1
|
Hu H, Zhang R, Zhao Y, Yang J, Zhao H, Zhao L, Wang L, Cheng Z, Zhao W, Wang B, Larkin RM, Chen L. Cell wall remodeling confers plant architecture with distinct wall structure in Nelumbo nucifera. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39427333 DOI: 10.1111/tpj.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Lotus (Nelumbo nucifera G.) is a perennial aquatic horticultural plant with diverse architectures. Distinct plant architecture (PA) has certain attractive and practical qualities, but its genetic morphogenesis in lotus remains elusive. In this study, we employ genome-wide association analysis (GWAS) for the seven traits of petiole length (PLL), leaf length (LL), leaf width (LW), peduncle length (PLF), flower diameter (FD), petal length (PeL), and petal width (PeW) in 301 lotus accessions. A total of 90 loci are identified to associate with these traits across 4 years of trials. Meanwhile, we perform RNA sequencing (RNA-seq) to analyze the differential expression of the gene (DEG) transcripts between large and small PA (LPA and SPA) of lotus stems (peduncles and petioles). As a result, eight key candidate genes are identified that are all primarily involved in plant cell wall remodeling significantly associated with PA traits by integrating the results of DEGs and GWAS. To verify this result, we compare the cell wall compositions and structures of LPA versus SPA in representative lotus germplasms. Intriguingly, compared with the SPA lotus, the LPA varieties have higher content of cellulose and hemicellulose, but less filling substrates of pectin and lignin. Additionally, we verified longer cellulose chains and higher cellulose crystallinity with less interference in LPA varieties. Taken together, our study illustrates how plant cell wall remodeling affects PA in lotus, shedding light on the genetic architecture of this significant ornamental trait and offering a priceless genetic resource for future genomic-enabled breeding.
Collapse
Affiliation(s)
- Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Ran Zhang
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Yongjing Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Lin Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Zhipeng Cheng
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Wanyue Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Bo Wang
- Wuhan Genoseq Technology Co., Ltd, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
2
|
Cao L, Wang J, Ren S, Jia Y, Liu Y, Yang S, Yu J, Guo X, Hou X, Xu J, Li S, Xing G. Genome-wide identification of the NAC family in Hemerocallis citrina and functional analysis of HcNAC35 in response to abiotic stress in watermelon. FRONTIERS IN PLANT SCIENCE 2024; 15:1474589. [PMID: 39469056 PMCID: PMC11513300 DOI: 10.3389/fpls.2024.1474589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Introduction NAC (NAM, ATAF, and CUC) transcription factor family, one of the important switches of transcription networks in plants, functions in plant growth, development, and stress resistance. Night lily (Hemerocallis citrina) is an important horticultural perennial monocot plant that has edible, medicinal, and ornamental values. However, the NAC gene family of night lily has not yet been analyzed systematically to date. Methods Therefore, we conducted a genome-wide study of the HcNAC gene family and identified a total of 113 HcNAC members from the Hemerocallis citrina genome. Results We found that 113 HcNAC genes were unevenly distributed on 11 chromosomes. Phylogenetic analysis showed that they could be categorized into 16 instinct subgroups. Proteins clustering together exhibited similar conserved motifs and intron-exon structures. Collinearity analysis indicated that segmental and tandem duplication might contribute to the great expansion of the NAC gene family in night lily, whose relationship was closer with rice than Arabidopsis. Additionally, tissue-specific pattern analysis indicated that most HcNAC genes had relatively higher expression abundances in roots. RNA-Seq along with RT-qPCR results jointly showed HcNAC genes expressed differently under drought and salinity stresses. Interestingly, HcNAC35 was overexpressed in watermelon, and the stress resilience of transgenic lines was much higher than that of wild-type watermelon, which revealed its wide participation in abiotic stress response. Conclusion In conclusion, our findings provide a new prospect for investigating the biological roles of NAC genes in night lily.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sen Li
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable
and Flower, College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Guoming Xing
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable
and Flower, College of Horticulture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
3
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Qi H, Yu F, Lü S, Damaris RN, Dong G, Yang P. Exploring domestication pattern in lotus: insights from dispensable genome assembly. FRONTIERS IN PLANT SCIENCE 2023; 14:1294033. [PMID: 38034573 PMCID: PMC10687544 DOI: 10.3389/fpls.2023.1294033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Lotus (Nelumbo nucifera Gaertn.), an important aquatic plant in horticulture and ecosystems, has been cultivated for more than 7000 years and domesticated into three different subgroups: flower lotus, rhizome lotus, and seed lotus. To explore the domesticated regions of each subgroup, re-sequencing data of 371 lotus accessions collected from the public database were aligned to the genome of 'China-Antique (CA)'. Unmapped reads were used to build the dispensable genome of each subgroup using a metagenome-like assembly strategy. More than 27 Mb of the dispensable genome in these three subgroups and the wild group was assembled, of which 11,761 genes were annotated. Some of the contigs in the dispensable genome were similar to the genomic segments of other lotus accessions other than 'CA'. The annotated genes in each subgroup played essential roles in specific developmental processes. Dissection of selective signals in three cultivated subgroups also demonstrated that subgroup-specific metabolic pathways, such as the brassinosteroids metabolism enrichment in FL, associated with these selected genes in each subgroup and the contigs in dispensable genome nearly located in the domesticated regions of each subgroup, respectively. Our data presented a valuable resource for facilitating lotus genomic studies, complemented the helpful information to the reference genome, and shed light on the selective signals of domesticated subgroups.
Collapse
Affiliation(s)
- Huanhuan Qi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | | | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
5
|
Zhang S, Zhou Q, Yang X, Wang J, Jiang J, Sun M, Liu Y, Nie C, Bao M, Liu G. Functional characterization of three TERMINAL FLOWER 1-like genes from Platanus acerifolia. PLANT CELL REPORTS 2023; 42:1071-1088. [PMID: 37024635 DOI: 10.1007/s00299-023-03014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE TFL1-like genes of the basal eudicot Platanus acerifolia have conserved roles in maintaining vegetative growth and inhibiting flowering, but may act through distinct regulatory mechanism. Three TERMINAL FLOWER 1 (TFL1)-like genes were isolated and characterized from London plane tree (Platanus acerifolia). All genes have conserved genomic organization and characteristic of the phosphatidylethanolamine-binding protein (PEBP) family. Sequence alignment and phylogenetic analysis indicated that two genes belong to the TFL1 clade, designated as PlacTFL1a and PlacTFL1b, while another one was grouped in the BFT clade, named as PlacBFT. qRT-PCR analysis showed that all three genes primarily expressed in vegetative phase, but the expression of PlacTFL1a was much higher and wider than that of PlacTFL1b, with the latter only detected at relatively low expression levels in apical and lateral buds in April. PlacBFT was mainly expressed in young stems of adult trees followed by juvenile tissues. Ectopic expression of any TFL1-like gene in Arabidopsis showed phenotypes of delayed or repressed flowering. Furthermore, overexpression of PlacTFL1a gene in petunia also resulted in extremely delayed flowering. In non-flowering 35:PlacTFL1a transgenic petunia plants, the FT-like gene (PhFT) gene was significantly upregulated and AP1 homologues PFG, FBP26 and FBP29 were significantly down-regulated in leaves. Yeast two-hybrid analysis indicated that only weak interactions were detected between PlacTFL1a and PlacFDL, and PlacTFL1a showed no interaction with PhFDL1/2. These results indicated that the TFL1-like genes of Platanus have conserved roles in repressing flowering, but probably via a distinct regulatory mechanism.
Collapse
Affiliation(s)
- Sisi Zhang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Jianqiang Wang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Jie Jiang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Miaomiao Sun
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, Guangdong, China
| | - Yanjun Liu
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Chaoren Nie
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, Guangdong, China.
| |
Collapse
|
6
|
Vegetable biology and breeding in the genomics era. SCIENCE CHINA. LIFE SCIENCES 2023; 66:226-250. [PMID: 36508122 DOI: 10.1007/s11427-022-2248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Vegetable crops provide a rich source of essential nutrients for humanity and represent critical economic values to global rural societies. However, genetic studies of vegetable crops have lagged behind major food crops, such as rice, wheat and maize, thereby limiting the application of molecular breeding. In the past decades, genome sequencing technologies have been increasingly applied in genetic studies and breeding of vegetables. In this review, we recapitulate recent progress on reference genome construction, population genomics and the exploitation of multi-omics datasets in vegetable crops. These advances have enabled an in-depth understanding of their domestication and evolution, and facilitated the genetic dissection of numerous agronomic traits, which jointly expedites the exploitation of state-of-the-art biotechnologies in vegetable breeding. We further provide perspectives of further directions for vegetable genomics and indicate how the ever-increasing omics data could accelerate genetic, biological studies and breeding in vegetable crops.
Collapse
|
7
|
Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii. Nat Commun 2022; 13:7328. [PMID: 36443323 PMCID: PMC9705720 DOI: 10.1038/s41467-022-35063-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Tree peony (Paeonia ostii) is an economically important ornamental plant native to China. It is also notable for its seed oil, which is abundant in unsaturated fatty acids such as α-linolenic acid (ALA). Here, we report chromosome-level genome assembly (12.28 Gb) of P. ostii. In contrast to monocots with giant genomes, tree peony does not appear to have undergone lineage-specific whole-genome duplication. Instead, explosive LTR expansion in the intergenic regions within a short period (~ two million years) may have contributed to the formation of its giga-genome. In addition, expansion of five types of histone encoding genes may have helped maintain the giga-chromosomes. Further, we conduct genome-wide association studies (GWAS) on 448 accessions and show expansion and high expression of several genes in the key nodes of fatty acid biosynthetic pathway, including SAD, FAD2 and FAD3, may function in high level of ALAs synthesis in tree peony seeds. Moreover, by comparing with cultivated tree peony (P. suffruticosa), we show that ectopic expression of class A gene AP1 and reduced expression of class C gene AG may contribute to the formation of petaloid stamens. Genomic resources reported in this study will be valuable for studying chromosome/genome evolution and tree peony breeding.
