticide resistance status of Anopheles gambiae sensu lato in Itang special district, Gambella, Southwestern Ethiopia. Malar J 2022; 21:125. [PMID: 35436961 PMCID: PMC9014582 DOI: 10.1186/s12936-022-04150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles arabiensis, member species of the Anopheles gambiae complex, is the primary vector of malaria and is widely distributed in Ethiopia. Anopheles funestus, Anopheles pharoensis and Anopheles nili are secondary vectors occurring with limited distribution in the country. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are pillars for the interventions against malaria control and elimination efforts in Ethiopia. However, the emergence and widespread of insecticide resistance in An. gambiae sensu lato (s.l.), might compromise the control efforts of the country. The aim of this study was to investigate composition of mosquito fauna and insecticide resistance status of An. gambiae s.l. in Itang special district ( woreda), Gambella, southwestern Ethiopia. Methods Adult mosquitoes were sampled from September 2020 to February 2021 using the CDC light trap and pyrethrum spray catch (PSC). CDC light traps were placed in three selected houses for two consecutive days per month to collect mosquitoes indoor and outdoor from 6:00 P.M. to 06:00 A.M. and PSC was used to collect indoor resting mosquitoes from ten selected houses once in a month from October 2020 to February 2021. Moreover, mosquito larvae were also collected from different breeding sites and reared to adults to assess susceptibility status of populations of An. gambiae s.l. in the study area. Susceptibility tests were conducted on two to three days old non blood fed female An. gambiae s.l. using insecticide impregnated papers with deltamethrin (0.05%), alpha-cypermethrin (0.05%), propoxur (0.1%), pirimiphos-methyl (0.25%) and bendiocarb (0.1%) following World Health Organization (WHO) standard susceptibility test procedure. Molecular diagnostics were done for the identification of member species of An. gambiae s.l. and detection of knockdown resistance (kdr) allele using species specific polymerase chain reaction (PCR) and allele specific PCR. Results In total, 468 adult mosquitoes were collected from different houses. Culex mosquitoes were the most dominant (80.4%) followed by Anopheles mosquitoes. Three species of Anopheles (Anopheles coustani, An. pharoensis, and An. gambiae s.l.) were identified, of which An. coustani was the dominant (8.1%) species. Higher number of mosquitoes (231) were collected outdoor by CDC light traps. Out of 468 adult mosquitoes, 294 were blood fed, 46 were half-gravid and gravid whereas the remaining 128 were unfed. WHO bioassay tests revealed that the populations of An. gambiae s.l. in the study area are resistant against alpha-cypermethrin and deltamethrin, but susceptible to bendiocarb, pirimiphos-methyl and propoxur. Of the total 86 An. gambiae s.l. specimens assayed, 79 (92%) successfully amplified and identified as An. arabiensis. West African kdr (L1014F) mutation was detected with high kdr allele frequency ranging from 67 to 88%. Conclusion The detection of target site mutation, kdr L1014F allele, coupled with the phenotypic resistance against alpha-cypermethrin and deltamethrin call for continuous resistance monitoring.
Collapse
|
9
|
Matowo J, Weetman D, Pignatelli P, Wright A, Charlwood JD, Kaaya R, Shirima B, Moshi O, Lukole E, Mosha J, Manjurano A, Mosha F, Rowland M, Protopopoff N. Expression of pyrethroid metabolizing P450 enzymes characterizes highly resistant Anopheles vector species targeted by successful deployment of PBO-treated bednets in Tanzania. PLoS One 2022; 17:e0249440. [PMID: 35073324 PMCID: PMC8786186 DOI: 10.1371/journal.pone.0249440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Long lasting insecticidal nets (LLINs) are a proven tool to reduce malaria transmission, but in Africa efficacy is being reduced by pyrethroid resistance in the major vectors. A previous study that was conducted in Muleba district, Tanzania indicated possible involvement of cytochrome P450 monooxygenases in a pyrethroid resistance in An. gambiae population where pre-exposure to piperonyl butoxide (PBO) followed by permethrin exposure in CDC bottle bioassays led to partial restoration of susceptibility. PBO is a synergist that can block pyrethroid-metabolizing enzymes in a mosquito. Insecticide resistance profiles and underlying mechanisms were investigated in Anopheles gambiae and An. funestus from Muleba during a cluster randomized trial. Diagnostic dose bioassays using permethrin, together with intensity assays, suggest pyrethroid resistance that is both strong and very common, but not extreme. Transcriptomic analysis found multiple P450 genes over expressed including CYP6M2, CYP6Z3, CYP6P3, CYP6P4, CYP6AA1 and CYP9K1 in An. gambiae and CYP6N1, CYP6M7, CYP6M1 and CYP6Z1 in An. funestus. Indeed, very similar suites of P450 enzymes commonly associated with resistant populations elsewhere in Africa were detected as over expressed suggesting a convergence of mechanisms across Sub-Saharan African malaria vectors. The findings give insight into factors that may correlate with pyrethroid PBO LLIN success, broadly supporting model predictions, but revision to guidelines previously issued by the World Health Organization is warranted.
Collapse
Affiliation(s)
- Johnson Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- * E-mail:
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Patricia Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alexandra Wright
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jacques D. Charlwood
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert Kaaya
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Boniface Shirima
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Oliva Moshi
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Eliud Lukole
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Jacklin Mosha
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Alphaxard Manjurano
- Department of Parasitology, National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Franklin Mosha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Natacha Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Mwagira-Maina S, Runo S, Wachira L, Kitur S, Nyasende S, Kemei B, Ochomo E, Matoke-Muhia D, Mbogo C, Kamau L. Genetic markers associated with insecticide resistance and resting behaviour in Anopheles gambiae mosquitoes in selected sites in Kenya. Malar J 2021; 20:461. [PMID: 34903240 PMCID: PMC8670025 DOI: 10.1186/s12936-021-03997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Molecular diagnostic tools have been incorporated in insecticide resistance monitoring programmes to identify underlying genetic basis of resistance and develop early warning systems of vector control failure. Identifying genetic markers of insecticide resistance is crucial in enhancing the ability to mitigate potential effects of resistance. The knockdown resistance (kdr) mutation associated with resistance to DDT and pyrethroids, the acetylcholinesterase-1 (ace-1R) mutation associated with resistance to organophosphates and carbamates and 2La chromosomal inversion associated with indoor resting behaviour, were investigated in the present study. Methods Anopheles mosquitoes sampled from different sites in Kenya and collected within the context of malaria vector surveillance were analysed. Mosquitoes were collected indoors using light traps, pyrethrum spray and hand catches between August 2016 and November 2017. Mosquitoes were identified using morphological keys and Anopheles gambiae sensu lato (s.l.) mosquitoes further identified into sibling species by the polymerase chain reaction method following DNA extraction by alcohol precipitation. Anopheles gambiae and Anopheles arabiensis were analysed for the presence of the kdr and ace-1R mutations, while 2La inversion was only screened for in An. gambiae where it is polymorphic. Chi-square statistics were used to determine correlation between the 2La inversion karyotype and kdr-east mutation. Results The kdr-east mutation occurred at frequencies ranging from 0.5 to 65.6% between sites. The kdr-west mutation was only found in Migori at a total frequency of 5.3% (n = 124). No kdr mutants were detected in Tana River. The ace-1R mutation was absent in all populations. The 2La chromosomal inversion screened in An. gambiae occurred at frequencies of 87% (n = 30), 80% (n = 10) and 52% (n = 50) in Baringo, Tana River and Migori, respectively. A significant association between the 2La chromosomal inversion and the kdr-east mutation was found. Conclusion The significant association between the 2La inversion karyotype and kdr-east mutation suggests that pyrethroid resistant An. gambiae continue to rest indoors regardless of the presence of treated bed nets and residual sprays, a persistence further substantiated by studies documenting continued mosquito abundance indoors. Behavioural resistance by which Anopheles vectors prefer not to rest indoors may, therefore, not be a factor of concern in this study’s malaria vector populations.
Collapse
Affiliation(s)
- Sharon Mwagira-Maina
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya.
| | - Steven Runo
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| | - Lucy Wachira
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| | - Stanley Kitur
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| | - Sarah Nyasende
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), P.O. Box 54840-00200, Nairobi, Kenya
| | - Brigid Kemei
- Centre for Global Health Research, KEMRI_CDC, P.O Box 1578-40100, Kisumu, Kenya
| | - Eric Ochomo
- Centre for Global Health Research, KEMRI_CDC, P.O Box 1578-40100, Kisumu, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| | - Charles Mbogo
- KEMRI -Wellcome Trust Research Programme, Public Health Unit, P.O. Box 43640-00100, Nairobi, Kenya
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
11
|
Evolution of the Pyrethroids Target-Site Resistance Mechanisms in Senegal: Early Stage of the Vgsc-1014F and Vgsc-1014S Allelic Frequencies Shift. Genes (Basel) 2021; 12:genes12121948. [PMID: 34946897 PMCID: PMC8701854 DOI: 10.3390/genes12121948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The evolution and spread of insecticide resistance mechanisms amongst malaria vectors across the sub-Saharan Africa threaten the effectiveness and sustainability of current insecticide-based vector control interventions. However, a successful insecticide resistance management plan relies strongly on evidence of historical and contemporary mechanisms circulating. This study aims to retrospectively determine the evolution and spread of pyrethroid resistance mechanisms among natural Anopheles gambiae s.l. populations in Senegal. Samples were randomly drawn from an existing mosquito sample, collected in 2013, 2017, and 2018 from 10 sentinel sites monitored by the Senegalese National Malaria Control Programme (NMCP). Molecular species of An. gambiae s.l. and the resistance mutations at the Voltage-gated Sodium Channel 1014 (Vgsc-1014) locus were characterised using PCR-based assays. The genetic diversity of the Vgsc gene was further analyzed by sequencing. The overall species composition revealed the predominance of Anopheles arabiensis (73.08%) followed by An. gambiae s.s. (14.48%), Anopheles coluzzii (10.94%) and Anopheles gambiae-coluzii hybrids (1.48%). Both Vgsc-1014F and Vgsc-1014S mutations were found in all studied populations with a spatial variation of allele frequencies from 3% to 90%; and 7% to 41%, respectively. The two mutations have been detected since 2013 across all the selected health districts, with Vgsc-L1014S frequency increasing over the years while Vgsc-1014F decreasing. At species level, the Vgsc-1014F and Vgsc-1014S alleles were more frequent amongst An. gambiae s.s. (70%) and An. arabiensis (20%). The Vgsc gene was found to be highly diversified with eight different haplotypes shared between Vgsc-1014F and Vgsc-1014S. The observed co-occurrence of Vgsc-1014F and Vgsc-1014S mutations suggest that pyrethroid resistance is becoming a widespread phenomenon amongst malaria vector populations, and the NMCP needs to address this issue to sustain the gain made in controlling malaria.
Collapse
|
12
|
da Cruz DL, Paiva MHS, Guedes DRD, de Souza Gomes EC, Pires SG, Gomez LF, Ayres CFJ. First report of the L1014F kdr mutation in wild populations of Anopheles arabiensis in Cabo Verde, West Africa. Parasit Vectors 2021; 14:582. [PMID: 34802463 PMCID: PMC8607584 DOI: 10.1186/s13071-021-05088-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to the lack of vaccines, malaria control mainly involves the control of anopheline vectors (Anopheles spp.) using chemical insecticides. However, the prolonged and indiscriminate use of these compounds has led to the emergence of resistance in Anopheles populations in Africa. Insecticide resistance surveillance programs are less frequent in Cabo Verde than in other African countries. This study aimed to investigate the circulation of the L1014F and L1014S alleles in natural populations of Anopheles arabiensis collected from two sampling sites in the city of Praia, Cabo Verde. METHODS Anopheles larvae were collected from the two sampling sites and reared in the laboratory until the adult stage. Mosquitoes were first morphologically identified by classical taxonomy and then by molecular species identification using molecular markers. All Anopheles arabiensis were subjected to PCR analysis to screen for mutations associated to resistance in the Nav gene. RESULTS A total of 105 mosquitoes, all belonging to the Anopheles gambiae complex, were identified by classical taxonomy as well as by molecular taxonomy. Molecular identification showed that 100% of the An. gambiae senso lato specimens analyzed corresponded to An. arabiensis. Analysis of the Nav gene revealed the presence of L1014S and L1014F alleles with frequencies of 0.10 and 0.19, respectively. CONCLUSIONS Our data demonstrated, for the first time, the presence of the L1014F allele in the An. arabiensis population from Cabo Verde, as well as an increase in the frequency of the kdr L1014S allele reported in a previous study. The results of this study demonstrate the need to establish new approaches in vector control programs in Cabo Verde.
