1
|
Guo F, Lv M, Zhang J, Li J. Crosstalk between Brassinosteroids and Other Phytohormones during Plant Development and Stress Adaptation. PLANT & CELL PHYSIOLOGY 2024; 65:1530-1543. [PMID: 38727547 DOI: 10.1093/pcp/pcae047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/30/2024] [Accepted: 05/08/2024] [Indexed: 11/14/2024]
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated phytosterols that play essential roles in regulating plant growth and development as well as stress adaptation. It is worth noting that BRs do not function alone, but rather they crosstalk with other endogenous signaling molecules, including the phytohormones auxin, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates, salicylic acid and strigolactones, forming elaborate signaling networks to modulate plant growth and development. BRs interact with other phytohormones mainly by regulating each others' homeostasis, transport or signaling pathway at the transcriptional and posttranslational levels. In this review, we focus our attention on current research progress in BR signal transduction and the crosstalk between BRs and other phytohormones.
Collapse
Affiliation(s)
- Feimei Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jingjie Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Zhou D, Li Y, Xie X, Ding W, Chen L, Li T, Tang J, Tan X, Liu W, Heng Y, Xie Y, Chen L, Liu Q, Zhou S, Zhao J, Zhang G, Tan J, Liu Y, Shen R. Copy number variation of NAL23 causes narrow-leaf development in rice. J Genet Genomics 2024; 51:880-883. [PMID: 38641318 DOI: 10.1016/j.jgg.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Affiliation(s)
- Degui Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yajing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wenyan Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Libin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianian Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiyu Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Weizhi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yueqin Heng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qi Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Shaochuan Zhou
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Jing Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Dou H, Sun J, Wang T, Bi S, Feng X, Sun H, Quan J. Transcriptomic profiling and discovery of key transcription factors involved in adventitious roots formation from root cuttings of mulberry. BMC Genomics 2024; 25:693. [PMID: 39009981 PMCID: PMC11251115 DOI: 10.1186/s12864-024-10593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
ARs plays a crucial role in plant morphogenesis and development. The limited and inefficient rooting of scions poses a significant challenge to the efficiency and quality of clonal propagation of forest trees in silvicultural practices. Building on previous research conducted by our team, we found that applying IBA at a concentration of 1000 mg/L significantly enhanced mulberry rooting. This study aims to uncover the molecular mechanisms underlying this effect by analyzing RNA sequencing data from mulberry phloem before and after treatment with IBA over time intervals of 10, 20, 30, and 40 days. We identified 5226 DEGs, which were then classified into GO terms and KEGG pathways, showing significant enrichment in hormone signaling processes. Using WGCNA, we identified eight co-expression modules, two of which were significantly correlated with the IBA treatment. Additionally, 18 transcription factors that potentially facilitate ARs formation in mulberry were identified, and an exploratory analysis on the cis-regulatory elements associated with these transcription factors was conducted. The findings of this study provide a comprehensive understanding of the mechanisms of ARs in mulberry and offer theoretical support for the discovery and utilization of exceptional genetic resources within the species.
Collapse
Affiliation(s)
- Hao Dou
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiajia Sun
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiantian Wang
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuwen Bi
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xi Feng
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huijuan Sun
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jin'e Quan
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
5
|
Wang Q, Wang X, Zhang Q, Zhang X, Liu X, Jiang J. Major quantitative trait locus qLA3.1 is related to tomato leaf angle by regulating cell length at the petiole base. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:145. [PMID: 38822827 DOI: 10.1007/s00122-024-04657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
KEY MESSAGE qLA3.1, controlling leaf angle in tomato, was fine-mapped to an interval of 4.45 kb on chromosome A03, and one gene encoding auxin response factor was identified as a candidate gene. Leaf angle is a crucial trait in plant architecture that plays an important role in achieving optimal plant structure. However, there are limited reports on gene localization, cloning, and the function of plant architecture in horticultural crops, particularly regarding leaf angle. In this study, we selected 'Z3' with erect leaves and 'Heinz1706' with horizontal leaves as the phenotype and cytological observation. We combined bulked segregant analysis and fine genetic mapping to identify a candidate gene, known as, i.e., qLA3.1, which was related to tomato leaf angle. Through multiple analyses, we found that Solyc03g113410 was the most probably candidate for qLA3.1, which encoded the auxin response factor SlARF11 in tomato and was homologous to OsARF11 related to leaf angle in rice. We discovered that silencing SlARF11 resulted in upright leaves, while plants with over-expressed SlARF11 exhibited horizontal leaves. We also found that cultivars with erect leaves had a mutation from base G to base A. Moreover, quantitative analysis of plants treated with hormones indicated that SlARF11 might participate in cell elongation and the activation of genes related to auxin and brassinosteroid pathways. Transcriptome analysis further validated that SlARF11 may regulate leaf angle through hormone signaling pathways. These data support the idea that the auxin response factor SlARF11 may have an important function in tomato leaf petiole angles.
Collapse
Affiliation(s)
- Qihui Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Qiongqiong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xinsheng Zhang
- College of Horticulture, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
6
|
Zameer R, Alwutayd KM, Alshehri D, Mubarik MS, Li C, Yu C, Li Z. Identification of cysteine-rich receptor-like kinase gene family in potato: revealed StCRLK9 in response to heat, salt and drought stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23320. [PMID: 38723163 DOI: 10.1071/fp23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.
Collapse
Affiliation(s)
- Roshan Zameer
- School of Life Sciences, Henan University, Kaifeng, China
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Cheng Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Chengde Yu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhifang Li
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Wakeman A, Bennett T. Auxins and grass shoot architecture: how the most important hormone makes the most important plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6975-6988. [PMID: 37474124 PMCID: PMC10690731 DOI: 10.1093/jxb/erad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Cereals are a group of grasses cultivated by humans for their grain. It is from these cereal grains that the majority of all calories consumed by humans are derived. The production of these grains is the result of the development of a series of hierarchical reproductive structures that form the distinct shoot architecture of the grasses. Being spatiotemporally complex, the coordination of grass shoot development is tightly controlled by a network of genes and signals, including the key phytohormone auxin. Hormonal manipulation has therefore been identified as a promising potential approach to increasing cereal crop yields and therefore ultimately global food security. Recent work translating the substantial body of auxin research from model plants into cereal crop species is revealing the contribution of auxin biosynthesis, transport, and signalling to the development of grass shoot architecture. This review discusses this still-maturing knowledge base and examines the possibility that changes in auxin biology could have been a causative agent in the evolution of differences in shoot architecture between key grass species, or could underpin the future selective breeding of cereal crops.
Collapse
Affiliation(s)
- Alex Wakeman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Qiao L, Wu Q, Yuan L, Huang X, Yang Y, Li Q, Shahzad N, Li H, Li W. SMALL PLANT AND ORGAN 1 ( SPO1) Encoding a Cellulose Synthase-like Protein D4 (OsCSLD4) Is an Important Regulator for Plant Architecture and Organ Size in Rice. Int J Mol Sci 2023; 24:16974. [PMID: 38069299 PMCID: PMC10707047 DOI: 10.3390/ijms242316974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qilong Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Liuzhen Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Xudong Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Yutao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Nida Shahzad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Haifeng Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| |
Collapse
|
9
|
Wen Y, Wu K, Chai B, Fang Y, Hu P, Tan Y, Wang Y, Wu H, Wang J, Zhu L, Zhang G, Gao Z, Ren D, Zeng D, Shen L, Dong G, Zhang Q, Li Q, Qian Q, Hu J. NLG1, encoding a mitochondrial membrane protein, controls leaf and grain development in rice. BMC PLANT BIOLOGY 2023; 23:418. [PMID: 37689677 PMCID: PMC10492415 DOI: 10.1186/s12870-023-04417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Mitochondrion is the key respiratory organ and participate in multiple anabolism and catabolism pathways in eukaryote. However, the underlying mechanism of how mitochondrial membrane proteins regulate leaf and grain development remains to be further elucidated. RESULTS Here, a mitochondria-defective mutant narrow leaf and slender grain 1 (nlg1) was identified from an EMS-treated mutant population, which exhibits narrow leaves and slender grains. Moreover, nlg1 also presents abnormal mitochondria structure and was sensitive to the inhibitors of mitochondrial electron transport chain. Map-based cloning and transgenic functional confirmation revealed that NLG1 encodes a mitochondrial import inner membrane translocase containing a subunit Tim21. GUS staining assay and RT-qPCR suggested that NLG1 was mainly expressed in leaves and panicles. The expression level of respiratory function and auxin response related genes were significantly down-regulated in nlg1, which may be responsible for the declination of ATP production and auxin content. CONCLUSIONS These results suggested that NLG1 plays an important role in the regulation of leaf and grain size development by maintaining mitochondrial homeostasis. Our finding provides a novel insight into the effects of mitochondria development on leaf and grain morphogenesis in rice.
Collapse
Affiliation(s)
- Yi Wen
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, 110866, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Bingze Chai
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xiasha Road, Hangzhou, 310036, China
| | - Peng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yueying Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hao Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Junge Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, 110866, China.
