1
|
Khadka J, Trishla VS, Sannidhi S, Singiri JR, Grandhi R, Pesok A, Novoplansky N, Adler-Agmon Z, Grafi G. Revealing cis- and trans-regulatory elements underlying nuclear distribution and function of the Arabidopsis histone H2B.8 variant. BMC PLANT BIOLOGY 2024; 24:811. [PMID: 39198770 PMCID: PMC11351261 DOI: 10.1186/s12870-024-05532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
The H2B.8 variant has been diverged from other variants by its extended N-terminal region that possesses a conserved domain. We generated transgenic Arabidopsis plants expressing H2B.9 (class I), H2B.5 (class II) and H2B.8 (class III) fused to GFP under the 35 S promoter and studied their nuclear distribution and function. H2B.8-GFP showed peculiar nuclear localization at chromocenters in all cell types examined, while H2B.5-GFP and H2B.9-GFP displayed various patterns often dependent on cell types. H2B variants faithfully assembled onto nucleosomes showing no effect on nuclear organization; H2B.8-GFP appeared as three distinct isoforms in which one isoform appeared to be SUMOylated. Interestingly, transient expression in protoplasts revealed H2B.8 nuclear localization distinct from transgenic plants as it was restricted to the nuclear periphery generating a distinctive ring-like appearance accompanied by nuclear size reduction. This unique appearance was abolished by deletion of the N-terminal conserved domain or when H2B.8-GFP is transiently expressed in ddm1 protoplasts. GFP-TRAP-coupled proteome analysis uncovered H2B.8-partner proteins including H2A.W.12, which characterizes heterochromatin. Thus, our data highlight H2B.8 as a unique variant evolved in angiosperms to control chromatin compaction/aggregation and uncover cis- and trans-regulatory elements underlying its nuclear distribution and function.
Collapse
Affiliation(s)
- Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Nepal
| | - Vikas S Trishla
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Sasank Sannidhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Jeevan R Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Rohith Grandhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H9, Canada
| | - Anat Pesok
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - Zachor Adler-Agmon
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
- Morris Kahn Marine Research Station, University of Haifa, Haifa, 3498838, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.
| |
Collapse
|
2
|
Li L, Yang H, Zhao Y, Hu Q, Zhang X, Jiang T, Jiang H, Zheng B. ARID1 is required to regulate and reinforce H3K9me2 in sperm cells in Arabidopsis. Nat Commun 2024; 15:7078. [PMID: 39152128 PMCID: PMC11329518 DOI: 10.1038/s41467-024-51513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Heterochromatin de-condensation in companion gametic cells is conserved in both plants and animals. In plants, microspore undergoes asymmetric pollen mitosis (PMI) to produce a vegetative cell (VC) and a generative cell (GC). Subsequently, the GC undergoes pollen mitosis (PMII) to produce two sperm cells (SC). Consistent with heterochromatin de-condensation in the VC, H3K9me2, a heterochromatin mark, is barely detected in VC. However, how H3K9me2 is differentially regulated during pollen mitosis remains unclear. Here, we show that H3K9me2 is gradually evicted from the VC since PMI but remain unchanged in the GC and SC. ARID1, a pollen-specific transcription factor that facilitates PMII, promotes H3K9me2 maintenance in the GC/SC but slows down its eviction in the VC. The genomic targets of ARID1 mostly overlaps with H3K9me2 loci, and ARID1 recruits H3K9 methyltransferase SUVH6. Our results uncover that differential pattern of H3K9me2 between two cell types is regulated by ARID1 during pollen mitosis.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Huaihao Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qianqian Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaotuo Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hua Jiang
- The Leibniz Institute for Plant Genetics and Crop Plant Research, Stadt Seeland, Germany
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Sze H, Klodová B, Ward JM, Harper JF, Palanivelu R, Johnson MA, Honys D. A wave of specific transcript and protein accumulation accompanies pollen dehydration. PLANT PHYSIOLOGY 2024; 195:1775-1795. [PMID: 38530638 DOI: 10.1093/plphys/kiae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 03/28/2024]
Abstract
In flowering plants, male gametes are immotile and carried by dry pollen grains to the female organ. Dehydrated pollen is thought to withstand abiotic stress when grains are dispersed from the anther to the pistil, after which sperm cells are delivered via pollen tube growth for fertilization and seed set. Yet, the underlying molecular changes accompanying dehydration and the impact on pollen development are poorly understood. To gain a systems perspective, we analyzed published transcriptomes and proteomes of developing Arabidopsis thaliana pollen. Waves of transcripts are evident as microspores develop to bicellular, tricellular, and mature pollen. Between the "early"- and "late"-pollen-expressed genes, an unrecognized cluster of transcripts accumulated, including those encoding late-embryogenesis abundant (LEA), desiccation-related protein, transporters, lipid-droplet associated proteins, pectin modifiers, cysteine-rich proteins, and mRNA-binding proteins. Results suggest dehydration onset initiates after bicellular pollen is formed. Proteins accumulating in mature pollen like ribosomal proteins, initiation factors, and chaperones are likely components of mRNA-protein condensates resembling "stress" granules. Our analysis has revealed many new transcripts and proteins that accompany dehydration in developing pollen. Together with published functional studies, our results point to multiple processes, including (1) protect developing pollen from hyperosmotic stress, (2) remodel the endomembrane system and walls, (3) maintain energy metabolism, (4) stabilize presynthesized mRNA and proteins in condensates of dry pollen, and (5) equip pollen for compatibility determination at the stigma and for recovery at rehydration. These findings offer novel models and molecular candidates to further determine the mechanistic basis of dehydration and desiccation tolerance in plants.
Collapse
Affiliation(s)
- Heven Sze
- Department Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Božena Klodová
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Praha 2, 128 00, Czech Republic
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | | | - Mark A Johnson
- Department of Molecular, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
| |
Collapse
|
4
|
Song Y, Chang Z, Feng Y, Wang T, Liu L. Whole-genome landscape of histone H3K4me3 modification during sperm cell lineage development in tomato. BMC PLANT BIOLOGY 2024; 24:610. [PMID: 38926660 PMCID: PMC11210149 DOI: 10.1186/s12870-024-05318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND During male gametogenesis of flowering plants, sperm cell lineage (microspores, generative cells, and sperm cells) differentiated from somatic cells and acquired different cell fates. Trimethylation of histone H3 on lysine 4 (H3K4me3) epigenetically contributes to this process, however, it remained unclear how H3K4me3 influences the gene expression in each cell type. Here, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) to obtain a genome-wide landscape of H3K4me3 during sperm cell lineage development in tomato (Solanum lycopersicum). RESULTS We show that H3K4me3 peaks were mainly enriched in the promoter regions, and intergenic H3K4me3 peaks expanded as sperm cell lineage differentiated from somatic cells. H3K4me3 was generally positively associated with transcript abundance and served as a better indicator of gene expression in somatic and vegetative cells, compared to sperm cell lineage. H3K4me3 was mutually exclusive with DNA methylation at 3' proximal of the transcription start sites. The microspore maintained the H3K4me3 features of somatic cells, while generative cells and sperm cells shared an almost identical H3K4me3 pattern which differed from that of the vegetative cell. After microspore division, significant loss of H3K4me3 in genes related to brassinosteroid and cytokinin signaling was observed in generative cells and vegetative cells, respectively. CONCLUSIONS Our results suggest the asymmetric division of the microspore significantly reshapes the genome-wide distribution of H3K4me3. Selective loss of H3K4me3 in genes related to hormone signaling may contribute to functional differentiation of sperm cell lineage. This work provides new resource data for the epigenetic studies of gametogenesis in plants.
Collapse
Affiliation(s)
- Yunyun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhikai Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
5
|
Leyden MR, Michalik P, Baruffaldi L, Mahmood S, Kalani L, Hunt DF, Eirin-Lopez JM, Andrade MC, Shabanowitz J, Ausió J. The protamines of the noble false widow spider Steatoda nobilis provide an example of liquid-liquid phase separation chromatin transitions during spermiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597381. [PMID: 38895387 PMCID: PMC11185589 DOI: 10.1101/2024.06.04.597381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
While there is extensive information about sperm nuclear basic proteins (SNBP) in vertebrates, there is very little information about Arthropoda by comparison. This paper aims to contribute to filling this gap by analyzing these proteins in the sperm of the noble false widow spider Steatoda nobilis (Order Araneae, Family Theridiidae). To this end, we have developed a protein extraction method that allows the extraction of cysteine-containing protamines suitable for the preparation and analysis of SNBPs from samples where the amount of starting tissue material is limited. We carried out top-down mass spectrometry sequencing and molecular phylogenetic analyses to characterize the protamines of S. nobilis and other spiders. We also used electron microscopy to analyze the chromatin organization of the sperm, and we found it to exhibit liquid-liquid phase spinodal decomposition during the late stages of spermiogenesis. These studies further our knowledge of the distribution of SNBPs within the animal kingdom and provide additional support for a proposed evolutionary origin of many protamines from a histone H1 (H5) replication-independent precursor.
