1
|
Du Y, Cao L, Wang S, Guo L, Tan L, Liu H, Feng Y, Wu W. Differences in alternative splicing and their potential underlying factors between animals and plants. J Adv Res 2024; 64:83-98. [PMID: 37981087 PMCID: PMC11464654 DOI: 10.1016/j.jare.2023.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Alternative splicing (AS), a posttranscriptional process, contributes to the complexity of transcripts from a limited number of genes in a genome, and AS is considered a great source of genetic and phenotypic diversity in eukaryotes. In animals, AS is tightly regulated during the processes of cell growth and differentiation, and its dysregulation is involved in many diseases, including cancers. Likewise, in plants, AS occurs in all stages of plant growth and development, and it seems to play important roles in the rapid reprogramming of genes in response to environmental stressors. To date, the prevalence and functional roles of AS have been extensively reviewed in animals and plants. However, AS differences between animals and plants, especially their underlying molecular mechanisms and impact factors, are anecdotal and rarely reviewed. AIM OF REVIEW This review aims to broaden our understanding of AS roles in a variety of biological processes and provide insights into the underlying mechanisms and impact factors likely leading to AS differences between animals and plants. KEY SCIENTIFIC CONCEPTS OF REVIEW We briefly summarize the roles of AS regulation in physiological and biochemical activities in animals and plants. Then, we underline the differences in the process of AS between plants and animals and especially analyze the potential impact factors, such as gene exon/intron architecture, 5'/3' untranslated regions (UTRs), spliceosome components, chromatin dynamics and transcription speeds, splicing factors [serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs)], noncoding RNAs, and environmental stimuli, which might lead to the differences. Moreover, we compare the nonsense-mediated mRNA decay (NMD)-mediated turnover of the transcripts with a premature termination codon (PTC) in animals and plants. Finally, we summarize the current AS knowledge published in animals versus plants and discuss the potential development of disease therapies and superior crops in the future.
Collapse
Affiliation(s)
- Yunfei Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lu Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Ying Feng
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai 200032, China.
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| |
Collapse
|
2
|
Ma Z, Sharma R, Rogers AN. Physiological Consequences of Nonsense-Mediated Decay and Its Role in Adaptive Responses. Biomedicines 2024; 12:1110. [PMID: 38791071 PMCID: PMC11117581 DOI: 10.3390/biomedicines12051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The evolutionarily conserved nonsense-mediated mRNA decay (NMD) pathway is a quality control mechanism that degrades aberrant mRNA containing one or more premature termination codons (PTCs). Recent discoveries indicate that NMD also differentially regulates mRNA from wild-type protein-coding genes despite lacking PTCs. Together with studies showing that NMD is involved in development and adaptive responses that influence health and longevity, these findings point to an expanded role of NMD that adds a new layer of complexity in the post-transcriptional regulation of gene expression. However, the extent of its control, whether different types of NMD play different roles, and the resulting physiological outcomes remain unclear and need further elucidation. Here, we review different branches of NMD and what is known of the physiological outcomes associated with this type of regulation. We identify significant gaps in the understanding of this process and the utility of genetic tools in accelerating progress in this area.
Collapse
Affiliation(s)
- Zhengxin Ma
- MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Ratna Sharma
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA;
| | | |
Collapse
|
3
|
Petrić Howe M, Patani R. Nonsense-mediated mRNA decay in neuronal physiology and neurodegeneration. Trends Neurosci 2023; 46:879-892. [PMID: 37543480 DOI: 10.1016/j.tins.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 08/07/2023]
Abstract
The processes of mRNA export from the nucleus and subsequent mRNA translation in the cytoplasm are of particular relevance in eukaryotic cells. In highly polarised cells such as neurons, finely-tuned molecular regulation of these processes serves to safeguard the spatiotemporal fidelity of gene expression. Nonsense-mediated mRNA decay (NMD) is a cytoplasmic translation-dependent quality control process that regulates gene expression in a wide range of scenarios in the nervous system, including neurodevelopment, learning, and memory formation. Moreover, NMD dysregulation has been implicated in a broad range of neurodevelopmental and neurodegenerative disorders. We discuss how NMD and related aspects of mRNA translation regulate key neuronal functions and, in particular, we focus on evidence implicating these processes in the molecular pathogenesis of neurodegeneration. Finally, we discuss the therapeutic potential and challenges of targeting mRNA translation and NMD across the spectrum of largely untreatable neurological diseases.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
4
|
Causier B, McKay M, Hopes T, Lloyd J, Wang D, Harrison CJ, Davies B. The TOPLESS corepressor regulates developmental switches in the bryophyte Physcomitrium patens that were critical for plant terrestrialisation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1331-1344. [PMID: 37243383 PMCID: PMC10953049 DOI: 10.1111/tpj.16322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The plant-specific TOPLESS (TPL) family of transcriptional corepressors is integral to multiple angiosperm developmental processes. Despite this, we know little about TPL function in other plants. To address this gap, we investigated the roles TPL plays in the bryophyte Physcomitrium patens, which diverged from angiosperms approximately 0.5 billion years ago. Although complete loss of PpTPL function is lethal, transgenic lines with reduced PpTPL activity revealed that PpTPLs are essential for two fundamental developmental switches in this plant: the transitions from basal photosynthetic filaments (chloronemata) to specialised foraging filaments (caulonemata) and from two-dimensional (2D) to three-dimensional (3D) growth. Using a transcriptomics approach, we integrated PpTPL into the regulatory network governing 3D growth and we propose that PpTPLs represent another important class of regulators that are essential for the 2D-to-3D developmental switch. Transcriptomics also revealed a previously unknown role for PpTPL in the regulation of flavonoids. Intriguingly, 3D growth and the formation of caulonemata were crucial innovations that facilitated the colonisation of land by plants, a major transformative event in the history of life on Earth. We conclude that TPL, which existed before the land plants, was co-opted into new developmental pathways, enabling phytoterrestrialisation and the evolution of land plants.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Mary McKay
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Tayah Hopes
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - James Lloyd
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Dapeng Wang
- LeedsOmicsUniversity of LeedsLeedsLS2 9JTUK
- National Heart and Lung Institute, Imperial College LondonLondonSW3 6LYUK
| | - C. Jill Harrison
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
5
|
Jiang M, Chen M, Liu Q, Jin Z, Yang X, Zhang W. SF3B1 mutations in myelodysplastic syndromes: A potential therapeutic target for modulating the entire disease process. Front Oncol 2023; 13:1116438. [PMID: 37007111 PMCID: PMC10063959 DOI: 10.3389/fonc.2023.1116438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal hematologic malignancies characterized by ineffective hematopoiesis and dysplasia of the myeloid cell lineage and are characterized by peripheral blood cytopenia and an increased risk of transformation to acute myeloid leukemia (AML). Approximately half of the patients with MDS have somatic mutations in the spliceosome gene. Splicing Factor 3B Subunit 1A (SF3B1), the most frequently occurring splicing factor mutation in MDS is significantly associated with the MDS-RS subtype. SF3B1 mutations are intimately involved in the MDS regulation of various pathophysiological processes, including impaired erythropoiesis, dysregulated iron metabolism homeostasis, hyperinflammatory features, and R-loop accumulation. In the fifth edition of the World Health Organization (WHO) classification criteria for MDS, MDS with SF3B1 mutations has been classified as an independent subtype, which plays a crucial role in identifying the disease phenotype, promoting tumor development, determining clinical features, and influencing tumor prognosis. Given that SF3B1 has demonstrated therapeutic vulnerability both in early MDS drivers and downstream events, therapy based on spliceosome-associated mutations is considered a novel strategy worth exploring in the future.
