1
|
Jennings EA, Macdonald MM, Romenskaia I, Yang H, Mitchell GA, Ryan RO. Factors Affecting Non-Enzymatic Protein Acylation by trans-3-Methylglutaconyl Coenzyme A. Metabolites 2024; 14:421. [PMID: 39195517 DOI: 10.3390/metabo14080421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
The leucine catabolism pathway intermediate, trans-3-methylglutaconyl (3MGC) CoA, is considered to be the precursor of 3MGC acid, a urinary organic acid associated with specific inborn errors of metabolism (IEM). trans-3MGC CoA is an unstable molecule that can undergo a sequence of non-enzymatic chemical reactions that lead to either 3MGC acid or protein 3MGCylation. Herein, the susceptibility of trans-3MGC CoA to protein 3MGCylation was investigated. trans-3MGC CoA was generated through the activity of recombinant 3-methylcrotonyl CoA carboxylase (3MCCCase). Following enzyme incubations, reaction mixtures were spin-filtered to remove 3MCCCase. The recovered filtrates, containing trans-3MGC CoA, were then incubated in the presence of bovine serum albumin (BSA). Following this, sample aliquots were subjected to α-3MGC IgG immunoblot analysis to probe for 3MGCylated BSA. Experiments revealed a positive correlation between trans-3MGC CoA incubation temperature and 3MGCylated BSA immunoblot signal intensity. A similar correlation was observed between incubation time and 3MGCylated BSA immunoblot signal intensity. When trans-3MGC CoA hydratase (AUH) was included in incubations containing trans-3MGC CoA and BSA, 3MGCylated BSA immunoblot signal intensity decreased. Evidence that protein 3MGCylation occurs in vivo was obtained in studies with liver-specific 3-hydroxy-3-methylglutaryl (HMG) CoA lyase knockout mice. Therefore, trans-3MGC CoA is a reactive, potentially toxic metabolite, and under normal physiological conditions, lowering trans-3MGC CoA levels via AUH-mediated hydration to HMG CoA protects against aberrant non-enzymatic chemical reactions that lead to protein 3MGCylation and 3MGC acid production.
Collapse
Affiliation(s)
- Elizabeth A Jennings
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Megan M Macdonald
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Irina Romenskaia
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
2
|
Farjallah A, Fillion M, Guéguen C. Metabolic responses of Euglena gracilis under photoheterotrophic and heterotrophic conditions. Protist 2024; 175:126035. [PMID: 38688055 DOI: 10.1016/j.protis.2024.126035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The protist Euglena gracilis has various trophic modes including heterotrophy and photoheterotrophy. To investigate how cultivation mode influences metabolic regulation, the chemical composition of cellular metabolites of Euglena gracilis grown under heterotrophic and photoheterotrophic conditions was monitored from the early exponential phase to the mid-stationary phase using two different techniques, i.e, nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). The combined metabolomics approach allowed an in-depth understanding of the mechanism of photoheterotrophic and heterotrophic growth for biomolecule production. Heterotrophic conditions promoted the production of polar amino and oxygenated compounds such as proteins and polyphenol compounds, especially at the end of the exponential phase while photoheterotrophic cells enhanced the production of organoheterocyclic compounds, carbohydrates, and alkaloids.