Collapse
Affiliation(s)
- Melissa R. Leyden
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Peter Michalik
- Zoologisches Institut und Museum, Universität Greifswald, Greifswald, Germany
| | - Luciana Baruffaldi
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Susheen Mahmood
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 2Y2, Canada
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jose Maria Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
| | - Maydianne C.B. Andrade
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 2Y2, Canada
| |
Collapse
|
6
|
Ausió J, Knox A, Kim BH, Humphrey E, Gowen B, Minamino N, von Aderkas P. The sperm nuclear basic proteins of the sword fern ( Polystichum munitum). Biochem Cell Biol 2024; 102:285-290. [PMID: 38346284 DOI: 10.1139/bcb-2023-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Sperm nuclear basic proteins (SNBPs) were isolated from extracted antheridia-rich male gametophytes raised from spores of the swordfern, Polystichum munitum. Electrophoretic (acetic acid-urea PAGE and SDS-PAGE) and chromatographic (rp-HPLC) characterization of the nuclear proteins exhibited the characteristics of the histone (H-type). In both types of gel electrophoresis, histones H1, H2A, and H2B showed an altered electrophoretic mobility corresponding to that which is routinely observed for the histones in other plants. Histones present during spermatogenesis of the fern P. munitum were compared with the few current SNBPs known to be present in higher and lower evolutionary plant clades. A transition from an early protamine (P-type) SNBPs in charophytes and bryophytes to the (H-type) SNBP observed here is reminiscent of similar reversions observed in the animal kingdom.
Collapse
Affiliation(s)
- Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Alistair Knox
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Elaine Humphrey
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Brent Gowen
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
7
|
Leyden MR, Gowen B, Gonzalez-Romero R, Eirin-Lopez JM, Kim BH, Hayashi F, McCartney J, Zhang PC, Kubo-Irie M, Shabanowitz J, Hunt DF, Ferree P, Kasinsky H, Ausió J. Protamines and the sperm nuclear basic proteins Pandora's Box of insects. Biochem Cell Biol 2024; 102:238-251. [PMID: 38408323 DOI: 10.1139/bcb-2023-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Insects are the largest group of animals when it comes to the number and diversity of species. Yet, with the exception of Drosophila, no information is currently available on the primary structure of their sperm nuclear basic proteins (SNBPs). This paper represents the first attempt in this regard and provides information about six species of Neoptera: Poecillimon thessalicus, Graptosaltria nigrofuscata, Apis mellifera, Nasonia vitripennis, Parachauliodes continentalis, and Tribolium castaneum. The SNBPs of these species were characterized by acetic acid urea gel electrophoresis (AU-PAGE) and high-performance liquid chromatography fractionated. Protein sequencing was obtained using a combination of mass spectrometry sequencing, Edman N-terminal degradation sequencing and genome mining. While the SNBPs of several of these species exhibit a canonical arginine-rich protamine nature, a few of them exhibit a protamine-like composition. They appear to be the products of extensive cleavage processing from a precursor protein which are sometimes further processed by other post-translational modifications that are likely involved in the chromatin transitions observed during spermiogenesis in these organisms.
Collapse
Affiliation(s)
- Melissa R Leyden
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Brent Gowen
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Rodrigo Gonzalez-Romero
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jose Maria Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, USA
- Florida International University, Miami, FL, USA
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Fumio Hayashi
- Department of Biology, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | - Jay McCartney
- Institute of Natural Sciences, Massey University, Palmerston North, Manawatu, New Zealand
| | - Patrick C Zhang
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Miyoko Kubo-Irie
- Biological Laboratory, The Open University of Japan, Wakaba, Mihama-ku, Chiba, 261-8506, Japan
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA
| | - Patrick Ferree
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Harold Kasinsky
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
8
|
Bergis-Ser C, Reji M, Latrasse D, Bergounioux C, Benhamed M, Raynaud C. Chromatin dynamics and RNA metabolism are double-edged swords for the maintenance of plant genome integrity. NATURE PLANTS 2024; 10:857-873. [PMID: 38658791 DOI: 10.1038/s41477-024-01678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Maintenance of genome integrity is an essential process in all organisms. Mechanisms avoiding the formation of DNA lesions or mutations are well described in animals because of their relevance to human health and cancer. In plants, they are of growing interest because DNA damage accumulation is increasingly recognized as one of the consequences of stress. Although the cellular response to DNA damage is mostly studied in response to genotoxic treatments, the main source of DNA lesions is cellular activity itself. This can occur through the production of reactive oxygen species as well as DNA processing mechanisms such as DNA replication or transcription and chromatin dynamics. In addition, how lesions are formed and repaired is greatly influenced by chromatin features and dynamics and by DNA and RNA metabolism. Notably, actively transcribed regions or replicating DNA, because they are less condensed and are sites of DNA processing, are more exposed to DNA damage. However, at the same time, a wealth of cellular mechanisms cooperate to favour DNA repair at these genomic loci. These intricate relationships that shape the distribution of mutations along the genome have been studied extensively in animals but much less in plants. In this Review, we summarize how chromatin dynamics influence lesion formation and DNA repair in plants, providing a comprehensive view of current knowledge and highlighting open questions with regard to what is known in other organisms.
Collapse
Affiliation(s)
- Clara Bergis-Ser
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Meega Reji
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, India
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette, France
- Institut Universitaire de France, Orsay, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France.
| |
Collapse
|
9
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Mahmood T, He S, Abdullah M, Sajjad M, Jia Y, Ahmar S, Fu G, Chen B, Du X. Epigenetic insight into floral transition and seed development in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111926. [PMID: 37984609 DOI: 10.1016/j.plantsci.2023.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Seasonal changes are crucial in shifting the developmental stages from the vegetative phase to the reproductive phase in plants, enabling them to flower under optimal conditions. Plants grown at different latitudes sense and interpret these seasonal variations, such as changes in day length (photoperiod) and exposure to cold winter temperatures (vernalization). These environmental factors influence the expression of various genes related to flowering. Plants have evolved to stimulate a rapid response to environmental conditions through genetic and epigenetic mechanisms. Multiple epigenetic regulation systems have emerged in plants to interpret environmental signals. During the transition to the flowering phase, changes in gene expression are facilitated by chromatin remodeling and small RNAs interference, particularly in annual and perennial plants. Key flowering regulators, such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), interact with various factors and undergo chromatin remodeling in response to seasonal cues. The Polycomb silencing complex (PRC) controls the expression of flowering-related genes in photoperiodic flowering regulation. Under vernalization-dependent flowering, FLC acts as a potent flowering suppressor by downregulating the gene expression of various flower-promoting genes. Eventually, PRCs are critically involved in the regulation of FLC and FT locus interacting with several key genes in photoperiod and vernalization. Subsequently, PRCs also regulate Epigenetical events during gametogenesis and seed development as a driving force. Furthermore, DNA methylation in the context of CHG, CG, and CHH methylation plays a critical role in embryogenesis. DNA glycosylase DME (DEMETER) is responsible for demethylation during seed development. Thus, the review briefly discusses flowering regulation through light signaling, day length variation, temperature variation and seed development in plants.