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572024, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Jiang Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
10
|
Li F, Wang K, Zhang X, Han P, Liu Y, Zhang J, Peng T, Li J, Zhao Y, Sun H, Du Y. BPB1 regulates rice ( Oryza sative L.) panicle length and panicle branch development by promoting lignin and inhibiting cellulose accumulation. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:41. [PMID: 37312745 PMCID: PMC10248638 DOI: 10.1007/s11032-023-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/24/2023] [Indexed: 06/15/2023]
Abstract
Panicle structure is one of the most important agronomic traits directly related to rice yield. This study identified a rice mutant basal primary branch 1 (bpb1), which exhibited a phenotype of reduced panicle length and arrested basal primary branch development. In addition, lignin content was found to be increased while cellulose content was decreased in bpb1 young panicles. Map-based cloning methods characterized the gene BPB1, which encodes a peptide transporter (PTR) family transporter. Phylogenetic tree analysis showed that the BPB1 family is highly conserved in plants, especially the PTR2 domain. It is worth noting that BPB1 is divided into two categories based on monocotyledonous and dicotyledonous plants. Transcriptome analysis showed that BPB1 mutation can promote lignin synthesis and inhibit cellulose synthesis, starch and sucrose metabolism, cell cycle, expression of various plant hormones, and some star genes, thereby inhibiting rice panicle length, resulting in basal primary branch development stagnant phenotypes. In this study, BPB1 provides new insights into the molecular mechanism of rice panicle structure regulation by BPB1 by regulating lignin and cellulose content and several transcriptional metabolic pathways. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01389-x.
Collapse
Affiliation(s)
- Fei Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ke Wang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Xiaohua Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Peijie Han
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ye Liu
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Jing Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ting Peng
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Junzhou Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Yafan Zhao
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Yanxiu Du
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| |
Collapse
|
11
|
Song X, Xiong Y, Kong X, Huang G. Roles of auxin response factors in rice development and stress responses. PLANT, CELL & ENVIRONMENT 2023; 46:1075-1086. [PMID: 36397176 DOI: 10.1111/pce.14494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Auxin signalling plays a key role in various developmental processes ranging from embryogenesis to senescence in plants. Auxin response factor (ARF), a key component of auxin signalling, functions by binding to auxin response element within promoter of auxin response genes, activating or repressing the target genes. Increasing evidences show that ARFs are crucial for plant response to stresses. This review summarises the recent advance on the functions and their regulatory pathways of rice ARFs in development and responding to stresses. The importance of OsARFs is demonstrated by their roles in triggering various physiological, biochemical and molecular reactions to resist adverse environmental conditions. We also describe the transcriptional and post-transcriptional regulation of OsARFs, and discuss the major challenges in this area.
Collapse
Affiliation(s)
- Xiaoyun Song
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Xiong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuzhen Kong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Lan D, Cao L, Liu M, Ma F, Yan P, Zhang X, Hu J, Niu F, He S, Cui J, Yuan X, Yang J, Wang Y, Luo X. The identification and characterization of a plant height and grain length related gene hfr131 in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1152196. [PMID: 37035088 PMCID: PMC10080003 DOI: 10.3389/fpls.2023.1152196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Plant height and grain size are important agronomic traits affecting rice yield. Various plant hormones participate in the regulation of plant height and grain size in rice. However, how these hormones cooperate to regulate plant height and grain size is poorly understood. In this study, we identified a brassinosteroid-related gene, hfr131, from an introgression line constructed using Oryza longistaminata, that caused brassinosteroid insensitivity and reduced plant height and grain length in rice. Further study showed that hfr131 is a new allele of OsBRI1 with a single-nucleotide polymorphism (G to A) in the coding region, leading to a T988I conversion at a conserved site of the kinase domain. By combining yeast one-hybrid assays, chromatin immunoprecipitation-quantitative PCR and gene expression quantification, we demonstrated that OsARF17, an auxin response factor, could bind to the promoter region of HFR131 and positively regulated HFR131 expression, thereby regulating the plant height and grain length, and influencing brassinosteroid sensitivity. Haplotype analysis showed that the consociation of OsAFR17Hap1 /HFR131Hap6 conferred an increase in grain length. Overall, this study identified hfr131 as a new allele of OsBRI1 that regulates plant height and grain length in rice, revealed that brassinosteroid and auxin might coordinate through OsARF17-HFR131 interaction, and provided a potential breeding target for improvement of rice yield.
Collapse
Affiliation(s)
- Dengyong Lan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Liming Cao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Mingyu Liu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Peiwen Yan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xinwei Zhang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Hu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Fuan Niu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shicong He
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinhao Cui
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Yuan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
13
|
Li Y, Han S, Qi Y. Advances in structure and function of auxin response factor in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:617-632. [PMID: 36263892 DOI: 10.1111/jipb.13392] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Auxin is a crucial phytohormone that has various effects on the regulators of plant growth and development. Auxin signal transduction is mainly controlled by two gene families: auxin response factor (ARF) and auxin/indole-3-acetic acid (Aux/IAA). ARFs are plant-specific transcription factors that bind directly to auxin response elements in the promoters of auxin-responsive genes. ARF proteins contain three conserved regions: a conserved N-terminal B3 DNA-binding domain, a variable intermediate middle region domain that functions in activation or repression, and a C-terminal domain including the Phox and Bem1p region for dimerization, similar to the III and IV elements of Aux/IAA, which facilitate protein-protein interaction through homodimerization of ARF proteins or heterodimerization of ARF and Aux/IAA proteins. In the two decades following the identification of the first ARF, 23 ARF members have been identified and characterized in Arabidopsis. Using whole-genome sequencing, 22, 25, 23, 25, and 36 ARF genes have been identified in tomato, rice, wheat, sorghum, and maize, respectively, in addition to which the related biofunctions of some ARFs have been reported. ARFs play crucial roles in regulating the growth and development of roots, leaves, flowers, fruits, seeds, responses to biotic and abiotic stresses, and phytohormone signal crosstalk. In this review, we summarize the research progress on the structures and functions of ARFs in Arabidopsis, tomato, and cereal crops, to provide clues for future basic research on phytohormone signaling and the molecular design breeding of crops.
Collapse
Affiliation(s)
- Yonghui Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Shaqila Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Zhang Y, Han S, Lin Y, Qiao J, Han N, Li Y, Feng Y, Li D, Qi Y. Auxin Transporter OsPIN1b, a Novel Regulator of Leaf Inclination in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:409. [PMID: 36679122 PMCID: PMC9861231 DOI: 10.3390/plants12020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Leaf inclination is one of the most important components of the ideal architecture, which effects yield gain. Leaf inclination was shown that is mainly regulated by brassinosteroid (BR) and auxin signaling. Here, we reveal a novel regulator of leaf inclination, auxin transporter OsPIN1b. Two CRISPR-Cas9 homozygous mutants, ospin1b-1 and ospin1b-2, with smaller leaf inclination compared to the wild-type, Nipponbare (WT/NIP), while overexpression lines, OE-OsPIN1b-1 and OE-OsPIN1b-2 have opposite phenotype. Further cell biological observation showed that in the adaxial region, OE-OsPIN1b-1 has significant bulge compared to WT/NIP and ospin1b-1, indicating that the increase in the adaxial cell division results in the enlarging of the leaf inclination in OE-OsPIN1b-1. The OsPIN1b was localized on the plasma membrane, and the free IAA contents in the lamina joint of ospin1b mutants were significantly increased while they were decreased in OE-OsPIN1b lines, suggesting that OsPIN1b might action an auxin transporter such as AtPIN1 to alter IAA content and leaf inclination. Furthermore, the OsPIN1b expression was induced by exogenous epibrassinolide (24-eBL) and IAA, and ospin1b mutants are insensitive to BR or IAA treatment, indicating that the effecting leaf inclination is regulated by OsPIN1b. This study contributes a new gene resource for molecular design breeding of rice architecture.
Collapse
Affiliation(s)
- Yanjun Zhang
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Shaqila Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Yuqing Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyue Qiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Naren Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Yanyan Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yaning Feng
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Qiao J, Zhang Y, Han S, Chang S, Gao Z, Qi Y, Qian Q. OsARF4 regulates leaf inclination via auxin and brassinosteroid pathways in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:979033. [PMID: 36247537 PMCID: PMC9561258 DOI: 10.3389/fpls.2022.979033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Leaf inclination is a vital agronomic trait and is important for plant architecture that affects photosynthetic efficiency and grain yield. To understand the molecular mechanisms underlying regulation of leaf inclination, we constructed an auxin response factor (arf) rice mutant-osarf4-showing increased leaf inclination using CRISPR/Cas9 gene editing technology. OsARF4 encodes a nuclear protein that is expressed in the lamina joint (LJ) at different developmental stages in rice. Histological analysis indicated that an increase in cell differentiation on the adaxial side resulted in increased leaf inclination in the osarf4 mutants; however, OsARF4-overexpressing lines showed a decrease in leaf inclination, resulting in erect leaves. Additionally, a decrease in the content and distribution of indole-3-acetic acid (IAA) in osarf4 mutant led to a greater leaf inclination, whereas the OsARF4-overexpressing lines showed the opposite phenotype with increased IAA content. RNA-sequencing analysis revealed that the expression of genes related to brassinosteroid (BR) biosynthesis and response was different in the mutants and overexpressing lines, suggesting that OsARF4 participates in the BR signaling pathway. Moreover, BR sensitivity assay revealed that OsARF4-overexpressing lines were more sensitive to exogenous BR treatment than the mutants. In conclusion, OsARF4, a transcription factor in auxin signaling, participates in leaf inclination regulation and links auxin and BR signaling pathways. Our results provide a novel insight into l leaf inclination regulation, and have significant implications for improving rice architecture and grain yield.
