1
|
Gismondi A, Di Marco G, Canuti L, Altamura MM, Canini A. Ultrastructure and development of the floral nectary from Borago officinalis L. and phytochemical changes in its secretion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112135. [PMID: 38797382 DOI: 10.1016/j.plantsci.2024.112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Although Boraginaceae have been classified as good sources of nectar for many insects, little is still known about their nectar and nectaries. Thus, in the present contribution, we investigated the nectar production dynamics and chemistry in Borago officinalis L. (borage or starflower), together with its potential interaction capacity with pollinators. A peak of nectar secretion (∼5.1 µL per flower) was recorded at anthesis, to decrease linearly during the following 9 days. In addition, TEM and SEM analyses were performed to understand ultrastructure and morphological changes occurring in borage nectary before and after anthesis, but also after its secretory phase. Evidence suggested that nectar was transported by the apoplastic route (mainly from parenchyma to epidermis) and then released essentially by exocytotic processes, that is a granulocrine secretion. This theory was corroborated by monitoring the signal of complex polysaccharides and calcium, respectively, via Thiéry staining and ESI/EELS technique. After the secretory phase, nectary underwent degeneration, probably through autophagic events and/or senescence induction. Furthermore, nectar (Nec) and other flower structures (i.e., sepals, gynoecia with nectaries, and petals) from borage were characterized by spectrophotometry and HPLC-DAD, in terms of plant secondary metabolites, both at early (E-) and late (L-) phase from anthesis. The content of phytochemicals was quantified and discussed for all samples, highlighting potential biological roles of these compounds in the borage flower (e.g., antimicrobial, antioxidant, staining effects). Surprisingly, a high significant accumulation of flavonoids was registered in L-Nec, with respect to E-Nec, indicating that this phenomenon might be functional and able to hide molecular (e.g., defence against pathogens) and/or ecological (e.g., last call for pollinators) purposes. Indeed, it is known that these plant metabolites influence nectar palatability, encouraging the approach of specialist pollinators, deterring nectar robbers, and altering the behaviour of insects.
Collapse
Affiliation(s)
- Angelo Gismondi
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Gabriele Di Marco
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Lorena Canuti
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | | | - Antonella Canini
- Dept. of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| |
Collapse
|
2
|
Paul S, Mitra A. Histochemical, metabolic and ultrastructural changes in leaf patelliform nectaries explain extrafloral nectar synthesis and secretion in Clerodendrum chinense. ANNALS OF BOTANY 2024; 133:621-642. [PMID: 38366151 PMCID: PMC11037555 DOI: 10.1093/aob/mcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND AIMS Extrafloral nectaries are nectar-secreting structures present on vegetative parts of plants which provide indirect defences against herbivore attack. Extrafloral nectaries in Clerodendrum chinense are patelliform-shaped specialized trichomatous structures. However, a complete understanding of patelliform extrafloral nectaries in general, and of C. chinense in particular, has not yet been established to provide fundamental insight into the cellular physiological machinery involved in nectar biosynthesis and secretory processes. METHODS We studied temporal changes in the morphological, anatomical and ultrastructural features in the architectures of extrafloral nectaries. We also compared metabolite profiles of extrafloral nectar, nectary tissue, non-nectary tissue and phloem sap. Further, both in situ histolocalization and normal in vitro activities of enzymes related to sugar metabolism were examined. KEY RESULTS Four distinct tissue regions in the nectar gland were revealed from histochemical characterization, among which the middle nectariferous tissue was found to be the metabolically active region, while the intermediate layer was found to be lipid-rich. Ultrastructural study showed the presence of a large number of mitochondria along with starch-bearing chloroplasts in the nectariferous region. However, starch depletion was noted with progressive maturation of nectaries. Metabolite analysis revealed compositional differences among nectar, phloem sap, nectary and non-nectary tissue. Invertase activity was higher in secretory stages and localized in nectariferous tissue and adjacent region. CONCLUSIONS Our study suggests extrafloral nectar secretion in C. chinense to be both eccrine and merocrine in nature. A distinct intermediate lipid-rich layer that separates the epidermis from nectary parenchyma was revealed, which possibly acts as a barrier to water flow in nectar. This study also revealed a distinction between nectar and phloem sap, and starch could act as a nectar precursor, as evidenced from enzymatic and ultrastructural studies. Thus, our findings on changing architecture of extrafloral nectaries with temporal secretion revealed a cell physiological process involved in nectar biosynthesis and secretion.
