1
|
de Carvalho-Niebel F, Fournier J, Becker A, Marín Arancibia M. Cellular insights into legume root infection by rhizobia. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102597. [PMID: 39067084 DOI: 10.1016/j.pbi.2024.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Legume plants establish an endosymbiosis with nitrogen-fixing rhizobia bacteria, which are taken up from the environment anew by each host generation. This requires a dedicated genetic program on the host side to control microbe invasion, involving coordinated reprogramming of host cells to create infection structures that facilitate inward movement of the symbiont. Infection initiates in the epidermis, with different legumes utilizing distinct strategies for crossing this cell layer, either between cells (intercellular infection) or transcellularly (infection thread infection). Recent discoveries on the plant side using fluorescent-based imaging approaches have illuminated the spatiotemporal dynamics of infection, underscoring the importance of investigating this process at the dynamic single-cell level. Extending fluorescence-based live-dynamic approaches to the bacterial partner opens the exciting prospect of learning how individual rhizobia reprogram from rhizospheric to a host-confined state during early root infection.
Collapse
Affiliation(s)
| | - Joëlle Fournier
- LIPME, INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35032, Marburg, Germany; Department of Biology, Philipps-Universität Marburg, D-35032, Marburg, Germany
| | | |
Collapse
|
2
|
Velandia K, Correa-Lozano A, McGuiness PM, Reid JB, Foo E. Cell-layer specific roles for gibberellins in nodulation and root development. THE NEW PHYTOLOGIST 2024; 242:626-640. [PMID: 38396236 DOI: 10.1111/nph.19623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Gibberellins (GA) have a profound influence on the formation of lateral root organs. However, the precise role this hormone plays in the cell-specific events during lateral root formation, rhizobial infection and nodule organogenesis, including interactions with auxin and cytokinin (CK), is not clear. We performed epidermal- and endodermal-specific complementation of the severely GA-deficient na pea (Pisum sativum) mutant with Agrobacterium rhizogenes. Gibberellin mutants were used to examine the spatial expression pattern of CK (TCSn)- and auxin (DR5)-responsive promoters and hormone levels. We found that GA produced in the endodermis promote lateral root and nodule organogenesis and can induce a mobile signal(s) that suppresses rhizobial infection. By contrast, epidermal-derived GA suppress infection but have little influence on root or nodule development. GA suppress the CK-responsive TCSn promoter in the cortex and are required for normal auxin activation during nodule primordia formation. Our findings indicate that GA regulate the checkpoints between infection thread (IT) penetration of the cortex and invasion of nodule primordial cells and promote the subsequent progression of nodule development. It appears that GA limit the progression and branching of IT in the cortex by restricting CK response and activate auxin response to promote nodule primordia development.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Alejandro Correa-Lozano
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Peter M McGuiness
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
3
|
Cui S, Inaba S, Suzaki T, Yoshida S. Developing for nutrient uptake: Induced organogenesis in parasitic plants and root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102473. [PMID: 37826989 DOI: 10.1016/j.pbi.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/26/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
Plants have evolved diverse strategies to meet their nutritional needs. Parasitic plants employ haustoria, specialized structures that facilitate invasion of host plants and nutrient acquisition. Legumes have adapted to nitrogen-limited conditions by developing nodules that accommodate nitrogen-fixing rhizobia. The formation of both haustoria and nodules is induced by signals originating from the interacting organisms, namely host plants and rhizobial bacteria, respectively. Emerging studies showed that both organogenesis crucially involves plant hormones such as auxin, cytokinins, and ethylene and also integrate nutrient availability, particularly nitrogen. In this review, we discuss recent advances on hormonal and environmental control of haustoria and nodules development with side-by-side comparison. These underscore the remarkable plasticity of plant organogenesis.
Collapse
Affiliation(s)
- Songkui Cui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shoko Inaba
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Satoko Yoshida
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
4
|
Neres DF, Taylor JS, Bryant JA, Bargmann BOR, Wright RC. Identification of potential Auxin Response Candidate genes for soybean rapid canopy coverage through comparative evolution and expression analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564213. [PMID: 37961442 PMCID: PMC10634891 DOI: 10.1101/2023.10.26.564213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glycine max, soybean, is an abundantly cultivated crop worldwide. Efforts have been made over the past decades to improve soybean production in traditional and organic agriculture, driven by growing demand for soybean-based products. Rapid canopy cover development (RCC) increases soybean yields and suppresses early-season weeds. Genome-wide association studies have found natural variants associated with RCC, however causal mechanisms are unclear. Auxin modulates plant growth and development and has been implicated in RCC traits. Therefore, modulation of auxin regulatory genes may enhance RCC. Here, we focus on the use of genomic tools and existing datasets to identify auxin signaling pathway RCC candidate genes, using a comparative phylogenetics and expression analysis approach. We identified genes encoding 14 TIR1/AFB auxin receptors, 61 Aux/IAA auxin co-receptors and transcriptional co-repressors, and 55 ARF auxin response factors in the soybean genome. We used Bayesian phylogenetic inference to identify soybean orthologs of Arabidopsis thaliana genes, and defined an ortholog naming system for these genes. To further define potential auxin signaling candidate genes for RCC, we examined tissue-level expression of these genes in existing datasets and identified highly expressed auxin signaling genes in apical tissues early in development. We identified at least 4 TIR1/AFB, 8 Aux/IAA, and 8 ARF genes with highly specific expression in one or more RCC-associated tissues. We hypothesize that modulating the function of these genes through gene editing or traditional breeding will have the highest likelihood of affecting RCC while minimizing pleiotropic effects.
Collapse
|
5
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
6
|
Wang J, Diao R, Wu Z, Wan S, Yang S, Li X. Transcriptomic and Metabolomic Analyses Reveal the Roles of Flavonoids and Auxin on Peanut Nodulation. Int J Mol Sci 2023; 24:10152. [PMID: 37373299 DOI: 10.3390/ijms241210152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Rhizobia form symbiotic relationships with legumes, fixing atmospheric nitrogen into a plant-accessible form within their root nodules. Nitrogen fixation is vital for sustainable soil improvements in agriculture. Peanut (Arachis hypogaea) is a leguminous crop whose nodulation mechanism requires further elucidation. In this study, comprehensive transcriptomic and metabolomic analyses were conducted to assess the differences between a non-nodulating peanut variety and a nodulating peanut variety. Total RNA was extracted from peanut roots, then first-strand and second-strand cDNA were synthesized and purified. After sequencing adaptors were added to the fragments, the cDNA libraries were sequenced. Our transcriptomic analysis identified 3362 differentially expressed genes (DEGs) between the two varieties. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the DEGs were mainly involved in metabolic pathways, hormone signal transduction, secondary metabolic biosynthesis, phenylpropanoid biosynthesis, or ABC transport. Further analyses indicated that the biosynthesis of flavonoids, such as isoflavones, flavonols, and flavonoids, was important for peanut nodulation. A lack of flavonoid transport into the rhizosphere (soil) could prevent rhizobial chemotaxis and the activation of their nodulation genes. The downregulation of AUXIN-RESPONSE FACTOR (ARF) genes and lower auxin content could reduce rhizobia's invasion of peanut roots, ultimately reducing nodule formation. Auxin is the major hormone that influences the cell-cycle initiation and progression required for nodule initiation and accumulates during different stages of nodule development. These findings lay the foundation for subsequent research into the nitrogen-fixation efficiency of peanut nodules.