Collapse
Affiliation(s)
- Jiyue Qiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yanjun Zhang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - ShaqiLa Han
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Senqiu Chang
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanhua Qi
- Key Laboratory of Herbage and Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
16
|
Ma W, Cui S, Lu Z, Yan X, Cai L, Lu Y, Cai K, Zhou H, Ma R, Zhou S, Wang X. YTH Domain Proteins Play an Essential Role in Rice Growth and Stress Response. PLANTS 2022; 11:plants11172206. [PMID: 36079588 PMCID: PMC9460353 DOI: 10.3390/plants11172206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
As the most prevalent epi-transcriptional modification, m6A modifications play essential roles in regulating RNA fate. The molecular functions of YTH521-B homology (YTH) domain proteins, the most known READER proteins of m6A modifications, have been well-studied in animals. Although plants contain more YTH domain proteins than other eukaryotes, little is known about their biological importance. In dicot species Arabidopsis thaliana, the YTHDFA clade members ECT2/3/4 and CPSF30-L are well-studied and important for cell proliferation, plant organogenesis, and nitrate transport. More emphasis is needed on the biological functions of plant YTH proteins, especially monocot YTHs. Here we presented a detailed phylogenetic relationship of eukaryotic YTH proteins and clustered plant YTHDFC clade into three subclades. To determine the importance of monocot YTH proteins, YTH knockout mutants and RNAi-induced knockdown plants were constructed and used for phenotyping, transcriptomic analysis, and stress treatments. Knocking out or knocking down OsYTHs led to the downregulation of multicellular organismal regulation genes and resulted in growth defects. In addition, loss-of-function ythdfa mutants led to better salinity tolerance whereas ythdfc mutants were more sensitive to abiotic stress. Overall, our study establishes the functional relevance of rice YTH genes in plant growth regulation and stress response.
Collapse
Affiliation(s)
- Weiwei Ma
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenfei Lu
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Xiaofeng Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Long Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfa Lu
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Kefeng Cai
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Huacheng Zhou
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Rongrong Ma
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (S.Z.); (X.W.)
| | - Xiaole Wang
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
- Correspondence: (S.Z.); (X.W.)
| |
Collapse
|
17
|
Ahmar S, Gruszka D. In-Silico Study of Brassinosteroid Signaling Genes in Rice Provides Insight Into Mechanisms Which Regulate Their Expression. Front Genet 2022; 13:953458. [PMID: 35873468 PMCID: PMC9299959 DOI: 10.3389/fgene.2022.953458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Brassinosteroids (BRs) regulate a diverse spectrum of processes during plant growth and development and modulate plant physiology in response to environmental fluctuations and stress factors. Thus, the BR signaling regulators have the potential to be targeted for gene editing to optimize the architecture of plants and make them more resilient to environmental stress. Our understanding of the BR signaling mechanism in monocot crop species is limited compared to our knowledge of this process accumulated in the model dicot species - Arabidopsis thaliana. A deeper understanding of the BR signaling and response during plant growth and adaptation to continually changing environmental conditions will provide insight into mechanisms that govern the coordinated expression of the BR signaling genes in rice (Oryza sativa) which is a model for cereal crops. Therefore, in this study a comprehensive and detailed in silico analysis of promoter sequences of rice BR signaling genes was performed. Moreover, expression profiles of these genes during various developmental stages and reactions to several stress conditions were analyzed. Additionally, a model of interactions between the encoded proteins was also established. The obtained results revealed that promoters of the 39 BR signaling genes are involved in various regulatory mechanisms and interdependent processes that influence growth, development, and stress response in rice. Different transcription factor-binding sites and cis-regulatory elements in the gene promoters were identified which are involved in regulation of the genes’ expression during plant development and reactions to stress conditions. The in-silico analysis of BR signaling genes in O. sativa provides information about mechanisms which regulate the coordinated expression of these genes during rice development and in response to other phytohormones and environmental factors. Since rice is both an important crop and the model species for other cereals, this information may be important for understanding the regulatory mechanisms that modulate the BR signaling in monocot species. It can also provide new ways for the plant genetic engineering technology by providing novel potential targets, either cis-elements or transcriptional factors, to create elite genotypes with desirable traits.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
18
|
Huang X, Zeng X, Cai M, Zhao D. The MSI1 member OsRBAP1 gene, identified by a modified MutMap method, is required for rice height and spikelet fertility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111201. [PMID: 35643623 DOI: 10.1016/j.plantsci.2022.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 05/10/2023]
Abstract
To explore the molecular mechanisms underlying plant height regulation, we isolated and characterized a stably inherited semi-dwarf mutant bgsd-2 from the ethane methyl sulfonate (EMS) mutant progeny of 'Ping Tang Wild-type (PTWT)', a rice (Oryza sativa ssp. japonica) landrace in Guizhou. Transcriptome sequencing and qRT-PCR analyses showed that a number of cellulose and lignin-related genes involved in cell wall biogenesis were substantially downregulated in bgsd-2. MutMap-based cloning revealed the occurrence of a single amino acid substitution in the LOC_Os01g51300 gene, belonging to the MSI1 (multicopy suppressor of IRA1) member OsRBAP1. The bgsd-2 mutation occurred in the 3rd exon of OsRBAP1, resulting in a nonsense mutation of a codon shift from glycine (G) to glutamic acid (E) at residue 65. Protein localization analysis uncovered that the OsRBAP1 gene encodes a nuclear-localized protein and that the mutation in bgsd-2 may affect the stability of the OsRBAP1 protein. The CRISPR/Cas9 system was used to switch off OsRBAP1 in PTWT to obtain the knockout mutant osrbap1, which exhibited a severe reduction in height and fertility. Cytological observations suggest that the dwarfism of osrabp1 may be caused by reduced cell size and numbers, and that male sterility may be due to abnormal microspore development. Transcriptome analysis revealed that OsRBAP1 defects can repress the expression of numerous essential genes, which regulate multiple developmental processes in plants. Altogether, our results suggest that OsRBAP1 plays an important role in the regulation of rice height and spikelet fertility.
Collapse
Affiliation(s)
- Xiaozhen Huang
- College of Tea Sciences, Guizhou University, 550025, Guiyang, China; The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xiaofang Zeng
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Mingling Cai
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Regions (Ministry of Education), Guizhou University, Guiyang, 550025, China; Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
19
|
Song Y, Niu R, Yu H, Guo J, Du C, Zhang Z, Wei Y, Li J, Zhang S. OsSLA1 functions in leaf angle regulation by enhancing the interaction between OsBRI1 and OsBAK1 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1111-1127. [PMID: 35275421 DOI: 10.1111/tpj.15727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Leaf angle is an important trait in plants. Here, we demonstrate that the leucine-rich repeat receptor-like kinase OsSLA1 plays an important role in leaf angle regulation in rice (Oryza sativa). OsSLA1 mutant plants exhibited a small leaf angle phenotype due to changes of adaxial cells in the lamina joint. GUS staining revealed that OsSLA1 was highly expressed in adaxial cells of the lamina joint. The OsSLA1 mutant plants were insensitive to exogenous epibrassinolide (eBL) and showed upregulated expression of DWARF and CPD, but downregulated expression of BU1, BUL1, and ILI1, indicating that brassinosteroid (BR) signal transduction was blocked. Fluorescence microscopy showed that OsSLA1 was localized to the plasma membrane and nearby periplasmic vesicles. Further study showed that OsSLA1 interacts with OsBRI1 and OsBAK1 via its intracellular domain and promotes the interaction between OsBRI1 and OsBAK1. In addition, phosphorylation experiments revealed that OsSLA1 does not possess kinase activity, but that it can be phosphorylated by OsBRI1 in vitro. Knockout of OsSLA1 in the context of d61 caused exacerbation of the mutant phenotype. These results demonstrate that OsSLA1 regulates leaf angle formation via positive regulation of BR signaling by enhancing the interaction of OsBRI1 with OsBAK1.
Collapse
Affiliation(s)
- Yajing Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ruofan Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Hongli Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Chunhui Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zilun Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ying Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jiaxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Suqiao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| |
Collapse
|
20
|
Xu Z, Li F, Li M, He Y, Chen Y, Hu F. Functional analysis of ARF1 from Cymbidium goeringii in IAA response during leaf development. PeerJ 2022; 10:e13077. [PMID: 35291484 PMCID: PMC8918147 DOI: 10.7717/peerj.13077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
Background Cymbidium is an economically important genus of flowering orchids cultivated in China because of showing graceful leaf shapes and elegant flower coloration. However, the deterioration of the ecological environment and the difficulty of conservation management have become increasing challenges for maintaining its germplasm resources. ARFs are critical transcription factors in the auxin signaling pathway and have been found to play pivotal roles in leaf growth and development in previous studies. However, their functions and mechanisms in Cymbidium goeringii remain to be clarified. Methods The sequence of the CgARF1 gene was analyzed by bioinformatics. The expression of this gene in different tissues and under IAA treatment was detected by quantitative real-time PCR analysis. The CgARF1 gene was overexpressed in wild-type Arabidopsis and Nicotiana benthamiana via the Agrobacterium infection method. Acetone-ethanol solvent extraction was applied for the determination of chlorophyll contents, and the contents of endogenous hormones were determined using the enzyme-linked immunosorbent assay technique. Results CgARF1 cloned from C. goeringii 'Songmei' was 2,049 bp in length and encoded 682 amino acids containing three typical domains: a B3 DNA binding domain, an Aux_resp domain and an AUX/IXX family domain. The expression pattern of CgARF1 in different tissues of C. goeringii showed that its expression was highest in the leaves and changed greatly under IAA treatment. Subcellular localization studies showed that the protein was mainly localized in the cell nucleus. CgARF1-overexpressing lines exhibited leaf senescence and a decreased chlorophyll content. Under IAA treatment, CgARF1 regulates the rooting length, rooting number and rooting rate from detached leaves. The levels of endogenous hormones in transgenic leaves were also significantly changed. Conclusion These results indicated that CgARF1 overexpression is responsive to IAA treatment during leaf development. This study provides a foundation for future research on the function of the ARF gene family in C. goeringii.