Collapse
|
6
|
The biological functions of nonsense-mediated mRNA decay in plants: RNA quality control and beyond. Biochem Soc Trans 2023; 51:31-39. [PMID: 36695509 DOI: 10.1042/bst20211231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved quality control pathway that inhibits the expression of transcripts containing premature termination codon. Transcriptome and phenotypic studies across a range of organisms indicate roles of NMD beyond RNA quality control and imply its involvement in regulating gene expression in a wide range of physiological processes. Studies in moss Physcomitrella patens and Arabidopsis thaliana have shown that NMD is also important in plants where it contributes to the regulation of pathogen defence, hormonal signalling, circadian clock, reproduction and gene evolution. Here, we provide up to date overview of the biological functions of NMD in plants. In addition, we discuss several biological processes where NMD factors implement their function through NMD-independent mechanisms.
Collapse
|
7
|
Dong Y, Ryabova LA. Do plants drive translation reinitiation to dodge nonsense-mediated decay? JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7-11. [PMID: 36563104 PMCID: PMC9786829 DOI: 10.1093/jxb/erac444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
This article comments on: Cymerman MA, Saul H, Farhi R, Vexler K, Gottlieb D, Berezin I, Shaul O. 2023. Plant transcripts with long or structured upstream open reading frames in the NDL2 5ʹ UTR can escape nonsense-mediated mRNA decay in a reinitiation-independent manner. Journal of Experimental Botany 74, 91–103.
Collapse
Affiliation(s)
- Yihan Dong
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
8
|
Synthetic memory circuits for stable cell reprogramming in plants. Nat Biotechnol 2022; 40:1862-1872. [PMID: 35788565 DOI: 10.1038/s41587-022-01383-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 01/14/2023]
Abstract
Plant biotechnology predominantly relies on a restricted set of genetic parts with limited capability to customize spatiotemporal and conditional expression patterns. Synthetic gene circuits have the potential to integrate multiple customizable input signals through a processing unit constructed from biological parts to produce a predictable and programmable output. Here we present a suite of functional recombinase-based gene circuits for use in plants. We first established a range of key gene circuit components compatible with plant cell functionality. We then used these to develop a range of operational logic gates using the identify function (activation) and negation function (repression) in Arabidopsis protoplasts and in vivo, demonstrating their utility for programmable manipulation of transcriptional activity in a complex multicellular organism. Specifically, using recombinases and plant control elements, we activated transgenes in YES, OR and AND gates and repressed them in NOT, NOR and NAND gates; we also implemented the A NIMPLY B gate that combines activation and repression. Through use of genetic recombination, these circuits create stable long-term changes in expression and recording of past stimuli. This highly compact programmable gene circuit platform provides new capabilities for engineering sophisticated transcriptional programs and previously unrealized traits into plants.
Collapse
|
9
|
Chen Q, Yang M, Liu X, Zhang J, Mi S, Wang Y, Xiao W, Yu Y. Blood transcriptome analysis and identification of genes associated with supernumerary teats in Chinese Holstein cows. J Dairy Sci 2022; 105:9837-9852. [DOI: 10.3168/jds.2022-22346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
|
10
|
A Novel Role of SMG1 in Cholesterol Homeostasis That Depends Partially on p53 Alternative Splicing. Cancers (Basel) 2022; 14:cancers14133255. [PMID: 35805027 PMCID: PMC9265556 DOI: 10.3390/cancers14133255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary p53 isoforms have been reported in various tumor types. Both p53β and p53γ were recently reported to retain functionalities of full-length p53α. A role for p53 and p53 loss in cholesterol metabolism has also emerged. We show that SMG1, a phosphatidylinositol 3-kinase-related kinase, when inhibited in p53 wild-type MCF7 and HepG2 cells, significantly alters the expression of cholesterol pathway genes, with a net increase in intracellular cholesterol and an increased sensitivity to Fatostatin in MCF7. We confirm a prior report that SMG1 inhibition in MCF7 cells promotes expression of p53β and show the first evidence for increases in p53γ. Further, induced p53β expression, confirmed with antibody, explained the loss of SMG1 upregulation of the ABCA1 cholesterol exporter where p53γ had no effect on ABCA1. Additionally, upregulation of ABCA1 upon SMG1 knockdown was independent of upregulation of nonsense-mediated decay target RASSF1C, previously suggested to regulate ABCA1 via a “RASSF1C-miR33a-ABCA1” axis. Abstract SMG1, a phosphatidylinositol 3-kinase-related kinase (PIKK), essential in nonsense-mediated RNA decay (NMD), also regulates p53, including the alternative splicing of p53 isoforms reported to retain p53 functions. We confirm that SMG1 inhibition in MCF7 tumor cells induces p53β and show p53γ increase. Inhibiting SMG1, but not UPF1 (a core factor in NMD), upregulated several cholesterol pathway genes. SMG1 knockdown significantly increased ABCA1, a cholesterol efflux pump shown to be positively regulated by full-length p53 (p53α). An investigation of RASSF1C, an NMD target, increased following SMG1 inhibition and reported to inhibit miR-33a-5p, a canonical ABCA1-inhibiting miRNA, did not explain the ABCA1 results. ABCA1 upregulation following SMG1 knockdown was inhibited by p53β siRNA with greatest inhibition when p53α and p53β were jointly suppressed, while p53γ siRNA had no effect. In contrast, increased expression of MVD, a cholesterol synthesis gene upregulated in p53 deficient backgrounds, was sensitive to combined targeting of p53α and p53γ. Phenotypically, we observed increased intracellular cholesterol and enhanced sensitivity of MCF7 to growth inhibitory effects of cholesterol-lowering Fatostatin following SMG1 inhibition. Our results suggest deregulation of cholesterol pathway genes following SMG1 knockdown may involve alternative p53 programming, possibly resulting from differential effects of p53 isoforms on cholesterol gene expression.