Collapse
Affiliation(s)
- Jianguo Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ruining Diao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhengfeng Wu
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Sha Yang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xinguo Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
7
|
Carrillo‐Carrasco VP, Hernandez‐Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J 2023; 42:e113018. [PMID: 36786017 PMCID: PMC10015382 DOI: 10.15252/embj.2022113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.
Collapse
Affiliation(s)
| | | | - Sumanth K Mutte
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
8
|
Li L, Chen X. Auxin regulation on crop: from mechanisms to opportunities in soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:16. [PMID: 37313296 PMCID: PMC10248601 DOI: 10.1007/s11032-023-01361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 06/15/2023]
Abstract
Breeding crop varieties with high yield and ideal plant architecture is a desirable goal of agricultural science. The success of "Green Revolution" in cereal crops provides opportunities to incorporate phytohormones in crop breeding. Auxin is a critical phytohormone to determine nearly all the aspects of plant development. Despite the current knowledge regarding auxin biosynthesis, auxin transport and auxin signaling have been well characterized in model Arabidopsis (Arabidopsis thaliana) plants, how auxin regulates crop architecture is far from being understood, and the introduction of auxin biology in crop breeding stays in the theoretical stage. Here, we give an overview on molecular mechanisms of auxin biology in Arabidopsis, and mainly summarize auxin contributions for crop plant development. Furthermore, we propose potential opportunities to integrate auxin biology in soybean (Glycine max) breeding.
Collapse
Affiliation(s)
- Linfang Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
9
|
Liu M, Kameoka H, Oda A, Maeda T, Goto T, Yano K, Soyano T, Kawaguchi M. The effects of ERN1 on gene expression during early rhizobial infection in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2023; 13:995589. [PMID: 36733592 PMCID: PMC9888413 DOI: 10.3389/fpls.2022.995589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Legumes develop root nodules in association with compatible rhizobia to overcome nitrogen deficiency. Rhizobia enter the host legume, mainly through infection threads, and induce nodule primordium formation in the root cortex. Multiple transcription factors have been identified to be involved in the regulation of the establishment of root nodule symbiosis, including ERF Required for Nodulation1 (ERN1). ERN1 is involved in a transcription network with CYCLOPS and NODULE INCEPTION (NIN). Mutation of ERN1 often results in misshapen root hair tips, deficient infection thread formation, and immature root nodules. ERN1 directly activates the expression of ENOD11 in Medicago truncatula to assist cell wall remodeling and Epr3 in Lotus japonicus to distinguish rhizobial exopolysaccharide signals. However, aside from these two genes, it remains unclear which genes are regulated by LjERN1 or what role LjERN1 plays during root nodule symbiosis. Thus, we conducted RNA sequencing to compare the gene expression profiles of wild-type L. japonicus and Ljern1-6 mutants. In total, 234 differentially expressed genes were identified as candidate LjERN1 target genes. These genes were found to be associated with cell wall remodeling, signal transduction, phytohormone metabolism, and transcription regulation, suggesting that LjERN1 is involved in multiple processes during the early stages of the establishment of root nodule symbiosis. Many of these candidate genes including RINRK1 showed decreased expression levels in Ljnin-2 mutants based on a search of a public database, suggesting that LjERN1 and LjNIN coordinately regulate gene expression. Our data extend the current understanding of the pleiotropic role of LjERN1 in root nodule symbiosis.
Collapse
Affiliation(s)
- Meng Liu
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Hiromu Kameoka
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Akiko Oda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Taro Maeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takashi Goto
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Koji Yano
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
10
|
Bhattacharjee O, Raul B, Ghosh A, Bhardwaj A, Bandyopadhyay K, Sinharoy S. Nodule INception-independent epidermal events lead to bacterial entry during nodule development in peanut (Arachis hypogaea). THE NEW PHYTOLOGIST 2022; 236:2265-2281. [PMID: 36098671 DOI: 10.1111/nph.18483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Legumes can host nitrogen-fixing rhizobia inside root nodules. In model legumes, rhizobia enter via infection threads (ITs) and develop nodules in which the infection zone contains a mixture of infected and uninfected cells. Peanut (Arachis hypogaea) diversified from model legumes c. 50-55 million years ago. Rhizobia enter through 'cracks' to form nodules in peanut roots where cells of the infection zone are uniformly infected. Phylogenomic studies have indicated symbiosis as a labile trait in peanut. These atypical features prompted us to investigate the molecular mechanism of peanut nodule development. Combining cell biology, genetics and genomic tools, we visualized the status of hormonal signaling in peanut nodule primordia. Moreover, we dissected the signaling modules of Nodule INception (NIN), a master regulator of both epidermal infection and cortical organogenesis. Cytokinin signaling operates in a broad zone, from the epidermis to the pericycle inside nodule primordia, while auxin signaling is narrower and focused. Nodule INception is involved in nodule organogenesis, but not in crack entry. Nodulation Pectate Lyase, which remodels cell walls during IT formation, is not required. By contrast, Nodule enhanced Glycosyl Hydrolases (AhNGHs) are recruited for cell wall modification during crack entry. While hormonal regulation is conserved, the function of the NIN signaling modules is diversified in peanut.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Haryana, 122412, India
| | - Bikash Raul
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Amit Ghosh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Bhardwaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kaustav Bandyopadhyay
- Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Haryana, 122412, India
| | - Senjuti Sinharoy
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
11
|
Bellés-Sancho P, Liu Y, Heiniger B, von Salis E, Eberl L, Ahrens CH, Zamboni N, Bailly A, Pessi G. A novel function of the key nitrogen-fixation activator NifA in beta-rhizobia: Repression of bacterial auxin synthesis during symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:991548. [PMID: 36247538 PMCID: PMC9554594 DOI: 10.3389/fpls.2022.991548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Rhizobia fix nitrogen within root nodules of host plants where nitrogenase expression is strictly controlled by its key regulator NifA. We recently discovered that in nodules infected by the beta-rhizobial strain Paraburkholderia phymatum STM815, NifA controls expression of two bacterial auxin synthesis genes. Both the iaaM and iaaH transcripts, as well as the metabolites indole-acetamide (IAM) and indole-3-acetic acid (IAA) showed increased abundance in nodules occupied by a nifA mutant compared to wild-type nodules. Here, we document the structural changes that a P. phymatum nifA mutant induces in common bean (Phaseolus vulgaris) nodules, eventually leading to hypernodulation. To investigate the role of the P. phymatum iaaMH genes during symbiosis, we monitored their expression in presence and absence of NifA over different stages of the symbiosis. The iaaMH genes were found to be under negative control of NifA in all symbiotic stages. While a P. phymatum iaaMH mutant produced the same number of nodules and nitrogenase activity as the wild-type strain, the nifA mutant produced more nodules than the wild-type that clustered into regularly-patterned root zones. Mutation of the iaaMH genes in a nifA mutant background reduced the presence of these nodule clusters on the root. We further show that the P. phymatum iaaMH genes are located in a region of the symbiotic plasmid with a significantly lower GC content and exhibit high similarity to two genes of the IAM pathway often used by bacterial phytopathogens to deploy IAA as a virulence factor. Overall, our data suggest that the increased abundance of rhizobial auxin in the non-fixing nifA mutant strain enables greater root infection rates and a role for bacterial auxin production in the control of early stage symbiotic interactions.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Molecular Ecology and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Elia von Salis
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Molecular Ecology and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Nicola Zamboni
- ETH Zürich, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Velandia K, Reid JB, Foo E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. PLANT COMMUNICATIONS 2022; 3:100327. [PMID: 35605199 PMCID: PMC9482984 DOI: 10.1016/j.xplc.2022.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
13
|
Auxin methylation by IAMT1, duplicated in the legume lineage, promotes root nodule development in Lotus japonicus. Proc Natl Acad Sci U S A 2022; 119:e2116549119. [PMID: 35235457 PMCID: PMC8915983 DOI: 10.1073/pnas.2116549119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance IAA carboxyl methyltransferase 1 (IAMT1) converts auxin (IAA) into its methyl ester (MeIAA). IAMT1 is reportedly critical for shoot development of the nonsymbiotic plant Arabidopsis. On the other hand, the function of IAMT1 in roots is unknown. Here, we found that IAMT1 is duplicated in the legume lineage, which evolved root nodule symbiosis. In the model legume Lotus japonicus, one of two paralogs (named IAMT1a) was mainly expressed in root epidermis, but its function is required in the adjacent cell layer, root cortex, where it promotes nodule development. Application of MeIAA, but not IAA, significantly induced NIN, a master regulator of nodule development, without rhizobia. These findings illuminate our understanding of intertissue communication acquired during evolution of root nodule symbiosis.
