1
|
Sidi T, Bahiri-Elitzur S, Tuller T, Kolodny R. Predicting gene sequences with AI to study codon usage patterns. Proc Natl Acad Sci U S A 2025; 122:e2410003121. [PMID: 39739812 PMCID: PMC11725940 DOI: 10.1073/pnas.2410003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
Selective pressure acts on the codon use, optimizing multiple, overlapping signals that are only partially understood. We trained AI models to predict codons given their amino acid sequence in the eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe and the bacteria Escherichia coli and Bacillus subtilis to study the extent to which we can learn patterns in naturally occurring codons to improve predictions. We trained our models on a subset of the proteins and evaluated their predictions on large, separate sets of proteins of varying lengths and expression levels. Our models significantly outperformed naïve frequency-based approaches, demonstrating that there are learnable dependencies in evolutionary-selected codon usage. The prediction accuracy advantage of our models is greater for highly expressed genes and is greater in bacteria than eukaryotes, supporting the hypothesis that there is a monotonic relationship between selective pressure for complex codon patterns and effective population size. In S. cerevisiae and bacteria, our models were more accurate for longer proteins, suggesting that the learned patterns may be related to cotranslational folding. Gene functionality and conservation were also important determinants that affect the performance of our models. Finally, we showed that using information encoded in homologous proteins has only a minor effect on prediction accuracy, perhaps due to complex codon-usage codes in genes undergoing rapid evolution. Our study employing contemporary AI methods offers a unique perspective and a deep-learning-based prediction tool for evolutionary-selected codons. We hope that these can be useful to optimize codon usage in endogenous and heterologous proteins.
Collapse
Affiliation(s)
- Tomer Sidi
- Department of Computer Science, University of Haifa, Haifa3303221, Israel
| | - Shir Bahiri-Elitzur
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv6139001, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv6139001, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv6139001, Israel
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa3303221, Israel
| |
Collapse
|
2
|
Emelin P, Abdul-Mawla S, Willmund F. Golden Gate Cloning for the Standardized Assembly of Gene Elements with Modular Cloning in Chlamydomonas. Methods Mol Biol 2025; 2850:451-465. [PMID: 39363087 DOI: 10.1007/978-1-0716-4220-7_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Modern synthetic biology requires fast and efficient cloning strategies for the assembly of new transcription units or entire pathways. Modular Cloning (MoClo) is a standardized synthetic biology workflow, which has tremendously simplified the assembly of genetic elements for transgene expression. MoClo is based on Golden Gate Assembly and allows to combine genetic elements of a library through a hierarchical syntax-driven pipeline. Here we describe the assembly of a genetic cassette for transgene expression in the single-celled model alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Peter Emelin
- Molecular Plant Sciences, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Sarah Abdul-Mawla
- Molecular Plant Sciences, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Felix Willmund
- Molecular Plant Sciences, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Ye L, Liao T, Deng X, Long H, Liu G, Ke W, Huang K. Establishment of an RNA-based transient expression system in the green alga Chlamydomonas reinhardtii. N Biotechnol 2024; 83:175-187. [PMID: 39153527 DOI: 10.1016/j.nbt.2024.08.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Chlamydomonas reinhardtii, a unicellular green alga, is a prominent model for green biotechnology and for studying organelles' function and biogenesis, such as chloroplasts and cilia. However, the stable expression of foreign genes from the nuclear genome in C. reinhardtii faces several limitations, including low expression levels and significant differences between clones due to genome position effects, epigenetic silencing, and time-consuming procedures. We developed a robust transient expression system in C. reinhardtii to overcome these limitations. We demonstrated efficient entry of in vitro-transcribed mRNA into wall-less cells and enzymatically dewalled wild-type cells via electroporation. The endogenous or exogenous elements can facilitate efficient transient expression of mRNA in C. reinhardtii, including the 5' UTR of PsaD and the well-characterized Kozak sequence derived from the Chromochloris zofingiensis. In the optimized system, mRNA expression was detectable in 120 h with a peak around 4 h after transformation. Fluorescently tagged proteins were successfully transiently expressed, enabling organelle labeling and real-time determination of protein sub-cellular localization. Remarkably, transiently expressed IFT46 compensated for the ift46-1 mutant phenotype, indicating the correct protein folding and function of IFT46 within the cells. Additionally, we demonstrated the feasibility of our system for studying protein-protein interactions in living cells using bimolecular fluorescence complementation. In summary, the established transient expression system provides a powerful tool for investigating protein localization, function, and interactions in C. reinhardtii within a relatively short timeframe, which will significantly facilitate the study of gene function, genome structure, and green biomanufacturing in C. reinhardtii and potentially in other algae.
Collapse
Affiliation(s)
- Lian Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tancong Liao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wenting Ke
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.
| |
Collapse
|
4
|
Einhaus A, Baier T, Kruse O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol 2024; 42:728-738. [PMID: 38092627 DOI: 10.1016/j.tibtech.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Microalgae are regarded as sustainable and potent chassis for biotechnology. Their capacity for efficient photosynthesis fuels dynamic growth independent from organic carbon sources and converts atmospheric CO2 directly into various valuable hydrocarbon-based metabolites. However, approaches to gene expression and metabolic regulation have been inferior to those in more established heterotrophs (e.g., prokaryotes or yeast) since the genetic tools and insights in expression regulation have been distinctly less advanced. In recent years, however, these tools and their efficiency have dramatically improved. Various examples have demonstrated new trends in microalgal biotechnology and the potential of microalgae for the transition towards a sustainable bioeconomy.
Collapse
Affiliation(s)
- Alexander Einhaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
5
|
Jacobebbinghaus N, Lauersen KJ, Kruse O, Baier T. Bicistronic expression of nuclear transgenes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1400-1412. [PMID: 38415961 DOI: 10.1111/tpj.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
In eukaryotic organisms, proteins are typically translated from monocistronic messenger RNAs containing a single coding sequence (CDS). However, recent long transcript sequencing identified 87 nuclear polycistronic mRNAs in Chlamydomonas reinhardtii natively carrying multiple co-expressed CDSs. In this study, we investigated the dynamics of 22 short intergenic sequences derived from these native polycistronic loci by their application in genetic constructs for synthetic transgene expression. A promising candidate sequence was identified based on the quantification of transformation efficiency and expression strength of a fluorescence reporter protein. Subsequently, the expression of independent proteins from one mRNA was verified by cDNA amplification and protein molecular mass characterization. We demonstrated engineered bicistronic expression in vivo to drive successful co-expression of several terpene synthases with the selection marker aphVIII. Bicistronic transgene design resulted in significantly increased (E)-α-bisabolene production of 7.95 mg L-1 from a single open reading frame, 18.1× fold higher than previous reports. Use of this strategy simplifies screening procedures for identification of high-level expressing transformants, does not require the application of additional fluorescence reporters, and reduces the nucleotide footprint compared to classical monocistronic expression cassettes. Although clear advantages for bicistronic transgene expression were observed, this strategy was found to be limited to the aphVIII marker, and further studies are necessary to gain insights into the underlying mechanism that uniquely permits this co-expression from the algal nuclear genome.