Collapse
|
8
|
Identification of the NAC Transcription Factors and Their Function in ABA and Salinity Response in Nelumbo nucifera. Int J Mol Sci 2022; 23:ijms232012394. [PMID: 36293250 PMCID: PMC9604248 DOI: 10.3390/ijms232012394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Nelumbo nucifera Gaertn. is an important perennial aquatic herb that has high ornamental, edible, medicinal, and economic value, being widely distributed and used in China. The NAC superfamily (NAM, ATAF1/2, CUC2) plays critical roles in plant growth, development, and response to abiotic and biotic stresses. Though there have been a few reports about NAC genes in lotus, systematic analysis is still relatively lacking. The present study aimed to characterize all the NAC genes in the lotus and obtain better insights on the NnNACs in response to salt stress by depending on ABA signaling. Here, 97 NAC genes were identified by searching the whole lotus genome based on the raw HMM models of the conserved NAM domain and NAC domain. They were characterized by bioinformatics analysis and divided into 18 subgroups based on the phylogenetic tree. Cis-element analysis demonstrated that NAC genes are responsive to biotic and abiotic stresses, light, low temperature, and plant hormones. Meanwhile, NAC genes had tissue expression specificity. qRT-PCR analysis indicated that NAC genes could be upregulated or downregulated by NaCl treatment, ABA, and fluoridone. In addition, NAC016, NAC025, and NAC070, whose encoding genes were significantly induced by NaCl and ABA, were located in the nucleus. Further analysis showed the three NAC proteins had transcriptional activation capabilities. The co-expression network analysis reflected that NAC proteins may form complexes with other proteins to play a role together. Our study provides a theoretical basis for further research to be conducted on the regulatory mechanisms of salinity resistance in the lotus.
Collapse
|
9
|
Miazzi MM, Babay E, De Vita P, Montemurro C, Chaabane R, Taranto F, Mangini G. Comparative Genetic Analysis of Durum Wheat Landraces and Cultivars Widespread in Tunisia. FRONTIERS IN PLANT SCIENCE 2022; 13:939609. [PMID: 35909756 PMCID: PMC9326505 DOI: 10.3389/fpls.2022.939609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The durum wheat (Triticum turgidum L. ssp. durum Desf.) landraces constitute a useful natural germplasm to increase the genetic diversity in the modern durum cultivars. The Tunisian durum germplasm constitutes 28 accessions conserved in Genebank of Tunisia, which are still unexplored. In this study, a comparative genetic analysis was performed to investigate the relationships between the Tunisian durum lines and the modern cultivars and detect divergent loci involved in breeding history. The genetic diversity analyses carried out using nine morphological descriptors and the 25K single-nucleotide polymorphism (SNP) array allowed us to distinguish two groups of Tunisian landraces and one of durum cultivars. The analysis of molecular variance and diversity indices confirmed the genetic variability among the groups. A total of 529 SNP loci were divergent between Tunisian durum landraces and modern cultivars. Candidate genes related to plant and spike architecture, including FLOWERING LOCUS T (FT-B1), zinc finger CONSTANS, and AP2/EREBPs transcription factors, were identified. In addition, divergent genes involved in grain composition and biotic stress nucleotide-binding site and leucine-reach repeats proteins and disease resistance proteins (NBS-LRR and RPM) were found, suggesting that the Tunisian durum germplasm may represent an important source of favorable alleles to be used in future durum breeding programs for developing well-adapted and resilient cultivars.
Collapse
Affiliation(s)
- Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences (DiSSPA), Section Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
| | - Elyes Babay
- National Gene Bank of Tunisia (BNG), Tunis, Tunisia
- Agricultural Applied Biotechnology Laboratory (LR16INRAT06), Institut National de la Recherche Agronomique de Tunisie (INRAT), University of Carthage, Tunis, Tunisia
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences (DiSSPA), Section Genetics and Plant Breeding, University of Bari Aldo Moro, Bari, Italy
- Spin Off Sinagri s.r.l., University of Bari Aldo Moro, Bari, Italy
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Bari, Italy
| | - Ramzi Chaabane
- National Gene Bank of Tunisia (BNG), Tunis, Tunisia
- Agricultural Applied Biotechnology Laboratory (LR16INRAT06), Institut National de la Recherche Agronomique de Tunisie (INRAT), University of Carthage, Tunis, Tunisia
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Bari, Italy
| | - Giacomo Mangini
- Institute of Biosciences and Bioresources, National Research Council of Italy (IBBR-CNR), Bari, Italy
| |
Collapse
|
10
|
Studies on Lotus Genomics and the Contribution to Its Breeding. Int J Mol Sci 2022; 23:ijms23137270. [PMID: 35806274 PMCID: PMC9266308 DOI: 10.3390/ijms23137270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Lotus (Nelumbo nucifera), under the Nelumbonaceae family, is one of the relict plants possessing important scientific research and economic values. Because of this, much attention has been paid to this species on both its biology and breeding among the scientific community. In the last decade, the genome of lotus has been sequenced, and several high-quality genome assemblies are available, which have significantly facilitated functional genomics studies in lotus. Meanwhile, re-sequencing of the natural and genetic populations along with different levels of omics studies have not only helped to classify the germplasm resources but also to identify the domestication of selected regions and genes controlling different horticultural traits. This review summarizes the latest progress of all these studies on lotus and discusses their potential application in lotus breeding.
Collapse
|
11
|
Song H, Liu Y, Dong G, Zhang M, Wang Y, Xin J, Su Y, Sun H, Yang M. Genome-Wide Characterization and Comprehensive Analysis of NAC Transcription Factor Family in Nelumbo nucifera. Front Genet 2022; 13:901838. [PMID: 35754820 PMCID: PMC9214227 DOI: 10.3389/fgene.2022.901838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
NAC (NAM, ATAF, and CUC) is a ubiquitously expressed plant-specific transcription factor (TF) family which is involved in the regulation of various biological processes. However, a systematic characterization of NAC gene family is yet to be reported in lotus. Here, 82 NnNAC genes which included five predicted membrane-bound NAC proteins were identified in the lotus genome. Phylogenetic analysis revealed seven-subfamily clusters (I–VII) of NnNAC proteins, with homologous gene pairs displaying similar conserved motifs and gene structure characteristics. Transactivation assay of NnNAC proteins revealed an extensive transcriptional activation capacity which is mediated by the highly divergent C-terminal activation domain (AD). Expression analysis of NnNAC genes in lotus tissues showed high transcript levels in root, stamen, petal and seed coat. In addition, 30 and 29 differentially expressed NnNAC candidate genes putatively involved in lotus seed development and response to complete submergence stress, respectively, were identified. Overall, our study provides potentially useful candidate gene resources for future molecular breeding of lotus varieties with novel agronomic traits.
Collapse
Affiliation(s)
- Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Su
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Zheng P, Sun H, Liu J, Lin J, Zhang X, Qin Y, Zhang W, Xu X, Deng X, Yang D, Wang M, Zhang Y, Song H, Huang Y, Orozco‐Obando W, Ming R, Yang M. Comparative analyses of American and Asian lotus genomes reveal insights into petal color, carpel thermogenesis and domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1498-1515. [PMID: 35362164 PMCID: PMC9325450 DOI: 10.1111/tpj.15753] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Nelumbo lutea (American lotus), which differs from Nelumbo nucifera (Asian lotus) morphologically, is one of the two remaining species in the basal eudicot family Nelumbonaceae. Here, we assembled the 843-Mb genome of American lotus into eight pseudochromosomes containing 31 382 protein-coding genes. Comparative analyses revealed conserved synteny without large chromosomal rearrangements between the genomes of American and Asian lotus and identified 29 533 structural variants (SVs). Carotenoid and anthocyanin pigments determine the yellow and red petal colors of American and Asian lotus, respectively. The structural genes encoding enzymes of the carotenoid and anthocyanin biosynthesis pathways were conserved between two species but differed in expression. We detected SVs caused by repetitive sequence expansion or contraction among the anthocyanin biosynthesis regulatory MYB genes. Further transient overexpression of candidate NnMYB5 induced anthocyanin accumulation in lotus petals. Alternative oxidase (AOX), uncoupling proteins (UCPs), and sugar metabolism and transportation contributed to carpel thermogenesis. Carpels produce heat with sugars transported from leaves as the main substrates, because there was weak tonoplast sugar transporter (TST) activity, and with SWEETs were highly expressed during thermogenesis. Cell proliferation-related activities were particularly enhanced in the warmer carpels compared with stamens during the cold night before blooming, which suggested that thermogenesis plays an important role in flower protogyny. Population genomic analyses revealed deep divergence between American and Asian lotus, and independent domestication affecting seed, rhizome, and flower traits. Our findings provide a high-quality reference genome of American lotus for exploring the genetic divergence and variation between two species and revealed possible genomic bases for petal color, carpel thermogenesis and domestication in lotus.
Collapse
Affiliation(s)
- Ping Zheng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Jishan Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Yuan Qin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Wenping Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Xiuming Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Meng Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Yanting Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| | - Yongji Huang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of Education, Fujian Agriculture and Forestry UniversityFuzhou350002FujianChina
| | - Warner Orozco‐Obando
- Virginia Cooperative of ExtensionVirginia Polytechnic Institute and State UniversityBlacksburgVA24061USA
| | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan430074China
- Center of Economic BotanyCore Botanical Gardens, Chinese Academy of SciencesWuhan430074China
| |
Collapse
|
13
|
Sun H, Song H, Deng X, Liu J, Yang D, Zhang M, Wang Y, Xin J, Chen L, Liu Y, Yang M. Transcriptome-Wide Characterization of Alkaloids and Chlorophyll Biosynthesis in Lotus Plumule. FRONTIERS IN PLANT SCIENCE 2022; 13:885503. [PMID: 35677240 PMCID: PMC9168470 DOI: 10.3389/fpls.2022.885503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Lotus plumule is a green tissue in the middle of seeds that predominantly accumulates bisbenzylisoquinoline alkaloids (bis-BIAs) and chlorophyll (Chl). However, the biosynthetic mechanisms of these two metabolites remain largely unknown in lotus. This study used physiological and RNA sequencing (RNA-Seq) approaches to characterize the development and molecular mechanisms of bis-BIAs and Chl biosynthesis in lotus plumule. Physiological analysis revealed that exponential plumule growth occurred between 9 and 15 days after pollination (DAP), which coincided with the onset of bis-BIAs biosynthesis and its subsequent rapid accumulation. Transcriptome analysis of lotus plumule identified a total of 8,725 differentially expressed genes (DEGs), representing ~27.7% of all transcripts in the lotus genome. Sixteen structural DEGs, potentially associated with bis-BIAs biosynthesis, were identified. Of these, 12 encoded O-methyltransferases (OMTs) are likely involved in the methylation and bis-BIAs diversity in lotus. In addition, functionally divergent paralogous and redundant homologous gene members of the BIAs biosynthesis pathway, as well as transcription factors co-expressed with bis-BIAs and Chl biosynthesis genes, were identified. Twenty-two genes encoding 16 conserved enzymes of the Chl biosynthesis pathway were identified, with the majority being significantly upregulated by Chl biosynthesis. Photosynthesis and Chl biosynthesis pathways were simultaneously activated during lotus plumule development. Moreover, our results showed that light-driven Pchlide reduction is essential for Chl biosynthesis in the lotus plumule. These results will be useful for enhancing our understanding of alkaloids and Chl biosynthesis in plants.