Collapse
|
14
|
The Lotus japonicus AFB6 Gene Is Involved in the Auxin Dependent Root Developmental Program. Int J Mol Sci 2021; 22:ijms22168495. [PMID: 34445201 PMCID: PMC8395167 DOI: 10.3390/ijms22168495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Auxin is essential for root development, and its regulatory action is exerted at different steps from perception of the hormone up to transcriptional regulation of target genes. In legume plants there is an overlap between the developmental programs governing lateral root and N2-fixing nodule organogenesis, the latter induced as the result of the symbiotic interaction with rhizobia. Here we report the characterization of a member of the L. japonicus TIR1/AFB auxin receptor family, LjAFB6. A preferential expression of the LjAFB6 gene in the aerial portion of L. japonicus plants was observed. Significant regulation of the expression was not observed during the symbiotic interaction with Mesorhizobium loti and the nodule organogenesis process. In roots, the LjAFB6 expression was induced in response to nitrate supply and was mainly localized in the meristematic regions of both primary and lateral roots. The phenotypic analyses conducted on two independent null mutants indicated a specialized role in the control of primary and lateral root elongation processes in response to auxin, whereas no involvement in the nodulation process was found. We also report the involvement of LjAFB6 in the hypocotyl elongation process and in the control of the expression profile of an auxin-responsive gene.
Collapse
|
15
|
Krönauer C, Radutoiu S. Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102026. [PMID: 33684882 DOI: 10.1016/j.pbi.2021.102026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 05/06/2023]
Abstract
Legumes evolved LysM receptors for recognition of rhizobial Nod factors and initiation of signalling pathways for nodule organogenesis and infection. Intracellularly hosted bacteria are supplied with carbon resources in exchange for fixed nitrogen. Nod factor recognition is crucial for initial signalling, but is reiterated in growing roots initiating novel symbiotic events, and in developing primordia until symbiosis is well-established. Understanding how this signalling coordinates the entire process from cellular to plant level is key for de novo engineering in non-legumes and for improved efficiency in legumes. Here we discuss how recent studies bring new insights into molecular determinants of specificity and sensitivity in Nod factor signalling in legumes, and present some of the unknowns and challenges for engineering.
Collapse
Affiliation(s)
- Christina Krönauer
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
16
|
Bellés-Sancho P, Lardi M, Liu Y, Eberl L, Zamboni N, Bailly A, Pessi G. Metabolomics and Dual RNA-Sequencing on Root Nodules Revealed New Cellular Functions Controlled by Paraburkholderia phymatum NifA. Metabolites 2021; 11:metabo11070455. [PMID: 34357349 PMCID: PMC8305402 DOI: 10.3390/metabo11070455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/25/2023] Open
Abstract
Paraburkholderia phymatum STM815 is a nitrogen-fixing endosymbiont that nodulate the agriculturally important Phaseolus vulgaris and several other host plants. We previously showed that the nodules induced by a STM815 mutant of the gene encoding the master regulator of nitrogen fixation NifA showed no nitrogenase activity (Fix−) and increased in number compared to P. vulgaris plants infected with the wild-type strain. To further investigate the role of NifA during symbiosis, nodules from P. phymatum wild-type and nifA mutants were collected and analyzed by metabolomics and dual RNA-Sequencing, allowing us to investigate both host and symbiont transcriptome. Using this approach, several metabolites’ changes could be assigned to bacterial or plant responses. While the amount of the C4-dicarboxylic acid succinate and of several amino acids was lower in Fix− nodules, the level of indole-acetamide (IAM) and brassinosteroids increased. Transcriptome analysis identified P. phymatum genes involved in transport of C4-dicarboxylic acids, carbon metabolism, auxin metabolism and stress response to be differentially expressed in absence of NifA. Furthermore, P. vulgaris genes involved in autoregulation of nodulation (AON) are repressed in nodules in absence of NifA potentially explaining the hypernodulation phenotype of the nifA mutant. These results and additional validation experiments suggest that P. phymatum STM815 NifA is not only important to control expression of nitrogenase and related enzymes but is also involved in regulating its own auxin production and stress response. Finally, our data indicate that P. vulgaris does sanction the nifA nodules by depleting the local carbon allocation rather than by mounting a strong systemic immune response to the Fix− rhizobia.
Collapse
Affiliation(s)
- Paula Bellés-Sancho
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
| | - Nicola Zamboni
- ETH Zürich, Institute of Molecular Systems Biology, CH-8093 Zürich, Switzerland;
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
- Correspondence: (A.B.); (G.P.)
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, CH-8057 Zürich, Switzerland; (P.B.-S.); (M.L.); (Y.L.); (L.E.)
- Correspondence: (A.B.); (G.P.)
| |
Collapse
|
17
|
Fonseca-García C, Nava N, Lara M, Quinto C. An NADPH oxidase regulates carbon metabolism and the cell cycle during root nodule symbiosis in common bean (Phaseolus vulgaris). BMC PLANT BIOLOGY 2021; 21:274. [PMID: 34130630 PMCID: PMC8207584 DOI: 10.1186/s12870-021-03060-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/20/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Rhizobium-legume symbiosis is a specific, coordinated interaction that results in the formation of a root nodule, where biological nitrogen fixation occurs. NADPH oxidases, or Respiratory Burst Oxidase Homologs (RBOHs) in plants, are enzymes that generate superoxide (O2 •-). Superoxide produces other reactive oxygen species (ROS); these ROS regulate different stages of mutualistic interactions. For example, changes in ROS levels are thought to induce ROS scavenging, cell wall remodeling, and changes in phytohormone homeostasis during symbiotic interactions. In common bean (Phaseolus vulgaris), PvRbohB plays a key role in the early stages of nodulation. RESULTS In this study, to explore the role of PvRbohB in root nodule symbiosis, we analyzed transcriptomic data from the roots of common bean under control conditions (transgenic roots without construction) and roots with downregulated expression of PvRbohB (by RNA interference) non-inoculated and inoculated with R. tropici. Our results suggest that ROS produced by PvRBOHB play a central role in infection thread formation and nodule organogenesis through crosstalk with flavonoids, carbon metabolism, cell cycle regulation, and the plant hormones auxin and cytokinin during the early stages of this process. CONCLUSIONS Our findings provide important insight into the multiple roles of ROS in regulating rhizobia-legume symbiosis.