Collapse
Affiliation(s)
- Nick Jacobebbinghaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
6
|
Jareonsin S, Mahanil K, Phinyo K, Srinuanpan S, Pekkoh J, Kameya M, Arai H, Ishii M, Chundet R, Sattayawat P, Pumas C. Unlocking microalgal host-exploring dark-growing microalgae transformation for sustainable high-value phytochemical production. Front Bioeng Biotechnol 2023; 11:1296216. [PMID: 38026874 PMCID: PMC10666632 DOI: 10.3389/fbioe.2023.1296216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Microalgae have emerged as a promising, next-generation sustainable resource with versatile applications, particularly as expression platforms and green cell factories. They possess the ability to overcome the limitations of terrestrial plants, such non-arable land, water scarcity, time-intensive growth, and seasonal changes. However, the heterologous expression of interested genes in microalgae under heterotrophic cultivation (dark mode) remains a niche area within the field of engineering technologies. In this study, the green microalga, Chlorella sorokiniana AARL G015 was chosen as a potential candidate due to its remarkable capacity for rapid growth in complete darkness, its ability to utilize diverse carbon sources, and its potential for wastewater treatment in a circular bioeconomy model. The aims of this study were to advance microalgal genetic engineering via dark cultivation, thereby positioning the strain as promising dark-host for expressing heterologous genes to produce high-value phytochemicals and ingredients for food and feed. To facilitate comprehensive screening based on resistance, eleven common antibiotics were tested under heterotrophic condition. As the most effective selectable markers for this strain, G418, hygromycin, and streptomycin exhibited growth inhibition rates of 98%, 93%, and 92%, respectively, ensuring robust long-term transgenic growth. Successful transformation was achieved through microalgal cell cocultivation with Agrobacterium under complete darkness verified through the expression of green fluorescence protein and β-glucuronidase. In summary, this study pioneers an alternative dark-host microalgal platform, using, Chlorella, under dark mode, presenting an easy protocol for heterologous gene transformation for microalgal host, devoid of the need for expensive equipment and light for industrial production. Furthermore, the developed genetic transformation methodology presents a sustainable way for production of high-value nutrients, dietary supplements, nutraceuticals, proteins and pharmaceuticals using heterotrophic microalgae as an innovative host system.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kanjana Mahanil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Masafumi Kameya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ruttaporn Chundet
- Division of Biotechnology, Faculty of Science, Maejo University, Chiangmai, Chiang Mai, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Fu Y, Liang F, Li C, Warren A, Shin MK, Li L. Codon Usage Bias Analysis in Macronuclear Genomes of Ciliated Protozoa. Microorganisms 2023; 11:1833. [PMID: 37513005 PMCID: PMC10384029 DOI: 10.3390/microorganisms11071833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ciliated protozoa (ciliates) are unicellular eukaryotes, several of which are important model organisms for molecular biology research. Analyses of codon usage bias (CUB) of the macronuclear (MAC) genome of ciliates can promote a better understanding of the genetic mode and evolutionary history of these organisms and help optimize codons to improve gene editing efficiency in model ciliates. In this study, the following indices were calculated: the guanine-cytosine (GC) content, the frequency of the nucleotides at the third position of codons (T3, C3, A3, G3), the effective number of codons (ENc), GC content at the 3rd position of synonymous codons (GC3s), and the relative synonymous codon usage (RSCU). Parity rule 2 plot analysis, Neutrality plot analysis, ENc plot analysis, and correlation analysis were employed to explore the main influencing factors of CUB. The results showed that the GC content in the MAC genomes of each of 21 ciliate species, the genomes of which were relatively complete, was lower than 50%, and the base compositions of GC and GC3s were markedly distinct. Synonymous codon analysis revealed that the codons in most of the 21 ciliates ended with A or T and four codons were the general putative optimal codons. Collectively, our results indicated that most of the ciliates investigated preferred using the codons with anof AT-ending and that codon usage bias was affected by gene mutation and natural selection.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Fasheng Liang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Mann Kyoon Shin
- Department of Biology, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
8
|
Perozeni F, Baier T. Current Nuclear Engineering Strategies in the Green Microalga Chlamydomonas reinhardtii. Life (Basel) 2023; 13:1566. [PMID: 37511941 PMCID: PMC10381326 DOI: 10.3390/life13071566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The green model microalga Chlamydomonas reinhardtii recently emerged as a sustainable production chassis for the efficient biosynthesis of recombinant proteins and high-value metabolites. Its capacity for scalable, rapid and light-driven growth in minimal salt solutions, its simplicity for genetic manipulation and its "Generally Recognized As Safe" (GRAS) status are key features for its application in industrial biotechnology. Although nuclear transformation has typically resulted in limited transgene expression levels, recent developments now allow the design of powerful and innovative bioproduction concepts. In this review, we summarize the main obstacles to genetic engineering in C. reinhardtii and describe all essential aspects in sequence adaption and vector design to enable sufficient transgene expression from the nuclear genome. Several biotechnological examples of successful engineering serve as blueprints for the future establishment of C. reinhardtii as a green cell factory.
Collapse
Affiliation(s)
- Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Masi A, Leonelli F, Scognamiglio V, Gasperuzzo G, Antonacci A, Terzidis MA. Chlamydomonas reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules 2023; 28:molecules28031185. [PMID: 36770853 PMCID: PMC9921279 DOI: 10.3390/molecules28031185] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Chlamydomonas reinhardtii (C. reinhardtii) is one of the most well-studied microalgae organisms that revealed important information for the photosynthetic and metabolic processes of plants and eukaryotes. Numerous extensive studies have also underpinned its great potential as a biochemical factory, capable of producing various highly desired molecules with a direct impact on human health and longevity. Polysaccharides, lipids, functional proteins, pigments, hormones, vaccines, and antibodies are among the valuable biomolecules that are produced spontaneously or under well-defined conditions by C. reinhardtii and can be directly linked to human nutrition and diet. The aim of this review is to highlight the recent advances in the field focusing on the most relevant applications related to the production of important biomolecules for human health that are also linked with human nutrition and diet. The limitations and challenges are critically discussed along with the potential future applications of C. reinhardtii biomass and processed products in the field of nutraceuticals and food supplements. The increasing need for high-value and low-cost biomolecules produced in an environmentally and economy sustainable manner also underline the important role of C. reinhardtii.
Collapse
Affiliation(s)
- Annalisa Masi
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Giulia Gasperuzzo
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, 00010 Montelibretti, Italy
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| | - Michael A. Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
- Correspondence: (A.A.); (M.A.T.); Tel.: +39-0690675597 (A.A.); +30-2310013224 (M.A.T.)
| |
Collapse
|
10
|
Schroda M, Remacle C. Molecular Advancements Establishing Chlamydomonas as a Host for Biotechnological Exploitation. FRONTIERS IN PLANT SCIENCE 2022; 13:911483. [PMID: 35845675 PMCID: PMC9277225 DOI: 10.3389/fpls.2022.911483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/07/2022] [Indexed: 05/13/2023]
Abstract
Chlamydomonas reinhardtii is emerging as a production platform for biotechnological purposes thanks to recent achievements, which we briefly summarize in this review. Firstly, robust nuclear transgene expression is now possible because several impressive improvements have been made in recent years. Strains allowing efficient and stable nuclear transgene expression are available and were recently made more amenable to rational biotechnological approaches by enabling genetic crosses and identifying their causative mutation. The MoClo synthetic biology strategy, based on Golden Gate cloning, was developed for Chlamydomonas and includes a growing toolkit of more than 100 genetic parts that can be robustly and rapidly assembled in a predefined order. This allows for rapid iterative cycles of transgene design, building, testing, and learning. Another major advancement came from various findings improving transgene design and expression such as the systematic addition of introns into codon-optimized coding sequences. Lastly, the CRISPR/Cas9 technology for genome editing has undergone several improvements since its first successful report in 2016, which opens the possibility of optimizing biosynthetic pathways by switching off competing ones. We provide a few examples demonstrating that all these recent developments firmly establish Chlamydomonas as a chassis for synthetic biology and allow the rewiring of its metabolism to new capabilities.