Collapse
Affiliation(s)
- Derciliano Lopes da Cruz
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil. .,Centro Academico do Agreste, Universidade Federal de Pernambuco, Rodovia BR-104, km 59-Nova Caruaru, Caruaru, PE, 55002-970, Brazil.
| | - Duschinka Ribeiro Duarte Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Elainne Christine de Souza Gomes
- Departamento de Parasitologia, Instituto Aggeu Magalhaes/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | | | | | - Constância Flávia Junqueira Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| |
Collapse
|
13
|
Colonization and Authentication of the Pyrethroid-Resistant Anopheles gambiae s.s. Muleba-Kis Strain; an Important Test System for Laboratory Screening of New Insecticides. INSECTS 2021; 12:insects12080710. [PMID: 34442276 PMCID: PMC8396659 DOI: 10.3390/insects12080710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Malaria control and prevention have traditionally relied on the use of insecticides in the form of treated bed nets or residual spraying in households. However, scaling up of these interventions—based on few available insecticide classes—resulted in the development and spread of insecticide resistance in malaria-transmitting mosquitoes. There is therefore an urgent need for introducing and applying new insecticides that are effective against these mosquitoes. Laboratories tasked with evaluating the efficacy of novel insecticides need to establish a large colony of resistant mosquitoes. In this study, we report the procedures used and challenges faced during the establishment and maintenance of a resistant mosquito strain in the laboratory which reflects the characteristics of the wild-resistant mosquito populations found in East Africa. Abstract Background: The emergence and spread of insecticide resistance in malaria vectors to major classes of insecticides call for urgent innovation and application of insecticides with novel modes of action. When evaluating new insecticides for public health, potential candidates need to be screened against both susceptible and resistant mosquitoes to determine efficacy and to identify potential cross-resistance to insecticides currently used for mosquito control. The challenges and lessons learned from establishing, maintaining, and authenticating the pyrethroid-resistant An. gambiae s.s. Muleba-Kis strain at the KCMUCo-PAMVERC Test Facility are described in this paper. Methods: Male mosquitoes from the F1 generation of wild-pyrethroid resistant mosquitoes were cross-bred with susceptible female An. gambiae s.s. Kisumu laboratory strain followed by larval selection using a pyrethroid insecticide solution. Periodic screening for phenotypic and genotypic resistance was done. WHO susceptibility tests and bottle bioassays were used to assess the phenotypic resistance, while Taqman™ assays were used to screen for known target-site resistance alleles (kdr and ace-1). Additionally, the strains were periodically assessed for quality control by monitoring adult weight and wing length. Results: By out-crossing the wild mosquitoes with an established lab strain, a successful resistant insectary colony was established. Intermittent selection pressure using alphacypermethrin has maintained high kdr mutation (leucine-serine) frequencies in the selected colony. There was consistency in the wing length and weight measurements from the year 2016 to 2020, with the exception that one out of four years was significantly different. Mean annual wing length varied between 0.0142–0.0028 mm compared to values obtained in 2016, except in 2019 where it varied by 0.0901 mm. Weight only varied by approximately 0.001 g across four years, except in 2017 where it differed by 0.005 g. Routine phenotypic characterization on Muleba-Kis against pyrethroids using the WHO susceptibility test indicated high susceptibility when type I pyrethroids were used compared to type II pyrethroids. Dynamics on susceptibility status also depended on the lapse time when the selection was last done. Conclusions: This study described the procedure for introducing, colonizing, and maintaining a resistant An. gambiae s.s. strain in the laboratory with leucine to serine substitution kdr allele which reflects the features of the wild-resistant population in East Africa. Challenges in colonizing a wild-resistant mosquito strain were overcome by out-crossing between mosquito strains of desired traits followed by intermittent insecticide selection at the larval stage to select for the resistant phenotype.
Collapse
|
14
|
Orondo PW, Nyanjom SG, Atieli H, Githure J, Ondeto BM, Ochwedo KO, Omondi CJ, Kazura JW, Lee MC, Zhou G, Zhong D, Githeko AK, Yan G. Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Parasit Vectors 2021; 14:335. [PMID: 34174946 PMCID: PMC8235622 DOI: 10.1186/s13071-021-04833-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. METHODS The study was carried out in 2018-2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. RESULTS Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8-84% to 83.3-78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1-16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. CONCLUSION Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides.
Collapse
Affiliation(s)
- Pauline Winnie Orondo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya. .,International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.
| | - Steven G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.,School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - John Githure
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Benyl M Ondeto
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Kevin O Ochwedo
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collince J Omondi
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Andrew K Githeko
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya. .,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
Hamid-Adiamoh M, Nwakanma D, Assogba BS, Ndiath MO, D’Alessandro U, Afrane YA, Amambua-Ngwa A. Influence of insecticide resistance on the biting and resting preferences of malaria vectors in the Gambia. PLoS One 2021; 16:e0241023. [PMID: 34166376 PMCID: PMC8224845 DOI: 10.1371/journal.pone.0241023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background The scale-up of indoor residual spraying and long-lasting insecticidal nets, together with other interventions have considerably reduced the malaria burden in The Gambia. This study examined the biting and resting preferences of the local insecticide-resistant vector populations few years following scale-up of anti-vector interventions. Method Indoor and outdoor-resting Anopheles gambiae mosquitoes were collected between July and October 2019 from ten villages in five regions in The Gambia using pyrethrum spray collection (indoor) and prokopack aspirator from pit traps (outdoor). Polymerase chain reaction assays were performed to identify molecular species, insecticide resistance mutations, Plasmodium infection rate and host blood meal. Results A total of 844 mosquitoes were collected both indoors (421, 49.9%) and outdoors (423, 50.1%). Four main vector species were identified, including An. arabiensis (indoor: 15%, outdoor: 26%); An. coluzzii (indoor: 19%, outdoor: 6%), An. gambiae s.s. (indoor: 11%, outdoor: 16%), An. melas (indoor: 2%, outdoor: 0.1%) and hybrids of An. coluzzii-An. gambiae s.s (indoors: 3%, outdoors: 2%). A significant preference for outdoor resting was observed in An. arabiensis (Pearson X2 = 22.7, df = 4, P<0.001) and for indoor resting in An. coluzzii (Pearson X2 = 55.0, df = 4, P<0.001). Prevalence of the voltage-gated sodium channel (Vgsc)-1014S was significantly higher in the indoor-resting (allele freq. = 0.96, 95%CI: 0.78–1, P = 0.03) than outdoor-resting (allele freq. = 0.82, 95%CI: 0.76–0.87) An. arabiensis population. For An. coluzzii, the prevalence of most mutation markers was higher in the outdoor (allele freq. = 0.92, 95%CI: 0.81–0.98) than indoor-resting (allele freq. = 0.78, 95%CI: 0.56–0.86) mosquitoes. However, in An. gambiae s.s., the prevalence of Vgsc-1014F, Vgsc-1575Y and GSTe2-114T was high (allele freq. = 0.96–1), but did not vary by resting location. The overall sporozoite positivity rate was 1.3% (95% CI: 0.5–2%) in mosquito populations. Indoor-resting An. coluzzii had mainly fed on human blood while indoor-resting An. arabiensis fed on animal blood. Conclusion In this study, high levels of resistance mutations were observed that could be influencing the mosquito populations to rest indoors or outdoors. The prevalent animal-biting behaviour demonstrated in the mosquito populations suggest that larval source management could be an intervention to complement vector control in this setting.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Accra, Ghana
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- * E-mail:
| | - Davis Nwakanma
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Benoit Sessinou Assogba
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Mamadou Ousmane Ndiath
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Umberto D’Alessandro
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Yaw A. Afrane
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Accra, Ghana
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at The London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
16
|
Keïta M, Sogoba N, Kané F, Traoré B, Zeukeng F, Coulibaly B, Sodio AB, Traoré SF, Djouaka R, Doumbia S. Multiple Resistance Mechanisms to Pyrethroids Insecticides in Anopheles gambiae sensu lato Population From Mali, West Africa. J Infect Dis 2021; 223:S81-S90. [PMID: 33906223 PMCID: PMC8079131 DOI: 10.1093/infdis/jiaa190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Insecticide-based vector control is responsible for reducing malaria mortality and morbidity. Its success depends on a better knowledge of the vector, its distribution, and resistance status to the insecticides used. In this paper, we assessed Anopheles gambiae sensu lato (A gambiae s.l.) population resistance to pyrethroids in different ecological settings. Methods The World Health Organization standard bioassay test was used to assess F0A gambiae s.l. susceptibility to pyrethroids. Biochemical Synergist assays were conducted with piperonyl butoxide (PBO), S,S,S-tributyl phosphotritioate, and diethyl maleate. L1014F, L1014S, and N1575Y knockdown resistance (kdr) mutations were investigated using TaqMan genotyping. Results Anopheles gambiae sensu lato was composed of Anopheles arabienisis, Anopheles coluzzii, and A gambiae in all study sites. Anopheles gambiae sensu lato showed a strong phenotypic resistance to deltamethrin and permethrin in all sites (13% to 41% mortality). In many sites, pre-exposure to synergists partially improved the mortality rate suggesting the presence of detoxifying enzymes. The 3 kdr (L1014F, L1014S, and N1575Y) mutations were found, with a predominance of L1014F, in all species. Conclusions Multiple resistance mechanisms to pyrethroids were observed in A gambiae s.l. in Mali. The PBO provided a better partial restoration of susceptibility to pyrethroids, suggesting that the efficacy of long-lasting insecticidal nets may be improved with PBO.
Collapse
Affiliation(s)
- Moussa Keïta
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nafomon Sogoba
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Fousseyni Kané
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boissé Traoré
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Francis Zeukeng
- The AgroEcohealth Platform, International Institute of Tropical Agriculture (IITA-Benin), Cotonou, Benin
| | - Boubacar Coulibaly
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ambiélè Bernard Sodio
- Faculty of Science and Technique, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou Fantamady Traoré
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Rousseau Djouaka
- The AgroEcohealth Platform, International Institute of Tropical Agriculture (IITA-Benin), Cotonou, Benin
| | - Seydou Doumbia
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
17
|
Munywoki DN, Kokwaro ED, Mwangangi JM, Muturi EJ, Mbogo CM. Insecticide resistance status in Anopheles gambiae (s.l.) in coastal Kenya. Parasit Vectors 2021; 14:207. [PMID: 33879244 PMCID: PMC8056612 DOI: 10.1186/s13071-021-04706-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 11/12/2022] Open
Abstract
Background The rapid and widespread evolution of insecticide resistance has emerged as one of the major challenges facing malaria control programs in sub-Saharan Africa. Understanding the insecticide resistance status of mosquito populations and the underlying mechanisms of insecticide resistance can inform the development of effective and site-specific strategies for resistance prevention and management. The aim of this study was to investigate the insecticide resistance status of Anopheles gambiae (s.l.) mosquitoes from coastal Kenya. Methods Anopheles gambiae (s.l.) larvae sampled from eight study sites were reared to adulthood in the insectary, and 3- to 5-day-old non-blood-fed females were tested for susceptibility to permethrin, deltamethrin, dichlorodiphenyltrichloroethane (DDT), fenitrothion and bendiocarb using the standard World Health Organization protocol. PCR amplification of rDNA intergenic spacers was used to identify sibling species of the An. gambiae complex. The An. gambiae (s.l.) females were further genotyped for the presence of the L1014S and L1014F knockdown resistance (kdr) mutations by real-time PCR. Results Anopheles arabiensis was the dominant species, accounting for 95.2% of the total collection, followed by An. gambiae (s.s.), accounting for 4.8%. Anopheles gambiae (s.l.) mosquitoes were resistant to deltamethrin, permethrin and fenitrothion but not to bendiocarb and DDT. The L1014S kdr point mutation was detected only in An. gambiae (s.s.), at a low allelic frequency of 3.33%, and the 1014F kdr mutation was not detected in either An. gambiae (s.s.) or An. arabiensis. Conclusion The findings of this study demonstrate phenotypic resistance to pyrethroids and organophosphates and a low level of the L1014S kdr point mutation that may partly be responsible for resistance to pyrethroids. This knowledge may inform the development of insecticide resistance management strategies along the Kenyan Coast. ![]()
Collapse
Affiliation(s)
- Daniel N Munywoki
- Center for Geographic Medicine Research, Coast, Kenya Medical Research Institute, P.O Box 230-80108, Kilifi, Kenya. .,Department of Zoological Sciences, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya.