Collapse
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| | - Miguel Lara
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| |
Collapse
|
18
|
Kawaharada Y, Sandal N, Gupta V, Jin H, Kawaharada M, Taniuchi M, Ruman H, Nadzieja M, Andersen KR, Schneeberger K, Stougaard J, Andersen SU. Natural variation identifies a Pxy gene controlling vascular organisation and formation of nodules and lateral roots in Lotus japonicus. THE NEW PHYTOLOGIST 2021; 230:2459-2473. [PMID: 33759450 DOI: 10.1111/nph.17356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/01/2021] [Indexed: 05/06/2023]
Abstract
Forward and reverse genetics using the model legumes Lotus japonicus and Medicago truncatula have been instrumental in identifying the essential genes governing legume-rhizobia symbiosis. However, little information is known about the effects of intraspecific variation on symbiotic signalling. Here, we use quantitative trait locus sequencing (QTL-seq) to investigate the genetic basis of the differentiated phenotypic responses shown by the Lotus accessions Gifu and MG20 to inoculation with the Mesorhizobium loti exoU mutant that produces truncated exopolysaccharides. We identified through genetic complementation the Pxy gene as a component of this differential exoU response. Lotus Pxy encodes a leucine-rich repeat receptor-like kinase similar to Arabidopsis thaliana PXY, which regulates stem vascular development. We show that Lotus pxy insertion mutants displayed defects in root and stem vascular organisation, as well as lateral root and nodule formation. Our work links Pxy to de novo organogenesis in the root, highlights the genetic overlap between regulation of lateral root and nodule formation, and demonstrates that natural variation in Pxy affects nodulation signalling.
Collapse
Affiliation(s)
- Yasuyuki Kawaharada
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Haojie Jin
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Maya Kawaharada
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Makoto Taniuchi
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Hafijur Ruman
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Korbinian Schneeberger
- Department for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
19
|
Kirolinko C, Hobecker K, Wen J, Mysore KS, Niebel A, Blanco FA, Zanetti ME. Auxin Response Factor 2 (ARF2), ARF3, and ARF4 Mediate Both Lateral Root and Nitrogen Fixing Nodule Development in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:659061. [PMID: 33897748 PMCID: PMC8060633 DOI: 10.3389/fpls.2021.659061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Auxin Response Factors (ARFs) constitute a large family of transcription factors that mediate auxin-regulated developmental programs in plants. ARF2, ARF3, and ARF4 are post-transcriptionally regulated by the microRNA390 (miR390)/trans-acting small interference RNA 3 (TAS3) module through the action of TAS3-derived trans - acting small interfering RNAs (ta-siRNA). We have previously reported that constitutive activation of the miR390/TAS3 pathway promotes elongation of lateral roots but impairs nodule organogenesis and infection by rhizobia during the nitrogen-fixing symbiosis established between Medicago truncatula and its partner Sinorhizobium meliloti. However, the involvement of the targets of the miR390/TAS3 pathway, i.e., MtARF2, MtARF3, MtARF4a, and MtARF4b, in root development and establishment of the nitrogen-fixing symbiosis remained unexplored. Here, promoter:reporter fusions showed that expression of both MtARF3 and MtARF4a was associated with lateral root development; however, only the MtARF4a promoter was active in developing nodules. In addition, up-regulation of MtARF2, MtARF3, and MtARF4a/b in response to rhizobia depends on Nod Factor perception. We provide evidence that simultaneous knockdown of MtARF2, MtARF3, MtARF4a, and MtARF4b or mutation in MtARF4a impaired nodule formation, and reduced initiation and progression of infection events. Silencing of MtARF2, MtARF3, MtARF4a, and MtARF4b altered mRNA levels of the early nodulation gene nodulation signaling pathway 2 (MtNSP2). In addition, roots with reduced levels of MtARF2, MtARF3, MtARF4a, and MtARF4b, as well as arf4a mutant plants exhibited altered root architecture, causing a reduction in primary and lateral root length, but increasing lateral root density. Taken together, our results suggest that these ARF members are common key players of the morphogenetic programs that control root development and the formation of nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Cristina Kirolinko
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Karen Hobecker
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
20
|
Biosensors: A Sneak Peek into Plant Cell's Immunity. Life (Basel) 2021; 11:life11030209. [PMID: 33800034 PMCID: PMC7999283 DOI: 10.3390/life11030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biosensors are indispensable tools to understand a plant’s immunity as its spatiotemporal dimension is key in withstanding complex plant immune signaling. The diversity of genetically encoded biosensors in plants is expanding, covering new analytes with ever higher sensitivity and robustness, but their assortment is limited in some respects, such as their use in following biotic stress response, employing more than one biosensor in the same chassis, and their implementation into crops. In this review, we focused on the available biosensors that encompass these aspects. We show that in vivo imaging of calcium and reactive oxygen species is satisfactorily covered with the available genetically encoded biosensors, while on the other hand they are still underrepresented when it comes to imaging of the main three hormonal players in the immune response: salicylic acid, ethylene and jasmonic acid. Following more than one analyte in the same chassis, upon one or more conditions, has so far been possible by using the most advanced genetically encoded biosensors in plants which allow the monitoring of calcium and the two main hormonal pathways involved in plant development, auxin and cytokinin. These kinds of biosensor are also the most evolved in crops. In the last section, we examine the challenges in the use of biosensors and demonstrate some strategies to overcome them.
Collapse
|
21
|
Shrestha A, Zhong S, Therrien J, Huebert T, Sato S, Mun T, Andersen SU, Stougaard J, Lepage A, Niebel A, Ross L, Szczyglowski K. Lotus japonicus Nuclear Factor YA1, a nodule emergence stage-specific regulator of auxin signalling. THE NEW PHYTOLOGIST 2021; 229:1535-1552. [PMID: 32978812 PMCID: PMC7984406 DOI: 10.1111/nph.16950] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
Organogenesis of legume root nodules begins with the nodulation factor-dependent stimulation of compatible root cells to initiate divisions, signifying an early nodule primordium formation event. This is followed by cellular differentiation, including cell expansion and vascular bundle formation, and we previously showed that Lotus japonicus NF-YA1 is essential for this process, presumably by regulating three members of the SHORT INTERNODES/STYLISH (STY) transcription factor gene family. In this study, we used combined genetics, genomics and cell biology approaches to characterize the role of STY genes during root nodule formation and to test a hypothesis that they mediate nodule development by stimulating auxin signalling. We show here that L. japonicus STYs are required for nodule emergence. This is attributed to the NF-YA1-dependent regulatory cascade, comprising STY genes and their downstream targets, YUCCA1 and YUCCA11, involved in a local auxin biosynthesis at the post-initial cell division stage. An analogous NF-YA1/STY regulatory module seems to operate in Medicago truncatula in association with the indeterminate nodule patterning. Our data define L. japonicus and M. truncatula NF-YA1 genes as important nodule emergence stage-specific regulators of auxin signalling while indicating that the inductive stage and subsequent formation of early nodule primordia are mediated through an independent mechanism(s).