Collapse
Affiliation(s)
- Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liege, Liege, Belgium
| |
Collapse
|
11
|
Kuo EY, Yang RY, Chin YY, Chien YL, Chen YC, Wei CY, Kao LJ, Chang YH, Li YJ, Chen TY, Lee TM. Multi-omics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae. Biotechnol J 2022; 17:e2100603. [PMID: 35467782 DOI: 10.1002/biot.202100603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value-added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome-editing tools in microalgae biorefinery and wastewater treatment. The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eva YuHua Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yuan Yu Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Lin Chien
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu Chu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Cheng-Yu Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Li-Jung Kao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Hua Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu-Jia Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Te-Yuan Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
12
|
Liang W, Qiu J, Zhang M, Wang C. Heterologous expression of human C-reactive protein in the green alga Chlamydomonas reinhardtii. J Food Biochem 2022; 46:e14067. [PMID: 34981544 DOI: 10.1111/jfbc.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
C-reactive protein (CRP) participates in human inflammatory responses and is an important indicator in clinical diagnoses. At present, the use of monoclonal antibodies to detect CRP in the human body is high, but they are unstable and expensive. Understanding the CRP expression pathway is of great significance for developing CRP tests and reagents. Chlamydomonas reinhardtii is a model organism that has great potential as a foreign protein expression system. This study is the first attempt to express human CRP in C. reinhardtii. We selected the endogenous constitutive Rbcs2 promoter and terminator and used ble as a selective gene to construct a C. reinhardtii nuclear expression vector containing CRP. After transformation using the glass bead method, six positive transformants were obtained. At the molecular level, full-length CRP was transformed into the genome of C. reinhardtii CC400 cells, and human CRP was expressed. This study provides new insights into obtaining active CRP. PRACTICAL APPLICATIONS: Based on the nuclear transformation system of C. reinhardtii, it can construct an exogenous protein expression system that produces a variety of high value-added products and can be used to produce a variety of high value-added proteins, functional drugs, and industrial raw materials. It has broad market prospects and huge application prospects.
Collapse
Affiliation(s)
- Wei Liang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, China
| | - Junjie Qiu
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, China
| | - Mengping Zhang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, China
| | - Chuan Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
13
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
14
|
Advances in Biosynthesis of Natural Products from Marine Microorganisms. Microorganisms 2021; 9:microorganisms9122551. [PMID: 34946152 PMCID: PMC8706298 DOI: 10.3390/microorganisms9122551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Natural products play an important role in drug development, among which marine natural products are an underexplored resource. This review summarizes recent developments in marine natural product research, with an emphasis on compound discovery and production methods. Traditionally, novel compounds with useful biological activities have been identified through the chromatographic separation of crude extracts. New genome sequencing and bioinformatics technologies have enabled the identification of natural product biosynthetic gene clusters in marine microbes that are difficult to culture. Subsequently, heterologous expression and combinatorial biosynthesis have been used to produce natural products and their analogs. This review examines recent examples of such new strategies and technologies for the development of marine natural products.
Collapse
|
15
|
Shahar N, Elman T, Williams-Carrier R, Ben-Zvi O, Yacoby I, Barkan A. Use of plant chloroplast RNA-binding proteins as orthogonal activators of chloroplast transgenes in the green alga Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Vavitsas K, Kugler A, Satta A, Hatzinikolaou DG, Lindblad P, Fewer DP, Lindberg P, Toivari M, Stensjö K. Doing synthetic biology with photosynthetic microorganisms. PHYSIOLOGIA PLANTARUM 2021; 173:624-638. [PMID: 33963557 DOI: 10.1111/ppl.13455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The use of photosynthetic microbes as synthetic biology hosts for the sustainable production of commodity chemicals and even fuels has received increasing attention over the last decade. The number of studies published, tools implemented, and resources made available for microalgae have increased beyond expectations during the last few years. However, the tools available for genetic engineering in these organisms still lag those available for the more commonly used heterotrophic host organisms. In this mini-review, we provide an overview of the photosynthetic microbes most commonly used in synthetic biology studies, namely cyanobacteria, chlorophytes, eustigmatophytes and diatoms. We provide basic information on the techniques and tools available for each model group of organisms, we outline the state-of-the-art, and we list the synthetic biology tools that have been successfully used. We specifically focus on the latest CRISPR developments, as we believe that precision editing and advanced genetic engineering tools will be pivotal to the advancement of the field. Finally, we discuss the relative strengths and weaknesses of each group of organisms and examine the challenges that need to be overcome to achieve their synthetic biology potential.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Australia
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Mervi Toivari
- VTT, Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Lu Y, Gu X, Lin H, Melis A. Engineering microalgae: transition from empirical design to programmable cells. Crit Rev Biotechnol 2021; 41:1233-1256. [PMID: 34130561 DOI: 10.1080/07388551.2021.1917507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Domesticated microalgae hold great promise for the sustainable provision of various bioresources for human domestic and industrial consumption. Efforts to exploit their potential are far from being fully realized due to limitations in the know-how of microalgal engineering. The associated technologies are not as well developed as those for heterotrophic microbes, cyanobacteria, and plants. However, recent studies on microalgal metabolic engineering, genome editing, and synthetic biology have immensely helped to enhance transformation efficiencies and are bringing new insights into this field. Therefore, this article, summarizes recent developments in microalgal biotechnology and examines the prospects for generating specialty and commodity products through the processes of metabolic engineering and synthetic biology. After a brief examination of empirical engineering methods and vector design, this article focuses on quantitative transformation cassette design, elaborates on target editing methods and emerging digital design of algal cellular metabolism to arrive at high yields of valuable products. These advances have enabled a transition of manners in microalgal engineering from single-gene and enzyme-based metabolic engineering to systems-level precision engineering, from cells created with genetically modified (GM) tags to that without GM tags, and ultimately from proof of concept to tangible industrial applications. Finally, future trends are proposed in microalgal engineering, aiming to establish individualized transformation systems in newly identified species for strain-specific specialty and commodity products, while developing sophisticated universal toolkits in model algal species.
Collapse
Affiliation(s)
- Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xinping Gu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Hanzhi Lin
- Institute of Marine & Environmental Technology, Center for Environmental Science, University of Maryland, College Park, MD, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
18
|
Presser C, Nazarian A, Ohaion-Raz T, Lerner A, Dubkin H, Dabush B, Danon A, Paz Tal O. Thermochemical behavior of Chlorella sp. and Chlamydomonas reinhardtii algae: Comparison of laser-driven calorimetry with thermogravimetric analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Emrich-Mills TZ, Yates G, Barrett J, Girr P, Grouneva I, Lau CS, Walker CE, Kwok TK, Davey JW, Johnson MP, Mackinder LCM. A recombineering pipeline to clone large and complex genes in Chlamydomonas. THE PLANT CELL 2021; 33:1161-1181. [PMID: 33723601 PMCID: PMC8633747 DOI: 10.1093/plcell/koab024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/18/2021] [Indexed: 05/10/2023]
Abstract
The ability to clone genes has greatly advanced cell and molecular biology research, enabling researchers to generate fluorescent protein fusions for localization and confirm genetic causation by mutant complementation. Most gene cloning is polymerase chain reaction (PCR)�or DNA synthesis-dependent, which can become costly and technically challenging as genes increase in size, particularly if they contain complex regions. This has been a long-standing challenge for the Chlamydomonas reinhardtii research community, as this alga has a high percentage of genes containing complex sequence structures. Here we overcame these challenges by developing a recombineering pipeline for the rapid parallel cloning of genes from a Chlamydomonas bacterial artificial chromosome collection. To generate fluorescent protein fusions for localization, we applied the pipeline at both batch and high-throughput scales to 203 genes related to the Chlamydomonas CO2 concentrating mechanism (CCM), with an overall cloning success rate of 77%. Cloning success was independent of gene size and complexity, with cloned genes as large as 23 kb. Localization of a subset of CCM targets confirmed previous mass spectrometry data, identified new pyrenoid components, and enabled complementation of mutants. We provide vectors and detailed protocols to facilitate easy adoption of this technology, which we envision will open up new possibilities in algal and plant research.