Collapse
Affiliation(s)
- Tahir Mahmood
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Muhammad Abdullah
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China.
| |
Collapse
|
11
|
Wang B, Liang N, Shen X, Xie Z, Zhang L, Tian B, Yuan Y, Guo J, Zhang X, Wei F, Wei X. Cytological and transcriptomic analyses provide insights into the pollen fertility of synthetic allodiploid Brassica juncea hybrids. PLANT CELL REPORTS 2023; 43:23. [PMID: 38150101 DOI: 10.1007/s00299-023-03089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE Imbalanced chromosomes and cell cycle arrest, along with down-regulated genes in DNA damage repair and sperm cell differentiation, caused pollen abortion in synthetic allodiploid Brassica juncea hybrids. Interspecific hybridization is considered to be a major pathway for species formation and evolution in angiosperms, but the occurrence of pollen abortion in the hybrids is common, prompting us to recheck male gamete development in allodiploid hybrids after the initial combination of different genomes. Here, we investigated the several key meiotic and mitotic events during pollen development using the newly synthesised allodiploid B. juncea hybrids (AB, 2n = 2× = 18) as a model system. Our results demonstrated the partial synapsis and pairing of non-homologous chromosomes concurrent with chaotic spindle assembly, affected chromosome assortment and distribution during meiosis, which finally caused difference in genetic constitution amongst the final tetrads. The mitotic cell cycle arrest during microspore development resulted in the production of anucleate pollen cells. Transcription analysis showed that sets of key genes regulating cyclin (CYCA1;2 and CYCA2;3), DNA damage repair (DMC1, NBS1 and MMD1), and ubiquitin-proteasome pathway (SINAT4 and UBC) were largely downregulated at the early pollen meiosis stages, and those genes involved in sperm cell differentiation (DUO1, PIRL1, PIRL9 and LBD27) and pollen wall synthesis (PME48, VGDH11 and COBL10) were mostly repressed at the late pollen mitosis stages in the synthetic allodiploid B. juncea hybrids (AB). In conclusion, this study elucidated the related mechanisms affecting pollen fertility during male gametophyte development at the cytological and transcriptomic levels in the synthetic allodiploid B. juncea hybrids.
Collapse
Affiliation(s)
- Boyang Wang
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Niannian Liang
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Xiaohan Shen
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Jialin Guo
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resource and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Somers J, Nelms B. The sporophyte-to-gametophyte transition: The haploid generation comes of age. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102416. [PMID: 37441836 DOI: 10.1016/j.pbi.2023.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Flowering plants alternate between two multicellular generations: the diploid sporophyte and haploid gametophyte. Despite its small size, the gametophyte has significant impacts on plant genetics, evolution, and breeding. Each male pollen grain and female embryo sac is a multicellular organism with independent gene expression, a functioning metabolism, and specialized cell types. In this review, we describe recent progress in understanding the process in which the haploid genome takes over expression from its diploid parent - the sporophyte-to-gametophyte transition. The focus is on pollen, but similar concepts may also apply to the female gametophyte. Technological advances in single-cell genomics offer the opportunity to characterize haploid gene expression in unprecedented detail, positioning the field to make rapid progress.
Collapse
Affiliation(s)
- Julian Somers
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Brad Nelms
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Flores-Tornero M, Becker JD. 50 years of sperm cell isolations: from structural to omic studies. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad117. [PMID: 37025026 DOI: 10.1093/jxb/erad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Indexed: 06/19/2023]
Abstract
The fusion of male and female gametes is a fundamental process in the perpetuation and diversification of species. During the last 50 years, significant efforts have been made to isolate and characterize sperm cells from flowering plants, and to identify how these cells interact with female gametes to achieve double fertilization. The first techniques and analytical approaches not only provided structural and biochemical characterizations of plant sperm cells but also paved the way for in vitro fertilization studies. Further technological advances then led to unique insights into sperm biology at transcriptomic, proteomic and epigenetic level. Starting with a historical overview of sperm cell isolation techniques, we provide examples of how these contributed to create our current knowledge of sperm cell biology, and point out remaining challenges.
Collapse
Affiliation(s)
- María Flores-Tornero
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157 Portugal
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157 Portugal
| |
Collapse
|
14
|
Valero-Rubira I, Castillo AM, Burrell MÁ, Vallés MP. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1058421. [PMID: 36699843 PMCID: PMC9868772 DOI: 10.3389/fpls.2022.1058421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Reprogramming of microspores development towards embryogenesis mediated by stress treatment constitutes the basis of doubled haploid production. Recently, compounds that alter histone post-translational modifications (PTMs) have been reported to enhance microspore embryogenesis (ME), by altering histones acetylation or methylation. However, epigenetic mechanisms underlying ME induction efficiency are poorly understood. In this study, the epigenetic dynamics and the expression of genes associated with histone PTMs and ME induction were studied in two bread wheat cultivars with different ME response. Microspores isolated at 0, 3 and 5 days, treated with 0.7M mannitol (MAN) and 0.7M mannitol plus 0.4µM trichostatin A (TSA), which induced ME more efficiently, were analyzed. An additional control of gametophytic development was included. Microspores epigenetic state at the onset of ME induction was distinctive between cultivars by the ratio of H3 variants and their acetylated forms, the localization and percentage of labeled microspores with H3K9ac, H4K5ac, H4K16ac, H3K9me2 and H3K27me3, and the expression of genes related to pollen development. These results indicated that microspores of the high responding cultivar could be at a less advanced stage in pollen development. MAN and TSA resulted in a hyperacetylation of H3.2, with a greater effect of TSA. Histone PTMs were differentially affected by both treatments, with acetylation being most concerned. The effect of TSA was observed in the H4K5ac localization pattern at 3dT in the mid-low responding cultivar. Three gene networks linked to ME response were identified. TaHDT1, TaHAG2, TaYAO, TaNFD6-A, TabZIPF1 and TaAGO802-B, associated with pollen development, were down-regulated. TaHDA15, TaHAG3, TaHAM, TaYUC11D, Ta-2B-LBD16 TaMS1 and TaDRM3 constituted a network implicated in morphological changes by auxin signaling and cell wall modification up-regulated at 3dT. The last network included TaHDA18, TaHAC1, TaHAC4, TaABI5, TaATG18fD, TaSDG1a-7A and was related to ABA and ethylene hormone signaling pathways, DNA methylation and autophagy processes, reaching the highest expression at 5dT. The results indicated that TSA mainly modified the regulation of genes related to pollen and auxin signaling. This study represents a breakthrough in identifying the epigenetic dynamics and the molecular mechanisms governing ME induction efficiency, with relevance to recalcitrant wheat genotypes and other crops.
Collapse
Affiliation(s)
- Isabel Valero-Rubira
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - Ana María Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - María Ángela Burrell
- Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Maria Pilar Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
15
|
Lorenzo CD, Debray K, Herwegh D, Develtere W, Impens L, Schaumont D, Vandeputte W, Aesaert S, Coussens G, De Boe Y, Demuynck K, Van Hautegem T, Pauwels L, Jacobs TB, Ruttink T, Nelissen H, Inzé D. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. THE PLANT CELL 2023; 35:218-238. [PMID: 36066192 PMCID: PMC9806654 DOI: 10.1093/plcell/koac243] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/30/2022] [Indexed: 05/04/2023]
Abstract
Ensuring food security for an ever-growing global population while adapting to climate change is the main challenge for agriculture in the 21st century. Although new technologies are being applied to tackle this problem, we are approaching a plateau in crop improvement using conventional breeding. Recent advances in CRISPR/Cas9-mediated gene engineering have paved the way to accelerate plant breeding to meet this increasing demand. However, many traits are governed by multiple small-effect genes operating in complex interactive networks. Here, we present the gene discovery pipeline BREEDIT, which combines multiplex genome editing of whole gene families with crossing schemes to improve complex traits such as yield and drought tolerance. We induced gene knockouts in 48 growth-related genes into maize (Zea mays) using CRISPR/Cas9 and generated a collection of over 1,000 gene-edited plants. The edited populations displayed (on average) 5%-10% increases in leaf length and up to 20% increases in leaf width compared with the controls. For each gene family, edits in subsets of genes could be associated with enhanced traits, allowing us to reduce the gene space to be considered for trait improvement. BREEDIT could be rapidly applied to generate a diverse collection of mutants to identify promising gene modifications for later use in breeding programs.
Collapse
Affiliation(s)
| | | | - Denia Herwegh
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ward Develtere
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Lennert Impens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dries Schaumont
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Wout Vandeputte
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Stijn Aesaert
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Griet Coussens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Yara De Boe
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kirin Demuynck
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Van Hautegem
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Laurens Pauwels
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Thomas B Jacobs
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | | |
Collapse
|
16
|
He S, Feng X. DNA methylation dynamics during germline development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2240-2251. [PMID: 36478632 PMCID: PMC10108260 DOI: 10.1111/jipb.13422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
DNA methylation plays essential homeostatic functions in eukaryotic genomes. In animals, DNA methylation is also developmentally regulated and, in turn, regulates development. In the past two decades, huge research effort has endorsed the understanding that DNA methylation plays a similar role in plant development, especially during sexual reproduction. The power of whole-genome sequencing and cell isolation techniques, as well as bioinformatics tools, have enabled recent studies to reveal dynamic changes in DNA methylation during germline development. Furthermore, the combination of these technological advances with genetics, developmental biology and cell biology tools has revealed functional methylation reprogramming events that control gene and transposon activities in flowering plant germlines. In this review, we discuss the major advances in our knowledge of DNA methylation dynamics during male and female germline development in flowering plants.