Collapse
Affiliation(s)
- Arina Shrestha
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Sihui Zhong
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Jasmine Therrien
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Terry Huebert
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Shusei Sato
- Graduate School of Life SciencesTohoku University2‐1‐1 KatahiraSendai980‐8577Japan
| | - Terry Mun
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Stig U. Andersen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Agnes Lepage
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Loretta Ross
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| |
Collapse
|
22
|
Lin J, Frank M, Reid D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. PLANT COMMUNICATIONS 2020; 1:100104. [PMID: 33367261 PMCID: PMC7747975 DOI: 10.1016/j.xplc.2020.100104] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/08/2023]
Abstract
The establishment of symbiotic nitrogen fixation requires the coordination of both nodule development and infection events. Despite the evolution of a variety of anatomical structures, nodule organs serve a common purpose in establishing a localized area that facilitates efficient nitrogen fixation. As in all plant developmental processes, the establishment of a new nodule organ is regulated by plant hormones. During nodule initiation, regulation of plant hormone signaling is one of the major targets of symbiotic signaling. We review the role of major developmental hormones in the initiation of the nodule organ and argue that the manipulation of plant hormones is a key requirement for engineering nitrogen fixation in non-legumes as the basis for improved food security and sustainability.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Corresponding author
| |
Collapse
|
23
|
Thibivilliers S, Farmer A, Libault M. Biological and Cellular Functions of the Microdomain-Associated FWL/CNR Protein Family in Plants. PLANTS 2020; 9:plants9030377. [PMID: 32204387 PMCID: PMC7154862 DOI: 10.3390/plants9030377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/03/2023]
Abstract
Membrane microdomains/nanodomains are sub-compartments of the plasma membrane enriched in sphingolipids and characterized by their unique protein composition. They play important roles in regulating plant development and plant-microbe interactions including mutualistic symbiotic interactions. Several protein families are associated with the microdomain fraction of biological membranes such as flotillins, prohibitins, and remorins. More recently, GmFWL1, a FWL/CNR protein exclusively expressed in the soybean nodule, was functionally characterized as a new microdomain-associated protein. Interestingly, GmFWL1 is homologous to the tomato FW2-2 protein, a major regulator of tomato fruit development. In this review, we summarize the knowledge gained about the biological, cellular, and physiological functions of members of the FWL/CNR family across various plant species. The role of the FWL/CNR proteins is also discussed within the scope of their evolution and transcriptional regulation.
Collapse
Affiliation(s)
- Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA;
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
- Correspondence: ; Tel.: +1-402-472-4530
| |
Collapse
|
24
|
Nascimento FX, Hernandez AG, Glick BR, Rossi MJ. The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis. Environ Microbiol 2020; 22:1341-1355. [PMID: 32077227 DOI: 10.1111/1462-2920.14946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Numerous Pantoea strains are important because of the benefit they provide in the facilitation of plant growth. However, Pantoea have a high level of genotypic diversity and not much is understood regarding their ability to function in a plant beneficial manner. In the work reported here, the plant growth promotion activities and the genomic properties of the unusual Pantoea phytobeneficialis MSR2 are elaborated, emphasizing the genetic mechanisms involved in plant colonization and growth promotion. Detailed analysis revealed that strain MSR2 belongs to a rare group of Pantoea strains possessing an astonishing number of plant growth promotion genes, including those involved in nitrogen fixation, phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid deaminase activity, indoleacetic acid and cytokinin biosynthesis, and jasmonic acid metabolism. Moreover, the genome of this bacterium also contains genes involved in the metabolism of lignin and other plant cell wall compounds, quorum-sensing mechanisms, metabolism of plant root exudates, bacterial attachment to plant surfaces and resistance to plant defences. Importantly, the analysis revealed that most of these genes are present on accessory plasmids that are found within a small subset of Pantoea genomes, reinforcing the idea that Pantoea evolution is largely mediated by plasmids, providing new insights into the evolution of beneficial plant-associated Pantoea.
Collapse
Affiliation(s)
- Francisco X Nascimento
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Departamento de Microbiologia, Laboratório de Microbiologia e Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Anabel G Hernandez
- Departamento de Microbiologia, Laboratório de Microbiologia e Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1, ON, Canada
| | - Márcio J Rossi
- Departamento de Microbiologia, Laboratório de Microbiologia e Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
25
|
Shen D, Kulikova O, Guhl K, Franssen H, Kohlen W, Bisseling T, Geurts R. The Medicago truncatula nodule identity gene MtNOOT1 is required for coordinated apical-basal development of the root. BMC PLANT BIOLOGY 2019; 19:571. [PMID: 31856724 PMCID: PMC6923920 DOI: 10.1186/s12870-019-2194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/10/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND Legumes can utilize atmospheric nitrogen by hosting nitrogen-fixing bacteria in special lateral root organs, called nodules. Legume nodules have a unique ontology, despite similarities in the gene networks controlling nodule and lateral root development. It has been shown that Medicago truncatula NODULE ROOT1 (MtNOOT1) is required for the maintenance of nodule identity, preventing the conversion to lateral root development. MtNOOT1 and its orthologs in other plant species -collectively called the NOOT-BOP-COCH-LIKE (NBCL) family- specify boundary formation in various aerial organs. However, MtNOOT1 is not only expressed in nodules and aerial organs, but also in developing roots, where its function remains elusive. RESULTS We show that Mtnoot1 mutant seedlings display accelerated root elongation due to an enlarged root apical meristem. Also, Mtnoot1 mutant roots are thinner than wild-type and are delayed in xylem cell differentiation. We provide molecular evidence that the affected spatial development of Mtnoot1 mutant roots correlates with delayed induction of genes involved in xylem cell differentiation. This coincides with a basipetal shift of the root zone that is susceptible to rhizobium-secreted symbiotic signal molecules. CONCLUSIONS Our data show that MtNOOT1 regulates the size of the root apical meristem and vascular differentiation. Our data demonstrate that MtNOOT1 not only functions as a homeotic gene in nodule development but also coordinates the spatial development of the root.