Collapse
Affiliation(s)
- Zihan Xu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fangle Li
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Meng Li
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yuanhao He
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Fengrong Hu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Guo N, Wang Y, Chen W, Tang S, An R, Wei X, Hu S, Tang S, Shao G, Jiao G, Xie L, Wang L, Sheng Z, Hu P. Fine mapping and target gene identification of qSE4, a QTL for stigma exsertion rate in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:959859. [PMID: 35923872 PMCID: PMC9341389 DOI: 10.3389/fpls.2022.959859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/27/2022] [Indexed: 05/11/2023]
Abstract
The stigma exsertion rate (SER) is a complex agronomy phenotype controlled by multiple genes and climate and a key trait affecting the efficiency of hybrid rice seed production. Using a japonica two-line male sterile line (DaS) with a high SER as the donor and a tropical japonica rice (D50) with a low SER as the acceptor to construct a near-isogenic line [NIL (qSE4 DaS)]. Populations were segregated into 2,143 individuals of BC3F2 and BC4F2, and the stigma exsertion quantitative trait locus (QTL) qSE4 was determined to be located within 410.4 Kb between markers RM17157 and RM17227 on chromosome 4. Bioinformatic analysis revealed 13 candidate genes in this region. Sequencing and haplotype analysis indicated that the promoter region of LOC_Os04g43910 (ARF10) had a one-base substitution between the two parents. Further Reverse Transcription-Polymerase Chain Reaction (RT-PCR) analysis showed that the expression level of ARF10 in DaS was significantly higher than in D50. After knocking out ARF10 in the DaS background, it was found that the SER of arf10 (the total SER of the arf10-1 and the arf10-2 were 62.54 and 66.68%, respectively) was significantly lower than that of the wild type (the total SER was 80.97%). Transcriptome and hormone assay analysis showed that arf10 had significantly higher auxin synthesis genes and contents than the wild type and the expression of auxin signaling-related genes was significantly different, Similar results were observed for abscisic acid and jasmonic acid. These results indicate that LOC_Os04g43910 is mostly likely the target gene of qSE4, and the study of its gene function is of great significance for understanding the molecular mechanisms of SER and improving the efficiency of hybrid seed production.
Collapse
Affiliation(s)
- Naihui Guo
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute, Shengyang Agricultural University, Shenyang, China
| | - Yakun Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Wei Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Shengjia Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Ruihu An
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Ling Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
- Zhonghua Sheng,
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute, Shengyang Agricultural University, Shenyang, China
- *Correspondence: Peisong Hu,
| |
Collapse
|
22
|
Wang S, Zhang F, Jiang P, Zhang H, Zheng H, Chen R, Xu Z, Ikram AU, Li E, Xu Z, Fan J, Su Y, Ding Y. SDG128 is involved in maize leaf inclination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1597-1608. [PMID: 34612535 DOI: 10.1111/tpj.15527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Maize leaf angle (LA) is a complex quantitative trait that is controlled by developmental signals, hormones, and environmental factors. However, the connection between histone methylation and LAs in maize remains unclear. Here, we reported that SET domain protein 128 (SDG128) is involved in leaf inclination in maize. Knockdown of SDG128 using an RNA interference approach resulted in an expanded architecture, less large vascular bundles, more small vascular bundles, and larger spacing of large vascular bundles in the auricles. SDG128 interacts with ZmGID2 both in vitro and in vivo. Knockdown of ZmGID2 also showed a larger LA with less large vascular bundles and larger spacing of vascular bundles. In addition, the transcription level of cell wall expansion family genes ZmEXPA1, ZmEXPB2, and GRMZM2G005887; transcriptional factor genes Lg1, ZmTAC1, and ZmCLA4; and auxin pathway genes ZmYUCCA7, ZmYUCCA8, and ZmARF22 was reduced in SDG128 and ZmGID2 knockdown plants. SDG128 directly targets ZmEXPA1, ZmEXPB2, LG1, and ZmTAC1 and is required for H3K4me3 deposition at these genes. Together, the results of the present study suggest that SDG128 and ZmGID2 are involved in the maize leaf inclination.
Collapse
Affiliation(s)
- Shiliang Wang
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Fei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Pengfei Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Heng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Han Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Rihong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Zuntao Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Aziz Ul Ikram
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Enze Li
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Zaoshi Xu
- Anhui Forestry High-Tech Development Center, Hefei, Anhui, 230041, China
| | - Jun Fan
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yanhua Su
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Yong Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| |
Collapse
|
23
|
Ma Y, Wolf S, Lohmann JU. Casting the Net-Connecting Auxin Signaling to the Plant Genome. Cold Spring Harb Perspect Biol 2021; 13:a040006. [PMID: 33903151 PMCID: PMC8559546 DOI: 10.1101/cshperspect.a040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin represents one of the most potent and most versatile hormonal signals in the plant kingdom. Built on a simple core of only a few dedicated components, the auxin signaling system plays important roles for diverse aspects of plant development, physiology, and defense. Key to the diversity of context-dependent functional outputs generated by cells in response to this small molecule are gene duplication events and sub-functionalization of signaling components on the one hand, and a deep embedding of the auxin signaling system into complex regulatory networks on the other hand. Together, these evolutionary innovations provide the mechanisms to allow each cell to display a highly specific auxin response that suits its individual requirements. In this review, we discuss the regulatory networks connecting auxin with a large number of diverse pathways at all relevant levels of the signaling system ranging from biosynthesis to transcriptional response.
Collapse
Affiliation(s)
- Yanfei Ma
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Sebastian Wolf
- Cell Wall Signalling Group, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
24
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
25
|
Uzair M, Long H, Zafar SA, Patil SB, Chun Y, Li L, Fang J, Zhao J, Peng L, Yuan S, Li X. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. PLANT PHYSIOLOGY 2021; 186:497-518. [PMID: 33591317 PMCID: PMC8154097 DOI: 10.1093/plphys/kiab075] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/26/2021] [Indexed: 05/19/2023]
Abstract
Leaf morphology influences photosynthesis, transpiration, and ultimately crop yield. However, the molecular mechanism of leaf development is still not fully understood. Here, we identified and characterized the narrow leaf21 (nal21) mutant in rice (Oryza sativa), showing a significant reduction in leaf width, leaf length and plant height, and increased tiller number. Microscopic observation revealed defects in the vascular system and reduced epidermal cell size and number in the nal21 leaf blade. Map-based cloning revealed that NAL21 encodes a ribosomal small subunit protein RPS3A. Ribosome-targeting antibiotics resistance assay and ribosome profiling showed a significant reduction in the free 40S ribosome subunit in the nal21 mutant. The nal21 mutant showed aberrant auxin responses in which multiple auxin response factors (ARFs) harboring upstream open-reading frames (uORFs) in their 5'-untranslated region were repressed at the translational level. The WUSCHEL-related homeobox 3A (OsWOX3A) gene, a key transcription factor involved in leaf blade lateral outgrowth, is also under the translational regulation by RPS3A. Transformation with modified OsARF11, OsARF16, and OsWOX3A genomic DNA (gDNA) lacking uORFs rescued the narrow leaf phenotype of nal21 to a better extent than transformation with their native gDNA, implying that RPS3A could regulate translation of ARFs and WOX3A through uORFs. Our results demonstrate that proper translational regulation of key factors involved in leaf development is essential to maintain normal leaf morphology.
Collapse
Affiliation(s)
- Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Long
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication:
| |
Collapse
|
26
|
OsARF11 Promotes Growth, Meristem, Seed, and Vein Formation during Rice Plant Development. Int J Mol Sci 2021; 22:ijms22084089. [PMID: 33920962 PMCID: PMC8071273 DOI: 10.3390/ijms22084089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
The plant hormone auxin acts as a mediator providing positional instructions in a range of developmental processes. Studies in Arabidopsis thaliana L. show that auxin acts in large part via activation of Auxin Response Factors (ARFs) that in turn regulate the expression of downstream genes. The rice (Oryza sativa L.) gene OsARF11 is of interest because of its expression in developing rice organs and its high sequence similarity with MONOPTEROS/ARF5, a gene with prominent roles in A. thaliana development. We have assessed the phenotype of homozygous insertion mutants in the OsARF11 gene and found that in relation to wildtype, osarf11 seedlings produced fewer and shorter roots as well as shorter and less wide leaves. Leaves developed fewer veins and larger areoles. Mature osarf11 plants had a reduced root system, fewer branches per panicle, fewer grains per panicle and fewer filled seeds. Mutants had a reduced sensitivity to auxin-mediated callus formation and inhibition of root elongation, and phenylboronic acid (PBA)-mediated inhibition of vein formation. Taken together, our results implicate OsARF11 in auxin-mediated growth of multiple organs and leaf veins. OsARF11 also appears to play a central role in the formation of lateral root, panicle branch, and grain meristems.