Collapse
Affiliation(s)
- Shobhon Paul
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur – 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur – 721 302, India
| |
Collapse
|
3
|
Feng L, Wei S, Li Y. Thaumatin-like Proteins in Legumes: Functions and Potential Applications-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:1124. [PMID: 38674533 PMCID: PMC11055134 DOI: 10.3390/plants13081124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Thaumatin-like proteins (TLPs) comprise a complex and evolutionarily conserved protein family that participates in host defense and several developmental processes in plants, fungi, and animals. Importantly, TLPs are plant host defense proteins that belong to pathogenesis-related family 5 (PR-5), and growing evidence has demonstrated that they are involved in resistance to a variety of fungal diseases in many crop plants, particularly legumes. Nonetheless, the roles and underlying mechanisms of the TLP family in legumes remain unclear. The present review summarizes recent advances related to the classification, structure, and host resistance of legume TLPs to biotic and abiotic stresses; analyzes and predicts possible protein-protein interactions; and presents their roles in phytohormone response, root nodule formation, and symbiosis. The characteristics of TLPs provide them with broad prospects for plant breeding and other uses. Searching for legume TLP genetic resources and functional genes, and further research on their precise function mechanisms are necessary.
Collapse
Affiliation(s)
- Lanlan Feng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shaowei Wei
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yin Li
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
4
|
López-García CM, Ávila-Hernández CA, Quintana-Rodríguez E, Aguilar-Hernández V, Lozoya-Pérez NE, Rojas-Raya MA, Molina-Torres J, Araujo-León JA, Brito-Argáez L, González-Sánchez AA, Ramírez-Chávez E, Orona-Tamayo D. Extracellular Self- and Non-Self DNA Involved in Damage Recognition in the Mistletoe Parasitism of Mesquite Trees. Int J Mol Sci 2023; 25:457. [PMID: 38203628 PMCID: PMC10778891 DOI: 10.3390/ijms25010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Psittacanthus calyculatus parasitizes mesquite trees through a specialized structure called a haustorium, which, in the intrusive process, can cause cellular damage in the host tree and release DAMPs, such as ATP, sugars, RNA, and DNA. These are highly conserved molecules that primarily function as signals that trigger and activate the defense responses. In the present study, we generate extracellular DNA (exDNA) from mesquite (P. laevigata) tree leaves (self-exDNA) and P. calyculatus (non-self exDNA) mistletoe as DAMP sources to examine mesquite trees' capacity to identify specific self or non-self exDNA. We determined that mesquite trees perceive self- and non-self exDNA with the synthesis of O2•-, H2O2, flavonoids, ROS-enzymes system, MAPKs activation, spatial concentrations of JA, SA, ABA, and CKs, and auxins. Our data indicate that self and non-self exDNA application differs in oxidative burst, JA signaling, MAPK gene expression, and scavenger systems. This is the first study to examine the molecular biochemistry effects in a host tree using exDNA sources derived from a mistletoe.
Collapse
Affiliation(s)
- Claudia Marina López-García
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - César Alejandro Ávila-Hernández
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Elizabeth Quintana-Rodríguez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Víctor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Nancy Edith Lozoya-Pérez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Mariana Atzhiry Rojas-Raya
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jorge Molina-Torres
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jesús Alfredo Araujo-León
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Ligia Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | | | - Enrique Ramírez-Chávez
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Domancar Orona-Tamayo
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| |
Collapse
|
5
|
Aguilar-Venegas M, Quintana-Rodríguez E, Aguilar-Hernández V, López-García CM, Conejo-Dávila E, Brito-Argáez L, Loyola-Vargas VM, Vega-Arreguín J, Orona-Tamayo D. Protein Profiling of Psittacanthus calyculatus during Mesquite Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:464. [PMID: 36771550 PMCID: PMC9920738 DOI: 10.3390/plants12030464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Psittacanthus calyculatus is a hemiparasite mistletoe that represents an ecological problem due to the impacts caused to various tree species of ecological and commercial interest. Although the life cycle for the Psittacanthus genus is well established in the literature, the development stages and molecular mechanism implicated in P. calyculatus host infection are poorly understood. In this study, we used a manageable infestation of P. laevigata with P. calyculatus to clearly trace the infection, which allowed us to describe five phenological infective stages of mistletoe on host tree branches: mature seed (T1), holdfast formation (T2), haustorium activation (T3), haustorium penetration (T4), and haustorium connection (T5) with the host tree. Proteomic analyses revealed proteins with a different accumulation and cellular processes in infective stages. Activities of the cell wall-degrading enzymes cellulase and β-1,4-glucosidase were primarily active in haustorium development (T3), while xylanase, endo-glucanase, and peptidase were highly active in the haustorium penetration (T4) and xylem connection (T5). Patterns of auxins and cytokinin showed spatial concentrations in infective stages and moreover were involved in haustorium development. These results are the first evidence of proteins, cell wall-degrading enzymes, and phytohormones that are involved in early infection for the Psittacanthus genus, and thus represent a general infection mechanism for other mistletoe species. These results could help to understand the molecular dialogue in the establishment of P. calyculatus parasitism.