| | - Elizabeth D Kokwaro
- Department of Zoological Sciences, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| | - Joseph M Mwangangi
- Center for Geographic Medicine Research, Coast, Kenya Medical Research Institute, P.O Box 230-80108, Kilifi, Kenya
| | - Ephantus J Muturi
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, 1815 N. University, St. Peoria, IL, 61604, USA
| | - Charles M Mbogo
- Center for Geographic Medicine Research, Coast, Kenya Medical Research Institute, P.O Box 230-80108, Kilifi, Kenya.,Population Health Unit, KEMRI-Wellcome Trust Research Programme, Lenana Road, 197 Lenana Place, P.O Box 43640-00100, Nairobi, Kenya
| |
Collapse
|
18
|
Owuor KO, Machani MG, Mukabana WR, Munga SO, Yan G, Ochomo E, Afrane YA. Insecticide resistance status of indoor and outdoor resting malaria vectors in a highland and lowland site in Western Kenya. PLoS One 2021; 16:e0240771. [PMID: 33647049 PMCID: PMC7920366 DOI: 10.1371/journal.pone.0240771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Long Lasting Insecticidal Nets (LLINs) and indoor residual spraying (IRS) represent powerful tools for controlling malaria vectors in sub-Saharan Africa. The success of these interventions relies on their capability to inhibit indoor feeding and resting of malaria mosquitoes. This study sought to understand the interaction of insecticide resistance with indoor and outdoor resting behavioral responses of malaria vectors from Western Kenya. METHODS The status of insecticide resistance among indoor and outdoor resting anopheline mosquitoes was compared in Anopheles mosquitoes collected from Kisumu and Bungoma counties in Western Kenya. The level and intensity of resistance were measured using WHO-tube and CDC-bottle bioassays, respectively. The synergist piperonyl butoxide (PBO) was used to determine if metabolic activity (monooxygenase enzymes) explained the resistance observed. The mutations at the voltage-gated sodium channel (Vgsc) gene and Ace 1 gene were characterized using PCR methods. Microplate assays were used to measure levels of detoxification enzymes if present. RESULTS A total of 1094 samples were discriminated within Anopheles gambiae s.l. and 289 within An. funestus s.l. In Kisian (Kisumu county), the dominant species was Anopheles arabiensis 75.2% (391/520) while in Kimaeti (Bungoma county) collections the dominant sibling species was Anopheles gambiae s.s 96.5% (554/574). The An. funestus s.l samples analysed were all An. funestus s.s from both sites. Pyrethroid resistance of An.gambiae s.l F1 progeny was observed in all sites. Lower mortality was observed against deltamethrin for the progeny of indoor resting mosquitoes compared to outdoor resting mosquitoes (Mortality rate: 37% vs 51%, P = 0.044). The intensity assays showed moderate-intensity resistance to deltamethrin in the progeny of mosquitoes collected from indoors and outdoors in both study sites. In Kisian, the frequency of vgsc-L1014S and vgsc-L1014F mutation was 0.14 and 0.19 respectively in indoor resting malaria mosquitoes while those of the outdoor resting mosquitoes were 0.12 and 0.12 respectively. The ace 1 mutation was present in higher frequency in the F1 of mosquitoes resting indoors (0.23) compared to those of mosquitoes resting outdoors (0.12). In Kimaeti, the frequencies of vgsc-L1014S and vgsc-L1014F were 0.75 and 0.05 respectively for the F1 of mosquitoes collected indoors whereas those of outdoor resting ones were 0.67 and 0.03 respectively. The ace 1 G119S mutation was present in progeny of mosquitoes from Kimaeti resting indoors (0.05) whereas it was absent in those resting outdoors. Monooxygenase activity was elevated by 1.83 folds in Kisian and by 1.33 folds in Kimaeti for mosquitoes resting indoors than those resting outdoors respectively. CONCLUSION The study recorded high phenotypic, metabolic and genotypic insecticide resistance in indoor resting populations of malaria vectors compared to their outdoor resting counterparts. The indication of moderate resistance intensity for the indoor resting mosquitoes is alarming as it could have an operational impact on the efficacy of the existing pyrethroid based vector control tools. The use of synergist (PBO) in LLINs may be a better alternative for widespread use in these regions recording high insecticide resistance.
Collapse
Affiliation(s)
- Kevin O. Owuor
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Wolfgang R. Mukabana
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
- Science for Health Society, Nairobi, Kenya
| | - Stephen O. Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
19
|
Loonen JACM, Dery DB, Musaka BZ, Bandibabone JB, Bousema T, van Lenthe M, Pop-Stefanija B, Fesselet JF, Koenraadt CJM. Identification of main malaria vectors and their insecticide resistance profile in internally displaced and indigenous communities in Eastern Democratic Republic of the Congo (DRC). Malar J 2020; 19:425. [PMID: 33228693 PMCID: PMC7684733 DOI: 10.1186/s12936-020-03497-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains a major public health concern in the Democratic Republic of the Congo (DRC) and its control is affected by recurrent conflicts. Médecins Sans Frontières (MSF) initiated several studies to better understand the unprecedented incidence of malaria to effectively target and implement interventions in emergency settings. The current study evaluated the main vector species involved in malaria transmission and their resistance to insecticides, with the aim to propose the most effective tools and strategies for control of local malaria vectors. METHODS This study was performed in 52 households in Shamwana (Katanga, 2014), 168 households in Baraka (South Kivu, 2015) and 269 households in Kashuga (North Kivu, 2017). Anopheles vectors were collected and subjected to standardized Word Health Organization (WHO) and Center for Disease Control (CDC) insecticide susceptibility bioassays. Mosquito species determination was done using PCR and Plasmodium falciparum infection in mosquitoes was assessed by ELISA targeting circumsporozoite protein. RESULTS Of 3517 Anopheles spp. mosquitoes collected, Anopheles gambiae sensu lato (s.l.) (29.6%) and Anopheles funestus (69.1%) were the main malaria vectors. Plasmodium falciparum infection rates for An. gambiae s.l. were 1.0, 2.1 and 13.9% for Shamwana, Baraka and Kashuga, respectively. Anopheles funestus showed positivity rates of 1.6% in Shamwana and 4.4% in Baraka. No An. funestus were collected in Kashuga. Insecticide susceptibility tests showed resistance development towards pyrethroids in all locations. Exposure to bendiocarb, malathion and pirimiphos-methyl still resulted in high mosquito mortality. CONCLUSIONS This is one of only few studies from these conflict areas in DRC to report insecticide resistance in local malaria vectors. The data suggest that current malaria prevention methods in these populations are only partially effective, and require additional tools and strategies. Importantly, the results triggered MSF to consider the selection of a new insecticide for indoor residual spraying (IRS) and a new long-lasting insecticide-treated net (LLIN). The reinforcement of correct usage of LLINs and the introduction of targeted larviciding were also included as additional vector control tools as a result of the studies.
Collapse
Affiliation(s)
| | - Dominic B Dery
- Médecins Sans Frontières (MSF), Amsterdam, The Netherlands
| | - Bertin Z Musaka
- Département de Biologie, Centre de Recherche en Sciences Naturelles (CRSN/Lwiro), Bukavu, South Kivu, Democratic Republic of the Congo
| | - Janvier B Bandibabone
- Département de Biologie, Centre de Recherche en Sciences Naturelles (CRSN/Lwiro), Bukavu, South Kivu, Democratic Republic of the Congo
| | - Teun Bousema
- Department of Medical Microbiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | |
Collapse
|
20
|
Hamid-Adiamoh M, Amambua-Ngwa A, Nwakanma D, D'Alessandro U, Awandare GA, Afrane YA. Insecticide resistance in indoor and outdoor-resting Anopheles gambiae in Northern Ghana. Malar J 2020; 19:314. [PMID: 32867769 PMCID: PMC7460795 DOI: 10.1186/s12936-020-03388-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Selection pressure from continued exposure to insecticides drives development of insecticide resistance and changes in resting behaviour of malaria vectors. There is need to understand how resistance drives changes in resting behaviour within vector species. The association between insecticide resistance and resting behaviour of Anopheles gambiae sensu lato (s.l.) in Northern Ghana was examined. METHODS F1 progenies from adult mosquitoes collected indoors and outdoors were exposed to DDT, deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)-1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific β-esterases, glutathione-S-transferase (GST) and monooxygenases were measured from unexposed F1 progenies using microplate assays. RESULTS Susceptibility of Anopheles coluzzii to deltamethrin 24 h post-exposure was significantly higher in indoor (mortality = 5%) than outdoor (mortality = 2.5%) populations (P = 0.02). Mosquitoes were fully susceptible to malathion (mortality: indoor = 98%, outdoor = 100%). Susceptibility to DDT was significantly higher in outdoor (mortality = 9%) than indoor (mortality = 0%) mosquitoes (P = 0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor = 90%, outdoor = 95%. P = 0.30). Frequencies of all resistance alleles were higher in F1 outdoor (0.11-0.85) than indoor (0.04-0.65) mosquito populations, while Vgsc-1014F in F0 An. gambiae sensu stricto (s.s) was significantly associated with outdoor-resting behaviour (P = 0.01). Activities of non-specific β-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor = : 1.70/mg protein; Indoor = 1.35/mg protein. P < 0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P = 0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than outdoor mosquito populations (3%). CONCLUSIONS The overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Phenotypic resistance was higher in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor populations. Continued monitoring of changes in resting behaviour within An. gambiae s.l. populations is recommended.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Alfred Amambua-Ngwa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Davis Nwakanma
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
| | - Yaw A Afrane
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana.
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
21
|
Enahoro I, Eikenberry S, Gumel AB, Huijben S, Paaijmans K. Long-lasting insecticidal nets and the quest for malaria eradication: a mathematical modeling approach. J Math Biol 2020; 81:113-158. [PMID: 32447420 DOI: 10.1007/s00285-020-01503-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Recent dramatic declines in global malaria burden and mortality can be largely attributed to the large-scale deployment of insecticidal-based measures, namely long-lasting insecticidal nets (LLINs) and indoor residual spraying. However, the sustainability of these gains, and the feasibility of global malaria eradication by 2040, may be affected by increasing insecticide resistance among the Anopheles malaria vector. We employ a new differential-equations based mathematical model, which incorporates the full, weather-dependent mosquito lifecycle, to assess the population-level impact of the large-scale use of LLINs, under different levels of Anopheles pyrethroid insecticide resistance, on malaria transmission dynamics and control in a community. Moreover, we describe the bednet-mosquito interaction using parameters that can be estimated from the large experimental hut trial literature under varying levels of effective pyrethroid resistance. An expression for the basic reproduction number, [Formula: see text], as a function of population-level bednet coverage, is derived. It is shown, owing to the phenomenon of backward bifurcation, that [Formula: see text] must be pushed appreciably below 1 to eliminate malaria in endemic areas, potentially complicating eradication efforts. Numerical simulations of the model suggest that, when the baseline [Formula: see text] is high (corresponding roughly to holoendemic malaria), very high bednet coverage with highly effective nets is necessary to approach conditions for malaria elimination. Further, while >50% bednet coverage is likely sufficient to strongly control or eliminate malaria from areas with a mesoendemic malaria baseline, pyrethroid resistance could undermine control and elimination efforts even in this setting. Our simulations show that pyrethroid resistance in mosquitoes appreciably reduces bednet effectiveness across parameter space. This modeling study also suggests that increasing pre-bloodmeal deterrence of mosquitoes (deterring them from entry into protected homes) actually hampers elimination efforts, as it may focus mosquito biting onto a smaller unprotected host subpopulation. Finally, we observe that temperature affects malaria potential independently of bednet coverage and pyrethroid-resistance levels, with both climate change and pyrethroid resistance posing future threats to malaria control.
Collapse
Affiliation(s)
- Iboi Enahoro
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Steffen Eikenberry
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Abba B Gumel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA. .,Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Silvie Huijben
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Krijn Paaijmans
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA.,The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
22
|
Mohammed-Awel J, Iboi EA, Gumel AB. Insecticide resistance and malaria control: A genetics-epidemiology modeling approach. Math Biosci 2020; 325:108368. [PMID: 32437715 DOI: 10.1016/j.mbs.2020.108368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 11/25/2022]
Abstract
Malaria, a deadly infectious disease caused by the protozoan Plasmodium, remains a major public health menace affecting at least half the human race. Although the large-scale usage of insecticides-based control measures, notably long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), have led to a dramatic reduction of the burden of this global scourge between the period 2000 to 2015, the fact that the malaria vector (adult female Anopheles mosquito) has become resistant to all currently-available insecticides potentially makes the current laudable global effort to eradicate malaria by 2040 more challenging. This study presents a novel mathematical model, which couples malaria epidemiology with mosquito population genetics, for assessing the impact of insecticides resistance on malaria epidemiology. Numerical simulations of the model, using data relevant to malaria transmission dynamics in the Jimma Zone of Southwestern Ethiopia, show that the implementation of a control strategy based on using LLINs alone can lead to the effective control of malaria, while also effectively managing insecticide resistance, if the LLINs coverage in the community is high enough (over 90%). It is further shown that combining LLINs with IRS (both at reduced and realistically-attainable coverage levels) can lead to the aforementioned effective control of malaria and effective management of insecticide resistance if their coverage levels lie within a certain effective control window in the LLINs-IRS coverage parameter space (this result generally holds regardless of whether or not larviciding is implemented in the community). The study identifies three key parameters of the model that negatively affect the size of the effective control window, namely parameters related with the coverage level of larviciding, the number of new adult mosquitoes that are females and the initial size of the frequency of resistant allele in the community. For the coverage of LLINs and IRS within the effective control window, an additional increase in the values of the aforementioned three parameters may lead to a shrinkage in the size of the effective control window (thereby causing the failure of the insecticides-based control).
Collapse
Affiliation(s)
- Jemal Mohammed-Awel
- Department of Mathematics, Valdosta State University, Valdosta, GA 31698, USA.
| | - Enahoro A Iboi
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Abba B Gumel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
23
|
Machani MG, Ochomo E, Amimo F, Kosgei J, Munga S, Zhou G, Githeko AK, Yan G, Afrane YA. Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures. PLoS One 2020; 15:e0224718. [PMID: 32097407 PMCID: PMC7041793 DOI: 10.1371/journal.pone.0224718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/04/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. METHODS Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. RESULTS Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p < 0.0001, An. funestus; F1, 655 = 36.555, p < 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73). CONCLUSION The study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.