Collapse
|
11
|
Zhouravleva GA, Bondarev SA, Zemlyanko OM, Moskalenko SE. Role of Proteins Interacting with the eRF1 and eRF3 Release Factors in the Regulation of Translation and Prionization. Mol Biol 2022. [DOI: 10.1134/s0026893322010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Causier B, Hopes T, McKay M, Paling Z, Davies B. Plants utilise ancient conserved peptide upstream open reading frames in stress-responsive translational regulation. PLANT, CELL & ENVIRONMENT 2022; 45:1229-1241. [PMID: 35128674 PMCID: PMC9305500 DOI: 10.1111/pce.14277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 05/08/2023]
Abstract
The regulation of protein synthesis plays an important role in the growth and development of all organisms. Upstream open reading frames (uORFs) are commonly found in eukaryotic messenger RNA transcripts and typically attenuate the translation of associated downstream main ORFs (mORFs). Conserved peptide uORFs (CPuORFs) are a rare subset of uORFs, some of which have been shown to conditionally regulate translation by ribosome stalling. Here, we show that Arabidopsis CPuORF19, CPuORF46 and CPuORF47, which are ancient in origin, regulate translation of any downstream ORF, in response to the agriculturally significant environmental signals, heat stress and water limitation. Consequently, these CPuORFs represent a versatile toolkit for inducible gene expression with broad applications. Finally, we note that different classes of CPuORFs may operate during distinct phases of translation, which has implications for the bioengineering of these regulatory factors.
Collapse
Affiliation(s)
- Barry Causier
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Tayah Hopes
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Mary McKay
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Zachary Paling
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Brendan Davies
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
13
|
Mamaeva A, Glushkevich A, Fesenko I. Quantitative proteomic dataset of the moss Physcomitrium patens SMG1 KO mutant line. Data Brief 2022; 40:107706. [PMID: 34977295 PMCID: PMC8683683 DOI: 10.1016/j.dib.2021.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) mechanism controls the quality of eukaryotic mRNAs by degradation of aberrant transcripts with a premature stop codon (PTC) in a pioneer round of translation. Besides aberrant transcripts, up to 10% of normal mRNA transcripts can be regulated by NMD. As NMD machinery is associated with translation, this system takes part in proteome formation in eukaryotic cells [1,2]. However, no proteomic datasets of plants with deficient NMD system are currently available. Here, we provide an isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic dataset of the moss Physcomitrium patens smg1 knockout line. The kinase SMG1 is one of the key components of the NMD system in many organisms, including plants. 8-day old protonema of wild type and mutant lines was used for the iTRAQ experiment in three biological replicates. LC-MS/MS data were processed using PEAKS Studio v.8 Software with protein identification based on a Phytozome protein database. Differentially expressed protein groups up- and down-regulated in the smg1 knockout line were found in the resulting dataset. Presented data can improve our understanding of NMD functions in plants.
Collapse
|
14
|
Knyazev A, Glushkevich A, Fesenko I. Direct RNA sequencing dataset of SMG1 KO mutant Physcomitrella ( Physcomitrium patens). Data Brief 2020; 33:106602. [PMID: 33313367 PMCID: PMC7721605 DOI: 10.1016/j.dib.2020.106602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a system that controls the quality of mRNA transcripts in eukaryotes by degradation of aberrant transcripts in a pioneer round of translation. In mammals, NMD targets one-third of mutated, disease-causing mRNAs and ∼10% of unmutated mRNAs, facilitating appropriate cellular responses to environmental changes [1]. In plants, NMD plays an important role in development and regulating abiotic and biotic stress responses [2]. The transcripts with premature termination codons (PTCs), upstream ORFs or long 3'-UTRs can be targeted to NMD. It was shown that alternative splicing plays a crucial role in regulation of NMD triggering, for example, by the introduction of a PTC in transcripts. Therefore, the correct identification of mRNA isoforms is a key step in the study of the principles of regulation of the cell transcriptome by the NMD pathway. Here, we performed long-read sequencing of Physcomitrella (Physcomitrium patens) mutant smg1Δ line 2 native transcriptome by Oxford Nanopore Technology (ONT). The smg1Δ is a knockout (KO) mutant deficient in SMG1 kinase is a key component of NMD system in plants and animals [3]. RNA was isolated with Trizol from 5 day old protonemata and sequenced using kit SQK-RNA002, flow cells FLO-MIN106 and a MinION device (Oxford Nanopore Technologies Ltd., UK (ONT)) in three biological repeats. Basecalling was performed with Guppy v.4.0.15. The presented transcriptomes give advantages in the identification and functional characterization of RNA transcripts that are direct targets of the Nonsense-mediated mRNA decay system.