Collapse
Affiliation(s)
- Tom Z Emrich-Mills
- Department of Biology, University of York, York YO10 5DD, UK
- Department Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Gary Yates
- Department of Biology, University of York, York YO10 5DD, UK
| | - James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | - Irina Grouneva
- Department of Biology, University of York, York YO10 5DD, UK
| | - Chun Sing Lau
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Tsz Kam Kwok
- Department of Biology, University of York, York YO10 5DD, UK
| | - John W Davey
- Department of Biology, University of York, York YO10 5DD, UK
| | - Matthew P Johnson
- Department Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, UK
- Author for correspondence: (L.C.M.M.)
| |
Collapse
|
20
|
Xiong D, Happe T, Hankamer B, Ross IL. Inducible high level expression of a variant ΔD19A,D58A-ferredoxin-hydrogenase fusion increases photohydrogen production efficiency in the green alga Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Einhaus A, Baier T, Rosenstengel M, Freudenberg RA, Kruse O. Rational Promoter Engineering Enables Robust Terpene Production in Microalgae. ACS Synth Biol 2021; 10:847-856. [PMID: 33764741 DOI: 10.1021/acssynbio.0c00632] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Microalgal biotechnology promises sustainable light-driven production of valuable bioproducts and addresses urgent demands to attain a sustainable economy. However, to unfold its full potential as a platform for biotechnology, new and powerful tools for nuclear engineering need to be established. Chlamydomonas reinhardtii, the model for microalgal synthetic biology and genetic engineering has already been used to produce various bioproducts. Nevertheless, low transgene titers, the lack of potent expression elements, and sparse comparative evaluation prevents further development of C. reinhardtii as a biotechnological host. By systematically evaluating existing expression elements combined with rational promoter engineering, we established novel synthetic expression elements, improved the standardized application of synthetic biology tools, and unveiled an existing synergism between the PSAD 5' UTR and its corresponding chloroplast targeting peptide. Promoter engineering strategies, implemented in a newly designed synthetic algal promoter, increased the production of the sesquiterpene (E)-α-bisabolene by 18-fold compared to its native version and 4-fold to commonly used expression elements. Our results improve the application of synthetic biology in microalgae and display a significant step toward establishing C. reinhardtii as a sustainable green cell-factory.
Collapse
Affiliation(s)
- Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitaetsstrasse 27, 33615 Bielefeld, Germany
| | - Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitaetsstrasse 27, 33615 Bielefeld, Germany
| | - Marian Rosenstengel
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitaetsstrasse 27, 33615 Bielefeld, Germany
| | - Robert A. Freudenberg
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitaetsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitaetsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
22
|
|
23
|
Arias CAD, Matsudo MC, Ferreira-Camargo LS, Molino JVD, Mayfield SP, de Carvalho JCM. Semicontinuous system for the production of recombinant mCherry protein in Chlamydomonas reinhardtii. Biotechnol Prog 2021; 37:e3101. [PMID: 33169497 DOI: 10.1002/btpr.3101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Biotechnology advances have allowed bacteria, yeasts, plants, mammalian and insect cells to function as heterologous protein expression systems. Recently, microalgae have gained attention as an innovative platform for recombinant protein production, due to low culture media cost, compared to traditional systems, as well as the fact that microalgae such as Chlamydomonas reinhardtii are considered safe (GRAS) by the Food and Drug Administration (FDA). Previous studies showed that recombinant protein production in traditional platforms by semicontinuous process increased biomass and bio product productivity, when compared to batch process. As there is a lack of studies on semicontinuous process for recombinant protein production in microalgae, the production of recombinant mCherry fluorescent protein was evaluated by semicontinuous cultivation of Chlamydomonas reinhardtii in bubble column photobioreactor. This semicontinuous cultivation process was evaluated in the following conditions: 20%, 40%, and 60% culture portion withdrawal. The highest culture withdrawal percentage (60%) provided the best results, as an up to 161% increase in mCherry productivity (454.5 RFU h-1 - Relative Fluorescence Unit h-1 ), in comparison to batch cultivation (174.0 RFU h-1 ) of the same strain. All cultivations were carried out for 13 days, at pH 7, temperature 25°C and, by semicontinuous process, two culture withdrawals were taken during the cultivations. Throughout the production cycles, it was possible to obtain biomass concentration up to 1.36 g L-1 .
Collapse
Affiliation(s)
- Cesar Andres Diaz Arias
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - João Vitor Dutra Molino
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Stephen Patrick Mayfield
- Department of Molecular Biology, and The California Center for Algae Biotechnology, University of California, San Diego, California, USA
| | - João Carlos Monteiro de Carvalho
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
24
|
Jareonsin S, Pumas C. Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production. Front Bioeng Biotechnol 2021; 9:628597. [PMID: 33644020 PMCID: PMC7907617 DOI: 10.3389/fbioe.2021.628597] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, most commercial recombinant technologies rely on host systems. However, each host has their own benefits and drawbacks, depending on the target products. Prokaryote host is lack of post-transcriptional and post-translational mechanisms, making them unsuitable for eukaryotic productions like phytochemicals. Even there are other eukaryote hosts (e.g., transgenic animals, mammalian cell, and transgenic plants), but those hosts have some limitations, such as low yield, high cost, time consuming, virus contamination, and so on. Thus, flexible platforms and efficient methods that can produced phytochemicals are required. The use of heterotrophic microalgae as a host system is interesting because it possibly overcome those obstacles. This paper presents a comprehensive review of heterotrophic microalgal expression host including advantages of heterotrophic microalgae as a host, genetic engineering of microalgae, genetic transformation of microalgae, microalgal engineering for phytochemicals production, challenges of microalgal hosts, key market trends, and future view. Finally, this review might be a directions of the alternative microalgae host for high-value phytochemicals production in the next few years.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Zhang MP, Wang M, Wang C. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie 2020; 181:1-11. [PMID: 33227342 DOI: 10.1016/j.biochi.2020.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/14/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Chlamydomonas reinhardtii is a model organism with three sequenced genomes capable of genetic transformation. C. reinhardtii has the advantages of being low cost, non-toxic, and having a post-translational modification system that ensures the recombinant proteins have the same activity as natural proteins, thus making it a great platform for application in molecular biology and other fields. In this review, we summarize the existing methods for nuclear transformation of C. reinhardtii, genes for selection, examples of foreign protein expression, and factors affecting transformation efficiency, to provide insights into effective strategies for the nuclear transformation of C. reinhardtii.
Collapse
Affiliation(s)
- Meng-Ping Zhang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Mou Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Chuan Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China.
| |
Collapse
|
26
|
Nouemssi SB, Ghribi M, Beauchemin R, Meddeb-Mouelhi F, Germain H, Desgagné-Penix I. Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed Chlamydomonas reinhardtii. Life (Basel) 2020; 10:E186. [PMID: 32927613 PMCID: PMC7554959 DOI: 10.3390/life10090186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 01/07/2023] Open
Abstract
Microalgae biotechnologies are rapidly developing into new commercial settings. Several high value products already exist on the market, and biotechnological development is focused on genetic engineering of microalgae to open up future economic opportunities for food, fuel and pharmacological production. Colony-polymerase chain reaction (colony-PCR or cPCR) is a critical method for screening genetically transformed microalgae cells. However, the ability to rapidly screen thousands of transformants using the current colony-PCR method, becomes a very laborious and time-consuming process. Herein, the non-homologous transformation of Chlamydomonas reinhardtii using the electroporation and glass beads methods generated more than seven thousand transformants. In order to manage this impressive number of clones efficiently, we developed a high-throughput screening (HTS) cPCR method to rapidly maximize the detection and selection of positively transformed clones. For this, we optimized the Chlamydomonas transformed cell layout on the culture media to improve genomic DNA extraction and cPCR in 96-well plate. The application of this optimized HTS cPCR method offers a rapid, less expensive and reliable method for the detection and selection of microalgae transformants. Our method, which saves up to 80% of the experimental time, holds promise for evaluating genetically transformed cells and selection for microalgae-based biotechnological applications such as synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Serge Basile Nouemssi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.B.N.); (M.G.); (R.B.); (F.M.-M.); (H.G.)
| | - Manel Ghribi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.B.N.); (M.G.); (R.B.); (F.M.-M.); (H.G.)
| | - Rémy Beauchemin
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.B.N.); (M.G.); (R.B.); (F.M.-M.); (H.G.)