Collapse
Affiliation(s)
- Montserrat Aguilar-Venegas
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León CP 37684, Guanajuato, Mexico
| | | | - Víctor Aguilar-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | | | - Efraín Conejo-Dávila
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria CP 36275, Guanajuato, Mexico
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, CICY, A.C., Mérida CP 97205, Yucatán, Mexico
| | - Julio Vega-Arreguín
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Unidad León, UNAM, León CP 37684, Guanajuato, Mexico
| | | |
Collapse
|
6
|
Göttlinger T, Lohaus G. Influence of light, dark, temperature and drought on metabolite and ion composition in nectar and nectaries of an epiphytic bromeliad species (Aechmea fasciata). PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:781-793. [PMID: 32558085 DOI: 10.1111/plb.13150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/05/2020] [Indexed: 05/26/2023]
Abstract
Research into the influence of stress factors, such as drought, different temperatures and/or varied light conditions, on plants due to climate changes is becoming increasingly important. Epiphytes, like many species of the Bromeliaceae, are particularly affected by this, but little is known about impacts on nectar composition and nectary metabolism. We investigated the influence of drought, different temperatures and light-dark regimes on nectar and nectaries of the epiphytic bromeliad species, Aechmea fasciata, and also the influence of drought with the terrestrial bromeliad, Billbergia nutans. The content of sugars, amino acids and ions in nectar and nectaries was analysed using HPLC. In addition, the starch content and the activities of different invertases in nectaries were determined. Compositions of nectar and nectaries were hardly influenced, neither by light nor dark, nor by different temperatures. In contrast, drought revealed changes in nectar volumes and nectar sugar compositions in the epiphytic bromeliad as well as in the terrestrial bromeliad. In both species, the sucrose-to-hexose ratio in nectar decreased considerably during the drought period. These changes in nectar sugar composition do not correlate with changes in the nectaries. The total sugar, amino acid and ion concentrations remained constant in nectar as well as in nectaries during the drought period. Changes in nectar composition or in the production of floral pollinator rewards are likely to affect plant-pollinator interactions. It remains questionable how far the adaptations of the bromeliads to drought and diverse light or temperature conditions are still sufficient.
Collapse
Affiliation(s)
- T Göttlinger
- Molecular Plant Science and Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| | - G Lohaus
- Molecular Plant Science and Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
7
|
Silva F, Guirgis A, von Aderkas P, Borchers CH, Thornburg R. LC-MS/MS based comparative proteomics of floral nectars reveal different mechanisms involved in floral defense of Nicotiana spp., Petunia hybrida and Datura stramonium. J Proteomics 2020; 213:103618. [PMID: 31846763 DOI: 10.1016/j.jprot.2019.103618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/01/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Tobacco floral nectar (FN) is a biological fluid produced by nectaries composed of sugars, amino acids and proteins called nectarins, involved in the floral defense. FN provides an ideal source of nutrients for microorganisms. Understanding the role of nectar proteins is essential to predict impacts in microbial growth, composition and plants-pollinators interactions. Using LC-MS/MS-based comparative proteomic analysis we identified 22 proteins from P. hybrida, 35 proteins from D. stramonium, and 144 proteins from 23 species of Nicotiana. The data are available at ProteomeXchance (PXD014760). GO analysis and secretory signal prediction demonstrated that defense/stress was the largest group of proteins in the genus Nicotiana. The Nicotiana spp. proteome consisted of 105 exclusive proteins such as lipid transfer proteins (LTPs), Nectar Redox Cycle proteins, proteases inhibitors, and PR-proteins. Analysis by taxonomic sections demonstrated that LTPs were most abundant in Undulatae and Noctiflora, while nectarins were more abundant in Rusticae, Suaveolens, Polydicliae, and Alata sections. Peroxidases (Pox) and chitinases (Chit) were exclusive to P. hybrida, while D. stramonium had only seven unique proteins. Biochemical analysis confirmed these differences. These findings support the hypothesis that, although conserved, there is differential abundance of proteins related to defense/stress which may impact the mechanisms of floral defense. SIGNIFICANCE: This study represents a comparative proteomic analysis of floral nectars of the Nicotiana spp. with two correlated Solanaceous species. Significant differences were identified between the proteome of taxonomic sections providing relevant insights into the group of proteins related to defense/stress associated with Nectar Redox Cycle, antimicrobial proteins and signaling pathways. The activity of FNs proteins is suggested impact the microbial growth. The knowledge about these proteomes provides significant insights into the diversity of proteins secreted in the nectars and the array of mechanisms used by Nicotiana spp. in its floral defense.