Collapse
Affiliation(s)
- Maxwell G. Machani
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Fred Amimo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Jackline Kosgei
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
24
|
Philbert A, Lyantagaye SL, Nkwengulila G. Farmers' pesticide usage practices in the malaria endemic region of North-Western Tanzania: implications to the control of malaria vectors. BMC Public Health 2019; 19:1456. [PMID: 31694595 PMCID: PMC6833290 DOI: 10.1186/s12889-019-7767-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/11/2019] [Indexed: 11/21/2022] Open
Abstract
Background Pesticides remain the mainstay for the control of agricultural pests and disease vectors. However, their indiscriminate use in agriculture has led to development of resistance to both crop pests and disease vectors. This threatens to undermine the success gained through the implementation of chemical based vector control programs. We investigated the practices of farmers with regard to pesticide usage in the vegetable growing areas and their impact on susceptibility status of An. gambiae s.l. Methods A stratified multistage sampling technique using the administrative structure of the Tanzanian districts as sampling frame was used. Wards, villages and then participants with farms where pesticides are applied were purposively recruited at different stages of the process, 100 participants were enrolled in the study. The same villages were used for mosquito larvae sampling from the farms and the surveys were complimented by the entomological study. Larvae were reared in the insectary and the emerging 2–3 days old female adults of Anopheles gambiae s.l were subjected to susceptibility test. Results Forty eight pesticides of different formulations were used for control of crop and Livestock pests. Pyrethroids were the mostly used class of pesticides (50%) while organophosphates and carbamates were of secondary importance. Over 80% of all farmers applied pesticides in mixed form. Susceptibility test results confirmed high phenotypic resistance among An. gambiae populations against DDT and the pyrethroids (Permethrin-0.75%, Cyfluthrin-0.15%, Deltametrin-0.05% and Lambdacyhalothrin-0.05%) with mortality rates 54, 61, 76 and 71%, respectively. Molecular analysis showed An. arabiensis as a dominant species (86%) while An. gambiae s.s constituted only 6%. The kdr genes were not detected in all of the specimens that survived insecticide exposures. Conclusion The study found out that there is a common use of pyrethroids in farms, Livestocks as well as in public health. The study also reports high phenotypic resistance among An. gambiae s.l against most of the pyrethroids tested. The preponderance of pyrethroids in agriculture is of public health concern because this is the class of insecticides widely used in vector control programs and this calls for combined integrated pest and vector management (IPVM).
Collapse
Affiliation(s)
- Anitha Philbert
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania.
| | | | - Gamba Nkwengulila
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
25
|
Kweka EJ, Tungu PK, Mahande AM, Mazigo HD, Sayumwe S, Msangi S, Lyaruu L, Waweru J, Kisinza W, Wangai J. Bio-efficacy and wash resistance of MAGNet long-lasting insecticidal net against wild populations of Anopheles funestus in experimental huts in Muheza, Tanzania. Malar J 2019; 18:335. [PMID: 31570107 PMCID: PMC6771101 DOI: 10.1186/s12936-019-2973-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Background The decline in malaria cases and vectors is major milestone in fighting against malaria. The efficacy of MAGNet long-lasting insecticidal nets (MAGNet LLIN), an alpha-cypermethrin incorporated long-lasting net, with the target dose ± 25% of 5.8 g active ingredient (AI)/kg (4.35–7.25 g AI/kg) was evaluated in six veranda-trap experimental huts in Muheza, Tanzania against freely flying wild population of Anopheles funestus. Methods MAGNet LLINs were tested against wild, free-flying, host-seeking An. funestus mosquitoes over a period of 6 weeks (total of 36 nights in the huts). MAGNet LLIN efficacy was determined in terms of mosquito mortality, blood-feeding inhibition, deterrence, induced exiting, personal protection, and insecticidal killing over 20 washes according to WHO standardized procedures. Efficacy was compared with reference to a WHOPES recommended approved LLINs (DuraNet) and to a net conventionally treated (CTN) treated with alpha-cypermethrin at WHO-recommended dose and washed to just before cut-off point. The efficacy of MAGNet was evaluated in experimental huts against wild, free-flying, pyrethroid-resistant An. funestus. The WHO-susceptibility method was used to detect resistance in wild Anopheles exposed to 0.75% permethrin. Mosquito mortality, blood-feeding inhibition and personal protection were compared between untreated nets and standard LLINs. Blood-feeding rates were recorded and compared between the 20 times washed; blood-feeding rates between 20 times washed MAGNet LLIN and 20 times washed WHOPES-approved piperonyl butoxide (PBO)/pyrethroid were not statistically different (p > 0.05). Results The results have evidently shown that MAGNet LLIN provides similar blood-feeding inhibition, exophily, mortality, and deterrence to the standard approved LLIN, thus meeting the WHOPES criteria for blood feeding. The significantly high feeding inhibition and personal protection over pyrethroid-resistant An. funestus recorded by both unwashed and 20 times washed MAGNet compared to the unwashed DuraNet, the WHOPES-approved standard pyrethroid-only LLIN provides proof of MAGNet meeting Phase II WHOPES criteria for a LLIN. Conclusion Based on this study, MAGNet has been shown to have a promising impact on protection when 20 times washed against a highly resistant population of An. funestus.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania. .,Mosquito Section, Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania.
| | - Patrick K Tungu
- Amani Medical Research Centre, National Institute for Medical Research, P.O.Box 81, Muheza, Tanga, Tanzania
| | - Aneth M Mahande
- Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, Mabogini Field Station, Moshi, Tanzania
| | - Humphrey D Mazigo
- Mosquito Section, Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| | - Subira Sayumwe
- Mosquito Section, Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| | - Shandala Msangi
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Lucile Lyaruu
- Mosquito Section, Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| | - John Waweru
- PestNet Kenya Ltd, P.O. BOX 51533-00200, Nairobi, Kenya
| | - William Kisinza
- Amani Medical Research Centre, National Institute for Medical Research, P.O.Box 81, Muheza, Tanga, Tanzania
| | - James Wangai
- PestNet Kenya Ltd, P.O. BOX 51533-00200, Nairobi, Kenya
| |
Collapse
|
26
|
Safi NHZ, Ahmadi AA, Nahzat S, Warusavithana S, Safi N, Valadan R, Shemshadian A, Sharifi M, Enayati A, Hemingway J. Status of insecticide resistance and its biochemical and molecular mechanisms in Anopheles stephensi (Diptera: Culicidae) from Afghanistan. Malar J 2019; 18:249. [PMID: 31349836 PMCID: PMC6660931 DOI: 10.1186/s12936-019-2884-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/18/2019] [Indexed: 11/29/2022] Open
Abstract
Background Insecticide resistance of Anopheles stephensi, the main malaria vector in eastern Afghanistan, has been reported previously. This study describes the biochemical and molecular mechanisms of resistance to facilitate effective vector control and insecticide resistance management. Methods Mosquito larvae were collected from the provinces of Kunar, Laghman and Nangarhar from 2014 to 2017. The susceptibility of the reared 3–4 days old adults was tested with deltamethrin 0.05%, bendiocarb 0.1%, malathion 5%, permethrin 0.75% and DDT 4%. Cytochrome P450 content and general esterase, glutathione S-transferase (GST) and acetylcholinesterase (AChE) activities were measured in the three field populations and the results were compared with those of the laboratory susceptible An. stephensi Beech strain. Two separate allele-specific PCR assays were used to identify L1014, L1014F and L1014S mutations in the voltage gated sodium channel gene of An. stephensi. Probit analysis, ANOVA and Hardy–Weinberg equilibrium were used to analyse bioassay, biochemical assay and gene frequency data respectively. Results The population of An. stephensi from Kunar was susceptible to bendiocarb, apart from this, all populations were resistant to all the other insecticides tested. The differences between all values for cytochrome P450s, general esterases, GSTs and AChE inhibition rates in the Kunar, Laghman and Nangarhar populations were statistically significant when compared to the Beech strain, excluding GST activities between Kunar and Beech due to the high standard deviation in Kunar. The three different sodium channel alleles [L1014 (wild type), L1014F (kdr west) and L1014S (kdr east)] were all segregated in the Afghan populations. The frequencies of kdr east mutation were 22.9%, 32.7% and 35% in Kunar, Laghman and Nangarhar populations respectively. Kdr west was at the lowest frequency of 4.44%. Conclusions Resistance to different groups of insecticides in the field populations of An. stephensi from Kunar, Laghman and Nangarhar Provinces of Afghanistan is caused by a range of metabolic and site insensitivity mechanisms, including esterases, cytochrome P450s and GSTs combined with AChE and sodium channel target site insensitivity. The intensity and frequency of these mechanisms are increasing in these populations, calling for urgent reorientation of vector control programmes and implementation of insecticide resistance management strategies.
Collapse
Affiliation(s)
- Noor Halim Zahid Safi
- National Malaria and Leishmania Control Programme, Ministry of Public Health, Kabul, Afghanistan
| | - Abdul Ali Ahmadi
- National Malaria and Leishmania Control Programme, Ministry of Public Health, Kabul, Afghanistan
| | - Sami Nahzat
- National Malaria and Leishmania Control Programme, Ministry of Public Health, Kabul, Afghanistan
| | | | | | - Reza Valadan
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atie Shemshadian
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Centre, Mazandaran University of Medical Sciences, Sari, Iran
| | - Marzieh Sharifi
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmadali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Centre, Mazandaran University of Medical Sciences, Sari, Iran.
| | | |
Collapse
|
27
|
da Cruz DL, Paiva MHS, Guedes DRD, Alves J, Gómez LF, Ayres CFJ. Detection of alleles associated with resistance to chemical insecticide in the malaria vector Anopheles arabiensis in Santiago, Cabo Verde. Malar J 2019; 18:120. [PMID: 30953531 PMCID: PMC6451206 DOI: 10.1186/s12936-019-2757-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes of the Anopheles gambiae complex are the main malaria vectors worldwide. Due to the lack of a vaccine to prevent malaria, the principal way to reduce the impact of this disease relies on the use of chemical insecticides to control its vectors. However, the intensive use of such compounds has led to the emergence of insecticide resistance in several Anopheles populations in Africa. This study aimed to investigate the presence of resistance alleles in an Anopheles arabiensis population from the City of Praia, capital of the Archipelago Cabo Verde, one of the countries on the World Health Organization list of countries that are on a path to eliminate local transmission of malaria. METHODS Larvae from the Anopheles genus were collected using a one-pint dipper in three areas of City of Praia. Larvae were fed and maintained until the emergence of adult mosquitoes, and these were morphologically identified. In addition, molecular identification was performed using IGS markers and all An. arabiensis samples were subjected to PCR to screen for mutations associated to resistance in the Ace-1, Nav and GSTE2 genes. RESULTS From a total of 440 mosquitoes collected, 52.3% were morphologically identified as An. gambiae sensu lato (s.l.) and 46.7% as Anopheles pretoriensis. The molecular identification showed that 100% of the An. gambiae s.l. were An. arabiensis. The mutations G119S in the Ace-1 gene and L119F in the GSTE2 gene were screened but not found in any sample. However, sequencing analysis for GSTE2 revealed the presence of 37 haplotypes, 16 polymorphic sites and a high genetic diversity (π = 2.67). The L1014S mutation in the Nav (voltage-gated sodium channel gene) was detected at a frequency of 7.3%. CONCLUSION This is the first study to investigate the circulation of insecticide resistance alleles in An. arabiensis from Cabo Verde. The circulation of the L1014S allele in the population of An. arabiensis in the city of Praia suggests that pyrethroid resistance may arise, be quickly selected, and may affect the process of malaria elimination in Cabo Verde. Molecular monitoring of resistance should continue in order to guide the development of strategies to be used in vector control in the study region.