Collapse
Affiliation(s)
- Shengbo He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Xiaoqi Feng
- John Innes Centre, Colney LaneNorwichNR4 7UHUK
| |
Collapse
|
17
|
Buttress T, He S, Wang L, Zhou S, Saalbach G, Vickers M, Li G, Li P, Feng X. Histone H2B.8 compacts flowering plant sperm through chromatin phase separation. Nature 2022; 611:614-622. [PMID: 36323776 PMCID: PMC9668745 DOI: 10.1038/s41586-022-05386-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Sperm chromatin is typically transformed by protamines into a compact and transcriptionally inactive state1,2. Sperm cells of flowering plants lack protamines, yet they have small, transcriptionally active nuclei with chromatin condensed through an unknown mechanism3,4. Here we show that a histone variant, H2B.8, mediates sperm chromatin and nuclear condensation in Arabidopsis thaliana. Loss of H2B.8 causes enlarged sperm nuclei with dispersed chromatin, whereas ectopic expression in somatic cells produces smaller nuclei with aggregated chromatin. This result demonstrates that H2B.8 is sufficient for chromatin condensation. H2B.8 aggregates transcriptionally inactive AT-rich chromatin into phase-separated condensates, which facilitates nuclear compaction without reducing transcription. Reciprocal crosses show that mutation of h2b.8 reduces male transmission, which suggests that H2B.8-mediated sperm compaction is important for fertility. Altogether, our results reveal a new mechanism of nuclear compaction through global aggregation of unexpressed chromatin. We propose that H2B.8 is an evolutionary innovation of flowering plants that achieves nuclear condensation compatible with active transcription.
Collapse
Affiliation(s)
- Toby Buttress
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Shengbo He
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Liang Wang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Shaoli Zhou
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Gerhard Saalbach
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Martin Vickers
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK
| | - Guohong Li
- Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Pilong Li
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Xiaoqi Feng
- Cell and Developmental Biology Department, John Innes Centre, Norwich, UK.
| |
Collapse
|
18
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Huang X, Sun MX. H3K27 methylation regulates the fate of two cell lineages in male gametophytes. THE PLANT CELL 2022; 34:2989-3005. [PMID: 35543471 PMCID: PMC9338816 DOI: 10.1093/plcell/koac136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/03/2022] [Indexed: 05/14/2023]
Abstract
During angiosperm male gametogenesis, microspores divide to produce a vegetative cell (VC) and a male germline (MG), each with distinct cell fates. The mechanism underlying determination of the MG cell/VC fate remains an important area of research, with many unanswered questions. Here, we report that H3K27me3 is essential for VC fate commitment in male Arabidopsis thaliana gametophytes; H3K27me3 erasure contributes to MG cell fate initiation. VC-targeted H3K27me3 erasure disturbed VC development and shifted the VC fate toward a gamete destination, which suggests that MG cells require H3K27me3 erasure to trigger gamete cell fate. Multi-omics and cytological analyses confirmed the occurrence of extensive cell identity transition due to H3K27me3 erasure. Therefore, we experimentally confirmed that MG cell/VC fate is epigenetically regulated. H3K27 methylation plays a critical role in guiding MG cell/VC fate determination for pollen fertility in Arabidopsis. Our work also provides evidence for two previous hypotheses: the germline cell fate is specified by the differential distribution of unknown determinants and VC maintains the default microspore program (i.e. the H3K27me3 setting) while MG requires reprogramming.
Collapse
Affiliation(s)
- Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
20
|
Gu N, Chen C, Kabeya Y, Hasebe M, Tamada Y. Topoisomerase 1α is required for synchronous spermatogenesis in Physcomitrium patens. THE NEW PHYTOLOGIST 2022; 234:137-148. [PMID: 35067949 DOI: 10.1111/nph.17983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
DNA topoisomerase 1 (TOP1) plays general roles in DNA replication and transcription by regulating DNA topology in land plants and metazoans. TOP1 is also involved in specific developmental events; however, whether TOP1 plays a conserved developmental role among multicellular organisms is unknown. Here, we investigated the developmental roles of TOP1 in the moss Physcomitrium (Physcomitrella) patens with gene targeting, microscopy, 3D image segmentation and crossing experiments. We discovered that the disruption of TOP1α, but not its paralogue TOP1β, leads to a defect in fertilisation and subsequent sporophyte formation in P. patens. In the top1α mutant, the egg cell was functional for fertilisation, while sperm cells were fewer and infertile with disordered structures. We observed that the nuclei volume of wild-type sperm cells synchronously decreases during antheridium development, indicating chromatin condensation towards the compact sperm head. By contrast, the top1α mutant exhibited attenuated cell divisions and asynchronous and defective contraction of the nuclei of sperm cells throughout spermatogenesis. These results indicate that TOP1α is involved in cell division and chromatin condensation during spermatogenesis in P. patens. Our results suggest that the regulation of DNA topology by TOP1 plays a key role in spermatogenesis in both land plants and metazoans.
Collapse
Affiliation(s)
- Nan Gu
- Robotics, Engineering and Agriculture-technology Laboratory (REAL), Utsunomiya University, Utsunomiya, 321-8585, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, 321-8585, Japan
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang, 550025, China
| | - Yukiko Kabeya
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan
| | - Yosuke Tamada
- Robotics, Engineering and Agriculture-technology Laboratory (REAL), Utsunomiya University, Utsunomiya, 321-8585, Japan
- School of Engineering, Utsunomiya University, Utsunomiya, 321-8585, Japan
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, 444-8585, Japan
- Center for Optical Research & Education (CORE), Utsunomiya University, Utsunomiya, 321-8585, Japan
| |
Collapse
|
21
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
22
|
Li C, Gent JI, Xu H, Fu H, Russell SD, Sundaresan V. Resetting of the 24-nt siRNA landscape in rice zygotes. Genome Res 2022; 32:309-323. [PMID: 34949668 PMCID: PMC8805726 DOI: 10.1101/gr.275981.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/19/2021] [Indexed: 11/24/2022]
Abstract
The zygote, a totipotent stem cell, is crucial to the life cycle of sexually reproducing organisms. It is produced by the fusion of two differentiated cells-the egg and sperm, which in plants have radically different siRNA transcriptomes from each other and from multicellular embryos. Owing to technical challenges, the epigenetic changes that accompany the transition from differentiated gametes to totipotent zygote are poorly understood. Because siRNAs serve as both regulators and outputs of the epigenome, we characterized small RNA transcriptomes of zygotes from rice. Zygote small RNAs exhibit extensive maternal carryover and an apparent lack of paternal contribution, indicated by absence of sperm signature siRNAs. Zygote formation is accompanied by widespread redistribution of 24-nt siRNAs relative to gametes, such that ∼70% of the zygote siRNA loci do not overlap any egg cell siRNA loci. Newly detected siRNA loci in zygote are gene-proximal and not associated with centromeric heterochromatin, similar to canonical siRNAs, in sharp contrast to gametic siRNA loci that are gene-distal and heterochromatic. In addition, zygote but not egg siRNA loci are associated with high DNA methylation in the mature embryo. Thus, the zygote begins transitioning before the first embryonic division to an siRNA profile that is associated with future RdDM in embryogenesis. These findings indicate that, in addition to changes in gene expression, the transition to totipotency in the plant zygote is accompanied by resetting of the epigenetic reprogramming that occurred during gamete formation.
Collapse
Affiliation(s)
- Chenxin Li
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Hengping Xu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Hong Fu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Scott D Russell
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, California 95616, USA
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
23
|
Abstract
Flowering plants alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. Pollen actively transcribes its haploid genome, providing phenotypic diversity even among pollen grains from a single plant. In this study, we used allele-specific RNA sequencing of single pollen precursors to follow the shift to haploid expression in maize pollen. We observed widespread biallelic expression for 11 days after meiosis, indicating that transcripts synthesized by the diploid sporophyte persist long into the haploid phase. Subsequently, there was a rapid and global conversion to monoallelic expression at pollen mitosis I, driven by active new transcription from the haploid genome. Genes showed evidence of increased purifying selection if they were expressed after (but not before) pollen mitosis I. This work establishes the timing during which haploid selection may act in pollen.