Collapse
Affiliation(s)
- Defeng Shen
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Olga Kulikova
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Kerstin Guhl
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henk Franssen
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - René Geurts
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
26
|
Qiao Z, Zogli P, Libault M. Plant Hormones Differentially Control the Sub-Cellular Localization of Plasma Membrane Microdomains during the Early Stage of Soybean Nodulation. Genes (Basel) 2019; 10:E1012. [PMID: 31817452 PMCID: PMC6947267 DOI: 10.3390/genes10121012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/31/2023] Open
Abstract
Phytohormones regulate the mutualistic symbiotic interaction between legumes and rhizobia, nitrogen-fixing soil bacteria, notably by controlling the formation of the infection thread in the root hair (RH). At the cellular level, the formation of the infection thread is promoted by the translocation of plasma membrane microdomains at the tip of the RH. We hypothesize that phytohormones regulate the translocation of plasma membrane microdomains to regulate infection thread formation. Accordingly, we treated with hormone and hormone inhibitors transgenic soybean roots expressing fusions between the Green Fluorescent Protein (GFP) and GmFWL1 or GmFLOT2/4, two microdomain-associated proteins translocated at the tip of the soybean RH in response to rhizobia. Auxin and cytokinin treatments are sufficient to trigger or inhibit the translocation of GmFWL1 and GmFLOT2/4 to the RH tip independently of the presence of rhizobia, respectively. Unexpectedly, the application of salicylic acid, a phytohormone regulating the plant defense system, also promotes the translocation of GmFWL1 and GmFLOT2/4 to the RH tip regardless of the presence of rhizobia. These results suggest that phytohormones are playing a central role in controlling the early stages of rhizobia infection by regulating the translocation of plasma membrane microdomains. They also support the concept of crosstalk of phytohormones to control nodulation.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Prince Zogli
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| |
Collapse
|
27
|
Fonseca-García C, Zayas AE, Montiel J, Nava N, Sánchez F, Quinto C. Transcriptome analysis of the differential effect of the NADPH oxidase gene RbohB in Phaseolus vulgaris roots following Rhizobium tropici and Rhizophagus irregularis inoculation. BMC Genomics 2019; 20:800. [PMID: 31684871 PMCID: PMC6827182 DOI: 10.1186/s12864-019-6162-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are generated by NADPH oxidases known as respiratory burst oxidase homologs (RBOHs) in plants. ROS regulate various cellular processes, including the mutualistic interactions between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. Rboh is a multigene family comprising nine members (RbohA-I) in common bean (Phaseolus vulgaris). The RNA interference-mediated silencing of RbohB (PvRbohB-RNAi) in this species diminished its ROS production and greatly impaired nodulation. By contrast, the PvRbohB-RNAi transgenic roots showed early hyphal root colonization with enlarged fungal hypopodia; therefore, we proposed that PvRbohB positively regulates rhizobial infection (Rhizobium tropici) and inhibits AM colonization by Rhizophagus irregularis in P. vulgaris. RESULTS To corroborate this hypothesis, an RNA-Seq transcriptomic analysis was performed to identify the differentially expressed genes in the PvRbohB-RNAi roots inoculated with Rhizobium tropici or Rhizophagus irregularis. We found that, in the early stages, root nodule symbioses generated larger changes of the transcriptome than did AM symbioses in P. vulgaris. Genes related to ROS homeostasis and cell wall flexibility were markedly upregulated in the early stages of rhizobial colonization, but not during AM colonization. Compared with AM colonization, the rhizobia induced the expression of a greater number of genes encoding enzymes involved in the metabolism of auxins, cytokinins, and ethylene, which were typically repressed in the PvRbohB-RNAi roots. CONCLUSIONS Our research provides substantial insights into the genetic interaction networks in the early stages of rhizobia and AM symbioses with P. vulgaris, as well as the differential roles that RbohB plays in processes related to ROS scavenging, cell wall remodeling, and phytohormone homeostasis during nodulation and mycorrhization in this legume.
Collapse
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Alejandra E Zayas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Jesús Montiel
- Department of Molecular Biology and Genetics, Aarhus University, C 8000, Aarhus, Denmark
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
28
|
Valdés-López O, Formey D, Isidra-Arellano MC, Reyero-Saavedra MDR, Fernandez-Göbel TF, Sánchez-Correa MDS. Argonaute Proteins: Why Are They So Important for the Legume-Rhizobia Symbiosis? FRONTIERS IN PLANT SCIENCE 2019; 10:1177. [PMID: 31632421 PMCID: PMC6785634 DOI: 10.3389/fpls.2019.01177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/28/2019] [Indexed: 05/06/2023]
Abstract
Unlike most other land plants, legumes can fulfill their nitrogen needs through the establishment of symbioses with nitrogen-fixing soil bacteria (rhizobia). Through this symbiosis, fixed nitrogen is incorporated into the food chain. Because of this ecological relevance, the genetic mechanisms underlying the establishment of the legume-rhizobia symbiosis (LRS) have been extensively studied over the past decades. During this time, different types of regulators of this symbiosis have been discovered and characterized. A growing number of studies have demonstrated the participation of different types of small RNAs, including microRNAs, in the different stages of this symbiosis. The involvement of small RNAs also indicates that Argonaute (AGO) proteins participate in the regulation of the LRS. However, despite this obvious role, the relevance of AGO proteins in the LRS has been overlooked and understudied. Here, we discuss and hypothesize the likely participation of AGO proteins in the regulation of the different steps that enable the establishment of the LRS. We also briefly review and discuss whether rhizobial symbiosis induces DNA damages in the legume host. Understanding the different levels of LRS regulation could lead to the development of improved nitrogen fixation efficiency to enhance sustainable agriculture, thereby reducing dependence on inorganic fertilizers.
Collapse
Affiliation(s)
- Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mariel C. Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Maria del Rocio Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Tadeo F. Fernandez-Göbel
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
| | - Maria del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
29
|
Wong JEMM, Nadzieja M, Madsen LH, Bücherl CA, Dam S, Sandal NN, Couto D, Derbyshire P, Uldum-Berentsen M, Schroeder S, Schwämmle V, Nogueira FCS, Asmussen MH, Thirup S, Radutoiu S, Blaise M, Andersen KR, Menke FLH, Zipfel C, Stougaard J. A Lotus japonicus cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proc Natl Acad Sci U S A 2019; 116:14339-14348. [PMID: 31239345 PMCID: PMC6628658 DOI: 10.1073/pnas.1815425116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The establishment of nitrogen-fixing root nodules in legume-rhizobia symbiosis requires an intricate communication between the host plant and its symbiont. We are, however, limited in our understanding of the symbiosis signaling process. In particular, how membrane-localized receptors of legumes activate signal transduction following perception of rhizobial signaling molecules has mostly remained elusive. To address this, we performed a coimmunoprecipitation-based proteomics screen to identify proteins associated with Nod factor receptor 5 (NFR5) in Lotus japonicus. Out of 51 NFR5-associated proteins, we focused on a receptor-like cytoplasmic kinase (RLCK), which we named NFR5-interacting cytoplasmic kinase 4 (NiCK4). NiCK4 associates with heterologously expressed NFR5 in Nicotiana benthamiana, and directly binds and phosphorylates the cytoplasmic domains of NFR5 and NFR1 in vitro. At the cellular level, Nick4 is coexpressed with Nfr5 in root hairs and nodule cells, and the NiCK4 protein relocates to the nucleus in an NFR5/NFR1-dependent manner upon Nod factor treatment. Phenotyping of retrotransposon insertion mutants revealed that NiCK4 promotes nodule organogenesis. Together, these results suggest that the identified RLCK, NiCK4, acts as a component of the Nod factor signaling pathway downstream of NFR5.
Collapse
Affiliation(s)
- Jaslyn E M M Wong
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Lene H Madsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Christoph A Bücherl
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Svend Dam
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Niels N Sandal
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Daniel Couto
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Mette Uldum-Berentsen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Sina Schroeder
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Fábio C S Nogueira
- Proteomics Unit, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil
| | - Mette H Asmussen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Søren Thirup
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Mickaël Blaise
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, United Kingdom
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark;
| |
Collapse
|
30
|
Wang Y, Yang W, Zuo Y, Zhu L, Hastwell AH, Chen L, Tian Y, Su C, Ferguson BJ, Li X. GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3165-3176. [PMID: 30958883 PMCID: PMC6598056 DOI: 10.1093/jxb/erz144] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/18/2019] [Indexed: 05/15/2023]
Abstract
Auxin plays central roles in rhizobial infection and nodule development in legumes. However, the sources of auxin during nodulation are unknown. In this study, we analyzed the YUCCA (YUC) gene family of soybean and identified GmYUC2a as an important regulator of auxin biosynthesis that modulates nodulation. Following rhizobial infection, GmYUC2a exhibited increased expression in various nodule tissues. Overexpression of GmYUC2a (35S::GmYUC2a) increased auxin production in soybean, resulting in severe growth defects in root hairs and root development. Upon rhizobial infection, 35S::GmYUC2a hairy roots displayed altered patterns of root hair deformation and nodule formation. Root hair deformation occurred mainly on primary roots, and nodules formed exclusively on primary roots of 35S::GmYUC2a plants. Moreover, transgenic 35S::GmYUC2a composite plants showed delayed nodule development and a reduced number of nodules. Our results suggest that GmYUC2a plays an important role in regulating both root growth and nodulation by modulating auxin balance in soybean.