Collapse
Affiliation(s)
- FredyA Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Adel Guirgis
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; Institute of Genetic Engineering and Biotechnology, Menofiya University, Sadat City, Egypt
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Christoph H Borchers
- University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, BC V8P 5C2, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada; Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Robert Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
8
|
da Silva Pereira P, de Almeida Gonçalves L, da Silva MJ, Rezende MH. Extrafloral nectaries of four varieties of Chamaecrista ramosa (Vogel) H.S.Irwin & Barneby (Fabaceae): anatomy, chemical nature, mechanisms of nectar secretion, and elimination. PROTOPLASMA 2018; 255:1635-1647. [PMID: 29704049 DOI: 10.1007/s00709-018-1253-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Considering the importance of extrafloral nectaries (EFNs) in Fabaceae, the objectives of this research were to analyze (1) the anatomical and histochemical characteristics of the EFNs of Chamaecrista ramosa var. ramosa, C. ramosa var. curvifoliola, C. ramosa var. parvifoliola, and C. ramosa var. lucida and (2) the ultrastructure of the EFNs of C. ramosa var. ramosa. Standard techniques in plant anatomy and transmission electron microscopy were used. The anatomical analyses confirmed the characteristics described for extrafloral nectaries, evidencing three well-defined regions: epidermis, nectariferous, and subnectariferous parenchymas. Carbohydrates, proteins, pectins/mucilages, and lipids were detected by histochemical analyzes in all varieties. The ultrastructure of the EFNs of C. ramosa var. ramosa allowed the observation of microchannels at the external periclinal cell walls of the epidermis covering the secretory region. The nectariferous and subnectariferous parenchyma cells have periplasmic spaces, large plastids containing starch grains and plastoglobules, mitochondria, developed endoplasmic reticulum, large vacuoles with electron-dense contents, and membrane residues may be associated with the vacuole, suggesting the occurrence of autophagic processes. The anatomical, histochemical, and ultrastructural patterns revealed characteristics that confirm the glands of C. ramosa as extrafloral nectaries and suggest the eccrine mechanism of secretion.
Collapse
Affiliation(s)
- Priscila da Silva Pereira
- Pós-graduação em Biodiversidade Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, S/N, Campus Samambaia, ICB - 1, 2nd floor, room 206, Goiânia, 74690-900, Brazil.
| | - Letícia de Almeida Gonçalves
- Pós-graduação em Biodiversidade Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, S/N, Campus Samambaia, ICB - 1, 2nd floor, room 206, Goiânia, 74690-900, Brazil
| | - Marcos José da Silva
- Pós-graduação em Biodiversidade Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, S/N, Campus Samambaia, ICB - 1, 1st floor, room 114A, Goiânia, 74690-900, Brazil
| | - Maria Helena Rezende
- Pós-graduação em Biodiversidade Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Avenida Esperança, S/N, Campus Samambaia, ICB - 1, 2nd floor, room 206, Goiânia, 74690-900, Brazil
| |
Collapse
|
9
|
Villamil N, Boege K, Stone GN. Ant-Pollinator Conflict Results in Pollinator Deterrence but no Nectar Trade-Offs. FRONTIERS IN PLANT SCIENCE 2018; 9:1093. [PMID: 30154806 PMCID: PMC6102506 DOI: 10.3389/fpls.2018.01093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Direct and indirect negative interactions between ant guards and pollinators on ant-plants are expected for two reasons. First, aggressive ants may deter pollinators directly. Second, pollinators benefit from plant investment in reproduction whilst ants benefit from plant investment in indirect defense, and resource allocation trade-offs between these functions could lead to indirect conflict. We explored the potential for ant-pollinator conflict in a Mexican myrmecophile, Turnera velutina, which rewards ants with extrafloral nectar and pollinators with floral nectar. We characterized the daily timing of ant and pollinator activity on the plant and used experiments to test for direct and indirect conflict between these two groups of mutualists. We tested for direct conflict by quantifying pollinator responses to flowers containing dead specimens of aggressive ant species, relative to unoccupied control flowers. We assessed indirect conflict by testing for the existence of a trade-off in sugar allocation between ant and pollinator rewards, evidenced by an increase in floral nectar secretion when extrafloral nectar secretion was prevented. Secretion of floral and extrafloral nectar, activity of ants and pollinators, and pollen deposition all overlapped in daily time and peaked within the first 2 h after flowers opened. We found evidence of direct conflict, in that presence of ants inside the flowers altered pollinator behavior and reduced visit duration, although visit frequency was unchanged. We found no evidence for indirect conflict, with no significant difference in the volume or sugar content of floral nectar between control plants and those in which extrafloral nectar secretion was prevented. The presence of ants in flowers alters pollinator behavior in ways that are likely to affect pollination dynamics, though there is no apparent trade-off between plant investment in nectar rewards for pollinators and ant guards. Further studies are required to quantify the effect of the natural abundance of ants in flowers on pollinator behavior, and any associated impacts on plant reproductive success.