Collapse
Affiliation(s)
- Andrey Knyazev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Ulitsa Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Anna Glushkevich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Ulitsa Miklukho-Maklaya, Moscow, 117997, Russian Federation
| | - Igor Fesenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Ulitsa Miklukho-Maklaya, Moscow, 117997, Russian Federation
| |
Collapse
|
15
|
Brunkard JO. Exaptive Evolution of Target of Rapamycin Signaling in Multicellular Eukaryotes. Dev Cell 2020; 54:142-155. [PMID: 32649861 PMCID: PMC7346820 DOI: 10.1016/j.devcel.2020.06.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022]
Abstract
Target of rapamycin (TOR) is a protein kinase that coordinates metabolism with nutrient and energy availability in eukaryotes. TOR and its primary interactors, RAPTOR and LST8, have been remarkably evolutionarily static since they arose in the unicellular last common ancestor of plants, fungi, and animals, but the upstream regulatory mechanisms and downstream effectors of TOR signaling have evolved considerable diversity in these separate lineages. Here, I focus on the roles of exaptation and adaptation in the evolution of novel signaling axes in the TOR network in multicellular eukaryotes, concentrating especially on amino acid sensing, cell-cell signaling, and cell differentiation.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research Service, Albany, CA 94710, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Affiliation(s)
- Ruth Goldstein
- Department of Global and International Studies, University of California, Irvine, USA
| |
Collapse
|
17
|
Sulkowska A, Auber A, Sikorski PJ, Silhavy DN, Auth M, Sitkiewicz E, Jean V, Merret RM, Bousquet-Antonelli CC, Kufel J. RNA Helicases from the DEA(D/H)-Box Family Contribute to Plant NMD Efficiency. PLANT & CELL PHYSIOLOGY 2020; 61:144-157. [PMID: 31560399 DOI: 10.1093/pcp/pcz186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry. Canonical members of the NMD pathway were found along with numerous NMD candidate factors, including conserved DEA(D/H)-box RNA helicase homologs of human DDX3, DDX5 and DDX6, translation initiation factors, ribosomal proteins and transport factors. Our functional studies revealed that depletion of DDX3 helicases enhances the accumulation of NMD target reporter mRNAs but does not result in increased protein levels. In contrast, silencing of DDX6 group leads to decreased accumulation of the NMD substrate. The inhibitory effect of DDX6-like helicases on NMD was confirmed by transient overexpression of RH12 helicase. These results indicate that DDX3 and DDX6 helicases in plants have a direct and opposing contribution to NMD and act as functional NMD factors.
Collapse
Affiliation(s)
- Aleksandra Sulkowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Pawel J Sikorski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dï Niel Silhavy
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Mariann Auth
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Ewa Sitkiewicz
- Proteomics Laboratory, Biophysics Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Viviane Jean
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Rï My Merret
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Cï Cile Bousquet-Antonelli
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
18
|
Tu Z, Shen Y, Wen S, Zong Y, Li H. Alternative Splicing Enhances the Transcriptome Complexity of Liriodendron chinense. FRONTIERS IN PLANT SCIENCE 2020; 11:578100. [PMID: 33072153 PMCID: PMC7539066 DOI: 10.3389/fpls.2020.578100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/04/2020] [Indexed: 05/11/2023]
Abstract
Alternative splicing (AS) plays pivotal roles in regulating plant growth and development, flowering, biological rhythms, signal transduction, and stress responses. However, no studies on AS have been performed in Liriodendron chinense, a deciduous tree species that has high economic and ecological value. In this study, we used multiple tools and algorithms to analyze transcriptome data derived from seven tissues via hybrid sequencing. Although only 17.56% (8,503/48,408) of genes in L. chinense were alternatively spliced, these AS genes occurred in 37,844 AS events. Among these events, intron retention was the most frequent AS event, producing 1,656 PTC-containing and 3,310 non-PTC-containing transcripts. Moreover, 183 long noncoding RNAs (lncRNAs) also underwent AS events. Furthermore, weighted gene coexpression network analysis (WGCNA) revealed that there were great differences in the activities of transcription and post-transcriptional regulation between pistils and leaves, and AS had an impact on many physiological and biochemical processes in L. chinense, such as photosynthesis, sphingolipid metabolism, fatty acid biosynthesis and metabolism. Moreover, our analysis showed that the features of genes may affect AS, as AS genes and non-AS genes had differences in the exon/intron length, transcript length, and number of exons/introns. In addition, the structure of AS genes may impact the frequencies and types of AS because AS genes with more exons or introns tended to exhibit more AS events, and shorter introns tended to be retained, whereas shorter exons tended to be skipped. Furthermore, eight AS genes were verified, and the results were consistent with our analysis. Overall, this study reveals that AS and gene interaction are mutual-on one hand, AS can affect gene expression and translation, while on the other hand, the structural characteristics of the gene can also affect AS. This work is the first to comprehensively report on AS in L. chinense, and it can provide a reference for further research on AS in L. chinense.
Collapse
Affiliation(s)
- Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yufang Shen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shaoying Wen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Huogen Li,
| |
Collapse
|
19
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
20
|
Ohtani M, Wachter A. NMD-Based Gene Regulation-A Strategy for Fitness Enhancement in Plants? PLANT & CELL PHYSIOLOGY 2019; 60:1953-1960. [PMID: 31111919 DOI: 10.1093/pcp/pcz090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
Post-transcriptional RNA quality control is a vital issue for all eukaryotes to secure accurate gene expression, both on a qualitative and quantitative level. Among the different mechanisms, nonsense-mediated mRNA decay (NMD) is an essential surveillance system that triggers degradation of both aberrant and physiological transcripts. By targeting a substantial fraction of all transcripts for degradation, including many alternative splicing variants, NMD has a major impact on shaping transcriptomes. Recent progress on the transcriptome-wide profiling and physiological analyses of NMD-deficient plant mutants revealed crucial roles for NMD in gene regulation and environmental responses. In this review, we will briefly summarize our current knowledge of the recognition and degradation of NMD targets, followed by an account of NMD's regulation and physiological functions. We will specifically discuss plant-specific aspects of RNA quality control and its functional contribution to the fitness and environmental responses of plants.
Collapse
Affiliation(s)
- Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von M�ller-Weg 6, Mainz, Germany
| |
Collapse
|
21
|
Kesarwani AK, Lee HC, Ricca PG, Sullivan G, Faiss N, Wagner G, Wunderling A, Wachter A. Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants. PLANT & CELL PHYSIOLOGY 2019; 60:1986-1999. [PMID: 31368494 DOI: 10.1093/pcp/pcz141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/06/2019] [Indexed: 05/16/2023]
Abstract
Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG) 7, but not UPF2, are under feedback control in both dicots. In the monocot investigated in this study, only SMG7 was slightly induced upon NMD inhibition. The detection of the endogenous NMD factor proteins in Arabidopsis thaliana substantiated a negative correlation between NMD activity and SMG7 amounts. Furthermore, evidence was provided that SMG7 is required for the dephosphorylation of UPF1. Our comprehensive and comparative study of NMD feedback control in plants reveals complex and species-specific attenuation of this RNA surveillance pathway, with critical implications for the numerous functions of NMD in physiology and stress responses.