Collapse
Affiliation(s)
- Heng Sun
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Heyun Song
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianbao Deng
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Juan Liu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Dong Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Minghua Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Wang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Xin
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Chen
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Yanling Liu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
Zheng X, Wang T, Cheng T, Zhao L, Zheng X, Zhu F, Dong C, Xu J, Xie K, Hu Z, Yang L, Diao Y. Genomic variation reveals demographic history and biological adaptation of the ancient relictual, lotus (Nelumbo Adans). HORTICULTURE RESEARCH 2022; 9:uhac029. [PMID: 35184169 PMCID: PMC9039500 DOI: 10.1093/hr/uhac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/04/2022] [Indexed: 05/25/2023]
Abstract
Lotus (Nelumbo Adans.), a relict plant, is the testimony of long-term sustained ecological success, but the underlying genetic changes related to its survival strategy remains unclear. Here, we assembled the high-quality lotus genome, investigated genome variation of lotus mutation accumulation (MA) lines and reconstructed the demographic history of wild Asian lotus, respectively. We identified and validated 43 base substitutions fixed in MA lines, implying a spontaneous mutation rate of 1.4 × 10-9 base/generation in lotus shoot stem cells. The past history of lotus revealed that the ancestors of lotus in eastern and southern Asia could be traced back ~20 million years ago (Mya) and experienced twice significant bottlenecks and population splits. We further identified the selected genes among three lotus groups in different habitats, suggesting that 453 genes between tropical and temperate group and 410 genes between two subgroups from Northeastern China and the Yangtze River - Yellow River Basin might play important roles in natural selection in lotus's adaptation and resilience. Our findings not only improve an understanding of the lotus evolutionary history and the genetic basis of its survival advantages, but also provide valuable data for addressing various questions in evolution and protection for the relict plants.
Collapse
Affiliation(s)
- Xingwen Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Teng Cheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lingling Zhao
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xingfei Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fenglin Zhu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jinxing Xu
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Keqiang Xie
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liangbo Yang
- Guangchang White Lotus Research Institute, Guangchang 344900, China
| | - Ying Diao
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Zhang D, Liu T, Sheng J, Lv S, Ren L. TMT-Based Quantitative Proteomic Analysis Reveals the Physiological Regulatory Networks of Embryo Dehydration Protection in Lotus ( Nelumbo nucifera). FRONTIERS IN PLANT SCIENCE 2021; 12:792057. [PMID: 34975978 PMCID: PMC8718645 DOI: 10.3389/fpls.2021.792057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Lotus is an aquatic plant that is sensitive to water loss, but its seeds are longevous after seed embryo dehydration and maturation. The great difference between the responses of vegetative organs and seeds to dehydration is related to the special protective mechanism in embryos. In this study, tandem mass tags (TMT)-labeled proteomics and parallel reaction monitoring (PRM) technologies were used to obtain novel insights into the physiological regulatory networks during lotus seed dehydration process. Totally, 60,266 secondary spectra and 32,093 unique peptides were detected. A total of 5,477 proteins and 815 differentially expressed proteins (DEPs) were identified based on TMT data. Of these, 582 DEPs were continuously downregulated and 228 proteins were significantly up-regulated during the whole dehydration process. Bioinformatics and protein-protein interaction network analyses indicated that carbohydrate metabolism (including glycolysis/gluconeogenesis, galactose, starch and sucrose metabolism, pentose phosphate pathway, and cell wall organization), protein processing in ER, DNA repair, and antioxidative events had positive responses to lotus embryo dehydration. On the contrary, energy metabolism (metabolic pathway, photosynthesis, pyruvate metabolism, fatty acid biosynthesis) and secondary metabolism (terpenoid backbone, steroid, flavonoid biosynthesis) gradually become static status during lotus embryo water loss and maturation. Furthermore, non-enzymatic antioxidants and pentose phosphate pathway play major roles in antioxidant protection during dehydration process in lotus embryo. Abscisic acid (ABA) signaling and the accumulation of oligosaccharides, late embryogenesis abundant proteins, and heat shock proteins may be the key factors to ensure the continuous dehydration and storage tolerance of lotus seed embryo. Stress physiology detection showed that H2O2 was the main reactive oxygen species (ROS) component inducing oxidative stress damage, and glutathione and vitamin E acted as the major antioxidant to maintain the REDOX balance of lotus embryo during the dehydration process. These results provide new insights to reveal the physiological regulatory networks of the protective mechanism of embryo dehydration in lotus.
Collapse
Affiliation(s)
- Di Zhang
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Liu
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangyuan Sheng
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Lv
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ren
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
16
|
Comparative transcriptomic and proteomic profiling reveals molecular models of light signal regulation of shade tolerance in bowl lotus (Nelumbo nucifera). J Proteomics 2021; 257:104455. [PMID: 34923171 DOI: 10.1016/j.jprot.2021.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022]
Abstract
Bowl lotus is categorized as a heliophyte, and shaded environments can severely retard its development and blossoming. We conducted a comparative omics study of light response difference between two cultivars, 'HongYunDieYing' (shade tolerant) and 'YingYing' (shade intolerant), to understand the mechanisms behind the shade tolerance response. The results indicated that 'HongYunDieYing' had a faster light signal response than that in 'YingYing'. Furthermore, 214 proteins in 'HongYunDieYing' and 171 proteins in 'YingYing' were differentially expressed at both the transcriptional and protein levels. These correlated members were mainly involved in photosynthesis, metabolism, secondary metabolites, ribosome, and protein biosynthesis. However, glycolysis/gluconeogenesis, carbon metabolism, fatty acid metabolism, glutathione metabolism, and hormone signaling, were unique to 'HongYunDieYing'. The molecular model of light signal regulation of shade tolerance was constructed: the upstream light signal transduction related gene (cryptochrome 1, phytohormone B, phytochrome-interacting factor 3/5, ELONGATED HYPOCOTYL 5, and SUPPRESSOR OF PHYA-1) played a decisive role in regulating shade tolerance traits. Some transcription factors (MYBs, bHLHs and WRKYs) and hormone signaling (auxin, gibberellin and ethylene) were involved in mediating light signaling to regulate downstream biological events. These regulators and biological processes synergistically regulated the shade tolerance of lotus. SIGNIFICANCE: Lotus requires sufficient sunlight for growth and development, and shaded environments will severely retard lotus growth and blossoming. At present, there are few reports on the systematic identification and characterization of light signal response-related regulators in lotus. This study focuses on the comparative analysis two bowl lotus cultivars with the different shade tolerance traits at transcriptome and proteome levels to uncover the novel insight of the light signal-related biological network and potential candidates involved in the mechanism. The results provide a theoretical basis for the bowl lotus breeding and the expansion of its applications.
Collapse
|
17
|
Zheng T, Li P, Li L, Zhang Q. Research advances in and prospects of ornamental plant genomics. HORTICULTURE RESEARCH 2021; 8:65. [PMID: 33790259 PMCID: PMC8012582 DOI: 10.1038/s41438-021-00499-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/14/2023]
Abstract
The term 'ornamental plant' refers to all plants with ornamental value, which generally have beautiful flowers or special plant architectures. China is rich in ornamental plant resources and known as the "mother of gardens". Genomics is the science of studying genomes and is useful for carrying out research on genome evolution, genomic variations, gene regulation, and important biological mechanisms based on detailed genome sequence information. Due to the diversity of ornamental plants and high sequencing costs, the progress of genome research on ornamental plants has been slow for a long time. With the emergence of new sequencing technologies and a reduction in costs since the whole-genome sequencing of the first ornamental plant (Prunus mume) was completed in 2012, whole-genome sequencing of more than 69 ornamental plants has been completed in <10 years. In this review, whole-genome sequencing and resequencing of ornamental plants will be discussed. We provide analysis with regard to basic data from whole-genome studies of important ornamental plants, the regulation of important ornamental traits, and application prospects.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
18
|
Zheng J, Meinhardt LW, Goenaga R, Zhang D, Yin Y. The chromosome-level genome of dragon fruit reveals whole-genome duplication and chromosomal co-localization of betacyanin biosynthetic genes. HORTICULTURE RESEARCH 2021; 8:63. [PMID: 33750805 PMCID: PMC7943767 DOI: 10.1038/s41438-021-00501-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 05/05/2023]
Abstract
Dragon fruits are tropical fruits economically important for agricultural industries. As members of the family of Cactaceae, they have evolved to adapt to the arid environment. Here we report the draft genome of Hylocereus undatus, commercially known as the white-fleshed dragon fruit. The chromosomal level genome assembly contains 11 longest scaffolds corresponding to the 11 chromosomes of H. undatus. Genome annotation of H. undatus found ~29,000 protein-coding genes, similar to Carnegiea gigantea (saguaro). Whole-genome duplication (WGD) analysis revealed a WGD event in the last common ancestor of Cactaceae followed by extensive genome rearrangements. The divergence time between H. undatus and C. gigantea was estimated to be 9.18 MYA. Functional enrichment analysis of orthologous gene clusters (OGCs) in six Cactaceae plants found significantly enriched OGCs in drought resistance. Fruit flavor-related functions were overrepresented in OGCs that are significantly expanded in H. undatus. The H. undatus draft genome also enabled the discovery of carbohydrate and plant cell wall-related functional enrichment in dragon fruits treated with trypsin for a longer storage time. Lastly, genes of the betacyanin (a red-violet pigment and antioxidant with a very high concentration in dragon fruits) biosynthetic pathway were found to be co-localized on a 12 Mb region of one chromosome. The consequence may be a higher efficiency of betacyanin biosynthesis, which will need experimental validation in the future. The H. undatus draft genome will be a great resource to study various cactus plants.
Collapse
Affiliation(s)
- Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA
| | | | - Ricardo Goenaga
- Tropical Agriculture Research Station, USDA-ARS, Puerto Rico, PR, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Lab, USDA-ARS, Beltsville, MD, USA.