Collapse
Affiliation(s)
- Nora Villamil
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Karina Boege
- Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Graham N. Stone
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Quintana-Rodríguez E, Ramírez-Rodríguez AG, Ramírez-Chávez E, Molina-Torres J, Camacho-Coronel X, Esparza-Claudio J, Heil M, Orona-Tamayo D. Biochemical Traits in the Flower Lifetime of a Mexican Mistletoe Parasitizing Mesquite Biomass. FRONTIERS IN PLANT SCIENCE 2018; 9:1031. [PMID: 30174673 PMCID: PMC6108335 DOI: 10.3389/fpls.2018.01031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/25/2018] [Indexed: 05/24/2023]
Abstract
Psittacanthus calyculatus is a hemiparasitic plant that infects a wide range of trees. Mainly the biology reproduction of this mistletoe lies in bright colored flower development. Furthermore, it uses the nectar secretion as the only reward to engage different flower visitors. We investigated the physiological mechanisms of the flower phenology per hour and per day to analyze the spatial-temporal patterns of the nectar secretion, Cell Wall Invertase Activity (key enzyme in the quality of nectar), nectar chemistry, volatile organic compounds (VOCs) emission, synthesis of carotenoids and frequency of floral visitors. Flowers lasted 4 days, total nectar was loaded just before the anthesis and the secretion was maintained over day 1 and 2, decreased on day 3, and stopped on day 4. The diurnal nectar secretion dynamic per hour on day 1 and 2 showed similar patterns with high production on the morning and a decrease in the afternoon, the secretion declined on day 3 and ceased on day 4. On the other hand, CWIN activity per day was less before the anthesis and increased on day 1 and 2, this enzymatic activity decreased on the old flower phenology. Moreover, diurnal CWIN activities showed different patterns in the morning, noon, and lastly in the afternoon. Nectar chemistry varied significantly throughout of the flower lifetime, sucrose decreased along the flower phenology increasing glucose and fructose. Amino acids showed the prevalence of proline and oxo-proline, both increased on the day 1 and diminished in subsequent old flower stages. The spatial VOCs emission showed the presence of 11 compounds being β-ocimene the main volatile; its release increased on day 1 and remained constant in the flower lifetime. Lutein, lycopene, and β-carotene were concentrated in old stages of the flowers. In field, the most frequent flower visitors were the hummingbirds that usually foraging in all phenologic flower stage and their foraging events decreased with the phenological flower lifetimes. The results showed that these traits presented by P. calyculatus flowers are able to engage and manipulate the behavior of flower visitors and contribute to the reproduction of the parasitic plant.
Collapse
Affiliation(s)
- Elizabeth Quintana-Rodríguez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
- Departamento de Soluciones Tecnológicas, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), Guanajuato, Mexico
| | - Alan Gamaliel Ramírez-Rodríguez
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Enrique Ramírez-Chávez
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Jorge Molina-Torres
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Xicotencatl Camacho-Coronel
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - José Esparza-Claudio
- Departamento de Soluciones Tecnológicas, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), Guanajuato, Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| | - Domancar Orona-Tamayo
- Departamento de Soluciones Tecnológicas, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), Guanajuato, Mexico
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Guanajuato, Mexico
| |
Collapse
|
11
|
Nogueira FCS, Farias ARB, Teixeira FM, Domont GB, Campos FAP. Common Features Between the Proteomes of Floral and Extrafloral Nectar From the Castor Plant ( Ricinus Communis) and the Proteomes of Exudates From Carnivorous Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:549. [PMID: 29755492 PMCID: PMC5934526 DOI: 10.3389/fpls.2018.00549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Label-free quantitative proteome analysis of extrafloral (EFN) and floral nectar (FN) from castor (Ricinus communis) plants resulted in the identification of 72 and 37 proteins, respectively. Thirty proteins were differentially accumulated between EFN and FN, and 24 of these were more abundant in the EFN. In addition to proteins involved in maintaining the nectar pathogen free such as chitinases and glucan 1,3-beta-glucosidase, both proteomes share an array of peptidases, lipases, carbohydrases, and nucleases. A total of 39 of the identified proteins, comprising different classes of hydrolases, were found to have biochemical matching partners in the exudates of at least five genera of carnivorous plants, indicating the EFN and FN possess a potential to digest biological material from microbial, animal or plant origin equivalent to the exudates of carnivorous plants.