Collapse
Affiliation(s)
- Anil K Kesarwani
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Hsin-Chieh Lee
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Patrizia G Ricca
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Sullivan
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Natalie Faiss
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Gabriele Wagner
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Anna Wunderling
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
| | - Andreas Wachter
- Center for Plant Molecular Biology (ZMBP), University of T�bingen, Auf der Morgenstelle, 32 T�bingen, Germany
- Institute for Molecular Physiology (imP), University of Mainz, Johannes von M�ller-Weg 6, Mainz, Germany
| |
Collapse
|
22
|
Lloyd JPB, Lang D, Zimmer AD, Causier B, Reski R, Davies B. The loss of SMG1 causes defects in quality control pathways in Physcomitrella patens. Nucleic Acids Res 2019; 46:5822-5836. [PMID: 29596649 PMCID: PMC6009662 DOI: 10.1093/nar/gky225] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is important for RNA quality control and gene regulation in eukaryotes. NMD targets aberrant transcripts for decay and also directly influences the abundance of non-aberrant transcripts. In animals, the SMG1 kinase plays an essential role in NMD by phosphorylating the core NMD factor UPF1. Despite SMG1 being ubiquitous throughout the plant kingdom, little is known about its function, probably because SMG1 is atypically absent from the genome of the model plant, Arabidopsis thaliana. By combining our previously established SMG1 knockout in moss with transcriptome-wide analysis, we reveal the range of processes involving SMG1 in plants. Machine learning assisted analysis suggests that 32% of multi-isoform genes produce NMD-targeted transcripts and that splice junctions downstream of a stop codon act as the major determinant of NMD targeting. Furthermore, we suggest that SMG1 is involved in other quality control pathways, affecting DNA repair and the unfolded protein response, in addition to its role in mRNA quality control. Consistent with this, smg1 plants have increased susceptibility to DNA damage, but increased tolerance to unfolded protein inducing agents. The potential involvement of SMG1 in RNA, DNA and protein quality control has major implications for the study of these processes in plants.
Collapse
Affiliation(s)
- James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
23
|
Lin H, Zhang Z, Iomini C, Dutcher SK. Identifying RNA splicing factors using IFT genes in Chlamydomonas reinhardtii. Open Biol 2019. [PMID: 29514868 PMCID: PMC5881031 DOI: 10.1098/rsob.170211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intraflagellar transport moves proteins in and out of flagella/cilia and it is essential for the assembly of these organelles. Using whole-genome sequencing, we identified splice site mutations in two IFT genes, IFT81 (fla9) and IFT121 (ift121-2), which lead to flagellar assembly defects in the unicellular green alga Chlamydomonas reinhardtii. The splicing defects in these ift mutants are partially corrected by mutations in two conserved spliceosome proteins, DGR14 and FRA10. We identified a dgr14 deletion mutant, which suppresses the 3′ splice site mutation in IFT81, and a frameshift mutant of FRA10, which suppresses the 5′ splice site mutation in IFT121. Surprisingly, we found dgr14-1 and fra10 mutations suppress both splice site mutations. We suggest these two proteins are involved in facilitating splice site recognition/interaction; in their absence some splice site mutations are tolerated. Nonsense mutations in SMG1, which is involved in nonsense-mediated decay, lead to accumulation of aberrant transcripts and partial restoration of flagellar assembly in the ift mutants. The high density of introns and the conservation of noncore splicing factors, together with the ease of scoring the ift mutant phenotype, make Chlamydomonas an attractive organism to identify new proteins involved in splicing through suppressor screening.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Zhengyan Zhang
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| | - Carlo Iomini
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St Louis, MO 63110, USA
| |
Collapse
|
24
|
|
25
|
Nakaminami K, Seki M. RNA Regulation in Plant Cold Stress Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1081:23-44. [PMID: 30288702 DOI: 10.1007/978-981-13-1244-1_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to plants, all organisms react to environmental stimuli via the perception of signals and subsequently respond through alterations of gene expression. However, genes/mRNAs are usually not the functional unit themselves, and instead, resultant protein products with individual functions result in various acquired phenotypes. In order to fully characterize the adaptive responses of plants to environmental stimuli, it is essential to determine the level of proteins, in addition to the regulation of mRNA expression. This regulatory step, which is referred to as "mRNA posttranscriptional regulation," occurs subsequent to mRNA transcription and prior to translation. Although these RNA regulatory mechanisms have been well-studied in many organisms, including plants, it is not fully understood how plants respond to environmental stimuli, such as cold stress, via these RNA regulations.A recent study described several RNA regulatory factors in relation to environmental stress responses, including plant cold stress tolerance. In this chapter, the functions of RNA regulatory factors and comprehensive analyses related to the RNA regulations involved in cold stress response are summarized, such as mRNA maturation, including capping, splicing, polyadenylation of mRNA, and the quality control system of mRNA; mRNA degradation, including the decapping step; and mRNA stabilization. In addition, the putative roles of messenger ribonucleoprotein (mRNP) granules, such as processing bodies (PBs) and stress granules (SGs), which are cytoplasmic particles, are described in relation to RNA regulations under stress conditions. These RNA regulatory systems are important for adjusting or fine-tuning and determining the final levels of mRNAs and proteins in order to adapt or respond to environmental stresses. Collectively, these new areas of study revealed that plants possess precise novel regulatory mechanisms which specifically function in the response to cold stress.
Collapse
Affiliation(s)
- Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
26
|
Dehecq M, Decourty L, Namane A, Proux C, Kanaan J, Le Hir H, Jacquier A, Saveanu C. Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes. EMBO J 2018; 37:embj.201899278. [PMID: 30275269 DOI: 10.15252/embj.201899278] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA degradation pathway involved in many cellular pathways and crucial for telomere maintenance and embryo development. Core NMD factors Upf1, Upf2 and Upf3 are conserved from yeast to mammals, but a universal NMD model is lacking. We used affinity purification coupled with mass spectrometry and an improved data analysis protocol to characterize the composition and dynamics of yeast NMD complexes in yeast (112 experiments). Unexpectedly, we identified two distinct complexes associated with Upf1: Upf1-23 (Upf1, Upf2, Upf3) and Upf1-decapping Upf1-decapping contained the mRNA decapping enzyme, together with Nmd4 and Ebs1, two proteins that globally affected NMD and were critical for RNA degradation mediated by the Upf1 C-terminal helicase region. The fact that Nmd4 association with RNA was partially dependent on Upf1-23 components and the similarity between Nmd4/Ebs1 and mammalian Smg5-7 proteins suggest that NMD operates through conserved, successive Upf1-23 and Upf1-decapping complexes. This model can be extended to accommodate steps that are missing in yeast, to serve for further mechanistic studies of NMD in eukaryotes.