Collapse
|
27
|
Betti C, Della Rovere F, Piacentini D, Fattorini L, Falasca G, Altamura MM. Jasmonates, Ethylene and Brassinosteroids Control Adventitious and Lateral Rooting as Stress Avoidance Responses to Heavy Metals and Metalloids. Biomolecules 2021; 11:biom11010077. [PMID: 33435585 PMCID: PMC7827588 DOI: 10.3390/biom11010077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Developmental and environmental signaling networks often converge during plant growth in response to changing conditions. Stress-induced hormones, such as jasmonates (JAs), can influence growth by crosstalk with other signals like brassinosteroids (BRs) and ethylene (ET). Nevertheless, it is unclear how avoidance of an abiotic stress triggers local changes in development as a response. It is known that stress hormones like JAs/ET and BRs can regulate the division rate of cells from the first asymmetric cell divisions (ACDs) in meristems, suggesting that stem cell activation may take part in developmental changes as a stress-avoidance-induced response. The root system is a prime responder to stress conditions in soil. Together with the primary root and lateral roots (LRs), adventitious roots (ARs) are necessary for survival in numerous plant species. AR and LR formation is affected by soil pollution, causing substantial root architecture changes by either depressing or enhancing rooting as a stress avoidance/survival response. Here, a detailed overview of the crosstalk between JAs, ET, BRs, and the stress mediator nitric oxide (NO) in auxin-induced AR and LR formation, with/without cadmium and arsenic, is presented. Interactions essential in achieving a balance between growth and adaptation to Cd and As soil pollution to ensure survival are reviewed here in the model species Arabidopsis and rice.
Collapse
Affiliation(s)
- Camilla Betti
- Department of Medicine, University of Perugia, Piazzale Menghini 8/9, 06132 Perugia, Italy
- Correspondence: ; Tel.: +39-075-5782402
| | - Federica Della Rovere
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.D.R.); (D.P.); (L.F.); (G.F.); (M.M.A.)
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.D.R.); (D.P.); (L.F.); (G.F.); (M.M.A.)
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.D.R.); (D.P.); (L.F.); (G.F.); (M.M.A.)
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.D.R.); (D.P.); (L.F.); (G.F.); (M.M.A.)
| | - Maria Maddalena Altamura
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.D.R.); (D.P.); (L.F.); (G.F.); (M.M.A.)
| |
Collapse
|
28
|
Zhang Z, Yang X, Cheng L, Guo Z, Wang H, Wu W, Shin K, Zhu J, Zheng X, Bian J, Li Y, Gu L, Zhu Q, Wang ZY, Wang W. Physiological and transcriptomic analyses of brassinosteroid function in moso bamboo (Phyllostachys edulis) seedlings. PLANTA 2020; 252:27. [PMID: 32712728 DOI: 10.1007/s00425-020-03432-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrates that brassinosteroid is essential for seedling and shoot growth in moso bamboo. The shoot of moso bamboo is known to grow extremely fast. The roles of phytohormones in such fast growth of bamboo shoot remain unclear. Here we reported that endogenous brassinosteroid (BR) is a major factor promoting bamboo shoot internode elongation. Reducing endogenous brassinosteroid level by its biosynthesis inhibitor propiconazole stunted shoot growth in seedling stage, whereas exogenous BR application promoted scale leaf elongation and the inclination of lamina joint of leaves and scale leaves. Genome-wide transcriptome analysis identified hundreds of genes whose expression levels are altered by BR and propiconazole in shoots and roots of bamboo seedling. The data show that BR regulates cell wall-related genes, hydrogen peroxide catabolic genes, and auxin-related genes. Our study demonstrates an essential role of BR in fast growth bamboo shoots and identifies a large number of BR-responsive genes in bamboo seedlings.
Collapse
Affiliation(s)
- Zhe Zhang
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuelian Yang
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Ling Cheng
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zejun Guo
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weihuang Wu
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kihye Shin
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinyao Zhu
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoli Zheng
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianghu Bian
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangchen Li
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Wenfei Wang
- Basic Forestry and Proteomics Research Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
29
|
Wolf S. Deviating from the Beaten Track: New Twists in Brassinosteroid Receptor Function. Int J Mol Sci 2020; 21:ijms21051561. [PMID: 32106564 PMCID: PMC7084826 DOI: 10.3390/ijms21051561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
A key feature of plants is their plastic development tailored to the environmental conditions. To integrate environmental signals with genetic growth regulatory programs, plants rely on a number of hormonal pathways, which are intimately connected at multiple levels. Brassinosteroids (BRs), a class of plant sterol hormones, are perceived by cell surface receptors and trigger responses instrumental in tailoring developmental programs to environmental cues. Arguably, BR signalling is one of the best-characterized plant signalling pathways, and the molecular composition of the core signal transduction cascade seems clear. However, BR research continues to reveal new twists to re-shape our view on this key signalling circuit. Here, exciting novel findings pointing to the plasma membrane as a key site for BR signalling modulation and integration with other pathways are reviewed and new inputs into the BR signalling pathway and emerging “non-canonical” functions of the BR receptor complex are highlighted. Together, this new evidence underscores the complexity of plant signalling integration and serves as a reminder that highly-interconnected signalling pathways frequently comprise non-linear aspects which are difficult to convey in classical conceptual models.
Collapse
Affiliation(s)
- Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, INF230, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Exploring the Brassinosteroid Signaling in Monocots Reveals Novel Components of the Pathway and Implications for Plant Breeding. Int J Mol Sci 2020; 21:ijms21010354. [PMID: 31948086 PMCID: PMC6982108 DOI: 10.3390/ijms21010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/30/2023] Open
Abstract
Brassinosteroids (BRs) are a class of steroidal phytohormones which are key regulators of diverse processes during whole life cycle of plants. Studies conducted in the dicot model species Arabidopsis thaliana have allowed identification and characterization of various components of the BR signaling. It is currently known that the BR signaling is interconnected at various stages with other phytohormonal and stress signaling pathways. It enables a rapid and efficient adaptation of plant metabolism to constantly changing environmental conditions. However, our knowledge about mechanism of the BR signaling in the monocot species is rather limited. Thus, identification of new components of the BR signaling in monocots, including cereals, is an ongoing process and has already led to identification of some monocot-specific components of the BR signaling. It is of great importance as disturbances in the BR signaling influence architecture of mutant plants, and as a consequence, the reaction to environmental conditions. Currently, the modulation of the BR signaling is considered as a target to enhance yield and stress tolerance in cereals, which is of particular importance in the face of global climate change.
Collapse
|
31
|
Tian P, Liu J, Mou C, Shi C, Zhang H, Zhao Z, Lin Q, Wang J, Wang J, Zhang X, Guo X, Cheng Z, Zhu S, Ren Y, Lei C, Wang H, Wan J. GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1171-1185. [PMID: 30450718 DOI: 10.1111/jipb.12745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/09/2018] [Indexed: 05/23/2023]
Abstract
Grain size is an important determinant of yield potential in crops. We previously demonstrated that natural mutations in the regulatory sequences of qSW5/GW5 confer grain width diversity in rice. However, the biological function of a GW5 homolog, named GW5-Like (GW5L), remains unknown. In this study, we report on GW5L knockout mutants in Kitaake, a japonica cultivar (cv.) considered to have a weak gw5 variant allele that confers shorter and wider grains. GW5L is evenly expressed in various tissues, and its protein product is localized to the plasma membrane. Biochemical assays verified that GW5L functions in a similar fashion to GW5. It positively regulates brassinosteroid (BR) signaling through repression of the phosphorylation activity of GSK2. Genetic data show that GW5L overexpression in either Kitaake or a GW5 knockout line, Kasaorf3 (indica cv. Kasalath background), causes more slender, longer grains relative to the wild-type. We also show that GW5L could confer salt stress resistance through an association with calmodulin protein OsCaM1-1. These findings identify GW5L as a negative regulator of both grain size and salt stress tolerance, and provide a potential target for breeders to improve grain yield and salt stress resistance in rice.
Collapse
Affiliation(s)
- Peng Tian
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Jiafan Liu
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Changling Mou
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cuilan Shi
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Huan Zhang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhichao Zhao
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Qibing Lin
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Jie Wang
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Jiulin Wang
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Xin Zhang
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Xiuping Guo
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Zhijun Cheng
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Shanshan Zhu
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Yulong Ren
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Cailin Lei
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Haiyang Wang
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Jianmin Wan
- Institute of Crop Sciences, the Chinese Academy of Agriculture Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
32
|
Galstyan A, Nemhauser JL. Auxin promotion of seedling growth via ARF5 is dependent on the brassinosteroid-regulated transcription factors BES1 and BEH4. PLANT DIRECT 2019; 3:e00166. [PMID: 31508562 PMCID: PMC6722427 DOI: 10.1002/pld3.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
Seedlings must continually calibrate their growth in response to the environment. Auxin and brassinosteroids (BRs) are plant hormones that work together to control growth responses during photomorphogenesis. We used our previous analysis of promoter architecture in an auxin and BR target gene to guide our investigation into the broader molecular bases and biological relevance of transcriptional co-regulation by these hormones. We found that the auxin-regulated transcription factor Auxin Responsive Factor 5 (ARF5) and the brassinosteroid-regulated transcription factor BRI1-EMS-Suppressor 1/Brassinazole Resistant 2 (BES1) co-regulated a subset of growth-promoting genes via conserved bipartite cis-regulatory elements. Moreover, ARF5 binding to DNA could be enriched by increasing BES1 levels. The evolutionary loss of bipartite elements in promoters results in loss of hormone responsiveness. We also identified another member of the BES1/BZR1 family called BEH4 that acts partially redundantly with BES1 to regulate seedling growth. Double mutant analysis showed that BEH4 and not BZR1 were required alongside BES1 for normal auxin response during early seedling development. We propose that an ARF5-BES1/BEH4 transcriptional module acts to promote growth via modulation of a diverse set of growth-associated genes.