Collapse
Affiliation(s)
- Brad Nelms
- Department of Plant Biology, University of Georgia, Athens, GA 30606, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Vigneau J, Borg M. The epigenetic origin of life history transitions in plants and algae. PLANT REPRODUCTION 2021; 34:267-285. [PMID: 34236522 PMCID: PMC8566409 DOI: 10.1007/s00497-021-00422-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 05/17/2023]
Abstract
Plants and algae have a complex life history that transitions between distinct life forms called the sporophyte and the gametophyte. This phenomenon-called the alternation of generations-has fascinated botanists and phycologists for over 170 years. Despite the mesmerizing array of life histories described in plants and algae, we are only now beginning to learn about the molecular mechanisms controlling them and how they evolved. Epigenetic silencing plays an essential role in regulating gene expression during multicellular development in eukaryotes, raising questions about its impact on the life history strategy of plants and algae. Here, we trace the origin and function of epigenetic mechanisms across the plant kingdom, from unicellular green algae through to angiosperms, and attempt to reconstruct the evolutionary steps that influenced life history transitions during plant evolution. Central to this evolutionary scenario is the adaption of epigenetic silencing from a mechanism of genome defense to the repression and control of alternating generations. We extend our discussion beyond the green lineage and highlight the peculiar case of the brown algae. Unlike their unicellular diatom relatives, brown algae lack epigenetic silencing pathways common to animals and plants yet display complex life histories, hinting at the emergence of novel life history controls during stramenopile evolution.
Collapse
Affiliation(s)
- Jérômine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
25
|
Huang J, Dong J, Qu LJ. From birth to function: Male gametophyte development in flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102118. [PMID: 34625367 PMCID: PMC9039994 DOI: 10.1016/j.pbi.2021.102118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 05/08/2023]
Abstract
Male germline development in flowering plants involves two distinct and successive phases, microsporogenesis and microgametogenesis, which involve one meiosis followed by two rounds of mitosis. Many aspects of distinctions after mitosis between the vegetative cell and the male germ cells are seen, from morphology to structure, and the differential functions of the two cell types in the male gametophyte are differentially needed and required for double fertilization. The two sperm cells, carriers of the hereditary substances, depend on the vegetative cell/pollen tube to be delivered to the female gametophyte for double fertilization. Thus, the intercellular communication and coordinated activity within the male gametophyte probably represent the most subtle regulation in flowering plants to guarantee the success of reproduction. This review will focus on what we have known about the differentiation process and the functional diversification of the vegetative cell and the male germ cell, the most crucial cell types for plant fertility and crop production.
Collapse
Affiliation(s)
- Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08901, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08901, USA.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China.
| |
Collapse
|
26
|
Zhou S, Li X, Liu Q, Zhao Y, Jiang W, Wu A, Zhou DX. DNA demethylases remodel DNA methylation in rice gametes and zygote and are required for reproduction. MOLECULAR PLANT 2021; 14:1569-1583. [PMID: 34116223 DOI: 10.1016/j.molp.2021.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/07/2021] [Accepted: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Fertilization constitutes a critical step in the plant life cycle during which the gamete genomes undergo chromatin dynamics in preparation for embryogenesis. In mammals, parental chromatin is extensively reprogrammed through the global erasure of DNA methylation. However, in flowering plants it remains unclear whether and how DNA methylation is remodeled in gametes and after fertilization in the zygote. In this study, we characterize DNA methylation patterns and investigate the function of DNA glycosylases in rice eggs, sperm, and unicellular zygotes and during embryogenesis. We found that DNA methylation is locally reconfigured after fertilization and is intensified during embryogenesis. Genetic, epigenomic, and transcriptomic analysis revealed that three rice DNA glycosylases, DNG702, DNG701, and DNG704, demethylate DNA at distinct genomic regions in the gametes and the zygote, and are required for zygotic gene expression and development. Collectively, these results indicate that active DNA demethylation takes place in the gametes and the zygote to locally remodel DNA methylation, which is critical for egg and zygote gene expression and reproduction in rice.
Collapse
Affiliation(s)
- Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xue Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Wei Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Anqi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China; Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
27
|
Borg M, Jiang D, Berger F. Histone variants take center stage in shaping the epigenome. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101991. [PMID: 33434757 DOI: 10.1016/j.pbi.2020.101991] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 05/28/2023]
Abstract
The dynamic properties of the nucleosome are central to genomic activity. Variants of the core histones that form the nucleosome play a pivotal role in modulating nucleosome structure and function. Despite often small differences in sequence, histone variants display remarkable diversity in genomic deposition and post-translational modification. Here, we summarize the roles played by histone variants in the establishment, maintenance and reprogramming of plant chromatin landscapes, with a focus on histone H3 variants. Deposition of replicative H3.1 during DNA replication controls epigenetic inheritance, while local replacement of H3.1 with H3.3 marks cells undergoing terminal differentiation. Deposition of specialized H3 variants in specific cell types is emerging as a novel mechanism of selective epigenetic reprogramming during the plant life cycle.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
28
|
Liu L, Wang T. Male gametophyte development in flowering plants: A story of quarantine and sacrifice. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153365. [PMID: 33548696 DOI: 10.1016/j.jplph.2021.153365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 05/19/2023]
Abstract
Over 160 years ago, scientists made the first microscopic observations of angiosperm pollen. Unlike in animals, male meiosis in angiosperms produces a haploid microspore that undergoes one asymmetric division to form a vegetative cell and a generative cell. These two cells have distinct fates: the vegetative cell exits the cell cycle and elongates to form a tip-growing pollen tube; the generative cell divides once more in the pollen grain or within the growing pollen tube to form a pair of sperm cells. The concept that male germ cells are less active than the vegetative cell came from biochemical analyses and pollen structure anatomy early in the last century and is supported by the pollen transcriptome data of the last decade. However, the mechanism of how and when the transcriptional repression in male germ cells occurs is still not fully understood. In this review, we provide a brief account of the cytological and metabolic differentiation between the vegetative cell and male germ cells, with emphasis on the role of temporary callose walls, dynamic nuclear pore density, transcription repression, and histone variants. We further discuss the intercellular movement of small interfering RNA (siRNA) derived from transposable elements (TEs) and reexamine the function of TE expression in male germ cells.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
29
|
Huang X, Sun MX. Epigenetic regulation and intercellular communication during male gametophyte development. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153391. [PMID: 33647786 DOI: 10.1016/j.jplph.2021.153391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The male gametophyte of angiosperms has long been recognized as an ideal system for the study of the molecular mechanisms regulating cell fate determination. Recent findings on histone variants in two cell lineages, vegetative-cell-derived small interfering RNA and transposable element expression provide new power for relevant investigations.
Collapse
Affiliation(s)
- Xiaorong Huang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Meng-Xiang Sun
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
30
|
Papareddy RK, Nodine MD. Plant Epigenetics: Propelling DNA Methylation Variation across the Cell Cycle. Curr Biol 2021; 31:R129-R131. [PMID: 33561411 DOI: 10.1016/j.cub.2020.11.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DNA methylation is reconfigured during male reproduction in plants, but little is known regarding the mechanisms controlling these epigenetic dynamics. New research highlights how the cell cycle can influence DNA methylation dynamics observed during male gametogenesis and may induce epigenetic variation in clonally propagated plants.
Collapse
Affiliation(s)
- Ranjith K Papareddy
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
31
|
Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD, Twell D, Berger F. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 2021; 10:e61894. [PMID: 33491647 PMCID: PMC7920552 DOI: 10.7554/elife.61894] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Alternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated cis-regulatory elements. This event is associated with dramatic changes in chromatin accessibility and transcriptional reprogramming. In contrast, the global loss of H3K27me3 in the haploid form shapes a chromatin accessibility landscape that is poised to re-initiate the transition back to diploid life after fertilisation. Hence, distinct epigenetic reprogramming events rewire transcription through major reorganisation of the regulatory epigenome to guide the alternation of generations in flowering plants.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | | | - Rodolphe Dombey
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - David Twell
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
- Department of Genetics, University of LeicesterLeicesterUnited Kingdom
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| |
Collapse
|
32
|
Gutzat R, Mittelsten Scheid O. Preparing Chromatin and RNA from Rare Cell Types with Fluorescence-Activated Nuclear Sorting (FANS). Methods Mol Biol 2020; 2093:95-105. [PMID: 32088891 DOI: 10.1007/978-1-0716-0179-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The application of fluorescent tags to generate cell type-specific translational and transcriptional reporter lines is routine in plants, but separation of different cell types for downstream analyses is hampered by the presence of cell walls and tight connections between cells. Enzymatic removal of cell walls induces a wound response, dedifferentiation, or reprogramming of the resulting protoplasts. Their osmotic and mechanical instability and their large size range are challenging for FACS, a flow -sorting procedure based on differential expression of fluorescent tags. In contrast, plant nuclei are relatively robust and easy to isolate. Here, we describe a protocol for fluorescence-activated nuclear sorting (FANS) that allows efficient purification of very few fluorescence-tagged nuclei from a large background of non-labeled tissue. Purified nuclei are suitable for genome, epigenome, transcriptome, or proteome analyses. We describe in detail how to analyze nuclear RNA and DNA methylation from sorted nuclei representing the limited number of stem cells in the shoot apical meristem of Arabidopsis.