Collapse
Affiliation(s)
- Derciliano Lopes da Cruz
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Rodovia BR-104, km 59 - Nova Caruaru, Caruaru, PE, 55002-970, Brazil
| | - Duschinka Ribeiro Duarte Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Joana Alves
- Instituto Nacional de Saúde Pública/Ministério da Saúde, Largo do Desastre da Assistência, CP-719, Praia, Cabo Verde
| | - Lara Ferrero Gómez
- Universidade Jean Piaget (UniPiaget), Caixa Postal 775, Praia, Cabo Verde
| | - Constância Flávia Junqueira Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
28
|
Matiya DJ, Philbert AB, Kidima W, Matowo JJ. Dynamics and monitoring of insecticide resistance in malaria vectors across mainland Tanzania from 1997 to 2017: a systematic review. Malar J 2019; 18:102. [PMID: 30914051 PMCID: PMC6434877 DOI: 10.1186/s12936-019-2738-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/20/2019] [Indexed: 11/22/2022] Open
Abstract
Background Malaria still claims substantial lives of individuals in Tanzania. Insecticide-treated nets (ITNs) and indoor residual spray (IRS) are used as major malaria vector control tools. These tools are facing great challenges from the rapid escalating insecticide resistance in malaria vector populations. This review presents the information on the dynamics and monitoring of insecticide resistance in malaria vectors in mainland Tanzania since 1997. The information is important to policy-makers and other vector control stakeholders to reflect and formulate new resistance management plans in the country. Methods Reviewed articles on susceptibility and mechanisms of resistance in malaria vectors to insecticides across mainland Tanzania were systematically searched from the following databases: PubMed, Google scholar, HINARI and AGORA. The inclusion criteria were articles published between 2000 and 2017, reporting susceptibility of malaria vectors to insecticides, mechanisms of resistance in the mainland Tanzania, involving field collected adult mosquitoes, and mosquitoes raised from the field collected larvae. Exclusion criteria were articles reporting insecticide resistance in larval bio-assays, laboratory strains, and unpublished data. Reviewed information include year of study, malaria vectors, insecticides, and study sites. This information was entered in the excel sheet and analysed. Results A total of 30 articles met the selection criteria. The rapid increase of insecticide resistance in the malaria vectors across the country was reported since year 2006 onwards. Insecticide resistance in Anopheles gambiae sensu lato (s.l.) was detected in at least one compound in each class of all recommended insecticide classes. However, the Anopheles funestus s.l. is highly resistant to pyrethroids and DDT. Knockdown resistance (kdr) mechanism in An. gambiae s.l. is widely studied in the country. Biochemical resistance by detoxification enzymes (P450s, NSE and GSTs) in An. gambiae s.l. was also recorded. Numerous P450s genes associated with metabolic resistance were over transcribed in An. gambiae s.l. collected from agricultural areas. However, no study has reported mechanisms of insecticide resistance in the An. funestus s.l. in the country. Conclusion This review has shown the dynamics and monitoring of insecticide resistance in malaria vector populations across mainland Tanzanian. This highlights the need for devising improved control approaches of the malaria vectors in the country.
Collapse
Affiliation(s)
- Deokary Joseph Matiya
- Dar es Salaam University College of Education (DUCE), P.O. Box 2329, Dar es Salaam, Tanzania. .,University of Dar es Salaam (UDSM), P.O. Box 35064, Dar es Salaam, Tanzania.
| | - Anitha B Philbert
- University of Dar es Salaam (UDSM), P.O. Box 35064, Dar es Salaam, Tanzania
| | - Winifrida Kidima
- University of Dar es Salaam (UDSM), P.O. Box 35064, Dar es Salaam, Tanzania
| | - Johnson J Matowo
- Kilimanjaro Christian Medical University College (KCMUCo), P.O. Box 2240, Moshi, Tanzania
| |
Collapse
|
29
|
Thiaw O, Doucouré S, Sougoufara S, Bouganali C, Konaté L, Diagne N, Faye O, Sokhna C. Investigating insecticide resistance and knock-down resistance (kdr) mutation in Dielmo, Senegal, an area under long lasting insecticidal-treated nets universal coverage for 10 years. Malar J 2018; 17:123. [PMID: 29566682 PMCID: PMC5863856 DOI: 10.1186/s12936-018-2276-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/15/2018] [Indexed: 11/10/2022] Open
Abstract
Background The use of insecticides, through indoor residual spraying and long-lasting insecticide-treated nets (LLINs), is essential to control malaria vectors. However, the sustainability of these tools is challenged by the spread of insecticide resistance in Anopheles mosquitoes. This study was conducted to assess the susceptibility to insecticides and to determine the resistance mechanisms in malaria vectors in Dielmo, a rural area of western Senegal where LLINs were introduced a decade ago. Methods CDC bottle bioassays were used to determine the susceptibility of 2–5 day-old unfed Anopheles gambiae s.l. females to alphacypermethrin (12.5 µg/bottle), deltamethrin (12.5 µg/bottle), etofenprox (12.5 µg/bottle), lambdacyhalothrin (12.5 µg/bottle), permethrin (21.5 µg/bottle), DDT (100 µg/bottle), bendiocarb (12.5 µg/bottle), pirimiphos-methyl (20 µg/bottle) and fenitrothion (50 µg/bottle). The involvement of glutathione-S-transferases (GSTs) in insecticide resistance was assessed using a synergist, etacrynic acid (EA, 80 µg/bottle). Polymerase chain reaction (PCR) was used to investigate the presence of ‘knock-down resistance (kdr)’ mutation and to identify sibling species within the An. gambiae complex. Results CDC bottle bioassays showed that mosquitoes were fully susceptible to lambdacyhalothrin, bendiocarb and fenitrothion. Overall, mortality rates of 97, 94.6, 93.5, 92.1, and 90.1% were, respectively, observed for permethrin, deltamethrin, pirimiphos-methyl, etofenprox and alphacypermethrin. Resistance to DDT was observed, with a mortality rate of 62%. The use of EA significantly improved the susceptibility of An. gambiae s.l. to DDT by inhibiting GSTs (p = 0.03). PCR revealed that Anopheles arabiensis was the predominant species (91.3%; IC 95 86.6–94%) within An. gambiae complex from Dielmo, followed by Anopheles coluzzii (5.4%; IC 95 2.7–8.1%) and Anopheles gambiae s.s. (3.3%; IC 95 0.6–5.9%). Both 1014F and 1014S alleles were found in An. arabiensis population with frequencies of 0.08 and 0.361, respectively, and 0.233 and 0.133, respectively in An. coluzzii. In An. gambiae s.s. population, only kdr L1014F mutation was detected, with a frequency of 0.167. It was observed that some individual mosquitoes carried both alleles, with 19 specimens recorded for An. arabiensis and 2 for An. coluzzii. The presence of L1014F and L1014S alleles were not associated with resistance to pyrethroids and DDT in An. arabiensis. Conclusions The co-occurrence of 1014F and 1014S alleles and the probable involvement of GSTs enzymes in insecticide resistance in An. gambiae s.l. should prompt the local vector programme to implement non-pyrethroid/DDT insecticides alternatives.
Collapse
Affiliation(s)
- Omar Thiaw
- UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International UCAD-IRD Hann Maristes, Dakar, Senegal.,Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques (FST), Université Cheikh Anta Diop (UCAD), Dakar, Senegal
| | - Souleymane Doucouré
- UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International UCAD-IRD Hann Maristes, Dakar, Senegal
| | - Seynabou Sougoufara
- UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International UCAD-IRD Hann Maristes, Dakar, Senegal
| | - Charles Bouganali
- UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International UCAD-IRD Hann Maristes, Dakar, Senegal
| | - Lassana Konaté
- Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques (FST), Université Cheikh Anta Diop (UCAD), Dakar, Senegal
| | - Nafissatou Diagne
- UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International UCAD-IRD Hann Maristes, Dakar, Senegal
| | - Ousmane Faye
- Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques (FST), Université Cheikh Anta Diop (UCAD), Dakar, Senegal
| | - Cheikh Sokhna
- UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International UCAD-IRD Hann Maristes, Dakar, Senegal.
| |
Collapse
|
30
|
Dia AK, Guèye OK, Niang EA, Diédhiou SM, Sy MD, Konaté A, Samb B, Diop A, Konaté L, Faye O. Insecticide resistance in Anopheles arabiensis populations from Dakar and its suburbs: role of target site and metabolic resistance mechanisms. Malar J 2018; 17:116. [PMID: 29544491 PMCID: PMC5856323 DOI: 10.1186/s12936-018-2269-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/09/2018] [Indexed: 11/10/2022] Open
Abstract
Background Urban malaria is an increasing concern in most of the sub-Saharan Africa countries. In Dakar, the capital city of Senegal, the malaria epidemiology has been complicated by recurrent flooding since 2005. The main vector control measure for malaria prevention in Dakar is the community use of long-lasting insecticide-treated nets. However, the increase of insecticide resistance reported in this area needs to be better understood for suitable resistance management. This study reports the situation of insecticide resistance and underlying mechanisms in Anopheles arabiensis populations from Dakar and its suburbs. Results All the populations tested showed resistance to almost all insecticides except organophosphates families, which remain the only lethal molecules. Piperonil butoxide (PBO) and ethacrinic acid (EA) the two synergists used, have respectively and significantly restored the susceptibility to DDT and permethrin of Anopheles population. Molecular identification of specimens revealed the presence of An. arabiensis only. Kdr genotyping showed the presence of the L1014F mutation (kdr-West) as well as L1014S (kdr-East). This L1014S mutation was found at very high frequencies (89.53%) in almost all districts surveyed, and in association with the L1014F (10.24%). Conclusion Results showed the contribution of both target-site and metabolic mechanisms in conferring pyrethroid resistance to An. arabiensis from the flooded areas of Dakar suburbs. These data, although preliminary, stress the need for close monitoring of the urban An. arabiensis populations for a suitable insecticide resistance management system to preserve core insecticide-based vector control tools in this flooded area.
Collapse
Affiliation(s)
- A Kane Dia
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal.
| | - O Kalsom Guèye
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal
| | - E Amadou Niang
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal.,Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - S Mocote Diédhiou
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal
| | - M Demba Sy
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal
| | - Abdoulaye Konaté
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal
| | - Badara Samb
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal
| | - Abdoulaye Diop
- Abt Associates, PMI Africa Indoor Residual Spraying Project, Dakar, Senegal
| | - Lassana Konaté
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal
| | - Ousmane Faye
- Laboratoire d'Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal
| |
Collapse
|
31
|
Silva GLD, Pereira TN, Ferla NJ, Silva OSD. The impact of insecticides management linked with resistance expression in Anopheles spp. populations. CIENCIA & SAUDE COLETIVA 2018; 21:2179-88. [PMID: 27383351 DOI: 10.1590/1413-81232015217.00922015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/11/2015] [Indexed: 11/22/2022] Open
Abstract
The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-lasting insecticide nets (LLINs), indoor residual spraying and (IRS) of insecticides. The objective of this review is to contribute with information on the more applied insecticides for the control of the main vectors of malaria, its effects, and the different mechanisms of resistance. Currently it is necessary to look for others alternatives, e.g. biological control and products derived from plants and fungi, by using other organisms as a possible regulator of the populations of malaria vectors in critical outbreaks.
Collapse
Affiliation(s)
- Guilherme Liberato da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul. R. Sarmento Leite 500, Centro Histórico. 90050-170 Porto Alegre RS Brasil.
| | - Thiago Nunes Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul. R. Sarmento Leite 500, Centro Histórico. 90050-170 Porto Alegre RS Brasil.
| | - Noeli Juarez Ferla
- Laboratório de Acarologia, Museu de Ciências Naturais, Centro Universitário UNIVATES. Lajeado RS Brasil
| | - Onilda Santos da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul. R. Sarmento Leite 500, Centro Histórico. 90050-170 Porto Alegre RS Brasil.
| |
Collapse
|
32
|
Hemming-Schroeder E, Strahl S, Yang E, Nguyen A, Lo E, Zhong D, Atieli H, Githeko A, Yan G. Emerging Pyrethroid Resistance among Anopheles arabiensis in Kenya. Am J Trop Med Hyg 2018; 98:704-709. [PMID: 29363447 PMCID: PMC5930888 DOI: 10.4269/ajtmh.17-0445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vector control programs, particularly in the form of insecticide-treated bed nets (ITNs), are essential for achieving malaria elimination goals. Recent reports of increasing knockdown resistance (kdr) mutation frequencies for Anopheles arabiensis in Western Kenya heightens the concern on the future effectiveness of ITNs in Kenya. We examined resistance in An. arabiensis populations across Kenya through kdr mutations and World Health Organization–recommended bioassays. We detected two kdr alleles, L1014F and L1014S. Kdr mutations were found in five of the 11 study sites, with mutation frequencies ranging from 3% to 63%. In two Western Kenya populations, the kdr L1014F allele frequency was as high as 10%. The L1014S frequency was highest at Chulaimbo at 55%. Notably, the kdr L1014F mutation was found to be associated with pyrethroid resistance at Port Victoria, but kdr mutations were not significantly associated with resistance at Chulaimbo, which had the highest kdr mutation frequency among all sites. This study demonstrated the emerging pyrethroid resistance in An. arabiensis and that pyrethroid resistance may be related to kdr mutations. Resistance monitoring and management are urgently needed for this species in Kenya where resistance is emerging and its abundance is becoming predominant. Kdr mutations may serve as a biomarker for pyrethroid resistance in An. arabiensis.