Collapse
Affiliation(s)
- Youning Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wei Yang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yanyan Zuo
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Liang Chen
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Yinping Tian
- Key State Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Chao Su
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
31
|
Buendia L, Maillet F, O'Connor D, van de-Kerkhove Q, Danoun S, Gough C, Lefebvre B, Bensmihen S. Lipo-chitooligosaccharides promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon. THE NEW PHYTOLOGIST 2019; 221:2190-2202. [PMID: 30347445 DOI: 10.1111/nph.15551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/12/2018] [Indexed: 05/25/2023]
Abstract
Lipo-chitooligosaccharides (LCOs) are microbial symbiotic signals that also influence root growth. In Medicago truncatula, LCOs stimulate lateral root formation (LRF) synergistically with auxin. However, the molecular mechanisms of this phenomenon and whether it is restricted to legume plants are not known. We have addressed the capacity of the model monocot Brachypodium distachyon (Brachypodium) to respond to LCOs and auxin for LRF. For this, we used a combination of root phenotyping assays, live-imaging and auxin quantification, and analysed the regulation of auxin homeostasis genes. We show that LCOs and a low dose of the auxin precursor indole-3-butyric acid (IBA) stimulated LRF in Brachypodium, while a combination of LCOs and IBA led to different regulations. Both LCO and IBA treatments locally increased endogenous indole-3-acetic acid (IAA) content, whereas the combination of LCO and IBA locally increased the endogenous concentration of a conjugated form of IAA (IAA-Ala). LCOs, IBA and the combination differentially controlled expression of auxin homeostasis genes. These results demonstrate that LCOs are active on Brachypodium roots and stimulate LRF probably through regulation of auxin homeostasis. The interaction between LCO and auxin treatments observed in Brachypodium on root architecture opens interesting avenues regarding their possible combined effects during the arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Luis Buendia
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Fabienne Maillet
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Devin O'Connor
- Sainsbury Laboratory, Cambridge University, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | | | - Saida Danoun
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 chemin de Borde Rouge-Auzeville, 31326, Castanet-Tolosan, France
| | - Clare Gough
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Benoit Lefebvre
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Sandra Bensmihen
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| |
Collapse
|
32
|
Fernandez-Göbel TF, Deanna R, Muñoz NB, Robert G, Asurmendi S, Lascano R. Redox Systemic Signaling and Induced Tolerance Responses During Soybean- Bradyrhizobium japonicum Interaction: Involvement of Nod Factor Receptor and Autoregulation of Nodulation. FRONTIERS IN PLANT SCIENCE 2019; 10:141. [PMID: 30828341 PMCID: PMC6384266 DOI: 10.3389/fpls.2019.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/28/2019] [Indexed: 05/27/2023]
Abstract
The symbiotic relationship between legumes and nitrogen-fixing rhizobia induces local and systemic responses, which ultimately lead to nodule formation. The autoregulation of nodulation (AON) is a systemic mechanism related to innate immunity that controls nodule development and involves different components ranging from hormones, peptides, receptors to small RNAs. Here, we characterized a rapid systemic redox changes induced during soybean-Bradyrhizobium japonicum symbiotic interaction. A transient peak of reactive oxygen species (ROS) generation was found in soybean leaves after 30 min of root inoculation with B. japonicum. The ROS response was accompanied by changes in the redox state of glutathione and by activation of antioxidant enzymes. Moreover, the ROS peak and antioxidant enzyme activation were abolished in leaves by the addition, in either root or leaf, of DPI, an NADPH oxidase inhibitor. Likewise, these systemic redox changes primed the plant increasing its tolerance to photooxidative stress. With the use of non-nodulating nfr5-mutant and hyper-nodulating nark-mutant soybean plants, we subsequently studied the systemic redox changes. The nfr5-mutant lacked the systemic redox changes after inoculation, whereas the nark-mutant showed a similar redox systemic signaling than the wild type plants. However, neither nfr5- nor nark-mutant exhibited tolerance to photooxidative stress condition. Altogether, these results demonstrated that (i) the early redox systemic signaling during symbiotic interaction depends on a Nod factor receptor, and that (ii) the induced tolerance response depends on the AON mechanisms.
Collapse
Affiliation(s)
- Tadeo F. Fernandez-Göbel
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
| | - Rocío Deanna
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Nacira B. Muñoz
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Germán Robert
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sebastian Asurmendi
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - Ramiro Lascano
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
33
|
Sańko-Sawczenko I, Dmitruk D, Łotocka B, Różańska E, Czarnocka W. Expression Analysis of PIN Genes in Root Tips and Nodules of Lotus japonicus. Int J Mol Sci 2019; 20:E235. [PMID: 30634426 PMCID: PMC6359356 DOI: 10.3390/ijms20020235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 02/02/2023] Open
Abstract
Auxins are postulated to be one of the pivotal factors in nodulation. However, their transporters in Lotus japonicus, the model species for the study of the development of determinate-type root nodules, have been scarcely described so far, and thus their role in nodulation has remained unknown. Our research is the first focusing on polar auxin transporters in L. japonicus. We analyzed and compared expression of PINs in 20 days post rhizobial inoculation (dpi) and 54 dpi root nodules of L. japonicus by real-time quantitative polymerase chain reaction (qPCR) along with the histochemical β-glucuronidase (GUS) reporter gene assay in transgenic hairy roots. The results indicate that LjPINs are essential during root nodule development since they are predominantly expressed in the primordia and young, developing nodules. However, along with differentiation, expression levels of several PINs decreased and occurred particularly in the nodule vascular bundles, especially in connection with the root's stele. Moreover, our study demonstrated the importance of both polar auxin transport and auxin intracellular homeostasis during L. japonicus root nodule development and differentiation.
Collapse
Affiliation(s)
- Izabela Sańko-Sawczenko
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Dominika Dmitruk
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Barbara Łotocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
34
|
Berrabah F, Ratet P, Gourion B. Legume Nodules: Massive Infection in the Absence of Defense Induction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:35-44. [PMID: 30252618 DOI: 10.1094/mpmi-07-18-0205-fi] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants of the legume family host massive intracellular bacterial populations in the tissues of specialized organs, the nodules. In these organs, the bacteria, named rhizobia, can fix atmospheric nitrogen and transfer it to the plant. This special metabolic skill provides to the legumes an advantage when they grow on nitrogen-scarce substrates. While packed with rhizobia, the nodule cells remain alive, metabolically active, and do not develop defense reactions. Here, we review our knowledge on the control of plant immunity during the rhizobia-legume symbiosis. We present the results of an evolutionary process that selected both divergence of microbial-associated molecular motifs and active suppressors of immunity on the rhizobial side and, on the legume side, active mechanisms that contribute to suppression of immunity.