Collapse
Affiliation(s)
- Anahit Galstyan
- Department of BiologyUniversity of WashingtonSeattleWAUSA
- Present address:
Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Cologne50829Germany
| | | |
Collapse
|
33
|
Yu XL, Wang HY, Leung DWM, He ZD, Zhang JJ, Peng XX, Liu EE. Overexpression of OsIAAGLU reveals a role for IAA-glucose conjugation in modulating rice plant architecture. PLANT CELL REPORTS 2019; 38:731-739. [PMID: 30903268 DOI: 10.1007/s00299-019-02402-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/07/2019] [Indexed: 05/06/2023]
Abstract
OsIAAGLU could catalyze the reaction of IAA with glucose to generate IAA-glucose. Overexpression of OsIAAGLU in rice resulted in altered rice shoot architecture and root gravitropism. The distribution and levels of indole-3-acetic acid (IAA) within plant tissues are well known to play vital roles in plant growth and development. An important mechanism of regulating free IAA levels in monocots is formation of IAA ester conjugates. In this study, a cytosol-localized protein encoded by the rice gene of indole-3-acetic acid glucosyltransferase (OsIAAGLU) was found to catalyze the reaction of free IAA with glucose to generate IAA-glucose. Expression of OsIAAGLU could be induced by IAA and NAA. The number of tillers and leaf angle was significantly increased with a concomitant decrease in plant height and panicle length in the transgenic rice lines overexpressing OsIAAGLU compared to the wild-type (WT) plants. Phenotypes of iaaglu mutants constructed using the CRISPR/Cas9 system had no obvious differences with WT plants. Furthermore, overexpression of OsIAAGLU resulted in reduced sensitivity to IAA/NAA and altered gravitropic response of the roots in the transgenic plants. Free IAA contents in the leaves, root tips, and lamina joint of OsIAAGLU-overexpressing transgenic lines were lower than those of WT plants. These results support that OsIAAGLU could play a regulatory role in IAA homeostasis and rice architecture.
Collapse
Affiliation(s)
- Xiao-Lu Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hai-Yan Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - David W M Leung
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Zhi-Dan He
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jian-Jun Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xin-Xiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - E-E Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
34
|
Mutations in the Rice OsCHR4 Gene, Encoding a CHD3 Family Chromatin Remodeler, Induce Narrow and Rolled Leaves with Increased Cuticular Wax. Int J Mol Sci 2019; 20:ijms20102567. [PMID: 31130602 PMCID: PMC6566577 DOI: 10.3390/ijms20102567] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Leaf blade width, curvature, and cuticular wax are important agronomic traits of rice. Here, we report the rice Oschr4-5 mutant characterized by pleiotropic phenotypes, including narrow and rolled leaves, enhanced cuticular wax deposition and reduced plant height and tiller number. The reduced leaf width is caused by a reduced number of longitudinal veins and increased auxin content. The cuticular wax content was significantly higher in the Oschr4-5 mutant, resulting in reduced water loss rate and enhanced drought tolerance. Molecular characterization reveals that a single-base deletion results in a frame-shift mutation from the second chromodomain of OsCHR4, a CHD3 (chromodomain helicase DNA-binding) family chromatin remodeler, in the Oschr4-5 mutant. Expressions of seven wax biosynthesis genes (GL1-4, WSL4, OsCER7, LACS2, LACS7, ROC4 and BDG) and four auxin biosynthesis genes (YUC2, YUC3, YUC5 and YUC6) was up-regulated in the Oschr4-5 mutant. Chromatin immunoprecipitation assays revealed that the transcriptionally active histone modification H3K4me3 was increased, whereas the repressive H3K27me3 was reduced in the upregulated genes in the Oschr4-5 mutant. Therefore, OsCHR4 regulates leaf morphogenesis and cuticle wax formation by epigenetic modulation of auxin and wax biosynthetic genes expression.
Collapse
|
35
|
Sakamoto T, Kitano H, Fujioka S. ERECT LEAF1 suppresses jasmonic acid response in rice by decreasing OsWRKY4 stability. PLANT SIGNALING & BEHAVIOR 2019; 14:1559578. [PMID: 30572766 PMCID: PMC6351086 DOI: 10.1080/15592324.2018.1559578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
ERECT LEAF 1 (ELF1), which was identified as a component of brassinosteroid signaling in rice, is involved in brassinosteroid-mediated suppression of jasmonic acid response. Here, by conducting yeast two-hybrid assay and in vitro ubiquitination experiments, we demonstrate that ELF1 interacts with the OsWRKY4 transcription factor, a positive regulator of defense responses to rice sheath blight. ELF1 decreased the stability of OsWRKY4, whereas exogenous jasmonic acid treatment suppressed this effect of ELF1, resulting in OsWRKY4 accumulation in rice plants. In wild-type rice, OsWRKY4 expression was up-regulated by jasmonic acid treatment but down-regulated by brassinosteroid treatment, suggesting that jasmonic acid-induced OsWRKY4 accumulation was caused by a combination of increased production and suppressed degradation. The expression levels of the OsWRKY4 target genes, PR1b and PR5, seemed to be correlated with the OsWRKY4 level. These results suggest that ELF1 indirectly controls the expression of PR1b and PR5 genes by regulating the OsWRKY4 protein level, and support a hypothesis that brassinosteroid and jasmonic acid cooperate to maintain the balance between growth and defense responses. We conclude that ELF1 participates in the antagonistic interaction between these two phytohormones by suppressing the jasmonic acid response through the down-regulation of OsWRKY4 protein level in rice.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa, Japan
- CONTACT Tomoaki Sakamoto Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Aichi, Japan
| | | |
Collapse
|
36
|
Chen SH, Zhou LJ, Xu P, Xue HW. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling. PLoS Genet 2018; 14:e1007829. [PMID: 30496185 PMCID: PMC6289470 DOI: 10.1371/journal.pgen.1007829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/11/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Leaf angle is an important agronomic trait and influences crop architecture and yield. Studies have demonstrated the roles of phytohormones, particularly auxin and brassinosteroids, and various factors in controlling leaf inclination. However, the underlying mechanism especially the upstream regulatory networks still need being clarified. Here we report the functional characterization of rice leaf inclination3 (LC3), a SPOC domain-containing transcription suppressor, in regulating leaf inclination through interacting with LIP1 (LC3-interacting protein 1), a HIT zinc finger domain-containing protein. LC3 deficiency results in increased leaf inclination and enhanced expressions of OsIAA12 and OsGH3.2. Being consistent, transgenic plants with OsIAA12 overexpression or deficiency of OsARF17 which interacts with OsIAA12 do present enlarged leaf inclination. LIP1 directly binds to promoter regions of OsIAA12 and OsGH3.2, and interacts with LC3 to synergistically suppress auxin signaling. Our study demonstrate the distinct effects of IAA12-ARF17 interactions in leaf inclination regulation, and provide informative clues to elucidate the functional mechanism of SPOC domain-containing transcription suppressor and fine-controlled network of lamina joint development by LC3-regulated auxin homeostasis and auxin signaling through.
Collapse
Affiliation(s)
- Su-Hui Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Juan Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Tong H, Chu C. Functional Specificities of Brassinosteroid and Potential Utilization for Crop Improvement. TRENDS IN PLANT SCIENCE 2018; 23:1016-1028. [PMID: 30220494 DOI: 10.1016/j.tplants.2018.08.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 05/20/2023]
Abstract
Brassinosteroid (BR) regulates many important agronomic traits and thus has great potential in agriculture. However, BR application is limited due to its complex effects on plants. The identification of specific downstream BR components and pathways in the crop plant rice (Oryza sativa) further demonstrates the feasibility of modulating BR responses to obtain desirable traits for breeding. Here, we review advances on how BR regulates various biological processes or agronomic traits such as plant architecture and grain yield in rice. We discuss how these functional specificities of BR can and could be utilized to enhance plant performance and productivity. We propose that unraveling the mechanisms underlying the diverse BR functions will favor BR application in molecular design for crop improvement.