Collapse
Affiliation(s)
| | - Stephanie Strahl
- Program in Public Health, University of California, Irvine, California
| | - Eugene Yang
- Program in Public Health, University of California, Irvine, California
| | - Amanda Nguyen
- Program in Public Health, University of California, Irvine, California
| | - Eugenia Lo
- Program in Public Health, University of California, Irvine, California
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California
| | - Harrysone Atieli
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California
| |
Collapse
|
33
|
Liu QM, Li CX, Wu Q, Shi QM, Sun AJ, Zhang HD, Guo XX, Dong YD, Xing D, Zhang YM, Han Q, Diao XP, Zhao TY. Identification of Differentially Expressed Genes In Deltamethrin-Resistant Culex pipiens quinquefasciatus. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:324-330. [PMID: 29369035 DOI: 10.2987/17-6658.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Culex quinquefasciatus is one of China's major house-dwelling mosquito species and an important vector of filariasis and encephalitis. Chemical treatments represent one of the most successful approaches for comprehensive mosquito prevention and control. However, the widespread use of chemical pesticides has led to the occurrence and development of insecticide resistance. Therefore, in-depth studies of resistance to insecticides are of vital importance. In this study, we performed a gene expression analysis to investigate genes from Cx. quinquefasciatus that may confer pyrethroid resistance. We aimed to understand the mechanisms of Cx. quinquefasciatus resistance to pyrethroid insecticides and provide insights into insect resistance management. Using a resistance bioassay, we determined the deltamethrin LC50 values (lethal concentration required to kill 50% of the population) for Cx. quinquefasciatus larvae in the F21, F23, F24, F26, F27, and F30 generations. The 7 tested strains exhibited pesticide resistance that was 25.25 to 87.83 times higher than that of the SanYa strain. Moreover, the expression of the OBPjj7a (odorant-binding protein OBPjj7a), OBP28 (odorant-binding protein OBP28), and E2 (ubiquitin-conjugating enzyme) genes was positively correlated with deltamethrin resistance ( R2 = 0.836, P = 0.011; R2 = 0.788, P = 0.018; and R2 = 0.850, P = 0.009, respectively) in Cx. quinquefasciatus. The expression of 4 additional genes, H/ACA, S19, SAR2, and PGRP, was not correlated with deltamethrin resistance. In summary, this study identified 3 Cx. quinquefasciatus genes with potential involvement in deltamethrin resistance, and these results may provide a theoretical basis for the control of mosquito resistance and insights into resistance detection.
Collapse
|
34
|
Matowo NS, Munhenga G, Tanner M, Coetzee M, Feringa WF, Ngowo HS, Koekemoer LL, Okumu FO. Fine-scale spatial and temporal heterogeneities in insecticide resistance profiles of the malaria vector, Anopheles arabiensis in rural south-eastern Tanzania. Wellcome Open Res 2017; 2:96. [PMID: 29417094 PMCID: PMC5782413 DOI: 10.12688/wellcomeopenres.12617.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Programmatic monitoring of insecticide resistance in disease vectors is mostly done on a large scale, often focusing on differences between districts, regions or countries. However, local heterogeneities in residual malaria transmission imply the need for finer-scale data. This study reports small-scale variations of insecticide susceptibility in
Anopheles arabiensis between three neighbouring villages across two seasons in Tanzania, where insecticidal bed nets are extensively used, but malaria transmission persists. Methods: WHO insecticide susceptibility assays were conducted on female and male
An. arabiensis from three proximal villages, Minepa, Lupiro, and Mavimba, during dry (June-December 2015) and wet (January-May 2016) seasons. Adults emerging from wild-collected larvae were exposed to 0.05% lambda-cyhalothrin, 0.05% deltamethrin, 0.75% permethrin, 4% DDT, 4% dieldrin, 0.1% bendiocarb, 0.1% propoxur, 0.25% pirimiphos-methyl and 5% malathion. A hydrolysis probe assay was used to screen for L1014F (
kdr-w) and L1014S (
kdr-e) mutations in specimens resistant to DDT or pyrethroids. Synergist assays using piperonly butoxide (PBO) and triphenol phosphate (TPP) were done to assess pyrethroid and bendiocarb resistance phenotypes. Results: There were clear seasonal and spatial fluctuations in phenotypic resistance status in
An. arabiensis to pyrethroids, DDT and bendiocarb. Pre-exposure to PBO and TPP, resulted in lower knockdown rates and higher mortalities against pyrethroids and bendiocarb, compared to tests without the synergists. Neither L1014F nor L1014S mutations were detected. Conclusions: This study confirmed the presence of pyrethroid resistance in
An. arabiensis and showed small-scale differences in resistance levels between the villages, and between seasons. Substantial, though incomplete, reversal of pyrethroid and bendiocarb resistance following pre-exposure to PBO and TPP, and absence of
kdr alleles suggest involvement of P450 monooxygenases and esterases in the resistant phenotypes. We recommend, for effective resistance management, further bioassays to quantify the strength of resistance, and both biochemical and molecular analysis to elucidate specific enzymes responsible in resistance.
Collapse
Affiliation(s)
- Nancy S Matowo
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Givemore Munhenga
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Marcel Tanner
- University of Basel, Basel, 4001, Switzerland.,Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland
| | - Maureen Coetzee
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Wim F Feringa
- Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, 7522 NB, Netherlands
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa
| |
Collapse
|
35
|
Ondeto BM, Nyundo C, Kamau L, Muriu SM, Mwangangi JM, Njagi K, Mathenge EM, Ochanda H, Mbogo CM. Current status of insecticide resistance among malaria vectors in Kenya. Parasit Vectors 2017; 10:429. [PMID: 28927428 PMCID: PMC5606043 DOI: 10.1186/s13071-017-2361-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. METHODS Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). RESULTS Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while the elevated activity of carboxylesterase and GST has been detected only in An. arabiensis populations. CONCLUSIONS The geographical maps show the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya. The database generated will provide a guide to intervention policies and programmes in the fight against malaria.
Collapse
Affiliation(s)
- Benyl M. Ondeto
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Christopher Nyundo
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Luna Kamau
- KEMRI, Centre for Biotechnology Research and Development, Nairobi, Kenya
| | - Simon M. Muriu
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Joseph M. Mwangangi
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kiambo Njagi
- Ministry of Health, Malaria Control Unit, Nairobi, Kenya
| | - Evan M. Mathenge
- KEMRI, Eastern and Southern Africa Centre of International Parasite Control, Nairobi, Kenya
| | - Horace Ochanda
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Charles M. Mbogo
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| |
Collapse
|
36
|
Mbepera S, Nkwengulila G, Peter R, Mausa EA, Mahande AM, Coetzee M, Kweka EJ. The influence of age on insecticide susceptibility of Anopheles arabiensis during dry and rainy seasons in rice irrigation schemes of Northern Tanzania. Malar J 2017; 16:364. [PMID: 28893240 PMCID: PMC5594483 DOI: 10.1186/s12936-017-2022-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Background Insecticide resistance is the major emerging challenge facing the malaria vector control programmes in Tanzania. Proper monitoring and detection is of paramount importance guiding the vector control programmes. This paper presents the effect of mosquito aging on insecticide resistance status in Anopheles arabiensis populations in dry and rainy seasons in northern Tanzania. Methods Anopheles gambiae s.l. larvae were sampled from rice fields in both dry and rainy seasons and reared in the insectary to adults. The emerged females in batches of 2, 3, 5, and 10 days old were exposed to six insecticides (deltamethrin, permethrin, lambda-cyhalothrin, DDT, bendiocarb and pirimiphos-methyl) to see the effects of age on insecticide resistance. Mosquitoes were exposed to insecticides using WHO standard susceptibility test kits. Knockdown was recorded during the 1-h exposure, while mortality and resistance ratio were recorded 24 h later. Mosquito specimens were identified to species level using the polymerase chain reaction (PCR) method. Results Among the 326 specimens processed by PCR, 323 (99.1%) were identified as Anopheles arabiensis. There was reduced mortality (ranging from 61 to 97.7%) when adults reared from larvae were exposed to all pyrethroids and bendiocarb in both dry and rainy seasons, while they were fully susceptible to DDT and pirimiphos-methyl. There was a significant increase in mortality rate with increase in mosquito’s age in both dry and rainy seasons following exposure to pyrethroids (DF = 1, P < 0.05). Mosquitoes showed significantly higher mortality rates in the rainy season than in the dry season after being exposed to pyrethroids (DF = 1, P < 0.05). Higher mortality rates (94.0–99.8%) were observed in all ages and seasons when mosquitoes were exposed to bendiocarb compared with pyrethroids. Pirimiphos-methyl was only tested in the rainy season so no comparison with dry season mosquitoes could be made. Conclusions Results showed that An. arabiensis were resistant to pyrethroids in both seasons and that the young age groups exhibited higher levels of resistance compared with the older age groups. Mosquitoes were full susceptible to DDT and pirimiphos-methyl irrespective of the season and age.
Collapse
Affiliation(s)
- Saada Mbepera
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar-es-salaam, P.O.Box 35165, Dar-es-salaam, Tanzania
| | - Gamba Nkwengulila
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar-es-salaam, P.O.Box 35165, Dar-es-salaam, Tanzania
| | - Rose Peter
- Public Health Strategic Partnerships Associate, Arysta Life Science, 12 Denys Road, River Club, 2191, South Africa
| | - Emmanuel A Mausa
- National Plant Genetic Resource Centre, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| | - Aneth M Mahande
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Mabogini Field Station, Moshi, Tanzania
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Eliningaya J Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, P.O.Box 3024, Arusha, Tanzania. .,Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
| |
Collapse
|
37
|
Nnko EJ, Kihamia C, Tenu F, Premji Z, Kweka EJ. Insecticide use pattern and phenotypic susceptibility of Anopheles gambiae sensu lato to commonly used insecticides in Lower Moshi, northern Tanzania. BMC Res Notes 2017; 10:443. [PMID: 28877733 PMCID: PMC5585946 DOI: 10.1186/s13104-017-2793-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 08/31/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Evidence of insecticide resistance has been documented in different malaria endemic areas. Surveillance studies to allow prompt investigation of associated factors to enable effective insecticide resistance management are needed. The objective of this study was to assess insecticide use pattern and phenotypic susceptibility level of Anopheles gambiae sensu lato to insecticides commonly used in malaria control in Moshi, northern Tanzania. METHODS A cross-sectional survey was conducted to assess insecticide usage pattern. Data was collected was through closed and open ended questionnaires The WHO diagnostic standard kit with doses of 0.1% bendiocarb, 0.05% deltamethrin, 0.75% permethrin and 4% DDT were used to detect knockdown time, mortality and resistance ratio of wild A. gambiae sensu lato. The questionnaire survey data was analyzed using descriptive statistics and one-way analysis of variance while susceptibility data was analysed by logistic regression with probit analysis using SPSS program. The WHO criteria was used to evaluate the resistance status of the tested mosquito populations. RESULTS A large proportion of respondents (80.8%) reported to have used insecticide mainly for farming purposes (77.3%). Moreover, 93.3% of household reported usage of long lasting insecticidal nets. The frequently used class of insecticide was organophosphate with chloropyrifos as the main active ingredients and dursban was the brand constantly reported. Very few respondents (24.1%) applied integrated vector control approaches of and this significantly associated with level of knowledge of insecticide use (P < 0.001). Overall knockdown time for A. gambiae s.l was highest in DDT, followed by Pyrethroids (Permethrin and deltamethrin) and lowest in bendiocarb. Anopheles gambiae s.l showed susceptibility to bendiocarb, increased tolerance to permethrin and resistant to deltamethrin. The most effective insecticide against the population from tested was bendiocarb, with a resistance ratio ranging between 0.93-2.81. CONCLUSION Education on integrated vector management should be instituted and a policy change on insecticide of choice for malaria vector control from pyrethroids to carbamates (bendiocarb) is recommended. Furthermore, studies to detect cross resistance between pyrethroids and organophosphates should be carried out.
Collapse
Affiliation(s)
- Elinas J. Nnko
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Charles Kihamia
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Filemoni Tenu
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, P.O. Box 81, Tanga, Tanzania
| | - Zul Premji
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Eliningaya J. Kweka
- Tropical Pesticides Research Institute, Division of Livestock and Human Health Disease Vector Control, Mosquito Section, P.O. Box 3024, Arusha, Tanzania
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464 Mwanza, Tanzania
| |
Collapse
|
38
|
Sumarnrote A, Overgaard HJ, Marasri N, Fustec B, Thanispong K, Chareonviriyaphap T, Corbel V. Status of insecticide resistance in Anopheles mosquitoes in Ubon Ratchathani province, Northeastern Thailand. Malar J 2017; 16:299. [PMID: 28743278 PMCID: PMC5526291 DOI: 10.1186/s12936-017-1948-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background Malaria is common in hilly, forested areas along national borders in Southeast Asia. Insecticide resistance in malaria vectors has been detected in a few countries in the Greater Mekong sub-region (GMS), representing a threat to malaria control and prevention. This study aims to determine the insecticide resistance status of Anopheles mosquitoes in Ubon Ratchathani province, northeastern Thailand, where increasing number of malaria cases were reported recently. Methods Mosquitoes were collected in 2013–2015 using human landing and cattle bait collections in six sites during both the rainy and dry seasons. Mosquitoes were first morphologically identified to species and their susceptibility status to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%) investigated, according to WHO guidelines. Bioassays with the synergists PBO and DEF were carried out to address the role of detoxifying enzymes in insecticide resistance. DNA sequencing of a fragment of the voltage-gated sodium channel gene was carried out to detect knock-down resistance (kdr) substitutions at position 1014 in resistant species. Results Due to low vector abundance, complete bioassays (n ≥ 100 mosquitoes) were only achieved for Anopheles hyrcanus s.l., which was resistant to all insecticides tested (mortality ranged from 45 to 87%). Suspected resistance to DDT was found in Anopheles barbirostris s.l. (mortality 69%), but it was susceptible to deltamethrin (mortality 97–100%) and permethrin (mortality 100%). Although insufficient number of primary vectors were collected, results showed that Anopheles dirus s.l. and Anopheles maculatus s.l. were susceptible to deltamethrin (mortality 100%). Anopheles nivipes and Anopheles philippinensis were susceptible to all three insecticides. PBO significantly increased mortality to deltamethrin and permethrin in pyrethroid-resistant An. hyrcanus s.l. None of the sequenced specimens presented the L1014F or L1014S mutation. Discussion This study shows that insecticide resistance is present in potential malaria vectors in northeastern Thailand. The absence of kdr mutations in all Anopheles species tested suggests that metabolic resistance is the main mechanism of pyrethroid resistance. This study provides new findings about insecticide susceptibility status of potential malaria vectors in northeastern Thailand that are deemed important to guide malaria vector control.