Collapse
Affiliation(s)
- Fathi Berrabah
- 1 Laboratory of Exploration and Valorization of Steppic Ecosystems, Faculty of Nature and Life Sciences, University of Ziane Achour, 17000 Djelfa, Algeria
| | - Pascal Ratet
- 2 Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- 3 Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France; and
| | - Benjamin Gourion
- 4 LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
35
|
Nadzieja M, Stougaard J, Reid D. A Toolkit for High Resolution Imaging of Cell Division and Phytohormone Signaling in Legume Roots and Root Nodules. FRONTIERS IN PLANT SCIENCE 2019; 10:1000. [PMID: 31428118 PMCID: PMC6688427 DOI: 10.3389/fpls.2019.01000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 05/22/2023]
Abstract
Legume plants benefit from a nitrogen-fixing symbiosis in association with rhizobia hosted in specialized root nodules. Formation of root nodules is initiated by de novo organogenesis and coordinated infection of these developing lateral root organs by rhizobia. Both bacterial infection and nodule organogenesis involve cell cycle activation and regulation by auxin and cytokinin is tightly integrated in the process. To characterize the hormone dynamics and cell division patterns with cellular resolution during nodulation, sensitive and specific sensors suited for imaging of multicellular tissues are required. Here we report a modular toolkit, optimized in the model legume Lotus japonicus, for use in legume roots and root nodules. This toolkit includes synthetic transcriptional reporters for auxin and cytokinin, auxin accumulation sensors and cell cycle progression markers optimized for fluorescent and bright field microscopy. The developed vectors allow for efficient one-step assembly of multiple units using the GoldenGate cloning system. Applied together with a fluorescence-compatible clearing approach, these reporters improve imaging depth and facilitate fluorescence examination in legume roots. We additionally evaluate the utility of the dynamic gravitropic root response in altering the timing and location of auxin accumulation and nodule emergence. We show that alteration of auxin distribution in roots allows for preferential nodule emergence at the outer side of the bend corresponding to a region of high auxin signaling capacity. The presented tools and procedures open new possibilities for comparative mutant studies and for developing a more comprehensive understanding of legume-rhizobia interactions.
Collapse
|
36
|
Demina IV, Maity PJ, Nagchowdhury A, Ng JLP, van der Graaff E, Demchenko KN, Roitsch T, Mathesius U, Pawlowski K. Accumulation of and Response to Auxins in Roots and Nodules of the Actinorhizal Plant Datisca glomerata Compared to the Model Legume Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2019; 10:1085. [PMID: 31608077 PMCID: PMC6773980 DOI: 10.3389/fpls.2019.01085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/09/2019] [Indexed: 05/13/2023]
Abstract
Actinorhizal nodules are structurally different from legume nodules and show a greater similarity to lateral roots. Because of the important role of auxins in lateral root and nodule formation, auxin profiles were examined in roots and nodules of the actinorhizal species Datisca glomerata and the model legume Medicago truncatula. The auxin response in roots and nodules of both species was analyzed in transgenic root systems expressing a beta-glucuronidase gene under control of the synthetic auxin-responsive promoter DR5. The effects of two different auxin on root development were compared for both species. The auxin present in nodules at the highest levels was phenylacetic acid (PAA). No differences were found between the concentrations of active auxins of roots vs. nodules, while levels of the auxin conjugate indole-3-acetic acid-alanine were increased in nodules compared to roots of both species. Because auxins typically act in concert with cytokinins, cytokinins were also quantified. Concentrations of cis-zeatin and some glycosylated cytokinins were dramatically increased in nodules compared to roots of D. glomerata, but not of M. truncatula. The ratio of active auxins to cytokinins remained similar in nodules compared to roots in both species. The auxin response, as shown by the activation of the DR5 promoter, seemed significantly reduced in nodules compared to roots of both species, suggesting the accumulation of auxins in cell types that do not express the signal transduction pathway leading to DR5 activation. Effects on root development were analyzed for the synthetic auxin naphthaleneacetic acid (NAA) and PAA, the dominant auxin in nodules. Both auxins had similar effects, except that the sensitivity of roots to PAA was lower than to NAA. However, while the effects of both auxins on primary root growth were similar for both species, effects on root branching were different: both auxins had the classical positive effect on root branching in M. truncatula, but a negative effect in D. glomerata. Such a negative effect of exogenous auxin on root branching has previously been found for a cucurbit that forms lateral root primordia in the meristem of the parental root; however, root branching in D. glomerata does not follow that pattern.
Collapse
Affiliation(s)
- Irina V. Demina
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anurupa Nagchowdhury
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Jason L. P. Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Eric van der Graaff
- Department of Plant Physiology, Karl-Franzens-Universität Graz, Graz, Austria
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Thomas Roitsch
- Department of Plant Physiology, Karl-Franzens-Universität Graz, Graz, Austria
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- *Correspondence: Katharina Pawlowski,
| |
Collapse
|
37
|
Isidra-Arellano MC, Reyero-Saavedra MDR, Sánchez-Correa MDS, Pingault L, Sen S, Joshi T, Girard L, Castro-Guerrero NA, Mendoza-Cozatl DG, Libault M, Valdés-López O. Phosphate Deficiency Negatively Affects Early Steps of the Symbiosis between Common Bean and Rhizobia. Genes (Basel) 2018; 9:E498. [PMID: 30326664 PMCID: PMC6210973 DOI: 10.3390/genes9100498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/04/2023] Open
Abstract
Phosphate (Pi) deficiency reduces nodule formation and development in different legume species including common bean. Despite significant progress in the understanding of the genetic responses underlying the adaptation of nodules to Pi deficiency, it is still unclear whether this nutritional deficiency interferes with the molecular dialogue between legumes and rhizobia. If so, what part of the molecular dialogue is impaired? In this study, we provide evidence demonstrating that Pi deficiency negatively affects critical early molecular and physiological responses that are required for a successful symbiosis between common bean and rhizobia. We demonstrated that the infection thread formation and the expression of PvNSP2, PvNIN, and PvFLOT2, which are genes controlling the nodulation process were significantly reduced in Pi-deficient common bean seedlings. In addition, whole-genome transcriptional analysis revealed that the expression of hormones-related genes is compromised in Pi-deficient seedlings inoculated with rhizobia. Moreover, we showed that regardless of the presence or absence of rhizobia, the expression of PvRIC1 and PvRIC2, two genes participating in the autoregulation of nodule numbers, was higher in Pi-deficient seedlings compared to control seedlings. The data presented in this study provides a mechanistic model to better understand how Pi deficiency impacts the early steps of the symbiosis between common bean and rhizobia.
Collapse
Affiliation(s)
- Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Coyoacan 04510, Ciudad de Mexico, Mexico.
| | - María Del Rocio Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| | - Maria Del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| | - Lise Pingault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA.
| | - Sidharth Sen
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
| | - Trupti Joshi
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65211, USA.
| | - Lourdes Girard
- Departamento de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Morelos, Mexico.
| | - Norma A Castro-Guerrero
- Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - David G Mendoza-Cozatl
- Division of Plant Sciences, C. S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA.
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico.
| |
Collapse
|