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
19
|
Cheng QQ, Ouyang Y, Tang ZY, Lao CC, Zhang YY, Cheng CS, Zhou H. Review on the Development and Applications of Medicinal Plant Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:791219. [PMID: 35003182 PMCID: PMC8732986 DOI: 10.3389/fpls.2021.791219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 05/04/2023]
Abstract
With the development of sequencing technology, the research on medicinal plants is no longer limited to the aspects of chemistry, pharmacology, and pharmacodynamics, but reveals them from the genetic level. As the price of next-generation sequencing technology becomes affordable, and the long-read sequencing technology is established, the medicinal plant genomes with large sizes have been sequenced and assembled more easily. Although the review of plant genomes has been reported several times, there is no review giving a systematic and comprehensive introduction about the development and application of medicinal plant genomes that have been reported until now. Here, we provide a historical perspective on the current situation of genomes in medicinal plant biology, highlight the use of the rapidly developing sequencing technologies, and conduct a comprehensive summary on how the genomes apply to solve the practical problems in medicinal plants, like genomics-assisted herb breeding, evolution history revelation, herbal synthetic biology study, and geoherbal research, which are important for effective utilization, rational use and sustainable protection of medicinal plants.
Collapse
Affiliation(s)
- Qi-Qing Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zi-Yu Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chi-Chou Lao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yan-Yu Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chun-Song Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine, The Ministry of Education of the People’s Republic of China, Macau University of Science and Technology, Taipa, Macao SAR, China
- *Correspondence: Hua Zhou,
| |
Collapse
|
20
|
Liu Z, Zhu H, Zhou J, Jiang S, Wang Y, Kuang J, Ji Q, Peng J, Wang J, Gao L, Bai M, Jian J, Ke W. Resequencing of 296 cultivated and wild lotus accessions unravels its evolution and breeding history. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1673-1684. [PMID: 33073434 DOI: 10.1111/tpj.15029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Lotus (family: Nelumbonaceae) are perennial aquatic plants that represent one of the most ancient basal dicots. In the present study, we resequenced 296 lotus accessions from various geographical locations and germplasms to explore their genomic diversity and population structure. This germplasm set consisted of four accessions of American wild lotus and 292 accessions of Asian lotus, which were divided into four subgroups: wild, rhizome, flower and seed. Total single nucleotide polymorphisms (SNPs) suggested that the wild lotus had the highest variant number (7 191 010). Population structure and genome diversity analysis indicated that the American wild lotus demonstrated a distant genetic relationship with the Asian lotus. Furthermore, the seed and rhizome lotus groups had not originated from a single source but rather had a more complex multisource origin. Besides that, the seed lotus showed higher genetic diversity, which might have been due to the gene flow from the flower lotus to seed lotus by artificial crossing, and the rhizome lotus showed a much lower genetic diversity than the other groups. The present study provides SNP markers for lotus genomic diversity analysis, which will be useful for guiding lotus breeding.
Collapse
Affiliation(s)
- Zhengwei Liu
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Honglian Zhu
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Juhong Zhou
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Sanjie Jiang
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Yun Wang
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Jing Kuang
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Qun Ji
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Jing Peng
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| | - Jie Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- BGI-Agro Seed Service (Wuhan) Co Ltd, Wuhan, 430090, People's Republic of China
| | - Li Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Mingzhou Bai
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, People's Republic of China
| | - Weidong Ke
- Institute of Vegetable, Wuhan Academy of Agriculture Science, Hubei, 430065, People's Republic of China
| |
Collapse
|
21
|
Lin Z, Cao D, Damaris RN, Yang P. Genome-wide identification of MADS-box gene family in sacred lotus (Nelumbo nucifera) identifies a SEPALLATA homolog gene involved in floral development. BMC PLANT BIOLOGY 2020; 20:497. [PMID: 33121437 PMCID: PMC7599106 DOI: 10.1186/s12870-020-02712-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sacred lotus (Nelumbo nucifera) is a vital perennial aquatic ornamental plant. Its flower shape determines the horticultural and ornamental values. However, the mechanisms underlying lotus flower development are still elusive. MADS-box transcription factors are crucial in various features of plant development, especially in floral organogenesis and specification. It is still unknown how the MADS-box transcription factors regulate the floral organogenesis in lotus. RESULTS To obtain a comprehensive insight into the functions of MADS-box genes in sacred lotus flower development, we systematically characterized members of this gene family based on the available genome information. A total of 44 MADS-box genes were identified, of which 16 type I and 28 type II genes were categorized based on the phylogenetic analysis. Furthermore, the structure of MADS-box genes and their expressional patterns were also systematically analyzed. Additionally, subcellular localization analysis showed that they are mainly localized in the nucleus, of which a SEPALLATA3 (SEP3) homolog NnMADS14 was proven to be involved in the floral organogenesis. CONCLUSION These results provide some fundamental information about the MADS-box gene family and their functions, which might be helpful in not only understanding the mechanisms of floral organogenesis but also breeding of high ornamental value cultivars in lotus.
Collapse
Affiliation(s)
- Zhongyuan Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Dingding Cao
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
22
|
The Establishment of an Efficient Callus Induction System for Lotus ( Nelumbo nucifera). PLANTS 2020; 9:plants9111436. [PMID: 33113801 PMCID: PMC7693671 DOI: 10.3390/plants9111436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022]
Abstract
The lotus (Nelumbo nucifera) is one of the most popular aquatic plants in Asia, and has emerged as a novel model for studying flower and rhizome development, and primary and secondary metabolite accumulation. Here, we developed a highly efficient callus induction system for the lotus by optimizing a series of key factors that affect callus formation. The highest efficient callus production was induced on immature cotyledon and embryo explants grown on Murashige and Skoog (MS) basal medium containing an optimized combination of 3 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L 6-benzylaminopurine (6-BA). In addition, lotus callus induction was proven to be influenced by lotus genotypes, light conditions, the developmental stages of explants and the time of explant sampling. Collecting immature cotyledons from seeds of the genotype “Shilihe 1”, at 9 days post pollination, and to culture the explants in darkness, are proposed as the optimum conditions for lotus callus induction. Interestingly, highly efficient callus induction was also observed in explants of immature embryo derived aseptic seedlings; and a small amount of lotus benzylisoquinoline alkaloid (BIA) and obvious expression of BIA biosynthetic genes were detected in lotus callus.
Collapse
|
23
|
Zhang Q, Zhang X, Liu J, Mao C, Chen S, Zhang Y, Leng L. Identification of copy number variation and population analysis of the sacred lotus ( Nelumbo nucifera). Biosci Biotechnol Biochem 2020; 84:2037-2044. [PMID: 32594903 DOI: 10.1080/09168451.2020.1786351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The sacred lotus (Nelumbo nucifera) is widely cultured in East Asia for its horticultural, agricultural, and medicinal values. Although many molecular markers had been used to extrapolate population genetics of the sacred lotus, a study of large variations, such as copy number variation (CNV), are absent up to now. In this study, we applied whole-genome re-sequencing to 24 lotus accessions, and use read depth information to genotype and filter original CNV call. Totally 448 duplications and 4,267 deletions were identified in the final CNV set. Further analysis of population structure revealed that the population structure patterns revealed by CNV and SNP are largely consistent with each other. Our result indicated that deep sequencing followed by genotyping is a quick and straightforward way to mine out CNV from the population, and the CNV along with SNP could enable us to better comprehend the biology of the plant.
Collapse
Affiliation(s)
- Qing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Xueting Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Jing Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Chaoyi Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Sha Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Yujun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | - Liang Leng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| |
Collapse
|
24
|
Shi T, Rahmani RS, Gugger PF, Wang M, Li H, Zhang Y, Li Z, Wang Q, Van de Peer Y, Marchal K, Chen J. Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Mol Biol Evol 2020; 37:2394-2413. [PMID: 32343808 PMCID: PMC7403625 DOI: 10.1093/molbev/msaa105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For most sequenced flowering plants, multiple whole-genome duplications (WGDs) are found. Duplicated genes following WGD often have different fates that can quickly disappear again, be retained for long(er) periods, or subsequently undergo small-scale duplications. However, how different expression, epigenetic regulation, and functional constraints are associated with these different gene fates following a WGD still requires further investigation due to successive WGDs in angiosperms complicating the gene trajectories. In this study, we investigate lotus (Nelumbo nucifera), an angiosperm with a single WGD during the K-pg boundary. Based on improved intraspecific-synteny identification by a chromosome-level assembly, transcriptome, and bisulfite sequencing, we explore not only the fundamental distinctions in genomic features, expression, and methylation patterns of genes with different fates after a WGD but also the factors that shape post-WGD expression divergence and expression bias between duplicates. We found that after a WGD genes that returned to single copies show the highest levels and breadth of expression, gene body methylation, and intron numbers, whereas the long-retained duplicates exhibit the highest degrees of protein-protein interactions and protein lengths and the lowest methylation in gene flanking regions. For those long-retained duplicate pairs, the degree of expression divergence correlates with their sequence divergence, degree in protein-protein interactions, and expression level, whereas their biases in expression level reflecting subgenome dominance are associated with the bias of subgenome fractionation. Overall, our study on the paleopolyploid nature of lotus highlights the impact of different functional constraints on gene fate and duplicate divergence following a single WGD in plant.