Collapse
Affiliation(s)
- Anchana Sumarnrote
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Hans J Overgaard
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), Montpellier, France.,Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Nattapol Marasri
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Bénédicte Fustec
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Kanutcharee Thanispong
- Bureau of Vector-borne Disease, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Vincent Corbel
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand. .,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), Montpellier, France.
| |
Collapse
|
39
|
Philbert A, Lyantagaye SL, Pradel G, Ngwa CJ, Nkwengulila G. Pyrethroids and DDT tolerance ofAnopheles gambiaes.l. from Sengerema District, an area of intensive pesticide usage in north-western Tanzania. Trop Med Int Health 2017; 22:388-398. [DOI: 10.1111/tmi.12850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anitha Philbert
- Mkwawa University College of Education; Private bag Iringa Tanzania
| | | | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology; Institute of Zoology; RWTH Aachen University; Aachen Germany
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology; Institute of Zoology; RWTH Aachen University; Aachen Germany
| | | |
Collapse
|
40
|
Kabula B, Tungu P, Rippon EJ, Steen K, Kisinza W, Magesa S, Mosha F, Donnelly MJ. A significant association between deltamethrin resistance, Plasmodium falciparum infection and the Vgsc-1014S resistance mutation in Anopheles gambiae highlights the epidemiological importance of resistance markers. Malar J 2016; 15:289. [PMID: 27216484 PMCID: PMC4877992 DOI: 10.1186/s12936-016-1331-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022] Open
Abstract
Background The success of malaria vector control is threatened by widespread pyrethroid insecticide resistance. However, the extent to which insecticide resistance impacts transmission is unclear. The objective of this study was to examine the association between the DDT/pyrethroid knockdown resistance mutation Vgsc-1014S, commonly termed kdr, and infection with Plasmodium falciparum sporozoites in Anopheles gambiae. Methods WHO standard methods were used to characterize susceptibility of wild female mosquitoes to 0.05 % deltamethrin. PCR-based molecular diagnostics were used to identify mosquitoes to species and to genotype at the Vgsc-L1014S locus. ELISAs were used to detect the presence of P.falciparum sporozoites and for blood meal identification. Results Anopheles mosquitoes were resistant to deltamethrin with mortality rates of 77.7 % [95 % CI 74.9–80.3 %]. Of 545 mosquitoes genotyped 96.5 % were A. gambiaes.s. and 3.5 % were Anopheles arabiensis. The Vgsc-1014S mutation was detected in both species. Both species were predominantly anthropophagic. In A. gambiaes.s., Vgsc-L1014S genotype was significantly associated with deltamethrin resistance (χ2 = 11.2; p < 0.001). The P. falciparum sporozoite infection rate was 4.2 %. There was a significant association between the presence of sporozoites and Vgsc-L1014S genotype in A. gambiaes.s. (χ2 = 4.94; p = 0.026). Conclusions One marker, Vgsc-1014S, was associated with insecticide resistance and P. falciparum infection in wild-caught mixed aged populations of A. gambiaes.s. thereby showing how resistance may directly impact transmission.
Collapse
Affiliation(s)
- Bilali Kabula
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania.,Amani Research Centre, National Institute for Medical Research, Muheza, Tanzania.,Tukuyu Research Centre, National Institute for Medical Research, Tukuyu, Tanzania
| | - Patrick Tungu
- Amani Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Keith Steen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - William Kisinza
- Amani Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | - Stephen Magesa
- Amani Research Centre, National Institute for Medical Research, Muheza, Tanzania.,Global Health Division, RTI International, Dar es Salaam, Tanzania
| | - Franklin Mosha
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | | |
Collapse
|
41
|
Donnelly MJ, Isaacs AT, Weetman D. Identification, Validation, and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors. Trends Parasitol 2015; 32:197-206. [PMID: 26750864 DOI: 10.1016/j.pt.2015.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
Abstract
Insecticide resistance is a major obstacle to control of Anopheles malaria mosquitoes in sub-Saharan Africa and requires an improved understanding of the underlying mechanisms. Efforts to discover resistance genes and DNA markers have been dominated by candidate gene and quantitative trait locus studies of laboratory strains, but with greater availability of genome sequences a shift toward field-based agnostic discovery is anticipated. Mechanisms evolve continually to produce elevated resistance yielding multiplicative diagnostic markers, co-screening of which can give high predictive value. With a shift toward prospective analyses, identification and screening of resistance marker panels will boost monitoring and programmatic decision making.
Collapse
Affiliation(s)
- Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK.
| | - Alison T Isaacs
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
42
|
Maliti DV, Govella NJ, Killeen GF, Mirzai N, Johnson PCD, Kreppel K, Ferguson HM. Development and evaluation of mosquito-electrocuting traps as alternatives to the human landing catch technique for sampling host-seeking malaria vectors. Malar J 2015; 14:502. [PMID: 26670881 PMCID: PMC4681165 DOI: 10.1186/s12936-015-1025-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background The human landing catch (HLC) is the gold standard method for sampling host-seeking malaria vectors. However, the HLC is ethically questionable because it requires exposure of humans to potentially infectious mosquito bites. Methods Two exposure-free methods for sampling host-seeking mosquitoes were evaluated using electrocuting surfaces as potential replacements for HLC: (1) a previously evaluated, commercially available electrocuting grid (CA-EG) designed for killing flies, and (2) a custom-made mosquito electrocuting trap (MET) designed to kill African malaria vectors.
The MET and the CA-EG were evaluated relative to the HLC in a Latin Square experiment conducted in the Kilombero Valley, Tanzania. The sampling consistency of the traps across the night and at varying mosquito densities was investigated. Estimates of the proportion of mosquitoes caught indoors (Pi), proportion of human exposure occurring indoors (πi), and proportion of mosquitoes caught when most people are likely to be indoors (Pfl) were compared for all traps. Results Whereas the CA-EG performed poorly (<10 % of catch of HLC), sampling efficiency of the MET for sampling Anopheles funestuss.l. was indistinguishable from HLC indoors and outdoors. For Anopheles gambiae s.l., sampling sensitivity of MET was 20.9 % (95 % CI 10.3–42.2) indoors and 58.5 % (95 % CI 32.2–106.2) outdoors relative to HLC. There was no evidence of density-dependent sampling by the MET or CA-EG. Similar estimates of Pi were obtained for An. gambiaes.l. and An. funestus s.l. from all trapping methods. The proportion of mosquitoes caught when people are usually indoors (Pfl) was underestimated by the CA-EG and MET for An. gambiae s.l., but similar to the HLC for An. funestus. Estimates of the proportion of human exposure occurring indoors (πi) obtained from the CA-EG and MET were similar to the HLC for An. gambiae s.l., but overestimated for An. funestus. Conclusions The MET showed promise as an outdoor sampling tool for malaria vectors where it achieved >50 % sampling sensitivity relative to the HLC. The CA-EG had poor sampling sensitivity outdoors and inside. With further modification, the MET could provide an efficient and safer alternative to the HLC for the surveillance of mosquito vectors outdoors. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1025-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deodatus V Maliti
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK. .,Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 78373, Kiko Avenue, Mikocheni B, Dar es Salaam, Tanzania. .,School of Life Sciences, Nelson Mandela African Institute of Science and Technology Tanzania, PO Box 447, Arusha, Tanzania.
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 78373, Kiko Avenue, Mikocheni B, Dar es Salaam, Tanzania.
| | - Gerry F Killeen
- Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 78373, Kiko Avenue, Mikocheni B, Dar es Salaam, Tanzania. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Nosrat Mirzai
- Bioelectronics Unit, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | - Paul C D Johnson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | - Katharina Kreppel
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK. .,Environmental Health and Ecological Sciences, Ifakara Health Institute, PO Box 78373, Kiko Avenue, Mikocheni B, Dar es Salaam, Tanzania.
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
43
|
Ochomo E, Subramaniam K, Kemei B, Rippon E, Bayoh NM, Kamau L, Atieli F, Vulule JM, Ouma C, Gimnig J, Donnelly MJ, Mbogo C. Presence of the knockdown resistance mutation, Vgsc-1014F in Anopheles gambiae and An. arabiensis in western Kenya. Parasit Vectors 2015; 8:616. [PMID: 26626424 PMCID: PMC4666190 DOI: 10.1186/s13071-015-1223-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction The voltage gated sodium channel mutation Vgsc-1014S (kdr-east) was first reported in Kenya in 2000 and has since been observed to occur at high frequencies in the local Anopheles gambiae s.s. population. The mutation Vgsc-1014F has never been reported from An. gambiae Complex complex mosquitoes in Kenya. Findings Molecularly confirmed An. gambiae s.s. (hereafter An. gambiae) and An. arabiensis collected from 4 different parts of western Kenya were genotyped for kdr from 2011 to 2013. Vgsc-1014F was observed to have emerged, apparently, simultaneously in both An. gambiae and An. arabiensis in 2012. A portion of the samples were submitted for sequencing in order to confirm the Vgsc-1014F genotyping results. The resulting sequence data were deposited in GenBank (Accession numbers: KR867642-KR867651, KT758295-KT758303). A single Vgsc-1014F haplotype was observed suggesting, a common origin in both species. Conclusion This is the first report of Vgsc-1014F in Kenya. Based on our samples, the mutation is present in low frequencies in both An. gambiae and An. arabiensis. It is important that we start monitoring relative frequencies of the two kdr genes so that we can determine their relative importance in an area of high insecticide treated net ownership.
Collapse
Affiliation(s)
- Eric Ochomo
- School of Public Health and Community Development, Maseno University, Maseno, Kenya. .,Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | | | - Brigid Kemei
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | - Emily Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Nabie M Bayoh
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | - Luna Kamau
- Centre for Biotechnology and Research Development, Kenya Medical Research Institute, Nairobi, Kenya.
| | - Francis Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | - John M Vulule
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya.
| | - Collins Ouma
- School of Public Health and Community Development, Maseno University, Maseno, Kenya. .,Health Challenges and Systems, African Population and Health Research Centre, Nairobi, Kenya.
| | - John Gimnig
- Centers of Disease Control and Prevention, Atlanta, USA.