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.B.N.); (M.G.); (R.B.); (F.M.-M.); (H.G.)
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.B.N.); (M.G.); (R.B.); (F.M.-M.); (H.G.)
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.B.N.); (M.G.); (R.B.); (F.M.-M.); (H.G.)
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| |
Collapse
|
27
|
Computational discovery and modeling of novel gene expression rules encoded in the mRNA. Biochem Soc Trans 2020; 48:1519-1528. [PMID: 32662820 DOI: 10.1042/bst20191048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
The transcript is populated with numerous overlapping codes that regulate all steps of gene expression. Deciphering these codes is very challenging due to the large number of variables involved, the non-modular nature of the codes, biases and limitations in current experimental approaches, our limited knowledge in gene expression regulation across the tree of life, and other factors. In recent years, it has been shown that computational modeling and algorithms can significantly accelerate the discovery of novel gene expression codes. Here, we briefly summarize the latest developments and different approaches in the field.
Collapse
|
28
|
Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008944. [PMID: 32730252 PMCID: PMC7419008 DOI: 10.1371/journal.pgen.1008944] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression. Although many genetic tools and basic transformation strategies exist for the model microalga Chlamydomonas reinhardtii, high-level genetic engineering with this organism is hindered by its inherent recalcitrance to foreign gene expression and limited knowledge of responsible expression regulators. In this work, we characterized the dynamics of 33 endogenous and 13 non-native introns and their effect on gene expression as artificial insertions into codon optimized transgenes. We found that introns from different origins have the capacity to increase gene expression rates. Intron-mediated enhancement was observed exclusively when these elements were placed in transcripts but not outside of transcribed mRNA regions. Insertion of different endogenous introns into coding sequences was found to positively affect expression rates through a synergy of additive transcription enhancement and exon length reduction, similar to those natively found in the C. reinhardtii genome. Our results indicate that intensive mRNA processing plays an underestimated role in the regulation of native gene expression in C. reinhardtii. In addition to internal sequence motifs, the location of artificially introduced introns greatly affected transgene expression levels. This work is highly valuable to the greater microalgal and synthetic biology research communities and contributes to broadening our understanding of eukaryotic intron-mediated enhancement.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Nick Jacobebbinghaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
29
|
Diament A, Weiner I, Shahar N, Landman S, Feldman Y, Atar S, Avitan M, Schweitzer S, Yacoby I, Tuller T. ChimeraUGEM: unsupervised gene expression modeling in any given organism. Bioinformatics 2020; 35:3365-3371. [PMID: 30715207 DOI: 10.1093/bioinformatics/btz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
MOTIVATION Regulation of the amount of protein that is synthesized from genes has proved to be a serious challenge in terms of analysis and prediction, and in terms of engineering and optimization, due to the large diversity in expression machinery across species. RESULTS To address this challenge, we developed a methodology and a software tool (ChimeraUGEM) for predicting gene expression as well as adapting the coding sequence of a target gene to any host organism. We demonstrate these methods by predicting protein levels in seven organisms, in seven human tissues, and by increasing in vivo the expression of a synthetic gene up to 26-fold in the single-cell green alga Chlamydomonas reinhardtii. The underlying model is designed to capture sequence patterns and regulatory signals with minimal prior knowledge on the host organism and can be applied to a multitude of species and applications. AVAILABILITY AND IMPLEMENTATION Source code (MATLAB, C) and binaries are freely available for download for non-commercial use at http://www.cs.tau.ac.il/~tamirtul/ChimeraUGEM/, and supported on macOS, Linux and Windows. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alon Diament
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel
| | - Iddo Weiner
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel.,School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Shira Landman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Yael Feldman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Shimshi Atar
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel
| | - Meital Avitan
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel.,School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Shira Schweitzer
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Luo J, Deng J, Cui L, Chang P, Dai X, Yang C, Li N, Ren Z, Zhang X. The potential assessment of green alga Chlamydomonas reinhardtii CC-503 in the biodegradation of benz(a)anthracene and the related mechanism analysis. CHEMOSPHERE 2020; 249:126097. [PMID: 32078851 DOI: 10.1016/j.chemosphere.2020.126097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 05/22/2023]
Abstract
Benz(a)anthracene (BaA) is a polycyclic aromatic hydrocarbons (PAHs), that belongs to a group of carcinogenic and mutagenic persistent organic pollutants found in a variety of ecological habitats. In this study, the efficient biodegradation of BaA by a green alga Chlamydomonas reinhardtii (C. reinhardtii) CC-503 was investigated. The results showed that the growth of C. reinhardtii was hardly affected with an initial concentration of 10 mg/L, but was inhibited significantly under higher concentrations of BaA (>30 mg/L) (p < 0.05). We demonstrated that the relatively high concentration of 10 mg/L BaA was degraded completely in 11 days, which indicated that C. reinhardtii had an efficient degradation system. During the degradation, the intermediate metabolites were determined to be isomeric phenanthrene or anthracene, 2,6-diisopropylnaphthalene, 1,3-diisopropylnaphthalene, 1,7-diisopropylnaphthalene, and cyclohexanol. The enzymes involved in the degradation included the homogentisate 1,2-dioxygenase (HGD), the carboxymethylenebutenolidase, the ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the ubiquinol oxidase. The respective genes encoding these proteins were significantly up-regulated ranging from 3.17 fold to 13.03 fold and the activity of enzymes, such as HGD and Rubisco, was significantly induced up to 4.53 and 1.46 fold (p < 0.05), during the BaA metabolism. This efficient degradation ability suggests that the green alga C. reinhardtii CC-503 may be a sustainable candidate for PAHs remediation.
Collapse
Affiliation(s)
- Jun Luo
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Jinglin Deng
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Lili Cui
- Institute of Environment and Ecology, Shandong Normal University, 250014, Ji'nan, PR China
| | - Peng Chang
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Xianzhu Dai
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Caiyun Yang
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Nannan Li
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, 250014, Ji'nan, PR China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, 443002, Yichang, PR China.
| | - Xiaohui Zhang
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China.
| |
Collapse
|
31
|
Abstract
Messenger RNAs (mRNAs) consist of a coding region (open reading frame (ORF)) and two untranslated regions (UTRs), 5'UTR and 3'UTR. Ribosomes travel along the coding region, translating nucleotide triplets (called codons) to a chain of amino acids. The coding region was long believed to mainly encode the amino acid content of proteins, whereas regulatory signals reside in the UTRs and in other genomic regions. However, in recent years we have learned that the ORF is expansively populated with various regulatory signals, or codes, which are related to all gene expression steps and additional intracellular aspects. In this paper, we review the current knowledge related to overlapping codes inside the coding regions, such as the influence of synonymous codon usage on translation speed (and, in turn, the effect of translation speed on protein folding), ribosomal frameshifting, mRNA stability, methylation, splicing, transcription and more. All these codes come together and overlap in the ORF sequence, ensuring production of the right protein at the right time.