Collapse
Affiliation(s)
- Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
38
|
Gruszka D. Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance. Int J Mol Sci 2018; 19:ijms19092675. [PMID: 30205610 PMCID: PMC6163518 DOI: 10.3390/ijms19092675] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/25/2022] Open
Abstract
Brassinosteroids (BRs) are a class of phytohormones, which regulate various processes during plant life cycle. Intensive studies conducted with genetic, physiological and molecular approaches allowed identification of various components participating in the BR signaling—from the ligand perception, through cytoplasmic signal transduction, up to the BR-dependent gene expression, which is regulated by transcription factors and chromatin modifying enzymes. The identification of new components of the BR signaling is an ongoing process, however an emerging view of the BR signalosome indicates that this process is interconnected at various stages with other metabolic pathways. The signaling crosstalk is mediated by the BR signaling proteins, which function as components of the transmembrane BR receptor, by a cytoplasmic kinase playing a role of the major negative regulator of the BR signaling, and by the transcription factors, which regulate the BR-dependent gene expression and form a complicated regulatory system. This molecular network of interdependencies allows a balance in homeostasis of various phytohormones to be maintained. Moreover, the components of the BR signalosome interact with factors regulating plant reactions to environmental cues and stress conditions. This intricate network of interactions enables a rapid adaptation of plant metabolism to constantly changing environmental conditions.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
39
|
Liu X, Yang CY, Miao R, Zhou CL, Cao PH, Lan J, Zhu XJ, Mou CL, Huang YS, Liu SJ, Tian YL, Nguyen TL, Jiang L, Wan JM. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. RICE (NEW YORK, N.Y.) 2018; 11:46. [PMID: 30084027 PMCID: PMC6082143 DOI: 10.1186/s12284-018-0239-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/27/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant height and leaf angle are important determinants of yield in rice (Oryza sativa L.). Genes involved in regulating plant height and leaf angle were identified in previous studies; however, there are many remaining unknown factors that affect rice architecture. RESULTS In this study, we characterized a dwarf mutant named ds1 with small grain size and decreased leaf angle,selected from an irradiated population of ssp. japonica variety Nanjing35. The ds1 mutant also showed abnormal floral organs. ds1 plants were insensitive to BL treatment and expression of genes related to BR signaling was changed. An F2 population from a cross between ds1 and indica cultivar 93-11 was used to fine map DS1 and to map-based clone the DS1 allele, which encoded an EMF1-like protein that acted as a transcriptional regulator. DS1 was constitutively expressed in various tissues, and especially highly expressed in young leaves, panicles and seeds. We showed that the DS1 protein interacted with auxin response factor 11 (OsARF11), a major transcriptional regulator of plant height and leaf angle, to co-regulate D61/OsBRI1 expression. These findings provide novel insights into understanding the molecular mechanisms by which DS1 integrates auxin and brassinosteroid signaling in rice. CONCLUSION The DS1 gene encoded an EMF1-like protein in rice. The ds1 mutation altered the expression of genes related to BR signaling, and ds1 was insensitive to BL treatment. DS1 interacts with OsARF11 to co-regulate OsBRI1 expression.
Collapse
Affiliation(s)
- X Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - C Y Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - R Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - C L Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - P H Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - X J Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - C L Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y S Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S J Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y L Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - T L Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - J M Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
40
|
Mantilla-Perez MB, Salas Fernandez MG. Differential manipulation of leaf angle throughout the canopy: current status and prospects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5699-5717. [PMID: 29126242 DOI: 10.1093/jxb/erx378] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/01/2017] [Indexed: 05/20/2023]
Abstract
Leaf angle is defined as the inclination between the midrib of the leaf blade and the vertical stem of a plant. This trait has been identified as a key component in the development of high-yielding varieties of cereal species, particularly maize, rice, wheat, and sorghum. The effect of leaf angle on light interception efficiency, photosynthetic rate, and yield has been investigated since the 1960s, yet, significant knowledge gaps remain in understanding the genetic control of this complex trait. Recent advances in physiology and modeling have proposed a plant ideotype with varying leaf angles throughout the canopy. In this context, we present historical and recent evidence of: (i) the effect of leaf angle on photosynthetic efficiency and yield; (ii) the hormonal regulation of this trait; (iii) the current knowledge on its quantitative genetic control; and (iv) the opportunity to utilize high-throughput phenotyping methods to characterize leaf angle at multiple canopy levels. We focus on research conducted on grass species of economic importance, with similar plant architecture and growth patterns. Finally, we present the challenges and strategies plant breeders will need to embrace in order to manipulate leaf angle differentially throughout the canopy and develop superior crops for food, feed, and fuel production.
Collapse
|
41
|
Sakamoto T, Kitano H, Fujioka S. Rice ERECT LEAF 1 acts in an alternative brassinosteroid signaling pathway independent of the receptor kinase OsBRI1. PLANT SIGNALING & BEHAVIOR 2017; 12:e1396404. [PMID: 29172939 PMCID: PMC5792126 DOI: 10.1080/15592324.2017.1396404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 05/25/2023]
Abstract
ERECT LEAF 1 (ELF1) was previously identified as a component of brassinosteroid signaling in rice. A double mutant obtained by crossing elf1-1 (a null mutant of ELF1) with d61-1 (a leaky mutant of OsBRI1) showed a more severe phenotype than did the elf1-1 single mutant, resembling that of a severe brassinosteroid-deficient mutant. Microarray analysis showed that the gene expression profile of elf1-1 was distinct from that of d61-12 (a leaky mutant of OsBRI1 with a phenotype similar to that of elf1-1), and fewer than half of genes differentially expressed between the wild-type and elf1-1 showed similar differences in d61-12 relative to the wild-type. These results indicate that less than half of ELF1-regulated genes in rice seedlings are affected by OsBRI1, and suggest that ELF1 acts in a rice brassinosteroid signaling pathway different from that initiated by OsBRI1. Gene expression analysis showed that some stress response-related genes were induced in elf1-1 but not in d61-12, and 8 of 9 genes oppositely regulated in elf1-1 and d61-12 were significantly up- or down-regulated in both elf1-1 and jasmonic acid-treated wild-type. These results imply that ELF1 suppresses stress-induced signalling, and that jasmonic acid signaling is stimulated in elf1-1; therefore, ELF1 may be involved in the brassinosteroid-mediated suppression of jasmonic acid response in rice.
Collapse
Affiliation(s)
- Tomoaki Sakamoto
- Department of Bioproduction Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Ishikawa, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Aichi, Japan
| | | |
Collapse
|
42
|
Ma L, Sang X, Zhang T, Yu Z, Li Y, Zhao F, Wang Z, Wang Y, Yu P, Wang N, Zhang C, Ling Y, Yang Z, He G. ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice. THE NEW PHYTOLOGIST 2017; 213:275-286. [PMID: 27545518 DOI: 10.1111/nph.14142] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/04/2016] [Indexed: 05/20/2023]
Abstract
To understand the molecular mechanisms of rice aerial organ development, we identified a mutant gene that caused a significant decrease in the width of aerial organs, termed ABNORMAL VASCULAR BUNDLES (AVB). Histological analysis showed that the slender aerial organs were caused by cell number reduction. In avb, the number of vascular bundles in aerial organs was reduced, whereas the area of the vascular bundles was increased. Ploidy analysis and the in situ expression patterns of histone H4 confirmed that cell proliferation was impaired during lateral primordia development, whereas procambium cells showed a greater ability to undergo cell division in avb. RNA sequencing (RNA-seq) showed that the development process was affected in avb. Map-based cloning and genetic complementation demonstrated that AVB encodes a land plant conserved protein with unknown functions. Our research shows that AVB is involved in the maintenance of the normal cell division pattern in lateral primordia development and that the AVB gene is required for procambium establishment following auxin signaling.
Collapse
Affiliation(s)
- Ling Ma
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xianchun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ting Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zhanyang Yu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yunfeng Li
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fangming Zhao
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zhongwei Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yantong Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Peng Yu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Changwei Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yinghua Ling
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zhenglin Yang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
43
|
Yu H, Ruan B, Wang Z, Ren D, Zhang Y, Leng Y, Zeng D, Hu J, Zhang G, Zhu L, Gao Z, Chen G, Guo L, Chen W, Qian Q. Fine Mapping of a Novel defective glume 1 ( dg1) Mutant, Which Affects Vegetative and Spikelet Development in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:486. [PMID: 28428794 PMCID: PMC5382164 DOI: 10.3389/fpls.2017.00486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/21/2017] [Indexed: 05/16/2023]
Abstract
In cereal crops, vegetative and spikelet development play important roles in grain yield and quality, but the genetic mechanisms that control vegetative and spikelet development remain poorly understood in rice. Here, we identified a new rice mutant, defective glume 1 (dg1) mutant from cultivar Zhonghua11 after ethyl methanesulfonate treatment. The dg1 mutant displayed the dwarfism with small, rolled leaves, which resulted from smaller cells and more bulliform cells. The dg1 mutant also had an enlarged leaf angle and defects in brassinosteroid signaling. In the dg1 mutant, both the rudimentary glume and sterile lemma (glumes) were transformed into lemma-like organ and acquired the lemma identity. Additionally, the dg1 mutant produced slender grains. Further analysis revealed that DG1 affects grain size by regulating cell proliferation and expansion. We fine mapped the dg1 locus to a 31-kb region that includes eight open reading frames. We examined the DNA sequence and expression of these loci, but we were not able to identify the DG1 gene. Therefore, more work will be needed for cloning and functional analysis of DG1, which would contribute to our understanding of the molecular mechanisms behind whole-plant development in rice.
Collapse
Affiliation(s)
- Haiping Yu
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of AgricultureShenyang, China
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Banpu Ruan
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of AgricultureShenyang, China
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Zhongwei Wang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Deyong Ren, Wenfu Chen, Qian Qian,
| | - Yu Zhang
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of AgricultureShenyang, China
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Yujia Leng
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Wenfu Chen
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province/Key Laboratory of Northeast Rice Biology and Breeding, Ministry of AgricultureShenyang, China
- *Correspondence: Deyong Ren, Wenfu Chen, Qian Qian,
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Deyong Ren, Wenfu Chen, Qian Qian,
| |
Collapse
|
44
|
Tian H, Lv B, Ding T, Bai M, Ding Z. Auxin-BR Interaction Regulates Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2017; 8:2256. [PMID: 29403511 PMCID: PMC5778104 DOI: 10.3389/fpls.2017.02256] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones.