Collapse
Affiliation(s)
- Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Razgar Seyed Rahmani
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD
| | - Muhua Wang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhizhong Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Centre for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Information Technology, IDLab, IMEC, Ghent University, Ghent, Belgium
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
25
|
Li Y, Zhu FL, Zheng XW, Hu ML, Dong C, Diao Y, Wang YW, Xie KQ, Hu ZL. Comparative population genomics reveals genetic divergence and selection in lotus, Nelumbo nucifera. BMC Genomics 2020; 21:146. [PMID: 32046648 PMCID: PMC7014656 DOI: 10.1186/s12864-019-6376-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
Background Lotus (Nelumbo nucifera) is an aquatic plant with important agronomic, horticulture, art and religion values. It was the basal eudicot species occupying a critical phylogenetic position in flowering plants. After the domestication for thousands of years, lotus has differentiated into three cultivated types -flower lotus, seed lotus and rhizome lotus. Although the phenotypic and genetic differentiations based on molecular markers have been reported, the variation on whole-genome level among the different lotus types is still ambiguous. Results In order to reveal the evolution and domestication characteristics of lotus, a total of 69 lotus accessions were selected, including 45 cultivated accessions, 22 wild sacred lotus accessions, and 2 wild American lotus accessions. With Illumina technology, the genomes of these lotus accessions were resequenced to > 13× raw data coverage. On the basis of these genomic data, 25 million single-nucleotide polymorphisms (SNPs) were identified in lotus. Population analysis showed that the rhizome and seed lotus were monophyletic and genetically homogeneous, whereas the flower lotus was biphyletic and genetically heterogeneous. Using population SNP data, we identified 1214 selected regions in seed lotus, 95 in rhizome lotus, and 37 in flower lotus. Some of the genes in these regions contributed to the essential domestication traits of lotus. The selected genes of seed lotus mainly affected lotus seed weight, size and nutritional quality. While the selected genes were responsible for insect resistance, antibacterial immunity and freezing and heat stress resistance in flower lotus, and improved the size of rhizome in rhizome lotus, respectively. Conclusions The genome differentiation and a set of domestication genes were identified from three types of cultivated lotus- flower lotus, seed lotus and rhizome lotus, respectively. Among cultivated lotus, flower lotus showed the greatest variation. The domestication genes may show agronomic importance via enhancing insect resistance, improving seed weight and size, or regulating lotus rhizome size. The domestication history of lotus enhances our knowledge of perennial aquatic crop evolution, and the obtained dataset provides a basis for future genomics-enabled breeding.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Feng-Lin Zhu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xing-Wen Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.,Guangchang Research School of White Lotus, Guangchang, 344900, People's Republic of China
| | - Man-Li Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chen Dong
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ying Diao
- College of Landscape Architecture and Life Science / Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - You-Wei Wang
- Institute of Traditional Chinese Medicine and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ke-Qiang Xie
- Guangchang Research School of White Lotus, Guangchang, 344900, People's Republic of China.
| | - Zhong-Li Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
26
|
Zhang Y, Nyong'A TM, Shi T, Yang P. The complexity of alternative splicing and landscape of tissue-specific expression in lotus (Nelumbo nucifera) unveiled by Illumina- and single-molecule real-time-based RNA-sequencing. DNA Res 2020; 26:301-311. [PMID: 31173073 PMCID: PMC6704400 DOI: 10.1093/dnares/dsz010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) plays a critical role in regulating different physiological and developmental processes in eukaryotes, by dramatically increasing the diversity of the transcriptome and the proteome. However, the saturation and complexity of AS remain unclear in lotus due to its limitation of rare obtainment of full-length multiple-splice isoforms. In this study, we apply a hybrid assembly strategy by combining single-molecule real-time sequencing and Illumina RNA-seq to get a comprehensive insight into the lotus transcriptomic landscape. We identified 211,802 high-quality full-length non-chimeric reads, with 192,690 non-redundant isoforms, and updated the lotus reference gene model. Moreover, our analysis identified a total of 104,288 AS events from 16,543 genes, with alternative 3ʹ splice-site being the predominant model, following by intron retention. By exploring tissue datasets, 370 tissue-specific AS events were identified among 12 tissues. Both the tissue-specific genes and isoforms might play important roles in tissue or organ development, and are suitable for ‘ABCE’ model partly in floral tissues. A large number of AS events and isoform variants identified in our study enhance the understanding of transcriptional diversity in lotus, and provide valuable resource for further functional genomic studies.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tonny Maraga Nyong'A
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
27
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
28
|
Li J, Xiong Y, Li Y, Ye S, Yin Q, Gao S, Yang D, Yang M, Palva ET, Deng X. Comprehensive Analysis and Functional Studies of WRKY Transcription Factors in Nelumbo nucifera. Int J Mol Sci 2019; 20:E5006. [PMID: 31658615 PMCID: PMC6829473 DOI: 10.3390/ijms20205006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/16/2022] Open
Abstract
The WRKY family is one of the largest transcription factor (TF) families in plants and plays central roles in modulating plant stress responses and developmental processes, as well as secondary metabolic regulations. Lotus (Nelumbo nucifera) is an aquatic crop that has significant food, ornamental and pharmacological values. Here, we performed an overview analysis of WRKY TF family members in lotus, and studied their functions in environmental adaptation and regulation of lotus benzylisoquinoline alkaloid (BIA) biosynthesis. A total of 65 WRKY genes were identified in the lotus genome and they were well clustered in a similar pattern with their Arabidopsis homologs in seven groups (designated I, IIa-IIe, and III), although no lotus WRKY was clustered in the group IIIa. Most lotus WRKYs were functionally paired, which was attributed to the recently occurred whole genome duplication in lotus. In addition, lotus WRKYs were regulated dramatically by salicilic acid (SA), jasmonic acid (JA), and submergence treatments, and two lotus WRKYs, NnWRKY40a and NnWRKY40b, were significantly induced by JA and promoted lotus BIA biosynthesis through activating BIA biosynthetic genes. The investigation of WRKY TFs for this basal eudicot reveals new insights into the evolution of the WRKY family, and provides fundamental information for their functional studies and lotus breeding.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Yacen Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Yi Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Shiqi Ye
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Qi Yin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Siqi Gao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - E Tapio Palva
- Viikki Biocenter, Department of Biosciences, Division of Genetics, University of Helsinki, 00100 Helsinki, Finland.
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
29
|
Lin Z, Zhang C, Cao D, Damaris RN, Yang P. The Latest Studies on Lotus ( Nelumbo nucifera)-an Emerging Horticultural Model Plant. Int J Mol Sci 2019; 20:E3680. [PMID: 31357582 PMCID: PMC6696627 DOI: 10.3390/ijms20153680] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/21/2022] Open
Abstract
Lotus (Nelumbo nucifera) is a perennial aquatic basal eudicot belonging to a small family Nelumbonaceace, which contains only one genus with two species. It is an important horticultural plant, with its uses ranging from ornamental, nutritional to medicinal values, and has been widely used, especially in Southeast Asia. Recently, the lotus obtained a lot of attention from the scientific community. An increasing number of research papers focusing on it have been published, which have shed light on the mysteries of this species. Here, we comprehensively reviewed the latest advancement of studies on the lotus, including phylogeny, genomics and the molecular mechanisms underlying its unique properties, its economic important traits, and so on. Meanwhile, current limitations in the research of the lotus were addressed, and the potential prospective were proposed as well. We believe that the lotus will be an important model plant in horticulture with the generation of germplasm suitable for laboratory operation and the establishment of a regeneration and transformation system.
Collapse
Affiliation(s)
- Zhongyuan Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Dingding Cao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
30
|
Herbgenomics: A stepping stone for research into herbal medicine. SCIENCE CHINA-LIFE SCIENCES 2019; 62:913-920. [DOI: 10.1007/s11427-018-9472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
|
31
|
Menéndez-Perdomo IM, Facchini PJ. Benzylisoquinoline Alkaloids Biosynthesis in Sacred Lotus. Molecules 2018; 23:E2899. [PMID: 30404216 PMCID: PMC6278464 DOI: 10.3390/molecules23112899] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/30/2022] Open
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is an ancient aquatic plant used throughout Asia for its nutritional and medicinal properties. Benzylisoquinoline alkaloids (BIAs), mostly within the aporphine and bisbenzylisoquinoline structural categories, are among the main bioactive constituents in the plant. The alkaloids of sacred lotus exhibit promising anti-cancer, anti-arrhythmic, anti-HIV, and anti-malarial properties. Despite their pharmacological significance, BIA metabolism in this non-model plant has not been extensively investigated. In this review, we examine the diversity of BIAs in sacred lotus, with an emphasis on the distinctive stereochemistry of alkaloids found in this species. Additionally, we discuss our current understanding of the biosynthetic genes and enzymes involved in the formation of 1-benzylisoquinoline, aporphine, and bisbenzylisoquinoline alkaloids in the plant. We conclude that a comprehensive functional characterization of alkaloid biosynthetic enzymes using both in vitro and in vivo methods is required to advance our limited knowledge of BIA metabolism in the sacred lotus.
Collapse
Affiliation(s)
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
32
|
Yang X, Wang Z, Feng T, Li J, Huang L, Yang B, Zhao H, Jenks MA, Yang P, Lü S. Evolutionarily conserved function of the sacred lotus (Nelumbo nucifera Gaertn.) CER2-LIKE family in very-long-chain fatty acid elongation. PLANTA 2018; 248:715-727. [PMID: 29948126 DOI: 10.1007/s00425-018-2934-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Identification of NnCER2 and NnCER2-LIKE from Nelumbo nucifera, which are required for the very-long-chain fatty acid elongation, provides new evidence that CER2 proteins are evolutionarily conserved across the eudicots. CER2-LIKE family proteins have been described as core components of the fatty acid elongase complex in Arabidopsis, maize, and rice, having specific function in synthesis of the C30 to C34 fatty acyl-CoA precursors of cuticular waxes. Little is known about the functional conservation in this gene family across species. In this study, two CER2-LIKE family proteins, NnCER2 and NnCER2-LIKE, were characterized from sacred lotus (Nelumbo nucifera), which is an ancient basal eudicot. The transcriptional expression of NnCER2 and NnCER2-LIKE was found in floating leaf blades, emergent petioles and vertical leaves, petals, and anthers. The NnCER2 and NnCER2-LIKE proteins were localized to the endoplasmic reticulum and nucleus. Overexpressing NnCER2 and NnCER2-LIKE in Arabidopsis led to alteration of cuticle wax structure in inflorescence stems, and this was associated with elevated 30, 32, and 34 carbon length wax compounds, and their derivatives. The different substrate specificities of NnCER2 and NnCER2-LIKE were explored using co-expression with AtCER6 in yeast cells. These findings provide clear evidence that the function of CER2 family proteins in producing VLCFAs is highly conserved across the eudicots.