Collapse
Affiliation(s)
- Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
33
|
Molaro A, Wood AJ, Janssens D, Kindelay SM, Eickbush MT, Wu S, Singh P, Muller CH, Henikoff S, Malik HS. Biparental contributions of the H2A.B histone variant control embryonic development in mice. PLoS Biol 2020; 18:e3001001. [PMID: 33362208 PMCID: PMC7757805 DOI: 10.1371/journal.pbio.3001001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Histone variants expand chromatin functions in eukaryote genomes. H2A.B genes are testis-expressed short histone H2A variants that arose in placental mammals. Their biological functions remain largely unknown. To investigate their function, we generated a knockout (KO) model that disrupts all 3 H2A.B genes in mice. We show that H2A.B KO males have globally altered chromatin structure in postmeiotic germ cells. Yet, they do not show impaired spermatogenesis or testis function. Instead, we find that H2A.B plays a crucial role postfertilization. Crosses between H2A.B KO males and females yield embryos with lower viability and reduced size. Using a series of genetic crosses that separate parental and zygotic contributions, we show that the H2A.B status of both the father and mother, but not of the zygote, affects embryonic viability and growth during gestation. We conclude that H2A.B is a novel parental-effect gene, establishing a role for short H2A histone variants in mammalian development. We posit that parental antagonism over embryonic growth drove the origin and ongoing diversification of short histone H2A variants in placental mammals.
Collapse
Affiliation(s)
- Antoine Molaro
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Anna J. Wood
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Derek Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Selina M. Kindelay
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael T. Eickbush
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven Wu
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Priti Singh
- Comparative Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Charles H. Muller
- Male Fertility Laboratory, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
34
|
Khadka J, Pesok A, Grafi G. Plant Histone HTB (H2B) Variants in Regulating Chromatin Structure and Function. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1435. [PMID: 33113795 PMCID: PMC7694166 DOI: 10.3390/plants9111435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Besides chemical modification of histone proteins, chromatin dynamics can be modulated by histone variants. Most organisms possess multiple genes encoding for core histone proteins, which are highly similar in amino acid sequence. The Arabidopsis thaliana genome contains 11 genes encoding for histone H2B (HTBs), 13 for H2A (HTAs), 15 for H3 (HTRs), and 8 genes encoding for histone H4 (HFOs). The finding that histone variants may be expressed in specific tissues and/or during specific developmental stages, often displaying specific nuclear localization and involvement in specific nuclear processes suggests that histone variants have evolved to carry out specific functions in regulating chromatin structure and function and might be important for better understanding of growth and development and particularly the response to stress. In this review, we will elaborate on a group of core histone proteins in Arabidopsis, namely histone H2B, summarize existing data, and illuminate the potential function of H2B variants in regulating chromatin structure and function in Arabidopsis thaliana.
Collapse
Affiliation(s)
| | | | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel; (J.K.); (A.P.)
| |
Collapse
|
35
|
Hamid R, Jacob F, Marashi H, Rathod V, Tomar RS. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 2020; 112:3354-3364. [PMID: 32574832 DOI: 10.1016/j.ygeno.2020.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 02/01/2023]
Abstract
Cytoplasmic male sterility is a well-proven mechanism for cotton hybrid production. Long non-coding RNAs belong to a class of transcriptional regulators that function in multiple biological processes. The cDNA libraries from the flower buds of the cotton CGMS, it's restorer (Rf) and maintainer lines were sequenced using high throughput NGS technique. A total of 1531 lncRNAs showed significant differential expression patterns between these three lines. Functional analysis of the co-expression network of lncRNA-mRNA using gene ontology vouchsafes that, lncRNAs play a crucial role in cytoplasmic male sterility and fertility restoration through pollen development, INO80 complex, development of anther wall tapetum, chromatin remodeling, and histone modification. Additionally, 94 lncRNAs were identified as putative precursors of 49 miRNAs. qRT-PCR affirms the concordance of expression pattern to RNA-seq data. These findings divulge the lncRNA driven miRNA-mediated regulation of gene expression profiling superintended for a better understanding of the CMS mechanisms of cotton.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran.
| | - Feba Jacob
- Centre for plant biotechnology and molecular biology, Kerala agricultural university, Thrissur, India
| | - Hassan Marashi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Iran
| | - Visha Rathod
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rukam S Tomar
- Department of Biotechnology and Biochemistry, Junagadh Agricultural University, Junagadh, Gujarat, India
| |
Collapse
|
36
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
37
|
Pecinka A, Chevalier C, Colas I, Kalantidis K, Varotto S, Krugman T, Michailidis C, Vallés MP, Muñoz A, Pradillo M. Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5205-5222. [PMID: 31626285 DOI: 10.1093/jxb/erz457] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Genetic information in the cell nucleus controls organismal development and responses to the environment, and finally ensures its own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organization of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to genome size, ploidy, and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organization and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits.
Collapse
Affiliation(s)
- Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Agricultural and Biotechnological Research, Olomouc, Czech Republic
| | | | - Isabelle Colas
- James Hutton Institute, Cell and Molecular Science, Pr Waugh's Lab, Invergowrie, Dundee, UK
| | - Kriton Kalantidis
- Department of Biology, University of Crete, and Institute of Molecular Biology Biotechnology, FoRTH, Heraklion, Greece
| | - Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment (DAFNAE) University of Padova, Agripolis viale dell'Università, Legnaro (PD), Italy
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Christos Michailidis
- Institute of Experimental Botany, Czech Acad Sci, Praha 6 - Lysolaje, Czech Republic
| | - María-Pilar Vallés
- Department of Genetics and Plant Breeding, Estación Experimental Aula Dei (EEAD), Spanish National Research Council (CSIC), Zaragoza, Spain
| | - Aitor Muñoz
- Department of Plant Molecular Genetics, National Center of Biotechnology/Superior Council of Scientific Research, Autónoma University of Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
38
|
Jiang D, Borg M, Lorković ZJ, Montgomery SA, Osakabe A, Yelagandula R, Axelsson E, Berger F. The evolution and functional divergence of the histone H2B family in plants. PLoS Genet 2020; 16:e1008964. [PMID: 32716939 PMCID: PMC7410336 DOI: 10.1371/journal.pgen.1008964] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Chromatin regulation of eukaryotic genomes depends on the formation of nucleosome complexes between histone proteins and DNA. Histone variants, which are diversified by sequence or expression pattern, can profoundly alter chromatin properties. While variants in histone H2A and H3 families are well characterized, the extent of diversification of histone H2B proteins is less understood. Here, we report a systematic analysis of the histone H2B family in plants, which have undergone substantial divergence during the evolution of each major group in the plant kingdom. By characterising Arabidopsis H2Bs, we substantiate this diversification and reveal potential functional specialization that parallels the phylogenetic structure of emergent clades in eudicots. In addition, we identify a new class of highly divergent H2B variants, H2B.S, that specifically accumulate during chromatin compaction of dry seed embryos in multiple species of flowering plants. Our findings thus identify unsuspected diverse properties among histone H2B proteins in plants that has manifested into potentially novel groups of histone variants. In addition to well-studied variants from core histones families H2A and H3, we report that land plants diversified their H2B family, leading to specialized H2B variants with specific patterns of expression, genomic distributions and properties.