Collapse
Affiliation(s)
- Shaked Bergman
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
32
|
Kim J, Lee S, Baek K, Jin E. Site-Specific Gene Knock-Out and On-Site Heterologous Gene Overexpression in Chlamydomonas reinhardtii via a CRISPR-Cas9-Mediated Knock-in Method. FRONTIERS IN PLANT SCIENCE 2020; 11:306. [PMID: 32265959 PMCID: PMC7099044 DOI: 10.3389/fpls.2020.00306] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/03/2020] [Indexed: 05/27/2023]
Abstract
Chlamydomonas reinhardtii is being transformed from a model organism to an industrial organism for the production of pigments, fatty acids, and pharmaceuticals. Genetic modification has been used to increase the economic value of C. reinhardtii. However, low gene-editing efficiency and position-effects hinder the genetic improvement of this microorganism. Recently, site-specific double-stranded DNA cleavage using CRISPR-Cas9 system has been applied to regulate a metabolic pathway in C. reinhardtii. In this study, we proved that site-specific gene expression can be induced by CRISPR-Cas9-mediated double-strand cleavage and non-homologous end joining (NHEJ) mechanism. The CRISPR-Cas9-mediated knock-in method was adopted to improve gene-editing efficiency and express the reporter gene on the intended site. Knock-in was performed using a combination of ribonucleoprotein (RNP) complex and DNA fragment (antibiotics resistance gene). Gene-editing efficiency was improved via optimization of a component of RNP complex. We found that when the gene CrFTSY was targeted, the efficiency of obtaining the desired mutant by the knock-in method combined with antibiotic resistance was nearly 37%; 2.5 times higher than the previous reports. Additionally, insertion of a long DNA fragment (3.2 and 6.4 kb) and site-specific gene expression were analyzed. We demonstrated the knock-out phenotype of CrFTSY and on-site inserted gene expression of luciferase and mVenus at the same time. This result showed that CRISPR-Cas9-mediated knock-in can be used to express the gene of interest avoiding position-effects in C. reinhardtii. This report could provide a new perspective to the use of gene-editing. Furthermore, the technical improvements in genetic modification may accelerate the commercialization of C. reinhardtii.
Collapse
Affiliation(s)
| | | | | | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Science, Hanyang University, Seoul, South Korea
| |
Collapse
|
33
|
Weiner I, Feldman Y, Shahar N, Yacoby I, Tuller T. CSO – A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Shahar N, Landman S, Weiner I, Elman T, Dafni E, Feldman Y, Tuller T, Yacoby I. The Integration of Multiple Nuclear-Encoded Transgenes in the Green Alga Chlamydomonas reinhardtii Results in Higher Transcription Levels. FRONTIERS IN PLANT SCIENCE 2020; 10:1784. [PMID: 32117346 PMCID: PMC7033495 DOI: 10.3389/fpls.2019.01784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
The integration of genes into the nuclear genome of Chlamydomonas reinhardtii is mediated by Non-Homologous-End-Joining, thus resulting in unpredicted insertion locations. This phenomenon defines 'the position-effect', which is used to explain the variation of expression levels between different clones transformed with the same DNA fragment. Likewise, nuclear transgenes often undergo epigenetic silencing that reduces their expression; hence, nuclear transformations require high-throughput screening methods to isolate clones that express the foreign gene at a desirable level. Here, we show that the number of integration sites of heterologous genes results in higher mRNA levels. By transforming both a synthetic ferredoxin-hydrogenase fusion enzyme and a Gaussia-Luciferase reporter protein, we were able to obtain 33 positive clones that exhibit a wide range of synthetic expression. We then performed a droplet-digital polymerase-chain-reaction for these lines to measure their transgene DNA copy-number and mRNA levels. Surprisingly, most clones contain two integration sites of the synthetic gene (45.5%), whilst 33.3% contain one, 18.1% include three and 3.1% encompass four. Remarkably, we observed a positive correlation between the raw DNA copy-number values to the mRNA levels, suggesting a general effect of which transcription of transgenes is partially modulated by their number of copies in the genome. However, our data indicate that only clones harboring at least three copies of the target amplicon show a significant increment in mRNA levels of the reporter transgene. Lastly, we measured protein activity for each of the reporter genes to elucidate the effect of copy-number variation on heterologous expression.
Collapse
Affiliation(s)
- Noam Shahar
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Shira Landman
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Iddo Weiner
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Elman
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Dafni
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yael Feldman
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Iftach Yacoby
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Towards a biotechnological platform for the production of human pro-angiogenic growth factors in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 2019; 104:725-739. [PMID: 31822980 DOI: 10.1007/s00253-019-10267-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
Abstract
The recent use of photosynthetic organisms such as Chlamydomonas reinhardtii in biomedical applications has demonstrated their potential for the treatment of acute and chronic tissue hypoxia. Moreover, transgenic microalgae have been suggested as an alternative in situ drug delivery system. In this study, we set out to identify the best available combination of strains and expression vectors to establish a robust platform for the expression of human pro-angiogenic growth factors, i.e., hVEGF-165, hPDGF-B, and hSDF-1, in biomedical settings. As a case study, combinations of two expression vectors (pOpt and pBC1) and two C. reinhardtii strains (UVM4 and UVM11) were compared with respect to hVEGF-165 transgene expression by determination of steady-state levels of transgenic transcripts and immunological detection of recombinant proteins produced and secreted by the generated strains. The results revealed the combination of the UVM11 strain with the pBC1 vector to be the most efficient one for high-level hVEGF-165 production. To assess the robustness of this finding, the selected combination was used to create hPDGF-B and hSDF-1 transgenic strains for optimized recombinant protein expression. Furthermore, biological activity and functionality of algal-produced recombinant pro-angiogenic growth factors were assessed by receptor phosphorylation and in vitro angiogenesis assays. The results obtained revealed a potentiating effect in the combinatorial application of transgenic strains expressing either of the three growth factors on endothelial cell tube formation ability, and thus support the idea of using transgenic algae expressing pro-angiogenic growth factors in wound healing approaches.
Collapse
|
36
|
Good News for Nuclear Transgene Expression in Chlamydomonas. Cells 2019; 8:cells8121534. [PMID: 31795196 PMCID: PMC6952782 DOI: 10.3390/cells8121534] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Chlamydomonas reinhardtii is a well-established model system for basic research questions ranging from photosynthesis and organelle biogenesis, to the biology of cilia and basal bodies, to channelrhodopsins and photoreceptors. More recently, Chlamydomonas has also been recognized as a suitable host for the production of high-value chemicals and high-value recombinant proteins. However, basic and applied research have suffered from the inefficient expression of nuclear transgenes. The combined efforts of the Chlamydomonas community over the past decades have provided insights into the mechanisms underlying this phenomenon and have resulted in mutant strains defective in some silencing mechanisms. Moreover, many insights have been gained into the parameters that affect nuclear transgene expression, like promoters, introns, codon usage, or terminators. Here I critically review these insights and try to integrate them into design suggestions for the construction of nuclear transgenes that are to be expressed at high levels.
Collapse
|
37
|
Ben-Zvi O, Dafni E, Feldman Y, Yacoby I. Re-routing photosynthetic energy for continuous hydrogen production in vivo. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:266. [PMID: 31737095 PMCID: PMC6844042 DOI: 10.1186/s13068-019-1608-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/04/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Hydrogen is considered a promising energy vector that can be produced from sustainable resources such as sunlight and water. In green algae, such as Chlamydomonas reinhardtii, photoproduction of hydrogen is catalyzed by the enzyme [FeFe]-hydrogenase (HydA). Although highly efficient, this process is transitory and thought to serve as a release valve for excess reducing power. Up to date, prolonged production of hydrogen was achieved by the deprivation of either nutrients or light, thus, hindering the full potential of photosynthetic hydrogen production. Previously we showed that the enzyme superoxide dismutase (SOD) can enhance HydA activity in vitro, specifically when tied together to a fusion protein. RESULTS In this work, we explored the in vivo hydrogen production phenotype of HydA-SOD fusion. We found a sustained hydrogen production, which is dependent on linear electron flow, although other pathways feed it as well. In addition, other characteristics such as slower growth and oxygen production were also observed in Hyd-SOD-expressing algae. CONCLUSIONS The Hyd-SOD fusion manages to outcompete the Calvin-Benson cycle, allowing sustained hydrogen production for up to 14 days in non-limiting conditions.