Collapse
Affiliation(s)
- Xianpeng Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhouya Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Tao Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Juanjuan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Longyu Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Baiming Yang
- Changchun Guoxin Modern Agricultural Science and Technology Development Co., Ltd., Changchun, 130061, China
| | - Huayan Zhao
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan, 430415, China
| | - Matthew A Jenks
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
33
|
Zhao M, Yang JX, Mao TY, Zhu HH, Xiang L, Zhang J, Chen LQ. Detection of Highly Differentiated Genomic Regions Between Lotus ( Nelumbo nucifera Gaertn.) With Contrasting Plant Architecture and Their Functional Relevance to Plant Architecture. FRONTIERS IN PLANT SCIENCE 2018; 9:1219. [PMID: 30177946 PMCID: PMC6110191 DOI: 10.3389/fpls.2018.01219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 05/13/2023]
Abstract
The lotus (Nelumbo nucifera Gaertn.) is one of the most economically and ornamentally important perennial aquatic plants. Plant architecture is an important trait for lotus classification, cultivation, breeding, and applications. In this study, traits representing plant architecture were measured in 390 lotus germplasms for 3 years. According to the phenotypic distribution, 21 large architecture (LA) and 22 small architecture (SA) germplasms exhibiting extreme phenotypes were selected as representatives of plant architecture. Microscopy analyses revealed that LA lotuses possessed far more vertical cells and longer cell lengths than SA lotuses, and there was a closer linear relationship between vertical cell number and plant architecture than cell length and plant architecture. Furthermore, based on whole genome re-sequencing data from 10 LA and 10 SA lotus germplasms, fixation index (FST) genome scan identified 11.02 Mb of genomic regions that were highly differentiated between the LA and SA lotus groups. Chi-square test revealed that 17,154 single nucleotide polymorphisms (SNPs) and 1,554 insertions and deletions (InDels) showed distinct allelic distribution between the LA and SA lotus groups within these regions. A total of 126 variants with distinct allelic distribution in the highly differentiated region were predicted to cause amino acid changes in 60 genes. Among the 41 genes with functional annotation, the expression patterns of six genes involved in cell division and cell wall construction were confirmed using quantitative reverse-transcription PCR (qRT-PCR). In addition, 34 plant architecture-associated InDel markers were developed and verified in the remaining 11 LA and 12 SA lotus plant architecture representatives. This study identified promising functional markers and candidates for molecular breeding and will facilitate further elucidation of the genetic mechanisms underlying plant architecture in the lotus.
Collapse
Affiliation(s)
- Mei Zhao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Ju-Xiang Yang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Tian-Yu Mao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Huan-Huan Zhu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Lin Xiang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Jie Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Long-Qing Chen
- Southwest Engineering Technology and Research Center of Landscape Architecture, State Forestry Administration, Southwest Forestry University, Kunming, China
| |
Collapse
|
34
|
Trends in herbgenomics. SCIENCE CHINA-LIFE SCIENCES 2018; 62:288-308. [PMID: 30128965 DOI: 10.1007/s11427-018-9352-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
From Shen Nong's Herbal Classic (Shennong Bencao Jing) to the Compendium of Materia Medica (Bencao Gangmu) and the first scientific Nobel Prize for the mainland of China, each milestone in the historical process of the development of traditional Chinese medicine (TCM) involves screening, testing and integrating. After thousands of years of inheritance and development, herbgenomics (bencaogenomics) has bridged the gap between TCM and international advanced omics studies, promoting the application of frontier technologies in TCM. It is a discipline that uncovers the genetic information and regulatory networks of herbs to clarify their molecular mechanism in the prevention and treatment of human diseases. The main theoretical system includes genomics, functional genomics, proteomics, transcriptomics, metabolomics, epigenomics, metagenomics, synthetic biology, pharmacogenomics of TCM, and bioinformatics, among other fields. Herbgenomics is mainly applicable to the study of medicinal model plants, genomic-assisted breeding, herbal synthetic biology, protection and utilization of gene resources, TCM quality evaluation and control, and TCM drug development. Such studies will accelerate the application of cutting-edge technologies, revitalize herbal research, and strongly promote the development and modernization of TCM.
Collapse
|
35
|
Lin Z, Damaris RN, Shi T, Li J, Yang P. Transcriptomic analysis identifies the key genes involved in stamen petaloid in lotus (Nelumbo nucifera). BMC Genomics 2018; 19:554. [PMID: 30053802 PMCID: PMC6062958 DOI: 10.1186/s12864-018-4950-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022] Open
Abstract
Background Flower morphology, a phenomenon regulated by a complex network, is one of the vital ornamental features in Nelumbo nucifera. Stamen petaloid is very prevalent in lotus flowers. However, the mechanism underlying this phenomenon is still obscure. Results Here, the comparative transcriptomic analysis was performed among petal, stamen petaloid and stamen through RNA-seq. Using pairwise comparison analysis, a large number of genes involved in hormonal signal transduction pathways and transcription factors, especially the MADS-box genes, were identified as candidate genes for stamen petaloid in lotus. Conclusions Taken together, these results provide an insight into the molecular networks underlying lotus floral organ development and stamen petaloid. Electronic supplementary material The online version of this article (10.1186/s12864-018-4950-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongyuan Lin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Rebecca Njeri Damaris
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Juanjuan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
36
|
Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L, Picó B, Cañizares J. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. PLANT BIOTECHNOLOGY JOURNAL 2018. [PMID: 29112324 DOI: 10.1101/147702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Cucurbita genus (squashes, pumpkins and gourds) includes important domesticated species such as C. pepo, C. maxima and C. moschata. In this study, we present a high-quality draft of the zucchini (C. pepo) genome. The assembly has a size of 263 Mb, a scaffold N50 of 1.8 Mb and 34 240 gene models. It includes 92% of the conserved BUSCO core gene set, and it is estimated to cover 93.0% of the genome. The genome is organized in 20 pseudomolecules that represent 81.4% of the assembly, and it is integrated with a genetic map of 7718 SNPs. Despite the small genome size, three independent lines of evidence support that the C. pepo genome is the result of a whole-genome duplication: the topology of the gene family phylogenies, the karyotype organization and the distribution of 4DTv distances. Additionally, 40 transcriptomes of 12 species of the genus were assembled and analysed together with all the other published genomes of the Cucurbitaceae family. The duplication was detected in all the Cucurbita species analysed, including C. maxima and C. moschata, but not in the more distant cucurbits belonging to the Cucumis and Citrullus genera, and it is likely to have occurred 30 ± 4 Mya in the ancestral species that gave rise to the genus.
Collapse
Affiliation(s)
- Javier Montero-Pau
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Peio Ziarsolo
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - Carlos Martí-Gómez
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Valencia, Spain
| | - Pedro Gómez
- IFAPA Centro La Mojonera, La Mojonera, Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almeria, Almería, Spain
| | - Lukas Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - Joaquín Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
37
|
Montero‐Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí‐Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L, Picó B, Cañizares J. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1161-1171. [PMID: 29112324 PMCID: PMC5978595 DOI: 10.1111/pbi.12860] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
The Cucurbita genus (squashes, pumpkins and gourds) includes important domesticated species such as C. pepo, C. maxima and C. moschata. In this study, we present a high-quality draft of the zucchini (C. pepo) genome. The assembly has a size of 263 Mb, a scaffold N50 of 1.8 Mb and 34 240 gene models. It includes 92% of the conserved BUSCO core gene set, and it is estimated to cover 93.0% of the genome. The genome is organized in 20 pseudomolecules that represent 81.4% of the assembly, and it is integrated with a genetic map of 7718 SNPs. Despite the small genome size, three independent lines of evidence support that the C. pepo genome is the result of a whole-genome duplication: the topology of the gene family phylogenies, the karyotype organization and the distribution of 4DTv distances. Additionally, 40 transcriptomes of 12 species of the genus were assembled and analysed together with all the other published genomes of the Cucurbitaceae family. The duplication was detected in all the Cucurbita species analysed, including C. maxima and C. moschata, but not in the more distant cucurbits belonging to the Cucumis and Citrullus genera, and it is likely to have occurred 30 ± 4 Mya in the ancestral species that gave rise to the genus.
Collapse
Affiliation(s)
- Javier Montero‐Pau
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - Aureliano Bombarely
- Department of HorticultureVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Peio Ziarsolo
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - Carlos Martí‐Gómez
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo (IAM)Universitat Politècnica de ValènciaValenciaSpain
| | - Pedro Gómez
- IFAPA Centro La MojoneraLa MojoneraAlmeríaSpain
| | - Manuel Jamilena
- Department of Biology and GeologyResearch Centers CIAIMBITAL and CeiA3University of AlmeriaAlmeríaSpain
| | - Lukas Mueller
- Boyce Thompson Institute for Plant ResearchIthacaNYUSA
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - Joaquín Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
38
|
Gui S, Peng J, Wang X, Wu Z, Cao R, Salse J, Zhang H, Zhu Z, Xia Q, Quan Z, Shu L, Ke W, Ding Y. Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:721-734. [PMID: 29575237 DOI: 10.1111/tpj.13894] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/31/2018] [Accepted: 02/21/2018] [Indexed: 05/11/2023]
Abstract
Genetic and physical maps are powerful tools to anchor fragmented draft genome assemblies generated from next-generation sequencing. Currently, two draft assemblies of Nelumbo nucifera, the genomes of 'China Antique' and 'Chinese Tai-zi', have been released. However, there is presently no information on how the sequences are assembled into chromosomes in N. nucifera. The lack of physical maps and inadequate resolution of available genetic maps hindered the assembly of N. nucifera chromosomes. Here, a linkage map of N. nucifera containing 2371 bin markers [217 577 single nucleotide polymorphisms (SNPs)] was constructed using restriction-site associated DNA sequencing data of 181 F2 individuals and validated by adding 197 simple sequence repeat (SSR) markers. Additionally, a BioNano optical map covering 86.20% of the 'Chinese Tai-zi' genome was constructed. The draft assembly of 'Chinese Tai-zi' was improved based on the BioNano optical map, showing an increase of the scaffold N50 from 0.989 to 1.48 Mb. Using a combination of multiple maps, 97.9% of the scaffolds in the 'Chinese Tai-zi' draft assembly and 97.6% of the scaffolds in the 'China Antique' draft assembly were anchored into pseudo-chromosomes, and the centromere regions along the pseudo-chromosomes were identified. An evolutionary scenario was proposed to reach the modern N. nucifera karyotype from the seven ancestral eudicot chromosomes. The present study provides the highest-resolution linkage map, the optical map and chromosome level genome assemblies for N. nucifera, which are valuable for the breeding and cultivation of N. nucifera and future studies of comparative and evolutionary genomics in angiosperms.