Collapse
Affiliation(s)
- Danhua Jiang
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Zdravko J. Lorković
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Sean A. Montgomery
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Akihisa Osakabe
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Ramesh Yelagandula
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
- * E-mail:
| |
Collapse
|
39
|
Yan A, Borg M, Berger F, Chen Z. The atypical histone variant H3.15 promotes callus formation in Arabidopsis thaliana. Development 2020; 147:dev184895. [PMID: 32439757 DOI: 10.1242/dev.184895] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Plants are capable of regenerating new organs after mechanical injury. The regeneration process involves genome-wide reprogramming of transcription, which usually requires dynamic changes in the chromatin landscape. We show that the histone 3 variant HISTONE THREE RELATED 15 (H3.15) plays an important role in cell fate reprogramming during plant regeneration in Arabidopsis H3.15 expression is rapidly induced upon wounding. Ectopic overexpression of H3.15 promotes cell proliferation to form a larger callus at the wound site, whereas htr15 mutation compromises callus formation. H3.15 is distinguished from other Arabidopsis histones by the absence of the lysine residue 27 that is trimethylated by the POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) in constitutively expressed H3 variants. Overexpression of H3.15 promotes the removal of the transcriptional repressive mark H3K27me3 from chromatin, which results in transcriptional de-repression of downstream genes, such as WUSCHEL RELATED HOMEOBOX 11 (WOX11). Our results reveal a new mechanism for a release from PRC2-mediated gene repression through H3.15 deposition into chromatin, which is involved in reprogramming cell fate to produce pluripotent callus cells.
Collapse
Affiliation(s)
- An Yan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| |
Collapse
|
40
|
Borg M, Jacob Y, Susaki D, LeBlanc C, Buendía D, Axelsson E, Kawashima T, Voigt P, Boavida L, Becker J, Higashiyama T, Martienssen R, Berger F. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat Cell Biol 2020; 22:621-629. [PMID: 32393884 PMCID: PMC7116658 DOI: 10.1038/s41556-020-0515-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Epigenetic marks are reprogrammed in the gametes to reset genomic potential in the next generation. In mammals, paternal chromatin is extensively reprogrammed through the global erasure of DNA methylation and the exchange of histones with protamines1,2. Precisely how the paternal epigenome is reprogrammed in flowering plants has remained unclear since DNA is not demethylated and histones are retained in sperm3,4. Here, we describe a multi-layered mechanism by which H3K27me3 is globally lost from histone-based sperm chromatin in Arabidopsis. This mechanism involves the silencing of H3K27me3 writers, activity of H3K27me3 erasers and deposition of a sperm-specific histone, H3.10 (ref. 5), which we show is immune to lysine 27 methylation. The loss of H3K27me3 facilitates the transcription of genes essential for spermatogenesis and pre-configures sperm with a chromatin state that forecasts gene expression in the next generation. Thus, plants have evolved a specific mechanism to simultaneously differentiate male gametes and reprogram the paternal epigenome.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Yannick Jacob
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daichi Susaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Daniel Buendía
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Tomokazu Kawashima
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Philipp Voigt
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Leonor Boavida
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Jörg Becker
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Robert Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York, NY, USA
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
41
|
Lei B, Berger F. H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. PLANT COMMUNICATIONS 2020; 1:100015. [PMID: 33404536 PMCID: PMC7747964 DOI: 10.1016/j.xplc.2019.100015] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 05/16/2023]
Abstract
The eukaryotic nucleosome prevents access to the genome. Convergently evolving histone isoforms, also called histone variants, form diverse families that are enriched over distinct features of plant genomes. Among the diverse families of plant histone variants, H2A.Z exclusively marks genes. Here we review recent research progress on the genome-wide distribution patterns and deposition of H2A.Z in plants as well as its association with histone modifications and roles in plant chromatin regulation. We also discuss some hypotheses that explain the different findings about the roles of H2A.Z in plants.
Collapse
|
42
|
Li C, Xu H, Fu FF, Russell SD, Sundaresan V, Gent JI. Genome-wide redistribution of 24-nt siRNAs in rice gametes. Genome Res 2020; 30:173-184. [PMID: 31896557 PMCID: PMC7050532 DOI: 10.1101/gr.253674.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
Gametes constitute a critical stage of the plant life cycle during which the genome undergoes reprogramming in preparation for embryogenesis. Here, we examined genome-wide distributions of small RNAs in the sperm and egg cells of rice. We found that 24-nt siRNAs, which are a hallmark of RNA-directed DNA methylation (RdDM) in plants, were depleted from heterochromatin boundaries in both gametes relative to vegetative tissues, reminiscent of siRNA patterns in DDM1-type nucleosome remodeler mutants. In sperm cells, 24-nt siRNAs were spread across heterochromatic regions, while in egg cells, 24-nt siRNAs were concentrated at a smaller number of heterochromatic loci throughout the genome, especially at loci which also produced siRNAs in other tissues. In both gametes, patterns of CHH methylation, typically a strong indicator of RdDM, were similar to vegetative tissues, although lower in magnitude. These findings indicate that the small RNA transcriptome undergoes large-scale redistribution in both male and female gametes, which is not correlated with recruitment of DNA methyltransferases in gametes and suggestive of unexplored regulatory activities of gamete small RNAs.
Collapse
Affiliation(s)
- Chenxin Li
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - Hengping Xu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Fang-Fang Fu
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Scott D Russell
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, California 95616, USA.,Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
43
|
Dumur T, Duncan S, Graumann K, Desset S, Randall RS, Scheid OM, Prodanov D, Tatout C, Baroux C. Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions. Nucleus 2019; 10:181-212. [PMID: 31362571 PMCID: PMC6682351 DOI: 10.1080/19491034.2019.1644592] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cell nucleus is a central organelle whose architecture determines genome function at multiple levels. Deciphering nuclear organizing principles influencing cellular responses and identity is a timely challenge. Despite many similarities between plant and animal nuclei, plant nuclei present intriguing specificities. Complementary to molecular and biochemical approaches, 3D microscopy is indispensable for resolving nuclear architecture. However, novel solutions are required for capturing cell-specific, sub-nuclear and dynamic processes. We provide a pointer for utilising high-to-super-resolution microscopy and image processing to probe plant nuclear architecture in 3D at the best possible spatial and temporal resolution and at quantitative and cell-specific levels. High-end imaging and image-processing solutions allow the community now to transcend conventional practices and benefit from continuously improving approaches. These promise to deliver a comprehensive, 3D view of plant nuclear architecture and to capture spatial dynamics of the nuclear compartment in relation to cellular states and responses. Abbreviations: 3D and 4D: Three and Four dimensional; AI: Artificial Intelligence; ant: antipodal nuclei (ant); CLSM: Confocal Laser Scanning Microscopy; CTs: Chromosome Territories; DL: Deep Learning; DLIm: Dynamic Live Imaging; ecn: egg nucleus; FACS: Fluorescence-Activated Cell Sorting; FISH: Fluorescent In Situ Hybridization; FP: Fluorescent Proteins (GFP, RFP, CFP, YFP, mCherry); FRAP: Fluorescence Recovery After Photobleaching; GPU: Graphics Processing Unit; KEEs: KNOT Engaged Elements; INTACT: Isolation of Nuclei TAgged in specific Cell Types; LADs: Lamin-Associated Domains; ML: Machine Learning; NA: Numerical Aperture; NADs: Nucleolar Associated Domains; PALM: Photo-Activated Localization Microscopy; Pixel: Picture element; pn: polar nuclei; PSF: Point Spread Function; RHF: Relative Heterochromatin Fraction; SIM: Structured Illumination Microscopy; SLIm: Static Live Imaging; SMC: Spore Mother Cell; SNR: Signal to Noise Ratio; SRM: Super-Resolution Microscopy; STED: STimulated Emission Depletion; STORM: STochastic Optical Reconstruction Microscopy; syn: synergid nuclei; TADs: Topologically Associating Domains; Voxel: Volumetric pixel.
Collapse
Affiliation(s)
- Tao Dumur
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Susan Duncan
- Norwich Research Park, Earlham Institute, Norwich, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Sophie Desset
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Ricardo S Randall
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute (GMI) of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Dimiter Prodanov
- Environment, Health and Safety, Neuroscience Research Flanders, Leuven, Belgium
| | - Christophe Tatout
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont–Ferrand, France
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| |
Collapse
|
44
|
He S, Vickers M, Zhang J, Feng X. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. eLife 2019; 8:42530. [PMID: 31135340 PMCID: PMC6594752 DOI: 10.7554/elife.42530] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/26/2019] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs), the movement of which can damage the genome, are epigenetically silenced in eukaryotes. Intriguingly, TEs are activated in the sperm companion cell - vegetative cell (VC) - of the flowering plant Arabidopsis thaliana. However, the extent and mechanism of this activation are unknown. Here we show that about 100 heterochromatic TEs are activated in VCs, mostly by DEMETER-catalyzed DNA demethylation. We further demonstrate that DEMETER access to some of these TEs is permitted by the natural depletion of linker histone H1 in VCs. Ectopically expressed H1 suppresses TEs in VCs by reducing DNA demethylation and via a methylation-independent mechanism. We demonstrate that H1 is required for heterochromatin condensation in plant cells and show that H1 overexpression creates heterochromatic foci in the VC progenitor cell. Taken together, our results demonstrate that the natural depletion of H1 during male gametogenesis facilitates DEMETER-directed DNA demethylation, heterochromatin relaxation, and TE activation.