Collapse
Affiliation(s)
- Oren Ben-Zvi
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| | - Eyal Dafni
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| | - Yael Feldman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel
| |
Collapse
|
38
|
Lin WR, Tan SI, Hsiang CC, Sung PK, Ng IS. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121932. [PMID: 31387837 DOI: 10.1016/j.biortech.2019.121932] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Microalgae and cyanobacteria are easy to culture, with higher growth rates and photosynthetic efficiencies compared to terrestrial plants, and thus generating higher productivity. The concept of microalgal biorefinery is to assimilate carbon dioxide and convert it to chemical energy/value-added products, such as vitamins, carotenoids, fatty acids, proteins and nucleic acids, to be applied in bioenergy, health foods, aquaculture feed, pharmaceutical and medical fields. Therefore, microalgae are annotated as the third generation feedstock in bioenergy and biorefinery. In past decades, many studies thrived to improve the carbon sequestration efficiency as well as enhance value-added compounds from different algae, especially via genetic engineering, synthetic biology, metabolic design and regulation. From the traditional Agrobacterium-mediated transformation DNA to novel CRISPR (clustered regularly interspaced short palindromic repeats) technology applied in microalgae and cyanobacteria, this review has highlighted the genome editing technology for biorefinery that is a highly environmental friendly trend to sustainable and renewable development.
Collapse
Affiliation(s)
- Way-Rong Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Po-Kuei Sung
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| |
Collapse
|
39
|
Weiner I, Shahar N, Marco P, Yacoby I, Tuller T. Solving the Riddle of the Evolution of Shine-Dalgarno Based Translation in Chloroplasts. Mol Biol Evol 2019; 36:2854-2860. [DOI: 10.1093/molbev/msz210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AbstractChloroplasts originated from an ancient cyanobacterium and still harbor a bacterial-like genome. However, the centrality of Shine–Dalgarno ribosome binding, which predominantly regulates proteobacterial translation initiation, is significantly decreased in chloroplasts. As plastid ribosomal RNA anti-Shine–Dalgarno elements are similar to their bacterial counterparts, these sites alone cannot explain this decline. By computational simulation we show that upstream point mutations modulate the local structure of ribosomal RNA in chloroplasts, creating significantly tighter structures around the anti-Shine–Dalgarno locus, which in-turn reduce the probability of ribosome binding. To validate our model, we expressed two reporter genes (mCherry, hydrogenase) harboring a Shine–Dalgarno motif in the Chlamydomonas reinhardtii chloroplast. Coexpressing them with a 16S ribosomal RNA, modified according to our model, significantly enhances mCherry and hydrogenase expression compared with coexpression with an endogenous 16S gene.
Collapse
Affiliation(s)
- Iddo Weiner
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Pini Marco
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Jaeger D, Baier T, Lauersen KJ. Intronserter, an advanced online tool for design of intron containing transgenes. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Naini R, Pavankumar P, Prabhakar S, Kancha RK, Rao KV, Reddy VD. Evolvement of nutraceutical onion plants engineered for resveratrol biosynthetic pathway. PLANT CELL REPORTS 2019; 38:1127-1137. [PMID: 31154513 DOI: 10.1007/s00299-019-02432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Genetically engineered onion expressing codon-optimized VvSTS1 gene accumulated stilbenes and extended life span in yeast and can serve as potential nutraceutical. Resveratrol (RV) is a natural polyphenolic compound found in certain plant species including grapes. RV is well known for its nutraceutical properties and to assuage several disease conditions. Onion is the second most consumed vegetable worldwide and contains large quantities of precursor molecules, malonyl-CoA and para-coumaroyl-CoA that are needed for RV biosynthesis. The present study reports the development of nutraceutical onion by engineering RV biosynthetic pathway. A codon-optimized grapevine synthetic stilbene synthase gene (VvSTS1) was synthesized using native grapevine sequence. Six-week-old healthy yellowish compact nodular calli were co-cultivated with Agrobacterium tumefaciens harbouring pCAMBIA1300-hpt II-CaMV35S-VvSTS1-nos. PCR analysis revealed the presence of VvSTS1 and hpt II genes in putative transgenics. Southern blot analysis confirmed the integration of VvSTS1 gene and independent nature of transformants. LC-ESI-HRMS analysis revealed the accumulation of variable quantities of RV (24.98-50.18 µg/g FW) and its glycosylated form polydatin (33.6-67.15 µg/g FW) in both leaves and bulbs, respectively, indicating the successful engineering of RV biosynthetic pathway into onion. The transgenic onion bulb extracts extended the life span in haploid yeast. The transgenic onion accumulating RV and polydatin, developed for the first of its kind, may serve as a potential nutraceutical resource.
Collapse
Affiliation(s)
- Raju Naini
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | - P Pavankumar
- Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Acadamy of Scientific and Innovative Research, CSIR-IICT, Hyderabad, India
| | - S Prabhakar
- Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Acadamy of Scientific and Innovative Research, CSIR-IICT, Hyderabad, India
| | - Rama Krishna Kancha
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | | | - Vudem Dashavantha Reddy
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
42
|
Shahar N, Weiner I, Stotsky L, Tuller T, Yacoby I. Prediction and large-scale analysis of primary operons in plastids reveals unique genetic features in the evolution of chloroplasts. Nucleic Acids Res 2019; 47:3344-3352. [PMID: 30828719 PMCID: PMC6468310 DOI: 10.1093/nar/gkz151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/14/2022] Open
Abstract
While bacterial operons have been thoroughly studied, few analyses of chloroplast operons exist, limiting the ability to study fundamental elements of these structures and utilize them for synthetic biology. Here, we describe the creation of a plastome-specific operon database (link provided below) achieved by combining experimental tools and predictive modeling. Using a Reverse-Transcription-PCR based method and published data, we determined the transcription-state of 213 gene pairs from four plastomes of evolutionary distinct organisms. By analyzing sequence-based features computed for our dataset, we were able to highlight fundamental characteristics differentiating between operon pairs and non-operon pairs. These include an interesting tendency toward maintaining similar messenger RNA-folding profiles in operon gene pairs, a feature that failed to yield any informative separation in cyanobacteria, suggesting that it catches unique traits of operon gene expression, which have evolved post-endosymbiosis. Subsequently, we used this feature set to train a random-forest classifier for operon prediction. As our results demonstrate the ability of our predictor to obtain accurate (84%) and robust predictions on unlabeled datasets, we proceeded to building operon maps for 2018 sequenced plastids. Our database may now present new opportunities for promoting metabolic engineering and synthetic biology in chloroplasts.
Collapse
Affiliation(s)
- Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Iddo Weiner
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lior Stotsky
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
43
|
Sabi R, Tuller T. Novel insights into gene expression regulation during meiosis revealed by translation elongation dynamics. NPJ Syst Biol Appl 2019; 5:12. [PMID: 30962948 PMCID: PMC6449359 DOI: 10.1038/s41540-019-0089-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The ability to dynamically control mRNA translation has a great impact on many intracellular processes. Whereas it is believed that translational control in eukaryotes occurs mainly at initiation, the condition-specific changes at the elongation level and their potential regulatory role remain unclear. Using computational approaches applied to ribosome profiling data, we show that elongation rate is dynamic and can change considerably during the yeast meiosis to facilitate the selective translation of stage-specific transcripts. We observed unique elongation changes during meiosis II, including a global inhibition of translation elongation at the onset of anaphase II accompanied by a sharp shift toward increased elongation for genes required at this meiotic stage. We also show that ribosomal proteins counteract the global decreased elongation by maintaining high initiation rates. Our findings provide new insights into gene expression regulation during meiosis and demonstrate that codon usage evolved, among others, to optimize timely translation.