Collapse
Affiliation(s)
- Songtao Gui
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Peng
- Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei, 430065, China
| | - Xiaolei Wang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihua Wu
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Cao
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jérôme Salse
- Paleogenomics & Evolution (PaleoEvo) Group, Génétique Diversité & Ecophysiologie des Céréales (GDEC), Institut National de la Recherché Agronomique UMR 1095, Clermont-Ferrand, 63100, France
| | - Hongyuan Zhang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhixuan Zhu
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qiuju Xia
- Key Laboratory of Genomics, BGI-Shenzhen, Chinese Ministry of Agriculture, Shenzhen, 518083, China
| | - Zhiwu Quan
- Key Laboratory of Genomics, BGI-Shenzhen, Chinese Ministry of Agriculture, Shenzhen, 518083, China
| | - Liping Shu
- Wuhan Ice-Harbor Biological Technology Co. Ltd, Wuhan, 430040, China
| | - Wedong Ke
- Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei, 430065, China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
39
|
Huang L, Yang M, Li L, Li H, Yang D, Shi T, Yang P. Whole genome re-sequencing reveals evolutionary patterns of sacred lotus (Nelumbo nucifera). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:2-15. [PMID: 29052958 DOI: 10.1111/jipb.12606] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/28/2017] [Indexed: 05/11/2023]
Abstract
Sacred lotus (Nelumbo nucifera or lotus) is an important aquatic plant in horticulture and ecosystems. As a foundation for exploring genomic variation and evolution among different germplasms, we re-sequenced 19 individuals from three cultivated temperate lotus subgroups (rhizome, seed and flower lotus), one wild temperate lotus subgroup (wild lotus), one tropical lotus group (Thai lotus) and an outgroup (Nelumbo lutea). Through genetic diversity and polymorphism analysis by non-missing SNP sites widely distributed in the whole genome, we confirmed that wild and Thai lotus exhibited greater differentiation with a higher genomic diversity compared to cultivated lotus. Rhizome lotus had the lowest genomic diversity and a closer relationship to wild lotus, whereas the genomes of seed and flower lotus were admixed. Genes in energy metabolism process and plant immunity evolved rapidly in lotus, reflecting local adaptation. We established that candidate genes in genomic regions with significant differentiation associated with temperate and tropical lotus divergence always exhibited highly divergent expression pattern. Together, this study comprehensive and credible interpretates important patterns of genetic diversity and relationships, gene evolution, and genomic signature from ecotypic differentiation of sacred lotus.
Collapse
Affiliation(s)
- Longyu Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Ling Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou 434025, China
| |
Collapse
|
40
|
Shi T, Wang K, Yang P. The evolution of plant microRNAs: insights from a basal eudicot sacred lotus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:442-457. [PMID: 27743419 DOI: 10.1111/tpj.13394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNAs in eukaryotes. However, under which circumstances different miRNAs/miRNA families exhibit different evolutionary trajectories in plants remains unclear. In this study, we sequenced the small RNAs and degradome from a basal eudicot, sacred lotus (Nelumbo nucifera or lotus), to identify miRNAs and their targets. Combining with public miRNAs, we predicted 57 pre-eudicot miRNA families from different evolutionary stages. We found that miRNA families featuring older age, higher copy and target number tend to show lower propensity for miRNA family loss (PGL) and stronger signature of purifying selection during divergence of temperate and tropical lotus. Further analyses of lotus genome revealed that there is an association between loss of miRNA families in descendent plants and in duplicated genomes. Gene dosage balance is crucial in maintaining those preferentially retained MIRNA duplicates by imposing stronger purifying selection. However, these factors and selection influencing miRNA family evolution are not applicable to the putative MIRNA-likes. Additionally, the MIRNAs participating in lotus pollen-pistil interaction, a conserved process in angiosperms, also have a strong signature of purifying selection. Functionally, sequence divergence in MIRNAs escalates expression divergence of their target genes between temperate and tropical lotus during rhizome and leaf growth. Overall, our study unravels several important factors and selection that determine the miRNA family distribution in plants and duplicated genomes, and provides evidence for functional impact of MIRNA sequence evolution.
Collapse
Affiliation(s)
- Tao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- School of Life Sciences, Wuhan University, Wuhan, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
41
|
Jin Q, Xu Y, Mattson N, Li X, Wang B, Zhang X, Jiang H, Liu X, Wang Y, Yao D. Identification of Submergence-Responsive MicroRNAs and Their Targets Reveals Complex MiRNA-Mediated Regulatory Networks in Lotus ( Nelumbo nucifera Gaertn). FRONTIERS IN PLANT SCIENCE 2017; 8:6. [PMID: 28149304 PMCID: PMC5241310 DOI: 10.3389/fpls.2017.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/03/2017] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs with important regulatory functions in plant development and stress responses. However, their population abundance in lotus (Nelumbo nucifera Gaertn) has so far been poorly described, particularly in response to stresses. In this work, submergence-related miRNAs and their target genes were systematically identified, compared, and validated at the transcriptome-wide level using high-throughput sequencing data of small RNA, Mrna, and the degradome. A total of 128 known and 20 novel miRNAs were differentially expressed upon submergence. We identified 629 target transcripts for these submergence-responsive miRNAs. Based on the miRNA expression profiles and GO and KEGG annotation of miRNA target genes, we suggest possible molecular responses and physiological changes of lotus in response to submergence. Several metabolic, physiological and morphological adaptations-related miRNAs, i.e., NNU_far-miR159, NNU_gma-miR393h, and NNU_aly-miR319c-3p, were found to play important regulatory roles in lotus response to submergence. This work will contribute to a better understanding of miRNA-regulated adaption responses of lotus to submergence stress.
Collapse
Affiliation(s)
- Qijiang Jin
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yingchun Xu
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Neil Mattson
- Horticulture Section, School of Integrative Plant Science, Cornell UniversityNew York, NY, USA
| | - Xin Li
- Institute of Agricultural Science of Taihu Lake DistrictSuzhou, China
| | - Bei Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiao Zhang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Hongwei Jiang
- Institute of Agricultural Science of Taihu Lake DistrictSuzhou, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Yanjie Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| |
Collapse
|
42
|
Zhu Z, Gui S, Jin J, Yi R, Wu Z, Qian Q, Ding Y. The NnCenH3 protein and centromeric DNA sequence profiles of Nelumbo nucifera Gaertn. (sacred lotus) reveal the DNA structures and dynamics of centromeres in basal eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:568-582. [PMID: 27227686 DOI: 10.1111/tpj.13219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Centromeres on eukaryotic chromosomes consist of large arrays of DNA repeats that undergo very rapid evolution. Nelumbo nucifera Gaertn. (sacred lotus) is a phylogenetic relict and an aquatic perennial basal eudicot. Studies concerning the centromeres of this basal eudicot species could provide ancient evolutionary perspectives. In this study, we characterized the centromeric marker protein NnCenH3 (sacred lotus centromere-specific histone H3 variant), and used a chromatin immunoprecipitation (ChIP)-based technique to recover the NnCenH3 nucleosome-associated sequences of sacred lotus. The properties of the centromere-binding protein and DNA sequences revealed notable divergence between sacred lotus and other flowering plants, including the following factors: (i) an NnCenH3 alternative splicing variant comprising only a partial centromere-targeting domain, (ii) active genes with low transcription levels in the NnCenH3 nucleosomal regions, and (iii) the prevalence of the Ty1/copia class of long terminal repeat (LTR) retrotransposons in the centromeres of sacred lotus chromosomes. In addition, the dynamic natures of the centromeric region showed that some of the centromeric repeat DNA sequences originated from telomeric repeats, and a pair of centromeres on the dicentric chromosome 1 was inactive in the metaphase cells of sacred lotus. Our characterization of the properties of centromeric DNA structure within the sacred lotus genome describes a centromeric profile in ancient basal eudicots and might provide evidence of the origins and evolution of centromeres. Furthermore, the identification of centromeric DNA sequences is of great significance for the assembly of the sacred lotus genome.
Collapse
Affiliation(s)
- Zhixuan Zhu
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Songtao Gui
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Jin
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rong Yi
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhihua Wu
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qian Qian
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Ding
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
43
|
Hu J, Jin J, Qian Q, Huang K, Ding Y. Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot Nelumbo nucifera. BMC Genomics 2016; 17:684. [PMID: 27565736 PMCID: PMC5002175 DOI: 10.1186/s12864-016-3032-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play important roles in plant growth and development. MiRNAs and their targets have been widely studied in model plants, but limited knowledge is available concerning this small RNA population and their targets in sacred lotus (Nelumbo nucifera Gaertn.). RESULTS In this study, a total of 145 known miRNAs belonging to 47 families and 78 novel miRNAs were identified during seed germination using high-throughput small RNA sequencing. Furthermore, some miRNA families which have not yet been reported in monocot or eudicot species were detected in N. nucifera, indicating that these miRNAs was divergence from monocots and core eudicots during evolution. Using degradome sequencing, 2580 targets were detected for all the miRNAs. GO (Gene Ontology) and KEGG pathway analyses showed that many target genes enriched in "regulation of transcription" and involved in "carbohydrate", "amino acid and energy metabolism". Nine miRNAs and three corresponding targets of them were further validated by quantitative RT-PCR. CONCLUSIONS The results present here suggested that many miRNAs were involved in the regulation of seed germination of sacred lotus, providing a foundation for future studies of sacred lotus seed longevity. Comparative analysis of miRNAs from different plants also provided insight into the evolutionary gains and losses of miRNAs in plants.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Jing Jin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Qian Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Keke Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
44
|
Gui S, Wu Z, Zhang H, Zheng Y, Zhu Z, Liang D, Ding Y. The mitochondrial genome map of Nelumbo nucifera reveals ancient evolutionary features. Sci Rep 2016; 6:30158. [PMID: 27444405 PMCID: PMC4957087 DOI: 10.1038/srep30158] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
Nelumbo nucifera is an evolutionary relic from the Late Cretaceous period. Sequencing the N. nucifera mitochondrial genome is important for elucidating the evolutionary characteristics of basal eudicots. Here, the N. nucifera mitochondrial genome was sequenced using single molecule real-time sequencing technology (SMRT), and the mitochondrial genome map was constructed after de novo assembly and annotation. The results showed that the 524,797-bp N. nucifera mitochondrial genome has a total of 63 genes, including 40 protein-coding genes, three rRNA genes and 20 tRNA genes. Fifteen collinear gene clusters were conserved across different plant species. Approximately 700 RNA editing sites in the protein-coding genes were identified. Positively selected genes were identified with selection pressure analysis. Nineteen chloroplast-derived fragments were identified, and seven tRNAs were derived from the chloroplast. These results suggest that the N. nucifera mitochondrial genome retains evolutionarily conserved characteristics, including ancient gene content and gene clusters, high levels of RNA editing, and low levels of chloroplast-derived fragment insertions. As the first publicly available basal eudicot mitochondrial genome, the N. nucifera mitochondrial genome facilitates further analysis of the characteristics of basal eudicots and provides clues of the evolutionary trajectory from basal angiosperms to advanced eudicots.