Collapse
Affiliation(s)
- Marine Dehecq
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Laurence Decourty
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Abdelkader Namane
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Caroline Proux
- Transcriptome and Epigenome, CITECH, Institut Pasteur, Paris, France
| | - Joanne Kanaan
- Expression des ARN Messagers Eucaryotes, Biology Department, CNRS UMR8197, Inserm U1024, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Hervé Le Hir
- Expression des ARN Messagers Eucaryotes, Biology Department, CNRS UMR8197, Inserm U1024, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Alain Jacquier
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| | - Cosmin Saveanu
- Génétique des Interactions Macromoléculaires, Genomes and Genetics Department, Institut Pasteur, Paris, France
| |
Collapse
|
27
|
Chicois C, Scheer H, Garcia S, Zuber H, Mutterer J, Chicher J, Hammann P, Gagliardi D, Garcia D. The UPF1 interactome reveals interaction networks between RNA degradation and translation repression factors in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:119-132. [PMID: 29983000 DOI: 10.1111/tpj.14022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The RNA helicase UP-FRAMESHIFT (UPF1) is a key factor of nonsense-mediated decay (NMD), a mRNA decay pathway involved in RNA quality control and in the fine-tuning of gene expression. UPF1 recruits UPF2 and UPF3 to constitute the NMD core complex, which is conserved across eukaryotes. No other components of UPF1-containing ribonucleoproteins (RNPs) are known in plants, despite its key role in regulating gene expression. Here, we report the identification of a large set of proteins that co-purify with the Arabidopsis UPF1, either in an RNA-dependent or RNA-independent manner. We found that like UPF1, several of its co-purifying proteins have a dual localization in the cytosol and in P-bodies, which are dynamic structures formed by the condensation of translationally repressed mRNPs. Interestingly, more than half of the proteins of the UPF1 interactome also co-purify with DCP5, a conserved translation repressor also involved in P-body formation. We identified a terminal nucleotidyltransferase, ribonucleases and several RNA helicases among the most significantly enriched proteins co-purifying with both UPF1 and DCP5. Among these, RNA helicases are the homologs of DDX6/Dhh1, known as translation repressors in humans and yeast, respectively. Overall, this study reports a large set of proteins associated with the Arabidopsis UPF1 and DCP5, two components of P-bodies, and reveals an extensive interaction network between RNA degradation and translation repression factors. Using this resource, we identified five hitherto unknown components of P-bodies in plants, pointing out the value of this dataset for the identification of proteins potentially involved in translation repression and/or RNA degradation.
Collapse
Affiliation(s)
- Clara Chicois
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Shahïnez Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
28
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
29
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
30
|
Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Semin Cell Dev Biol 2018; 75:78-87. [DOI: 10.1016/j.semcdb.2017.08.053] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/23/2022]
|
31
|
Capitao C, Shukla N, Wandrolova A, Mittelsten Scheid O, Riha K. Functional Characterization of SMG7 Paralogs in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1602. [PMID: 30459790 PMCID: PMC6232500 DOI: 10.3389/fpls.2018.01602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/17/2018] [Indexed: 05/07/2023]
Abstract
SMG7 proteins are evolutionary conserved across eukaryotes and primarily known for their function in nonsense mediated RNA decay (NMD). In contrast to other NMD factors, SMG7 proteins underwent independent expansions during evolution indicating their propensity to adopt novel functions. Here we characterized SMG7 and SMG7-like (SMG7L) paralogs in Arabidopsis thaliana. SMG7 retained its role in NMD and additionally appears to have acquired another function in meiosis. We inactivated SMG7 by CRISPR/Cas9 mutagenesis and showed that, in contrast to our previous report, SMG7 is not an essential gene in Arabidopsis. Furthermore, our data indicate that the N-terminal phosphoserine-binding domain is required for both NMD and meiosis. Phenotypic analysis of SMG7 and SMG7L double mutants did not indicate any functional redundancy between the two genes, suggesting neofunctionalization of SMG7L. Finally, protein sequence comparison together with a phenotyping of T-DNA insertion mutants identified several conserved regions specific for SMG7 that may underlie its role in NMD and meiosis. This information provides a framework for deciphering the non-canonical functions of SMG7-family proteins.
Collapse
Affiliation(s)
- Claudio Capitao
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Neha Shukla
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Aneta Wandrolova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- *Correspondence: Karel Riha,
| |
Collapse
|
32
|
Causier B, Li Z, De Smet R, Lloyd JPB, Van de Peer Y, Davies B. Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution. Sci Rep 2017; 7:16692. [PMID: 29192227 PMCID: PMC5709506 DOI: 10.1038/s41598-017-16942-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa. We used comparative genomics to determine the conservation of the NMD pathway across eukaryotic evolution. We show that SURF components are present in all major eukaryotic lineages, including fungi, suggesting that in addition to UPF1 and SMG1, SMG8 and SMG9 also existed in the last eukaryotic common ancestor, 1.8 billion years ago. However, despite the ancient origins of the SURF complex, we also found that SURF factors have been independently lost across the Eukarya, pointing to genetic buffering within the essential NMD pathway. We infer an ancient role for SURF in regulating UPF1, and the intriguing possibility of undiscovered NMD regulatory pathways.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - Riet De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium.,Department of Genetics, Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
33
|
Raxwal VK, Riha K. Nonsense mediated RNA decay and evolutionary capacitance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1538-1543. [PMID: 27599370 DOI: 10.1016/j.bbagrm.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
Abstract
Nonsense mediated RNA decay (NMD) is well-known as an RNA quality control mechanism that sequesters a substantial portion of RNA from expression by targeting it for degradation. However, a number of recent studies across a range of organisms indicate a broader role for NMD in gene regulation and transcriptome homeostasis. Here we propose a novel role for NMD as a buffering system with the capability of accumulating and subsequently releasing a wide spectrum of cryptic genetic variation in response to environmental stimuli, and hence facilitating adaptive evolution. We discuss this role for NMD in the context of evolution of plant pathogen defense, whereby NMD may promote rapid diversification of intracellular immune receptors by mitigating the potentially harmful impact of their newly formed variants on plant fitness.
Collapse
Affiliation(s)
- Vivek Kumar Raxwal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karel Riha
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
34
|
Brogna S, McLeod T, Petric M. The Meaning of NMD: Translate or Perish. Trends Genet 2016; 32:395-407. [PMID: 27185236 DOI: 10.1016/j.tig.2016.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/02/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Premature translation termination leads to a reduced mRNA level in all types of organisms. In eukaryotes, the phenomenon is known as nonsense-mediated mRNA decay (NMD). This is commonly regarded as the output of a specific surveillance and destruction mechanism that is activated by the presence of a premature translation termination codon (PTC) in an atypical sequence context. Despite two decades of research, it is still unclear how NMD discriminates between PTCs and normal stop codons. We suggest that cells do not possess any such mechanism and instead propose a new model in which this mRNA depletion is a consequence of the appearance of long tracts of mRNA that are unprotected by scanning ribosomes.