Collapse
Affiliation(s)
- Fábio C. S. Nogueira
- Proteomics Unit, PPGBq, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreza R. B. Farias
- Department of Agricultural Sciences, Federal University of Ceará, Fortaleza, Brazil
| | - Fabiano M. Teixeira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Gilberto B. Domont
- Proteomics Unit, PPGBq, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco A. P. Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
12
|
Hernández-Zepeda OF, Razo-Belman R, Heil M. Reduced Responsiveness to Volatile Signals Creates a Modular Reward Provisioning in an Obligate Food-for-Protection Mutualism. FRONTIERS IN PLANT SCIENCE 2018; 9:1076. [PMID: 30087690 PMCID: PMC6066664 DOI: 10.3389/fpls.2018.01076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 05/07/2023]
Abstract
Plants in more than 100 families secrete extrafloral nectar (EFN) to establish food-for-protection mutualisms with ants. Facultative ant-plants secrete EFN as a jasmonic acid (JA)-dependent response to attract generalist ants. In contrast, obligate ant-plants like the Central American "Swollen-Thorn Acacias" are colonized by specialized ants, although an individual host can carry ant colonies from different species that differ in the degree of protection they provide. We hypothesized that hosts that associate simultaneously with various partners should produce rewards in a modular manner to preferentially reward high quality partners. To test this hypothesis, we applied JA to distinct leaves and quantified cell wall invertase activity (CWIN; a regulator of nectar secretion) and EFN secretion by these "local" (i.e., treated) and the "systemic" (i.e., non-treated) leaves of the same branch. Both CWIN activity and EFN secretion increased in local and systemic leaves of the facultative ant-plant Acacia cochliacantha, but only in the local leaves of the obligate ant-plant, A. cornigera. The systemic EFN secretion in A. cochliacantha was associated with an enhanced emission of volatile organic compounds (VOCs). Such VOCs function as "external signals" that control systemic defense responses in diverse plant species. Indeed, the headspace of JA-treated branches of A. cochliacantha induced EFN secretion in both plant species, whereas the headspace of A. cornigera caused no detectable induction effect. Analyses of the headspace using GC-MS identified six VOCs in the headspace of A. cochliacantha that were not emitted by A. cornigera. Among these VOCs, β-caryophyllene and (cis)-hexenyl isovalerate have already been reported in other plant species to induce defense traits, including EFN secretion. Our observations underline the importance of VOCs as systemic within-plant signals and show that the modular rewarding in A. cornigera is likely to result from a reduced emission of the systemic signal, rather than from a reduced responsiveness to the signal. We suggest that modular rewarding allows hosts to restrict the metabolic investment to specific partners and to efficiently sanction potential exploiters.
Collapse
|
13
|
Roy R, Schmitt AJ, Thomas JB, Carter CJ. Review: Nectar biology: From molecules to ecosystems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:148-164. [PMID: 28716410 DOI: 10.1016/j.plantsci.2017.04.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 05/06/2023]
Abstract
Plants attract mutualistic animals by offering a reward of nectar. Specifically, floral nectar (FN) is produced to attract pollinators, whereas extrafloral nectar (EFN) mediates indirect defenses through the attraction of mutualist predatory insects to limit herbivory. Nearly 90% of all plant species, including 75% of domesticated crops, benefit from animal-mediated pollination, which is largely facilitated by FN. Moreover, EFN represents one of the few defense mechanisms for which stable effects on plant health and fitness have been demonstrated in multiple systems, and thus plays a crucial role in the resistance phenotype of plants producing it. In spite of its central role in plant-animal interactions, the molecular events involved in the development of both floral and extrafloral nectaries (the glands that produce nectar), as well as the synthesis and secretion of the nectar itself, have been poorly understood until recently. This review will cover major recent developments in the understanding of (1) nectar chemistry and its role in plant-mutualist interactions, (2) the structure and development of nectaries, (3) nectar production, and (4) its regulation by phytohormones.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anthony J Schmitt
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jason B Thomas
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Clay J Carter
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
14
|
Shah M, Teixeira FM, Soares EL, Soares AA, Carvalho PC, Domont GB, Thornburg RW, Nogueira FCS, Campos FAP. Time-course proteome analysis of developing extrafloral nectaries of Ricinus communis. Proteomics 2016; 16:629-33. [PMID: 26683443 DOI: 10.1002/pmic.201500292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022]
Abstract
Floral and extrafloral nectaries are unique organs that secrete energy rich chemical components, but their contribution for nectar production is largely unknown. Here, we present the first comparative proteome dataset of four developmental stages of the extrafloral nectaries from castor plant (Ricinus communis), an important biofuel crop. Respectively, from stage I-IV, we identified 626, 613, 449 and 356 proteins, respectively, summing up 882 nonredundant proteins. Surprisingly, we identified two isoforms of the potent toxin ricin, indicating that ricin expression is not limited to seeds, but it may serve a general defense purpose for the castor plant. To date, this is the most complete dataset of proteins either from floral or extrafloral nectaries, thus contributing to lay the foundations for investigations on their ecological and evolutionary importance.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Fabiano M Teixeira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Emanoella L Soares
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Arlete A Soares
- Department of Biology, Federal University of Ceara, Fortaleza, Brazil
| | - Paulo C Carvalho
- Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Paraná, Brazil
| | - Gilberto B Domont
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robert W Thornburg
- Department of Biochemistry, Biophysics, & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Fábio C S Nogueira
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco A P Campos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
15
|
Stevenson PC, Nicolson SW, Wright GA. Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12761] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philip C. Stevenson
- Royal Botanic Gardens, Kew SurreyTW9 3AB UK
- Natural Resources Institute University of Greenwich KentME4 4TB UK
| | - Susan W. Nicolson
- Department of Zoology & Entomology University of Pretoria Private Bag X20 Hatfield0028 South Africa
| | - Geraldine A. Wright
- Centre for Behaviour and Evolution Institute of Neuroscience Newcastle University Newcastle upon TyneNE1 7RU UK
| |
Collapse
|
16
|
Gish M, Mescher MC, De Moraes CM. Targeted predation of extrafloral nectaries by insects despite localized chemical defences. Proc Biol Sci 2016; 282:20151835. [PMID: 26446809 DOI: 10.1098/rspb.2015.1835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extrafloral (EF) nectaries recruit carnivorous arthropods that protect plants from herbivory, but they can also be exploited by nectar thieves. We studied the opportunistic, targeted predation (and destruction) of EF nectaries by insects, and the localized chemical defences that plants presumably use to minimize this effect. In field and laboratory experiments, we identified insects that were possibly responsible for EF nectary predation in Vicia faba (fava bean) and determined the extent and accuracy of the feeding damage done to the EF nectaries by these insects. We also performed biochemical analyses of plant tissue samples in order to detect microscale distribution patterns of chemical defences in the area of the EF nectary. We observed selective, targeted feeding on EF nectaries by several insect species, including some that are otherwise not primarily herbivorous. Biochemical analyses revealed high concentrations of l-3,4-dihydroxyphenylalanine, a non-protein amino acid that is toxic to insects, near and within the EF nectaries. These results suggest that plants allocate defences to the protection of EF nectaries from predation, consistent with expectations of optimal defence theory, and that this may not be entirely effective, as insects limit their exposure to these defences by consuming only the secreting tissue of the nectary.