Collapse
Affiliation(s)
- Huiyu Tian
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| | | | | | - Mingyi Bai
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| | - Zhaojun Ding
- *Correspondence: Mingyi Bai, Zhaojun Ding, Huiyu Tian,
| |
Collapse
|
45
|
Hou Y, Qiu J, Wang Y, Li Z, Zhao J, Tong X, Lin H, Zhang J. A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:514. [PMID: 28439285 PMCID: PMC5383725 DOI: 10.3389/fpls.2017.00514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/23/2017] [Indexed: 05/21/2023]
Abstract
The group of polyhydroxysteroid phytohormones referred to as the brassinosteroids (BRs) is known to act on plant development and the stress response. BR signal transduction relies largely on protein phosphorylation. By employing a label-free, MS (Mass Spectrometry)-based phosphoproteomic approach, we report here the largest profiling of 4,034 phosphosites on 1,900 phosphoproteins from rice young seedlings and their dynamic response to BR. 1,821 proteins, including kinases, transcription factors and core components of BR and other hormone signaling pathways, were found to be differentially phosphorylated during the BR treatment. A Western blot analysis verified the differential phosphorylation of five of these proteins, implying that the MS-based phosphoproteomic data were robust. It is proposed that the dephosphorylation of gibberellin (GA) signaling components could represent an important mechanism for the BR-regulated antagonism to GA, and that BR influences the plant architecture of rice by regulating cellulose synthesis via phosphorylation.
Collapse
Affiliation(s)
- Yuxuan Hou
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Haiyan Lin
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhen, China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Jian Zhang,
| |
Collapse
|
46
|
Luo X, Zheng J, Huang R, Huang Y, Wang H, Jiang L, Fang X. Phytohormones signaling and crosstalk regulating leaf angle in rice. PLANT CELL REPORTS 2016; 35:2423-2433. [PMID: 27623811 DOI: 10.1007/s00299-016-2052-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/31/2016] [Indexed: 05/14/2023]
Abstract
Leaf angle is an important agronomic trait in rice (Oryza sativa L.). It affects both the efficiency of sunlight capture and nitrogen reservoirs. The erect leaf phenotype is suited for high-density planting and thus increasing crop yields. Many genes regulate leaf angle by affecting leaf structure, such as the lamina joint, mechanical tissues, and the midrib. Signaling of brassinosteroids (BR), auxin (IAA), and gibberellins (GA) plays important roles in the regulation of lamina joint bending in rice. In addition, the biosynthesis and signaling of BR are known to have dominant effects on leaf angle development. In this review, we summarize the factors and genes associated with the development of leaf angle in rice, outline the regulatory mechanisms based on the signaling of BR, IAA, and GA, and discuss the contribution of crosstalk between BR and IAA or GA in the formation of leaf angle. Promising lines of research in the transgenic engineering of rice leaf angle to increase grain yield are proposed.
Collapse
Affiliation(s)
- Xiangyu Luo
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jingsheng Zheng
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Liangrong Jiang
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Xuanjun Fang
- Institute of Life Sciences, Jiyang College of Zhejiang, A&F University, Zhuji, 311800, China.
- Hainan Institute of Tropical Agricultural Resources, Sanya, 572025, China.
| |
Collapse
|
47
|
Fan S, Yao X, Liu J, Dong X, Mao T, Wang J. Characterization and fine mapping of osh15(t), a novel dwarf mutant gene in rice (Oryza sativa L.). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0430-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Chandler JW. Auxin response factors. PLANT, CELL & ENVIRONMENT 2016; 39:1014-28. [PMID: 26487015 DOI: 10.1111/pce.12662] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 05/03/2023]
Abstract
Auxin signalling involves the activation or repression of gene expression by a class of auxin response factor (ARF) proteins that bind to auxin response elements in auxin-responsive gene promoters. The release of ARF repression in the presence of auxin by the degradation of their cognate auxin/indole-3-acetic acid repressors forms a paradigm of transcriptional response to auxin. However, this mechanism only applies to activating ARFs, and further layers of complexity of ARF function and regulation are being revealed, which partly reflect their highly modular domain structure. This review summarizes our knowledge concerning ARF binding site specificity, homodimer and heterodimer multimeric ARF association and cooperative function and how activator ARFs activate target genes via chromatin remodelling and evolutionary information derived from phylogenetic comparisons from ARFs from diverse species. ARFs are regulated in diverse ways, and their importance in non-auxin-regulated pathways is becoming evident. They are also embedded within higher-order transcription factor complexes that integrate signalling pathways from other hormones and in response to the environment. The ways in which new information concerning ARFs on many levels is causing a revision of existing paradigms of auxin response are discussed.
Collapse
Affiliation(s)
- John William Chandler
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Zuelpicher Strasse 47b, Cologne, D-50674, Germany
| |
Collapse
|
49
|
Gan L, Wu H, Wu D, Zhang Z, Guo Z, Yang N, Xia K, Zhou X, Oh K, Matsuoka M, Ng D, Zhu C. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:238-45. [PMID: 26706074 DOI: 10.1016/j.plantsci.2015.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 05/10/2023]
Abstract
Lamina joint inclination or leaf angle (the angle between the leaf blade and vertical culm) is a major trait of rice plant architecture. The plant hormone brassinosteroid (BR) is the main regulator of this trait, while other plant hormones, including ethylene, gibberellin, and auxin, also influence leaf angle. In this study, we found that methyl jasmonate (MeJA) also participates in regulating lamina joint inclination. MeJA decreased lamina joint inclination and inhibited the BR-induced increase in lamina joint inclination. Furthermore, addition of a BR synthesis inhibitor increased the extent of change in lamina joint inclination in response to treatment with a low concentration of MeJA (0.05 or 0.5mgL(-1)), but it did not alter the lamina joint inclination of plants treated with a high concentration of MeJA (5mgL(-1)). Further studies showed that MeJA treatment significantly repressed the expression of BR biosynthesis-related genes and decreased endogenous BRs levels. In addition, the lamina joint inclination in the OsBRI1 mutant d61-1 was less sensitive to MeJA compared with its wild type counterpart, and lithium chloride-induced inactivation of GSK3-like kinase, a negative regulator of BR signaling, partly rescued the MeJA-induced reduction in lamina joint inclination. Further studies showed that MeJA treatment reduced the mRNA levels of BR signaling and target genes. These results indicate that MeJA-inhibition of lamina joint inclination may depend on BR biosynthesis and the BR signaling pathway.
Collapse
Affiliation(s)
- Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hong Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dapeng Wu
- Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Zhanfang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengfei Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xie Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Keimei Oh
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Shimoshinjo Nakano, Akita 010-0195, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Denny Ng
- CH BIOTECH R&D CO., LTD. No.121, Xian'an Rd., Xianxi Township, Changhua County 50741, Taiwan, ROC
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
50
|
Shen C, Yue R, Bai Y, Feng R, Sun T, Wang X, Yang Y, Tie S, Wang H. Identification and Analysis of Medicago truncatula Auxin Transporter Gene Families Uncover their Roles in Responses to Sinorhizobium meliloti Infection. PLANT & CELL PHYSIOLOGY 2015; 56:1930-43. [PMID: 26228273 DOI: 10.1093/pcp/pcv113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 07/24/2015] [Indexed: 05/08/2023]
Abstract
Auxin transport plays a pivotal role in the interaction between legume species and nitrogen-fixing bacteria to form symbioses. Auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) and efflux/conditional P-glycoprotein (PGP/ABCB) are three major protein families participating in auxin polar transport. We used the latest Medicago truncatula genome sequence to characterize and analyze the M. truncatula LAX (MtLAX), M. truncatula PIN (MtPIN) and M. truncatula ABCB (MtABCB) families. Transient expression experiments indicated that three representative auxin transporters (MtLAX3, MtPIN7 and MtABCB1) showed cell plasma membrane localizations. The expression of most MtLAX, MtPIN and MtABCB genes was up-regulated in the roots and was down-regulated in the shoots by Sinorhizobium meliloti infection in the wild type (WT). However, the expression of these genes was down-regulated in both the roots and shoots of an infection-resistant mutant, dmi3. The different expression patterns between the WT and the mutant roots indicated that auxin relocation may be involved in rhizobial infection responses. Furthermore, IAA contents were significantly up-regulated in the shoots and down-regulated in the roots after Sinorhizobium meliloti infection in the WT. Inoculation of roots with rhizobia may reduce the auxin loading from shoots to roots by inhibiting the expression of most auxin transporter genes. However, the rate of change of gene expression and IAA contents in the dmi3 mutant were obviously lower than in the WT. The identification and expression analysis of auxin transporter genes helps us to understand the roles of auxin in the regulation of nodule formation in M. truncatula.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China These authors contributed equally to this work.
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China These authors contributed equally to this work
| | - Youhuang Bai
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute of the Chinese Academy of Agricultural Sciences (TTICAAS), Hangzhou 310008, China These authors contributed equally to this work
| | - Rong Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Tao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaofei Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Shuanggui Tie
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|