Collapse
Affiliation(s)
- Saverio Brogna
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK.
| | - Tina McLeod
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Marija Petric
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
35
|
Zhang Y, Zheng Y, Faheem A, Sun T, Li C, Li Z, Zhao D, Wu C, Liu J. A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type. Oncol Lett 2016; 11:1685-1692. [PMID: 26998062 PMCID: PMC4774473 DOI: 10.3892/ol.2016.4111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022] Open
Abstract
Due to frequent phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway dysregulation, AKT is typically accepted as a promising anticancer therapeutic target. mTOR, in particular, represents a suitable therapeutic target for hepatocellular carcinoma, whilst suppressor with morphogenetic effect on genitalia family member-1 (SMG-1) is believed to serve a potential tumor suppressor role in human cancer. Despite SMG-1 and mTOR belonging to the same PI3K-related kinase family, the interactions between them are not yet fully understood. In the present study, a novel pyrrolopyrimidine-derived compound, AZD5363, was observed to suppress proliferation in liver cancer Hep-G2 and Huh-7 cells by inhibiting the phosphorylation of downstream molecules in the AKT signal pathway, in a dose- and time-dependent manner. AZD5363 activated the phosphorylation of mTOR, dependent on the liver cancer cell type, as it may have differing effects in various liver cancer cell lines. Additionally, AZD5363 also activated SMG-1 within the same liver cancer cells types, which subsequently activated the phosphorylation of mTOR. In conclusion, the present study indicates that AZD5363 inhibited phosphorylation of AKT downstream molecules, and activated phosphorylation of mTOR and SMG-1, dependent on the liver cancer type.
Collapse
Affiliation(s)
- Yuncheng Zhang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ali Faheem
- Shandong University School of Medicine, Jinan, Shandong 250021, P.R. China
| | - Tiantong Sun
- Shandong University School of Medicine, Jinan, Shandong 250021, P.R. China
| | - Chunyou Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhe Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Diantang Zhao
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chao Wu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
36
|
Shaul O. Unique Aspects of Plant Nonsense-Mediated mRNA Decay. TRENDS IN PLANT SCIENCE 2015; 20:767-779. [PMID: 26442679 DOI: 10.1016/j.tplants.2015.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Nonsense-mediated mRNA Decay (NMD) is a eukaryotic quality-control mechanism that governs the stability of both aberrant and normal transcripts. Although plant and mammalian NMD share great similarity, they differ in certain mechanistic and regulatory aspects. Whereas SMG6 (from Caenorhabditis elegans 'suppressor with morphogenetic effect on genitalia')-catalyzed endonucleolytic cleavage is a prominent step in mammalian NMD, plant NMD targets are degraded by an SMG7-induced exonucleolytic pathway. Both mammalian and plant NMD are downregulated by stress, thereby enhancing the expression of defense response genes. However, the target genes and processes affected differ. Several plant and mammalian NMD factors are regulated by negative feedback-loops. However, while the loop regulating UPF3 (up-frameshift 3) expression in not vital for mammalian NMD, the sensitivity of UPF3 to NMD is crucial for the overall regulation of plant NMD.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
37
|
Abstract
Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.
Collapse
|
38
|
Degtiar E, Fridman A, Gottlieb D, Vexler K, Berezin I, Farhi R, Golani L, Shaul O. The feedback control of UPF3 is crucial for RNA surveillance in plants. Nucleic Acids Res 2015; 43:4219-35. [PMID: 25820429 PMCID: PMC4417159 DOI: 10.1093/nar/gkv237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 11/24/2022] Open
Abstract
Nonsense-mediated-decay (NMD) is a eukaryotic RNA surveillance mechanism that controls the levels of both aberrant and normal transcripts. The regulation of this process is not well understood. The Arabidopsis NMD factor UPF3 is regulated by a negative feedback-loop that targets its own transcript for NMD. We investigated the functional significance of this control for the overall regulation of NMD in Arabidopsis. For this, we tested the ability of NMD-sensitive and -insensitive forms of UPF3, expressed under the control of UPF3 promoter, to complement NMD functionality in NMD-mutant plants and investigated their impact in wild-type (WT) plants. The sensitivity of UPF3 transcript to NMD was essential for efficient complementation of NMD in upf3 mutants. Upregulated UPF3 expression in WT plants resulted in over-degradation of certain transcripts and inhibited degradation of other transcripts. Our results demonstrate that, in contrast to mammalian cells, a delicate balance of UPF3 transcript levels by its feedback loop and by restriction of its transcription, are crucial for proper NMD regulation in Arabidopsis. Interestingly, the levels of many small-nucleolar-RNAs (snoRNAs) were decreased in upf1 and upf3 mutants and increased upon enhanced UPF3 expression. This suggests that proper snoRNA homeostasis in Arabidopsis depends on the integrity of the NMD pathway.
Collapse
Affiliation(s)
- Evgeniya Degtiar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adi Fridman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dror Gottlieb
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Karina Vexler
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Irina Berezin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ronit Farhi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Linoy Golani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
39
|
Shi M, Wang S, Yao Y, Li Y, Zhang H, Han F, Nie H, Su J, Wang Z, Yue L, Cao J, Li Y. Biological and clinical significance of epigenetic silencing of MARVELD1 gene in lung cancer. Sci Rep 2014; 4:7545. [PMID: 25520033 PMCID: PMC4269892 DOI: 10.1038/srep07545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/01/2014] [Indexed: 01/20/2023] Open
Abstract
Epigenetic silence in cancer frequently altered signal-transduction pathways during the early stages of tumor development. Recent progress in the field of cancer epigenetics has led to new opportunities for diagnosis and treatment of cancer. We previously demonstrated that novel identified nuclear factor MARVELD1 was widely expressed in human tissues, but down-regulated by promoter methylation in multiple cancers. This study was carried out to determine the biological and clinical significance of MARVELD1 gene silencing in lung cancer. Here, we found the reduced MARVELD1 expression significantly correlated with diagnostic histopathology and malignant degree of lung cancers. DNA hypermethylation and histone deacetylation synergistically inactivated MARVELD1 gene in lung cancer cells. Moreover, MARVELD1 modulated the efficiency of nonsense-mediated mRNA decay (NMD) through interaction with NMD core factor SMG1. The decreased MARVELD1 level in lung cancer reduces NMD efficiency through diminishing the association between NMD complex component UPF1/SMG1 and premature termination codons containing mRNA (PTC-mRNA). The results suggested that MARVELD1 silencing is an appealing diagnostic biomarker for lung cancer and epigenetic silencing of MARVELD1 gene links with the regulatory mechanism of NMD pathway in lung cancer, which may be required for tumorigenesis.