Collapse
Affiliation(s)
- Moshe Gish
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
17
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
18
|
Heil M. Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:213-32. [PMID: 25564741 DOI: 10.1146/annurev-ento-010814-020753] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants secrete extrafloral nectar (EFN) as an induced defense against herbivores. EFN contains not only carbohydrates and amino acids but also pathogenesis-related proteins and other protective enzymes, making EFN an exclusive reward. EFN secretion is commonly induced after wounding, likely owing to a jasmonic acid-induced cell wall invertase, and is limited by phloem sucrose availability: Both factors control EFN secretion according to the optimal defense hypothesis. Non-ant EFN consumers include parasitoids, wasps, spiders, mites, bugs, and predatory beetles. Little is known about the relevance of EFN to the nutrition of its consumers and, hence, to the structuring of arthropod communities. The mutualism can be established quickly among noncoevolved (e.g., invasive) species, indicating its easy assembly is due to ecological fitting. Therefore, increasing efforts are directed toward using EFN in biocontrol. However, documentation of the importance of EFN for the communities of plants and arthropods in natural, invasive, and agricultural ecosystems is still limited.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, 36821 Irapuato, Guanajuato, México;
| |
Collapse
|
19
|
Chanam J, Kasinathan S, Pramanik GK, Jagdeesh A, Joshi KA, Borges RM. Foliar Extrafloral Nectar ofHumboldtia brunonis(Fabaceae), a Paleotropic Ant-plant, is Richer than Phloem Sap and More Attractive than Honeydew. Biotropica 2014. [DOI: 10.1111/btp.12185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joyshree Chanam
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| | | | - Gautam K. Pramanik
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| | - Amaraja Jagdeesh
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| | - Kanchan A. Joshi
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| | - Renee M. Borges
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore 560012 India
| |
Collapse
|
20
|
Phloem Sugar Flux and Jasmonic Acid-Responsive Cell Wall Invertase Control Extrafloral Nectar Secretion in Ricinus communis. J Chem Ecol 2014; 40:760-9. [DOI: 10.1007/s10886-014-0476-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 01/15/2023]
|
21
|
Wang W, Liu G, Niu H, Timko MP, Zhang H. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L. cv. TN90). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2147-60. [PMID: 24604735 PMCID: PMC3991746 DOI: 10.1093/jxb/eru084] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Jasmonate (JA) plays an important role in regulating plant male fertility and secondary metabolism, but its role in regulating primary metabolism remains unclear. The F-box protein CORONATINE INSENSITIVE 1 (COI1) is a critical component of the JA receptor, and mediates JA-signalling by targeting JASMONATE ZIM-domain (JAZ) proteins for proteasomal degradation in response to JA perception. Here, we found that RNA interference-mediated knockdown of NtCOI1 in tobacco (Nicotiana tabacum L. cv. TN90) recapitulated many previously observed phenotypes in coi1 mutants, including male sterility, JA insensitivity, and loss of floral anthocyanin production. It also affected starch metabolism in the pollen, anther wall, and floral nectary, leading to pollen abortion and loss of floral nectar. Transcript levels of genes encoding starch metabolism enzymes were significantly altered in the pollen, anther wall, and floral nectary of NtCOI1-silenced tobacco. Changes in leaf primary metabolism were also observed in the NtCOI1-silenced tobacco. The expression of NtMYB305, an orthologue of MYB305 previously identified as a flavonoid metabolic regulator in Antirrhinum majus flowers and as a floral-nectar regulator mediating starch synthesis in ornamental tobacco, was extremely downregulated in NtCOI1-silenced tobacco. These findings suggest that NtCOI1 functions upstream of NtMYB305 and plays a fundamental role in coordinating plant primary carbohydrate metabolism and correlative physiological processes.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, PR China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China
| | - Haixia Niu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, PR China
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Hongbo Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, PR China
| |
Collapse
|
22
|
Mayer VE, Frederickson ME, McKey D, Blatrix R. Current issues in the evolutionary ecology of ant-plant symbioses. THE NEW PHYTOLOGIST 2014; 202:749-764. [PMID: 24444030 DOI: 10.1111/nph.12690] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/16/2013] [Indexed: 05/08/2023]
Abstract
Ant-plant symbioses involve plants that provide hollow structures specialized for housing ants and often food to ants. In return, the inhabiting ants protect plants against herbivores and sometimes provide them with nutrients. Here, we review recent advances in ant-plant symbioses, focusing on three areas. First, the nutritional ecology of plant-ants, which is based not only on plant-derived food rewards, but also on inputs from other symbiotic partners, in particular fungi and possibly bacteria. Food and protection are the most important 'currencies' exchanged between partners and they drive the nature and evolution of the relationships. Secondly, studies of conflict and cooperation in ant-plant symbioses have contributed key insights into the evolution and maintenance of mutualism, particularly how partner-mediated feedbacks affect the specificity and stability of mutualisms. There is little evidence that mutualistic ants or plants are under selection to cheat, but the costs and benefits of ant-plant interactions do vary with environmental factors, making them vulnerable to natural or anthropogenic environmental change. Thus, thirdly, ant-plant symbioses should be considered good models for investigating the effects of global change on the outcome of mutualistic interactions.