Collapse
Affiliation(s)
- Songtao Gui
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihua Wu
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hongyuan Zhang
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yinzhen Zheng
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhixuan Zhu
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dequan Liang
- Nextomics Biosciences Co., Ltd., Wuhan, 430075, China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
45
|
Liu Z, Zhu H, Liu Y, Kuang J, Zhou K, Liang F, Liu Z, Wang D, Ke W. Construction of a high-density, high-quality genetic map of cultivated lotus (Nelumbo nucifera) using next-generation sequencing. BMC Genomics 2016; 17:466. [PMID: 27317430 PMCID: PMC4912719 DOI: 10.1186/s12864-016-2781-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sacred lotus (Nelumbo nucifera) is widely cultivated in China for its edible rhizomes and seeds. Traditional plant breeding methods have been used to breed cultivars with increased yields and quality of rhizomes and seeds with limited success. Currently, the available genetic maps and molecular markers in lotus are too limited to be useful for molecular genetics based breeding programs. However, the development of next-generation sequencing (NGS) technologies has enabled large-scale identification of single-nucleotide polymorphisms (SNPs) for genetic map construction. In this study, we constructed an SNP-based high-density genetic map for cultivated lotus using double digest restriction site-associated DNA sequencing (ddRADseq). RESULTS An F2 population of 96 individuals was derived from a cross between the rhizome lotus cultivar 'Juwuba' (male parent) and the seed lotus cultivar 'Mantianxing' (female parent). Genomic DNAs from this population were digested with the restriction enzymes EcoRI and MspI and then sequenced. In total, 133.65 Gb of raw data containing 1,088,935,610 pair-end reads were obtained. The coverage of reads on a reference genome was 7.2 % for the female parent, 6.56 % for the male parent, and 1.46 % for F2 individuals. From these reads, 10,753 valid SNP markers were used for genetic map construction. Finally, 791 bin markers (so-segregated adjacent SNPs treated as a bin marker), consisting of 8,971 SNP markers, were sorted into 8 linkage groups (LGs) that spanned 581.3 cM, with an average marker interval of 0.74 cM. A total of 809 genome sequence scaffolds, covering about 565.9 cM of the wild sacred lotus genome, were anchored on the genetic map, accounting for 70.6 % of the genome assembly. CONCLUSIONS This study reports the large-scale discovery of SNPs between cultivars of rhizome and seed lotus using a ddRADseq library combined with NGS. These SNPs have been used to construct the first high-density genetic map for cultivated lotus that can serve as a genomic reference and will facilitate genetic mapping of important traits in the parental cultivars.
Collapse
Affiliation(s)
- Zhengwei Liu
- />Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei 430065 China
| | - Honglian Zhu
- />Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei 430065 China
| | - Yuping Liu
- />Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei 430065 China
| | - Jing Kuang
- />Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei 430065 China
| | - Kai Zhou
- />Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei 430065 China
| | - Fan Liang
- />Nextomics Biosciences Co., Ltd., Wuhan, Hubei China
| | - Zhenhua Liu
- />Nextomics Biosciences Co., Ltd., Wuhan, Hubei China
| | - Depeng Wang
- />Nextomics Biosciences Co., Ltd., Wuhan, Hubei China
| | - Weidong Ke
- />Institute of Vegetable, Wuhan Academy of Agriculture Science and Technology, Wuhan, Hubei 430065 China
| |
Collapse
|
46
|
Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn.spp. baijianlian). J Proteomics 2016; 131:61-70. [DOI: 10.1016/j.jprot.2015.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/23/2022]
|
47
|
Silva DN, Duplessis S, Talhinhas P, Azinheira H, Paulo OS, Batista D. Genomic Patterns of Positive Selection at the Origin of Rust Fungi. PLoS One 2015; 10:e0143959. [PMID: 26632820 PMCID: PMC4669144 DOI: 10.1371/journal.pone.0143959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/11/2015] [Indexed: 01/24/2023] Open
Abstract
Understanding the origin and evolution of pathogenicity and biotrophic life-style of rust fungi has remained a conundrum for decades. Research on the molecular mechanisms responsible for rust fungi evolution has been hampered by their biotrophic life-style until the sequencing of some rust fungi genomes. With the availability of multiple whole genomes and EST data for this group, it is now possible to employ genome-wide surveys and investigate how natural selection shaped their evolution. In this work, we employed a phylogenomics approach to search for positive selection and genes undergoing accelerated evolution at the origin of rust fungi on an assembly of single copy genes conserved across a broad range of basidiomycetes. Up to 985 genes were screened for positive selection on the phylogenetic branch leading to rusts, revealing a pervasive signal of positive selection throughout the data set with the proportion of positively selected genes ranging between 19.6–33.3%. Additionally, 30 genes were found to be under accelerated evolution at the origin of rust fungi, probably due to a mixture of positive selection and relaxation of purifying selection. Functional annotation of the positively selected genes revealed an enrichment in genes involved in the biosynthesis of secondary metabolites and several metabolism and transporter classes.
Collapse
Affiliation(s)
- Diogo N. Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c – Centre for Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Departamento de Biologia e CESAM – Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
- * E-mail:
| | - Sebastien Duplessis
- Institut National de la Recherche Agronomique, UMR 1136 INRA/Université de Lorraine Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR 1136, INRA/Université de Lorraine Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Pedro Talhinhas
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Azinheira
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics group, cE3c – Centre for Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Dora Batista
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c – Centre for Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
48
|
Hu J, Gui S, Zhu Z, Wang X, Ke W, Ding Y. Genome-Wide Identification of SSR and SNP Markers Based on Whole-Genome Re-Sequencing of a Thailand Wild Sacred Lotus (Nelumbo nucifera). PLoS One 2015; 10:e0143765. [PMID: 26606530 PMCID: PMC4659564 DOI: 10.1371/journal.pone.0143765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Genomic resources such as single nucleotide polymorphism (SNPs), insertions and deletions (InDels) and SSRs (simple sequence repeats) are essential for crop improvement and better utilization in genetic breeding. However, the resources for the sacred lotus (Nelumbo nucifera Gaertn.) are still limited. In the present study, to dissect large-scale genomic molecular marker resources for sacred lotus, we re-sequenced a Thailand sacred lotus cultivar ‘Chiang Mai wild lotus’ and compared with the reported lotus genome ‘Middle lake wild lotus’. A total of 3,180,059 SNPs, 328, 251 InDels and 14,191 SVs were found between the two genomes. The functional impact analyses of these SNPs indicated that they may be involved in metabolic processes, binding, catalytic activity, etc. Mining the genome sequences for SSRs showed that 191,657 SSRs were identified with a frequency of one SSR per 4.23 kb and 103,656 SSR primer pairs were designed. Furthermore, 14, 502 EST-SSRs were also indentified using the available RNA-seq data in the NCBI. A subset of 150 SSRs (genomic and EST-SSRs) was randomly selected for validation and genetic diversity analysis. The genotypes could be easily distinguished using these SSR markers and the ‘Chiang Mai wild lotus’ was obviously differentiated from the other Chinese accessions. This study provides considerable amounts of genomic resources and markers for the quantitative trait locus (QTL) identification and molecular selection of the species, which could have a potential role in various applications in sacred lotus breeding.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Songtao Gui
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhixuan Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weidong Ke
- Wuhan Vegetable Scientific Research Institute, Wuhan National Field Observation & Research Station for Aquatic Vegetables, Wuhan, 430065, China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
49
|
Pan L, Wang X, Jin J, Yu X, Hu J. Bioinformatic identification and expression analysis of Nelumbo nucifera microRNA and their targets. APPLICATIONS IN PLANT SCIENCES 2015; 3:apps.1500046. [PMID: 26421251 PMCID: PMC4578376 DOI: 10.3732/apps.1500046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/12/2015] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Sacred lotus (Nelumbo nucifera) is a perennial aquatic herbaceous plant of ecological, ornamental, and economic importance. MicroRNAs (miRNAs) play an important role in plant development. However, reports of miRNAs and their role in sacred lotus have been limited. METHODS Using the homology search of known miRNAs with genome and transcriptome contig sequences, we employed a pipeline to identify miRNAs in N. nucifera. We also predicted the targets of these miRNAs. RESULTS We found 106 conserved miRNAs in N. nucifera, and 456 of their miRNA targets were annotated. Quantitative real-time PCR (qRT-PCR) analysis revealed the different expression levels of the 10 selected conserved miRNAs in tissues of young leaves, stems, and flowers of N. nucifera. Negative correlation of expression level between five miRNAs and their target genes was also revealed. DISCUSSION Combining bioinformatics and experiment analysis, we identified the miRNAs in N. nucifera. The results can be used as a workbench for further investigation of the roles of miRNAs in N. nucifera.
Collapse
Affiliation(s)
- Lei Pan
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan 430056, People’s Republic of China
| | - Xiaolei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jing Jin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xiaolu Yu
- Hubei Province Engineering Research Center of Legume Plants, School of Life Sciences, Jianghan University, Wuhan 430056, People’s Republic of China
| | - Jihong Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
50
|
Deng J, Fu Z, Chen S, Damaris RN, Wang K, Li T, Yang P. Proteomic and Epigenetic Analyses of Lotus (Nelumbo nucifera) Petals Between Red and White cultivars. PLANT & CELL PHYSIOLOGY 2015; 56:1546-55. [PMID: 26019267 DOI: 10.1093/pcp/pcv077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/22/2015] [Indexed: 05/22/2023]
Abstract
Lotus is a vital aquatic ornamental plant with different flower colors. To explore the flower coloration mechanism in lotus, the constituents and contents of pigments in two lotus cultivars with red and white flowers were analyzed. Although flavones and flavonols were detected in both cultivars, anthocyanins could only be detected in the red cultivar. A comparative proteomics analysis on the flower petals between these two cultivars was conducted. A total of 88 differentially expressed proteins were identified with 36 more abundant and 52 less abundant in the red than in the white cultivar. Among them, four enzymes involved in the anthocyanin pathway were identified, i.e. flavanone 3-hydroxylase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase and glutathione S-transferase. Analysis of the expression patterns of anthocyanin biosynthetic genes indicated that the anthocyanindin synthase (ANS) gene might be the critical gene determining anthocyanin biosynthesis and accumulation in lotus flower. Further analysis showed that different methylation intensities on the promoter sequence of the ANS gene might result in the different flower coloration in the red and white cultivar. This study provides new insights into the mechanism of flower coloration in lotus, and may be helpful in its breeding and germplasm enhancement.
Collapse
Affiliation(s)
- Jiao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ziyang Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sha Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rebecca Njeri Damaris
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tingting Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|