Collapse
Affiliation(s)
- Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shan Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuanfei Yao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Su
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zeyu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lei Yue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jingyan Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
40
|
Dolferus R. To grow or not to grow: a stressful decision for plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:247-261. [PMID: 25443851 DOI: 10.1016/j.plantsci.2014.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Progress in improving abiotic stress tolerance of crop plants using classic breeding and selection approaches has been slow. This has generally been blamed on the lack of reliable traits and phenotyping methods for stress tolerance. In crops, abiotic stress tolerance is most often measured in terms of yield-capacity under adverse weather conditions. "Yield" is a complex trait and is determined by growth and developmental processes which are controlled by environmental signals throughout the life cycle of the plant. The use of model systems has allowed us to gradually unravel how plants grow and develop, but our understanding of the flexibility and opportunistic nature of plant development and its capacity to adapt growth to environmental cues is still evolving. There is genetic variability for the capacity to maintain yield and productivity under abiotic stress conditions in crop plants such as cereals. Technological progress in various domains has made it increasingly possible to mine that genetic variability and develop a better understanding about the basic mechanism of plant growth and abiotic stress tolerance. The aim of this paper is not to give a detailed account of all current research progress, but instead to highlight some of the current research trends that may ultimately lead to strategies for stress-proofing crop species. The focus will be on abiotic stresses that are most often associated with climate change (drought, heat and cold) and those crops that are most important for human nutrition, the cereals.
Collapse
Affiliation(s)
- Rudy Dolferus
- CSIRO, Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
| |
Collapse
|
41
|
Scutt CP, Vandenbussche M. Current trends and future directions in flower development research. ANNALS OF BOTANY 2014; 114:1399-406. [PMID: 25335868 PMCID: PMC4204790 DOI: 10.1093/aob/mcu224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 05/05/2023]
Abstract
Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the flower development field.
Collapse
Affiliation(s)
- Charlie P Scutt
- Laboratoire de Reproduction et Développement des Plantes, (Unité mixte de recherche 5667: CNRS-INRA-Université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Michiel Vandenbussche
- Laboratoire de Reproduction et Développement des Plantes, (Unité mixte de recherche 5667: CNRS-INRA-Université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
42
|
Du Y, Lu F, Li P, Ye J, Ji M, Ma D, Ji C. SMG1 acts as a novel potential tumor suppressor with epigenetic inactivation in acute myeloid leukemia. Int J Mol Sci 2014; 15:17065-76. [PMID: 25257528 PMCID: PMC4200422 DOI: 10.3390/ijms150917065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022] Open
Abstract
Suppressor with morphogenetic effect on genitalia family member (SMG1) belongs to a family of phosphoinositide 3-kinase-related kinases and is the main kinase involved in nonsense-mediated mRNA decay. Recently, SMG1 was suggested as a novel potential tumor suppressor gene, particularly in hypoxic tumors. To investigate the function of SMG1 in acute myeloid leukemia (AML), we performed methylation-specific polymerase chain reaction and found that SMG1 was hypermethylated in the promoter region. SMG1 hypermethylation was found in 66% (33/50) of AML samples compared with none (0/14) of the normal controls. SMG1 mRNA was down-regulated in AML patients with hypermethylation status whereas it was readily expressed in patients without methylation. Moreover, treatment of AML cells with demethylating agent 5-aza-2'-deoxycytidine (decitabine) inhibited AML cell growth and induced apoptosis by reversing SMG1 methylation status and restoring SMG1 expression. On the other hand, knockdown of SMG1 by RNA interference inhibited apoptosis. We also found that mTOR expression level was negatively correlated to SMG1 expression in AML patients which indicated that SMG1 and mTOR maybe act antagonistically to regulate AML cell growth. In conclusion, our results indicate that SMG1 acts as a potential tumor suppressor with epigenetic regulation in AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Bone Marrow/metabolism
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA, Neoplasm/genetics
- Decitabine
- Down-Regulation
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Gene Expression Regulation, Leukemic/physiology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myelomonocytic, Acute/genetics
- Leukemia, Myelomonocytic, Acute/metabolism
- Male
- Middle Aged
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/physiology
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- TOR Serine-Threonine Kinases/physiology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
- Young Adult
Collapse
Affiliation(s)
- Yahui Du
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Peng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Min Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
43
|
Hindle MM, Martin SF, Noordally ZB, van Ooijen G, Barrios-Llerena ME, Simpson TI, Le Bihan T, Millar AJ. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species. BMC Genomics 2014; 15:640. [PMID: 25085202 PMCID: PMC4143559 DOI: 10.1186/1471-2164-15-640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. RESULTS Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. CONCLUSIONS We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, UK.
| |
Collapse
|
44
|
In vivo determination of direct targets of the nonsense-mediated decay pathway in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:485-96. [PMID: 24429422 PMCID: PMC3962487 DOI: 10.1534/g3.113.009357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a mRNA degradation pathway that regulates a significant portion of the transcriptome. The expression levels of numerous genes are known to be altered in NMD mutants, but it is not known which of these transcripts is a direct pathway target. Here, we present the first genome-wide analysis of direct NMD targeting in an intact animal. By using rapid reactivation of the NMD pathway in a Drosophila melanogaster NMD mutant and globally monitoring of changes in mRNA expression levels, we can distinguish between primary and secondary effects of NMD on gene expression. Using this procedure, we identified 168 candidate direct NMD targets in vivo. Remarkably, we found that 81% of direct target genes do not show increased expression levels in an NMD mutant, presumably due to feedback regulation. Because most previous studies have used up-regulation of mRNA expression as the only means to identify NMD-regulated transcripts, our results provide new directions for understanding the roles of the NMD pathway in endogenous gene regulation during animal development and physiology. For instance, we show clearly that direct target genes have longer 3′ untranslated regions compared with nontargets, suggesting long 3′ untranslated regions target mRNAs for NMD in vivo. In addition, we investigated the role of NMD in suppressing transcriptional noise and found that although the transposable element Copia is up-regulated in NMD mutants, this effect appears to be indirect.
Collapse
|