Collapse
Affiliation(s)
- Veronika E Mayer
- Department of Structural and Functional Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030, Wien, Austria
| | - Megan E Frederickson
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Harbord Street, Toronto, M5S 3G5, Canada
| | - Doyle McKey
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CEFE, Université Montpellier 2, 1919 route de Mende, 34293, Montpellier Cedex 5, France
- Institut Universitaire de France, Université Montpellier 2, Montpellier Cedex 5, France
| | - Rumsaïs Blatrix
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CEFE, CNRS, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
23
|
Lohaus G, Schwerdtfeger M. Comparison of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus. PLoS One 2014; 9:e87689. [PMID: 24489951 PMCID: PMC3906183 DOI: 10.1371/journal.pone.0087689] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared. METHODOLOGY AND PRINCIPAL FINDINGS Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species. CONCLUSIONS/SIGNIFICANCE The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.
Collapse
Affiliation(s)
- Gertrud Lohaus
- Molecular Plant Science and Plant Biochemistry, Bergische University of Wuppertal, Wuppertal, Germany
| | - Michael Schwerdtfeger
- Albrecht-von-Haller-Institute, Systematic Botany, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Heil M, Barajas-Barron A, Orona-Tamayo D, Wielsch N, Svatos A. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol Lett 2013; 17:185-92. [PMID: 24188323 DOI: 10.1111/ele.12215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/11/2013] [Accepted: 10/08/2013] [Indexed: 11/30/2022]
Abstract
Mutualisms require protection from non-reciprocating exploiters. Pseudomyrmex workers that engage in an obligate defensive mutualism with Acacia hosts feed exclusively on the sucrose-free extrafloral nectar (EFN) that is secreted by their hosts, a behaviour linking ant energy supply directly to host performance and thus favouring reciprocating behaviour. We tested the hypothesis that Acacia hosts manipulate this digestive specialisation of their ant mutualists. Invertase (sucrose hydrolytic) activity in the ant midguts was inhibited by chitinase, a dominant EFN protein. The inhibition occurred quickly in cell-free gut liquids and in native gels and thus likely results from an enzyme-enzyme interaction. Once a freshly eclosed worker ingests EFN as the first diet available, her invertase becomes inhibited and she, thus, continues feeding on host-derived EFN. Partner manipulation acts at the phenotypic level and means that one partner actively controls the phenotype of the other partner to enhance its dependency on host-derived rewards.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, México
| | | | | | | | | |
Collapse
|
25
|
Orona-Tamayo D, Heil M. Stabilizing Mutualisms Threatened by Exploiters: New Insights from Ant-Plant Research. Biotropica 2013. [DOI: 10.1111/btp.12059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Domancar Orona-Tamayo
- Departamento de Ingeniería Genética; CINVESTAV-Irapuato; Irapuato Guanajuato Mexico
- Instituto de Investigaciones Químico-Biológicas; Universidad Michoacana de San Nicolás de Hidalgo (UMSNH); Edif. B3, Ciudad Universitaria 58060 Morelia Michoacán Mexico
| | - Martin Heil
- Departamento de Ingeniería Genética; CINVESTAV-Irapuato; Irapuato Guanajuato Mexico
| |
Collapse
|
26
|
Marazzi B, Bronstein JL, Koptur S. The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. ANNALS OF BOTANY 2013; 111:1243-50. [PMID: 23704115 PMCID: PMC3662527 DOI: 10.1093/aob/mct109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit. SCOPE This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions. CONCLUSIONS Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future.
Collapse
Affiliation(s)
- Brigitte Marazzi
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|