Collapse
Affiliation(s)
- Asma Farjallah
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Matthieu Fillion
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Céline Guéguen
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Oshikiri H, Li H, Manabe M, Yamamoto H, Yazaki K, Takanashi K. Comparative Analysis of Shikonin and Alkannin Acyltransferases Reveals Their Functional Conservation in Boraginaceae. PLANT & CELL PHYSIOLOGY 2024; 65:362-371. [PMID: 38181221 DOI: 10.1093/pcp/pcad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Shikonin and its enantiomer, alkannin, are bioactive naphthoquinones produced in several plants of the family Boraginaceae. The structures of these acylated derivatives, which have various short-chain acyl moieties, differ among plant species. The acylation of shikonin and alkannin in Lithospermum erythrorhizon was previously reported to be catalyzed by two enantioselective BAHD acyltransferases, shikonin O-acyltransferase (LeSAT1) and alkannin O-acyltransferase (LeAAT1). However, the mechanisms by which various shikonin and alkannin derivatives are produced in Boraginaceae plants remain to be determined. In the present study, evaluation of six Boraginaceae plants identified 23 homologs of LeSAT1 and LeAAT1, with 15 of these enzymes found to catalyze the acylation of shikonin or alkannin, utilizing acetyl-CoA, isobutyryl-CoA or isovaleryl-CoA as an acyl donor. Analyses of substrate specificities of these enzymes for both acyl donors and acyl acceptors and determination of their subcellular localization using Nicotiana benthamiana revealed a distinct functional differentiation of BAHD acyltransferases in Boraginaceae plants. Gene expression of these acyltransferases correlated with the enantiomeric ratio of produced shikonin/alkannin derivatives in L. erythrorhizon and Echium plantagineum. These enzymes showed conserved substrate specificities for acyl donors among plant species, indicating that the diversity in acyl moieties of shikonin/alkannin derivatives involved factors other than the differentiation of acyltransferases. These findings provide insight into the chemical diversification and evolutionary processes of shikonin/alkannin derivatives.
Collapse
Affiliation(s)
- Haruka Oshikiri
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
| | - Hao Li
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Misaki Manabe
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
| | - Hirobumi Yamamoto
- Department of Applied Biology, Faculty of Life Sciences, Toyo University, Izumino 1-1-1, Itakura-machi, Oru-gun, Gunma, 374-0193 Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | - Kojiro Takanashi
- Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621 Japan
| |
Collapse
|
4
|
Wang H, Yao L, Chen J, Ding Z, Ou X, Zhang C, Zhao J, Han Y. Antifungal Peptide P852 Effectively Controls Fusarium oxysporum, a Wilt-Causing Fungus, by Affecting the Glucose Metabolism and Amino Acid Metabolism as well as Damaging Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19638-19651. [PMID: 38015891 DOI: 10.1021/acs.jafc.3c07953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Fusarium oxysporum causes wilt disease, which causes huge economic losses to a wide range of agricultural cash crops. Antifungal peptide P852 is an effective biocide. However, the mechanism of direct inhibition of pathogenic fungus needs to be explored. The proteomics and transcriptomics results showed that P852 mainly affected intracellular pathways such as glucose metabolism, amino acid metabolism, and oxidoreductase activity in F. oxysporum. P852 disrupts the intracellular oxidative equilibrium in F. oxysporum, and transmission electron microscopy observed mitochondrial swelling, disruption of membrane structure, and leakage of contents. Decreased mitochondrial membrane potential, mitochondrial cytochrome c leakage, and reduced ATP production were also detected. These results suggest that P852 is able to simultaneously inhibit intracellular metabolism and disrupt the mitochondrial function of F. oxysporum, exerting its inhibitory effects in multiple pathways together. The present study provides some insights into the multitargeted mechanism of fungus inhibition of antifungal lipopeptide substances produced by Bacillus spp.
Collapse
Affiliation(s)
- Hongji Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Lan Yao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jie Chen
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Zeran Ding
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xuan Ou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Chaowen Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
- Immunology Research Center, Institute of Medicine, Southwest University, Chongqing 402460, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| |
Collapse
|
5
|
Jennings EA, Cao E, Romenskaia I, Ryan RO. Characterization of trans-3-Methylglutaconyl CoA-Dependent Protein Acylation. Metabolites 2023; 13:862. [PMID: 37512569 PMCID: PMC10386559 DOI: 10.3390/metabo13070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
3-methylglutaconyl (3MGC) CoA hydratase (AUH) is the leucine catabolism pathway enzyme that catalyzes the hydration of trans-3MGC CoA to 3-hydroxy, 3-methylglutaryl (HMG) CoA. In several inborn errors of metabolism (IEM), however, metabolic dysfunction can drive this reaction in the opposite direction (the dehydration of HMG CoA). The recent discovery that trans-3MGC CoA is inherently unstable and prone to a series of non-enzymatic chemical reactions provides an explanation for 3MGC aciduria observed in these IEMs. Under physiological conditions, trans-3MGC CoA can isomerize to cis-3MGC CoA, which is structurally poised to undergo intramolecular cyclization with the loss of CoA, generating cis-3MGC anhydride. The anhydride is reactive and has two potential fates; (a) hydrolysis to yield cis-3MGC acid or (b) a reaction with lysine side-chain amino groups to 3MGCylate substrate proteins. An antibody elicited against a 3MGC hapten was employed to investigate protein acylation in incubations containing recombinant AUH, HMG CoA, and bovine serum albumin (BSA). The data obtained show that, as AUH dehydrates HMG CoA to trans-3MGC CoA, BSA is acylated. Moreover, α-3MGC IgG immunoblot signal intensity correlates with AUH concentration, HMG CoA substrate concentration, and incubation time. Thus, protein 3MGCylation may contribute to the phenotypic features associated with IEMs that manifest 3MGC aciduria.