Collapse
Affiliation(s)
- Shengbo He
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
45
|
Borg M, Buendía D, Berger F. A simple and robust protocol for immunostaining Arabidopsis pollen nuclei. PLANT REPRODUCTION 2019; 32:39-43. [PMID: 30671645 DOI: 10.1007/s00497-018-00360-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Pollen represents the male sexual lineage in flowering plants. At maturity, pollen grains are composed of a companion vegetative cell with embedded sperm. During pollen development, these two cell types acquire vastly differing cell fates. Underlying this differential fate acquisition is dramatic reconfiguration of pollen chromatin that is highly evident at a cytological level. The precise link between histone mark deposition and fate acquisition remains largely unexplored, which in part has been hindered by the difficulty in working with pollen in model plant species like Arabidopsis. Here, we describe a simple and robust protocol to isolate Arabidopsis pollen nuclei and immunostain for histone marks. Plant growth aside, the protocol can be performed over 2 days with few Arabidopsis plants, thus allowing multiple genotypes to be analysed in parallel. We also describe a method to de-mask epitopes through antigen retrieval, which vastly improves the signal for antibodies that target heterochromatic histone marks.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| | - Daniel Buendía
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
46
|
Abstract
The reproductive adaptations of land plants have played a key role in their terrestrial colonization and radiation. This encompasses mechanisms used for the production, dispersal and union of gametes to support sexual reproduction. The production of small motile male gametes and larger immotile female gametes (oogamy) in specialized multicellular gametangia evolved in the charophyte algae, the closest extant relatives of land plants. Reliance on water and motile male gametes for sexual reproduction was retained by bryophytes and basal vascular plants, but was overcome in seed plants by the dispersal of pollen and the guided delivery of non-motile sperm to the female gametes. Here we discuss the evolutionary history of male gametogenesis in streptophytes (green plants) and the underlying developmental biology, including recent advances in bryophyte and angiosperm models. We conclude with a perspective on research trends that promise to deliver a deeper understanding of the evolutionary and developmental mechanisms of male gametogenesis in plants.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
47
|
Mozgova I, Wildhaber T, Trejo-Arellano MS, Fajkus J, Roszak P, Köhler C, Hennig L. Transgenerational phenotype aggravation in CAF-1 mutants reveals parent-of-origin specific epigenetic inheritance. THE NEW PHYTOLOGIST 2018; 220:908-921. [PMID: 29573427 DOI: 10.1111/nph.15082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 05/23/2023]
Abstract
Chromatin is assembled by histone chaperones such as chromatin assembly factor CAF-1. We had noticed that vigor of Arabidopsis thaliana CAF-1 mutants decreased over several generations. Because changes in mutant phenotype severity over generations are unusual, we asked how repeated selfing of Arabidopsis CAF-1 mutants affects phenotype severity. CAF-1 mutant plants of various generations were grown, and developmental phenotypes, transcriptomes and DNA cytosine-methylation profiles were compared quantitatively. Shoot- and root-related growth phenotypes were progressively more affected in successive generations of CAF-1 mutants. Early and late generations of the fasciata (fas)2-4 CAF-1 mutant displayed only limited changes in gene expression, of which increasing upregulation of plant defense-related genes reflects the transgenerational phenotype aggravation. Likewise, global DNA methylation in the sequence context CHG but not CG or CHH (where H = A, T or C) changed over generations in fas2-4. Crossing early and late generation fas2-4 plants established that the maternal contribution to the phenotype severity exceeds the paternal contribution. Together, epigenetic rather than genetic mechanisms underlie the progressive developmental phenotype aggravation in the Arabidopsis CAF-1 mutants and preferred maternal transmission reveals a more efficient reprogramming of epigenetic information in the male than the female germline.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, CZ-37981, Třeboň, Czech Republic
| | - Thomas Wildhaber
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Jiri Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic
| | - Pawel Roszak
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| |
Collapse
|
48
|
Liu L, Lu Y, Wei L, Yu H, Cao Y, Li Y, Yang N, Song Y, Liang C, Wang T. Transcriptomics analyses reveal the molecular roadmap and long non-coding RNA landscape of sperm cell lineage development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:421-437. [PMID: 30047180 DOI: 10.1111/tpj.14041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Sperm cell (SC) lineage development from the haploid microspore to SCs represents a unique biological process in which the microspore generates a larger vegetative cell (VC) and a smaller generative cell (GC) enclosed in the VC, then the GC further develops to functionally specified SCs in the VC for double fertilization. Understanding the mechanisms of SC lineage development remains a critical goal in plant biology. We isolated individual cells of the three cell types, and characterized the genome-wide atlas of long non-coding (lnc) RNAs and mRNAs of haploid SC lineage cells. Sperm cell lineage development involves global repression of genes for pluripotency, somatic development and metabolism following asymmetric microspore division and coordinated upregulation of GC/SC preferential genes. This process is accompanied by progressive loss of the active marks H3K4me3 and H3K9ac, and accumulation of the repressive methylation mark H3K9. The SC lineage has a higher ratio of lncRNAs to mRNAs and preferentially expresses a larger percentage of lncRNAs than does the non-SC lineage. A co-expression network showed that the largest set of lncRNAs in these nodes, with more than 100 links, are GC-preferential, and a small proportion of lncRNAs co-express with their neighboring genes. Single molecular fluorescence in situ hybridization showed that several candidate genes may be markers distinguishing the three cell types of the SC lineage. Our findings reveal the molecular programming and potential roles of lncRNAs in SC lineage development.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunlong Lu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqin Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hua Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinghao Cao
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhi Liang
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Osakabe A, Lorković ZJ, Kobayashi W, Tachiwana H, Yelagandula R, Kurumizaka H, Berger F. Histone H2A variants confer specific properties to nucleosomes and impact on chromatin accessibility. Nucleic Acids Res 2018; 46:7675-7685. [PMID: 29945241 PMCID: PMC6125630 DOI: 10.1093/nar/gky540] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, variants of core histone H2A are selectively incorporated in distinct functional domains of chromatin and are distinguished by conserved sequences of their C-terminal tail, the L1 loop and the docking domain, suggesting that each variant confers specific properties to the nucleosome. Chromatin of flowering plants contains four types of H2A variants, which biochemical properties have not been characterized. We report that in contrast with animals, in Arabidopsis thaliana H2A variants define only four major types of homotypic nucleosomes containing exclusively H2A, H2A.Z, H2A.X or H2A.W. In vitro assays show that the L1 loop and the docking domain confer distinct stability of the nucleosome. In vivo and in vitro assays suggest that the L1 loop and the docking domain cooperate with the C-terminal tail to regulate chromatin accessibility. Based on these findings we conclude that the type of H2A variant in the nucleosome impacts on its interaction with DNA and propose that H2A variants regulate the dynamics of chromatin accessibility. In plants, the predominance of homotypic nucleosomes with specific physical properties and their specific localization to distinct domains suggest that H2A variants play a dominant role in chromatin dynamics and function.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Zdravko J Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wataru Kobayashi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Ramesh Yelagandula
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
50
|
Golicz AA, Bhalla PL, Singh MB. lncRNAs in Plant and Animal Sexual Reproduction. TRENDS IN PLANT SCIENCE 2018; 23:195-205. [PMID: 29395831 DOI: 10.1016/j.tplants.2017.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/08/2017] [Accepted: 12/23/2017] [Indexed: 05/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts over 200 base pairs in length with no discernible protein-coding potential. Multiple lines of evidence point to lncRNAs as master regulators, controlling the expression of protein-coding genes. Studies in plants and animals consistently show high expression of lncRNAs in reproductive organs in a cell- and tissue-specific manner. Sexual reproduction is a complex process that involves cell fate specification and specialized cell division requiring precise coordination of gene expression in response to intrinsic and extrinsic signals. The roles of lncRNAs as master regulators of gene expression and chromatin organization might make them particularly suited for coordination and control of molecular processes involved in sexual reproduction.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|