Collapse
Affiliation(s)
- Renana Sabi
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
44
|
Dafni E, Weiner I, Shahar N, Tuller T, Yacoby I. Image-Processing Software for High-Throughput Quantification of Colony Luminescence. mSphere 2019; 4:e00676-18. [PMID: 30602526 PMCID: PMC6315083 DOI: 10.1128/msphere.00676-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/20/2022] Open
Abstract
Many microbiological assays include colonies that produce a luminescent or fluorescent (here generalized as "luminescent") signal, often in the form of luminescent halos around the colonies. These signals are used as reporters for a trait of interest; therefore, exact measurements of the luminescence are often desired. However, there is currently a lack of high-throughput methods for analyzing these assays, as common automatic image analysis tools are unsuitable for identifying these halos in the presence of the inherent biological noise. In this work, we have developed CFQuant-automatic, high-throughput software for the analysis of images from colony luminescence assays. CFQuant overcomes the problems of automatic identification by relying on the luminescence halo's expected shape and provides measurements of several features of the colonies and halos. We examined the performance of CFQuant using one such colony luminescence assay, where we achieved a high correlation (R = 0.85) between the measurements of CFQuant and known protein expression levels. This demonstrates CFQuant's potential as a fast and reliable tool for analysis of colony luminescence assays.IMPORTANCE Luminescent markers are widely used as reporters for various biologically interesting traits. In colony luminescence assays, the levels of luminescence around each colony can be used to compare the levels of traits of interest for different strains, treatments, etc., using quantitative measurements of the luminescence. However, automatic methods of obtaining this data are underdeveloped, making this a laborious manual process, especially in analyzing large numbers of colonies. The significance of this work is in developing an automatic, high-throughput tool for quantitative analysis of colony luminescence assays, which will allow fast collection of qualitative data from these assays and thus increase their overall usability.
Collapse
Affiliation(s)
- Eyal Dafni
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Iddo Weiner
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
45
|
Lauersen KJ. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production. PLANTA 2019; 249:155-180. [PMID: 30467629 DOI: 10.1007/s00425-018-3048-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/14/2018] [Indexed: 05/21/2023]
Abstract
Eukaryotic microalgae hold incredible metabolic potential for the sustainable production of heterologous isoprenoid products. Recent advances in algal engineering have enabled the demonstration of prominent examples of heterologous isoprenoid production. Isoprenoids, also known as terpenes or terpenoids, are the largest class of natural chemicals, with a vast diversity of structures and biological roles. Some have high-value in human-use applications, although may be found in their native contexts in low abundance or be difficult to extract and purify. Heterologous production of isoprenoid compounds in heterotrophic microbial hosts such as bacteria or yeasts has been an active area of research for some time and is now a mature technology. Eukaryotic microalgae represent sustainable alternatives to these hosts for biotechnological production processes as their cultivation can be driven by light and freely available CO2 as a carbon source. Their photosynthetic lifestyles require metabolic architectures structured towards the generation of associated isoprenoids (carotenoids, phytol) which participate in photon capture, energy dissipation, and electron transfer. Eukaryotic microalgae should, therefore, contain inherently high capacities for the generation of heterologous isoprenoid products. Although engineering strategies in eukaryotic microalgae have lagged behind the more genetically tractable bacteria and yeasts, recent advances in algal engineering concepts have demonstrated prominent examples of light-driven heterologous isoprenoid production from these photosynthetic hosts. This work seeks to provide practical insights into the choice of eukaryotic microalgae as biotechnological chassis. Recent reports of advances in algal engineering for heterologous isoprenoid production are highlighted as encouraging examples that promote their expanded use as sustainable green-cell factories. Current state of the art, limitations, and future challenges are also discussed.
Collapse
Affiliation(s)
- Kyle J Lauersen
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
46
|
Benedetti M, Vecchi V, Barera S, Dall’Osto L. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb Cell Fact 2018; 17:173. [PMID: 30414618 PMCID: PMC6230293 DOI: 10.1186/s12934-018-1019-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Interest in bulk biomass from microalgae, for the extraction of high-value nutraceuticals, bio-products, animal feed and as a source of renewable fuels, is high. Advantages of microalgal vs. plant biomass production include higher yield, use of non-arable land, recovery of nutrients from wastewater, efficient carbon capture and faster development of new domesticated strains. Moreover, adaptation to a wide range of environmental conditions evolved a great genetic diversity within this polyphyletic group, making microalgae a rich source of interesting and useful metabolites. Microalgae have the potential to satisfy many global demands; however, realization of this potential requires a decrease of the current production costs. Average productivity of the most common industrial strains is far lower than maximal theoretical estimations, suggesting that identification of factors limiting biomass yield and removing bottlenecks are pivotal in domestication strategies aimed to make algal-derived bio-products profitable on the industrial scale. In particular, the light-to-biomass conversion efficiency represents a major constraint to finally fill the gap between theoretical and industrial productivity. In this respect, recent results suggest that significant yield enhancement is feasible. Full realization of this potential requires further advances in cultivation techniques, together with genetic manipulation of both algal physiology and metabolic networks, to maximize the efficiency with which solar energy is converted into biomass and bio-products. In this review, we draft the molecular events of photosynthesis which regulate the conversion of light into biomass, and discuss how these can be targeted to enhance productivity through mutagenesis, strain selection or genetic engineering. We outline major successes reached, and promising strategies to achieving significant contributions to future microalgae-based biotechnology.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Simone Barera
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
47
|
Baier T, Wichmann J, Kruse O, Lauersen KJ. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res 2018; 46:6909-6919. [PMID: 30053227 PMCID: PMC6061784 DOI: 10.1093/nar/gky532] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Among green freshwater microalgae, Chlamydomonas reinhardtii has the most comprehensive and developed molecular toolkit, however, advanced genetic and metabolic engineering driven from the nuclear genome is generally hindered by inherently low transgene expression levels. Progressive strain development and synthetic promoters have improved the capacity of transgene expression; however, the responsible regulatory mechanisms are still not fully understood. Here, we elucidate the sequence specific dynamics of native regulatory element insertion into nuclear transgenes. Systematic insertions of the first intron of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit 2 (rbcS2i1) throughout codon-optimized coding sequences (CDS) generates optimized algal transgenes which express reliably in C. reinhardtii. The optimal rbcS2i1 insertion site for efficient splicing was systematically determined and improved gene expression rates were shown using a codon-optimized sesquiterpene synthase CDS. Sequential insertions of rbcS2i1 were found to have a step-wise additive effect on all levels of transgene expression, which is likely correlated to a synergy of transcriptional machinery recruitment and mimicking the short average exon lengths natively found in the C. reinhardtii genome. We further demonstrate the value of this optimization with five representative transgene examples and provide guidelines for the design of any desired sequence with this strategy.
Collapse
MESH Headings
- Abies/enzymology
- Abies/genetics
- Chlamydomonas reinhardtii/genetics
- Codon/genetics
- DNA, Plant/genetics
- DNA, Recombinant/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Synthetic
- Introns
- Isomerases/biosynthesis
- Isomerases/genetics
- Mutagenesis, Insertional
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Pogostemon/enzymology
- Pogostemon/genetics
- Protein Engineering
- RNA Splicing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/biosynthesis
- Ribulose-Bisphosphate Carboxylase/genetics
- Transgenes
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Julian Wichmann
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Kyle J Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
48
|
Weiner I, Shahar N, Feldman Y, Landman S, Milrad Y, Ben-Zvi O, Avitan M, Dafni E, Schweitzer S, Eilenberg H, Atar S, Diament A, Tuller T, Yacoby I. Overcoming the expression barrier of the ferredoxin‑hydrogenase chimera in Chlamydomonas reinhardtii supports a linear increment in photosynthetic hydrogen output. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|