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK. .,Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK.
| | - Charles Mbogo
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya. .,Malaria Public Health Department, KEMRI-Wellcome Trust Research Program, Nairobi, Kenya.
| |
Collapse
|
44
|
Mitri C, Markianos K, Guelbeogo WM, Bischoff E, Gneme A, Eiglmeier K, Holm I, Sagnon N, Vernick KD, Riehle MM. The kdr-bearing haplotype and susceptibility to Plasmodium falciparum in Anopheles gambiae: genetic correlation and functional testing. Malar J 2015; 14:391. [PMID: 26445487 PMCID: PMC4596459 DOI: 10.1186/s12936-015-0924-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background Members of the Anophelesgambiae species complex are primary vectors of human malaria in Africa. It is known that a large haplotype shared between An. gambiae and Anophelescoluzzii by introgression carries point mutations of the voltage-gated sodium channel gene para, including the L1014F kdr mutation associated with insensitivity to pyrethroid insecticides. Carriage of L1014F kdr is also correlated with higher susceptibility to infection with Plasmodium falciparum. However, the genetic mechanism and causative gene(s) underlying the parasite susceptibility phenotype are not known. Methods Mosquitoes from the wild Burkina Faso population were challenged by feeding on natural P. falciparum gametocytes. Oocyst infection phenotypes were determined and were tested for association with SNP genotypes. Candidate genes in the detected locus were prioritized and RNAi-mediated gene silencing was used to functionally test for gene effects on P. falciparum susceptibility. Results A genetic locus, Pfin6, was identified that influences infection levels of P. falciparum in mosquitoes. The locus segregates as a ~3 Mb haplotype carrying 65 predicted genes including the para gene. The haplotype carrying the kdr allele of para is linked to increased parasite infection prevalence, but many single nucleotide polymorphisms on the haplotype are also equally linked to the infection phenotype. Candidate genes in the haplotype were prioritized and functionally tested. Silencing of para did not influence P. falciparum infection, while silencing of a predicted immune gene, serine protease ClipC9, allowed development of significantly increased parasite numbers. Conclusions Genetic variation influencing Plasmodium infection in wild Anopheles is linked to a natural ~3 megabase haplotype on chromosome 2L that carries the kdr allele of the para gene. Evidence suggests that para gene function does not directly influence parasite susceptibility, and the association of kdr with infection may be due to tight linkage of kdr with other gene(s) on the haplotype. Further work will be required to determine if ClipC9 influences the outcome of P. falciparum infection in nature, as well as to confirm the absence of a direct influence by para. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0924-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - Kyriacos Markianos
- Program in Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - Awa Gneme
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, CNRS Unit of Hosts, Vectors and Pathogens (URA3012), Lab GGIV, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France. .,Department of Microbiology, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - Michelle M Riehle
- Department of Microbiology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
45
|
Constructing a Genome-Wide LD Map of Wild A. gambiae Using Next-Generation Sequencing. BIOMED RESEARCH INTERNATIONAL 2015; 2015:238139. [PMID: 26421280 PMCID: PMC4573223 DOI: 10.1155/2015/238139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/24/2015] [Indexed: 12/16/2022]
Abstract
Anopheles gambiae is the major malaria vector in Africa. Examining the molecular basis of A. gambiae traits requires knowledge of both genetic variation and genome-wide linkage disequilibrium (LD) map of wild A. gambiae populations from malaria-endemic areas. We sequenced the genomes of nine wild A. gambiae mosquitoes individually using next-generation sequencing technologies and detected 2,219,815 common single nucleotide polymorphisms (SNPs), 88% of which are novel. SNPs are not evenly distributed across A. gambiae chromosomes. The low SNP-frequency regions overlay heterochromatin and chromosome inversion domains, consistent with the lower recombinant rates at these regions. Nearly one million SNPs that were genotyped correctly in all individual mosquitoes with 99.6% confidence were extracted from these high-throughput sequencing data. Based on these SNP genotypes, we constructed a genome-wide LD map for wild A. gambiae from malaria-endemic areas in Kenya and made it available through a public Website. The average size of LD blocks is less than 40 bp, and several large LD blocks were also discovered clustered around the para gene, which is consistent with the effect of insecticide selective sweeps. The SNPs and the LD map will be valuable resources for scientific communities to dissect the A. gambiae genome.
Collapse
|
46
|
Cisse MBM, Keita C, Dicko A, Dengela D, Coleman J, Lucas B, Mihigo J, Sadou A, Belemvire A, George K, Fornadel C, Beach R. Characterizing the insecticide resistance of Anopheles gambiae in Mali. Malar J 2015; 14:327. [PMID: 26296644 PMCID: PMC4546276 DOI: 10.1186/s12936-015-0847-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The impact of indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs), key components of the national malaria control strategy of Mali, is threatened by vector insecticide resistance. The objective of this study was to assess the level of insecticide resistance in Anopheles gambiae sensu lato populations from Mali against four classes of insecticide recommended for IRS: organochlorines (OCs), pyrethroids (PYs), carbamates (CAs) and organophosphates (OPs). Characterization of resistance was done in 13 sites across southern Mali and assessed presence and distribution of physiological mechanisms that included target-site modifications: knockdown resistance (kdr) and altered acetycholinesterase (AChE), and/or metabolic mechanisms: elevated esterases, glutathione S-transferases (GSTs), and monooxygenases. METHODS The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to: dichlorodiphenyltrichloroethane (DDT) (OC), deltamethrin (PY), lambda-cyhalothrin (PY), bendiocarb (CA), and fenitrothion (OP). Identification of sibling species and presence of the ace-1 (R) and Leu-Phe kdr, resistance-associated mutations, were determined using polymerase chain reaction (PCR) technology. Biochemical assays were conducted to detect increased activity of GSTs, oxidases and esterases. RESULTS Populations tested showed high levels of resistance to DDT in all 13 sites, as well as increased resistance to deltamethrin and lambda-cyhalothrin in 12 out of 13 sites. Resistance to fenitrothion and bendiocarb was detected in 1 and 4 out of 13 sites, respectively. Anopheles coluzzii, An. gambiae sensu stricto and Anopheles arabiensis were identified with high allelic frequencies of kdr in all sites where each of the species were found (13, 12 and 10 sites, respectively). Relatively low allelic frequencies of ace-1 (R) were detected in four sites where this assessment was conducted. Evidence of elevated insecticide metabolism, based on oxidase, GSTs and esterase detoxification, was also documented. CONCLUSION Multiple insecticide-resistance mechanisms have evolved in An. coluzzii, An. gambiae s.s. and An. arabiensis in Mali. These include at least two target site modifications: kdr, and ace-1 (R) , as well as elevated metabolic detoxification systems (monooxygenases and esterases). The selection pressure for resistance could have risen from the use of these insecticides in agriculture, as well as in public health. Resistance management strategies, based on routine resistance monitoring to inform insecticide-based malaria vector control in Mali, are recommended.
Collapse
Affiliation(s)
- Moussa B M Cisse
- PMI Africa Indoor Residual Spraying Project, Abt Associates, Mali, Cite du Niger. BP: 34, Bamako, Mali.
| | - Chitan Keita
- PMI Africa Indoor Residual Spraying Project, Abt Associates, Mali, Cite du Niger. BP: 34, Bamako, Mali.
| | - Abdourhamane Dicko
- National Malaria Control Programme, Badalabougou, Rue 108 Porte 106, Bamako, Mali.
| | - Dereje Dengela
- PMI Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 North, Bethesda, MD, 20814, USA.
| | - Jane Coleman
- PMI Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 North, Bethesda, MD, 20814, USA.
| | - Bradford Lucas
- PMI Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 North, Bethesda, MD, 20814, USA.
| | - Jules Mihigo
- President's Malaria Initiative USAID, ACI2000, Rue 243, Porte 297-BP 34, Bamako, Mali.
| | - Aboubacar Sadou
- President's Malaria Initiative USAID, ACI2000, Rue 243, Porte 297-BP 34, Bamako, Mali.
| | - Allison Belemvire
- President's Malaria Initiative USAID, 1300 Pennsylvania Avenue NW, Washington DC, USA.
| | - Kristen George
- President's Malaria Initiative USAID, 1300 Pennsylvania Avenue NW, Washington DC, USA.
| | - Christen Fornadel
- President's Malaria Initiative USAID, 1300 Pennsylvania Avenue NW, Washington DC, USA.
| | - Raymond Beach
- Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| |
Collapse
|
47
|
Lee Y, Olson N, Yamasaki Y, Chang A, Marsden C, Ouledi A, Lanzaro G, Cornel A. Absence of kdr resistance alleles in the Union of the Comoros, East Africa. F1000Res 2015; 4:146. [PMID: 26339473 PMCID: PMC4544377 DOI: 10.12688/f1000research.6567.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2015] [Indexed: 11/20/2022] Open
Abstract
Knockdown resistance ( kdr) and CYP9K1 genotypes were detected by a MOLDI-TOF based SNP genotyping assay (Sequenom iPLEX) in samples of Anopheles gambiae collected at 13 sites throughout the Union of the Comoros and Dar es Salaam, Tanzania during February and March 2011. All A. gambiae specimens collected in the Comoros were homozygous for the susceptible kdr alleles (+/+) while 96% of A. gambiae from Dar es Salaam were homozygous for the East African kdr resistant genotype (E/E). In contrast, all specimens from Dar es Salaam and the Comoros were homozygous for the cyp3 allele (c3/c3) at the CYP9K1 locus; the locus has been implicated in metabolic resistance against pyrethroid insecticides in West Africa. All specimens had typical A. gambiae genotypes for SNPs within the divergence Islands on all three chromosomes. Although further spatial and temporal studies are needed, the distribution of kdr genotypes between the Comoros and Tanzania further supports isolation of the Comoros populations from A. gambiae populations on mainland Africa .
Collapse
Affiliation(s)
- Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Natalie Olson
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Youki Yamasaki
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Allison Chang
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Clare Marsden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Ahmed Ouledi
- Université des Comores, rue de la Corniche, Moroni, Grande Comore, Comoros
| | - Gregory Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Anthony Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA ; Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
48
|
Matowo J, Kitau J, Kaaya R, Kavishe R, Wright A, Kisinza W, Kleinschmidt I, Mosha F, Rowland M, Protopopoff N. Trends in the selection of insecticide resistance in Anopheles gambiae s.l. mosquitoes in northwest Tanzania during a community randomized trial of longlasting insecticidal nets and indoor residual spraying. MEDICAL AND VETERINARY ENTOMOLOGY 2015; 29:51-59. [PMID: 25537754 PMCID: PMC4359020 DOI: 10.1111/mve.12090] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 06/04/2023]
Abstract
Anopheles gambiae s.l. (Diptera: Culicidae) in Muleba, Tanzania has developed high levels of resistance to most insecticides currently advocated for malaria control. The kdr mutation has almost reached fixation in An. gambiae s.s. in Muleba. This change has the potential to jeopardize malaria control interventions carried out in the region. Trends in insecticide resistance were monitored in two intervention villages using World Health Organization (WHO) susceptibility test kits. Additional mechanisms contributing to observed phenotypic resistance were investigated using Centers for Disease Control (CDC) bottle bioassays with piperonylbutoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) synergists. Resistance genotyping for kdr and Ace-1 alleles was conducted using quantitative polymerase chain reaction (qPCR). In both study villages, high phenotypic resistance to several pyrethroids and DDT was observed, with mortality in the range of 12-23%. There was a sharp decrease in mortality in An. gambiae s.l. exposed to bendiocarb (carbamate) from 84% in November 2011 to 31% in December 2012 after two rounds of bendiocarb-based indoor residual spraying (IRS). Anopheles gambiae s.l. remained susceptible to pirimiphos-methyl (organophosphate). Bendiocarb-based IRS did not lead to the reversion of pyrethroid resistance. There was no evidence for selection for Ace-1 resistance alleles. The need to investigate the operational impact of the observed resistance selection on the effectiveness of longlasting insecticidal nets and IRS for malaria control is urgent.
Collapse
Affiliation(s)
- J Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi, Tanzania; Pan-African Malaria Vector Research Consortium (PAMVERC), Moshi, Tanzania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Maliti D, Ranson H, Magesa S, Kisinza W, Mcha J, Haji K, Killeen G, Weetman D. Islands and stepping-stones: comparative population structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and implications for the spread of insecticide resistance. PLoS One 2014; 9:e110910. [PMID: 25353688 PMCID: PMC4212992 DOI: 10.1371/journal.pone.0110910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/08/2014] [Indexed: 11/21/2022] Open
Abstract
Population genetic structures of the two major malaria vectors Anopheles gambiae s.s. and An. arabiensis, differ markedly across Sub-Saharan Africa, which could reflect differences in historical demographies or in contemporary gene flow. Elucidation of the degree and cause of population structure is important for predicting the spread of genetic traits such as insecticide resistance genes or artificially engineered genes. Here the population genetics of An. gambiae s.s. and An. arabiensis in the central, eastern and island regions of Tanzania were compared. Microsatellite markers were screened in 33 collections of female An. gambiae s.l., originating from 22 geographical locations, four of which were sampled in two or three years between 2008 and 2010. An. gambiae were sampled from six sites, An. arabiensis from 14 sites, and both species from two sites, with an additional colonised insectary sample of each species. Frequencies of the knock-down resistance (kdr) alleles 1014S and 1014F were also determined. An. gambiae exhibited relatively high genetic differentiation (average pairwise FST = 0.131), significant even between nearby samples, but without clear geographical patterning. In contrast, An. arabiensis exhibited limited differentiation (average FST = 0.015), but strong isolation-by-distance (Mantel test r = 0.46, p = 0.0008). Most time-series samples of An. arabiensis were homogeneous, suggesting general temporal stability of the genetic structure. An. gambiae populations from Dar es Salaam and Bagamoyo were found to have high frequencies of kdr 1014S (around 70%), with almost 50% homozygote but was at much lower frequency on Unguja Island, with no. An. gambiae population genetic differentiation was consistent with an island model of genetic structuring with highly restricted gene flow, contrary to An. arabiensis which was consistent with a stepping-stone model of extensive, but geographically-restricted gene flow.
Collapse
Affiliation(s)
- Deodatus Maliti
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Ifakara, Morogoro, United Republic of Tanzania
- University of Glasgow, Institute of Biodiversity Animal Health and Comparative Medicine, Glasgow, Lancashire, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, United Kingdom
| | - Stephen Magesa
- RTI International, Global Health Division, Dar es Salaam, United Republic of Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Center, Muheza, Tanga, United Republic of Tanzania
| | - Juma Mcha
- Zanzibar Malaria Elimination Programme, Unguja, Zanzibar, United Republic of Tanzania
| | - Khamis Haji
- Zanzibar Malaria Elimination Programme, Unguja, Zanzibar, United Republic of Tanzania
| | - Gerald Killeen
- Ifakara Health Institute, Environmental Health and Ecological Sciences Thematic Group, Ifakara, Morogoro, United Republic of Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, United Kingdom
| |
Collapse
|