Collapse
Affiliation(s)
- Elizabeth A Jennings
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Edward Cao
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Irina Romenskaia
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Robert O Ryan
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
6
|
Wang L, Shang L, Wu X, Hao H, Jing HC. Genomic architecture of leaf senescence in sorghum (Sorghum bicolor). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:45. [PMID: 36905488 DOI: 10.1007/s00122-023-04315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Leaf senescence in sorghum is primarily controlled by the progression, but not by the onset of senescence. The senescence-delaying haplotypes of 45 key genes accentuated from landraces to improved lines. Leaf senescence is a genetically programmed developmental process and plays a central role for plant survival and crop production by remobilising nutrients accumulated in senescent leaves. In theory, the ultimate outcome of leaf senescence is determined by the onset and progression of senescence, but how these two processes contribute to senescence is not fully illustrated in crops and the genetic basis for them is not well understood. Sorghum (Sorghum bicolor), which is known for the remarkable stay-green trait, is ideal for dissecting the genomic architecture underlying the regulation of senescence. In this study, a diverse panel of 333 sorghum lines was explored for the onset and progression of leaf senescence. Trait correlation analysis showed that the progression of leaf senescence, rather than the onset of leaf senescence, significantly correlated with variations of the final leaf greenness. This notion was further supported by GWAS, which identified 31 senescence-associated genomic regions containing 148 genes, of which 124 were related to the progression of leaf senescence. The senescence-delaying haplotypes of 45 key candidate genes were enriched in lines with extremely prolonged senescence duration, while senescence-promoting haplotypes in those with extremely accelerated senescence. Haplotype combinations of these genes could well explain the segregation of the senescence trait in a recombinant inbred population. We also demonstrated that senescence-delaying haplotypes of candidate genes were under strong selection during sorghum domestication and genetic improvement. Together, this research advanced our understanding of crop leaf senescence and provided a suite of candidate genes for functional genomics and molecular breeding.
Collapse
Affiliation(s)
- Lidong Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
7
|
Zhao DL, Sun RX, Han XB, Wang M, Zhang XF, Wang XB, Wan J, Liu J, Li YQ, Ma SQ, Zhang CS. Metabolomic and regular analysis reveal phytotoxic mechanisms of sterigmatocystin in Amaranthus retroflexus L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114273. [PMID: 36356529 DOI: 10.1016/j.ecoenv.2022.114273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Sterigmatocystin (STE) is a common hepatotoxic and nephrotoxic contaminant in cereals, however, its phytotoxicity and mechanisms are poorly understood. Here, the phytotoxic mechanisms of STE were investigated via the metabolomics of Amaranthus retroflexus L. A total of 140 and 113 differential metabolites were detected in the leaves and stems, respectively, among which amino acids, lipids, and phenolic compounds were significantly perturbed. Valine, leucine, isoleucine, and lysine biosynthesis were affected by STE. These metabolic responses revealed that STE might be toxic to plants by altering the plasma membrane and inducing oxidative damage, which was verified by measuring the relative electrical conductivity and quantification of reactive oxygen species. The elevated amino acids, as well as the decreased of D-sedoheptuiose-7-phosphate indicated increased proteolysis and carbohydrate metabolism restriction. Furthermore, the IAA level also decreased. This study provides a better understanding of the impacts of STE on the public health, environment and food security.
Collapse
Affiliation(s)
- Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Rui-Xue Sun
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao-Bin Han
- Zunyi Branch, Guizhou Tobacco Company, Zunyi 563000, China
| | - Mei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xi-Fen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xian-Bo Wang
- Zunyi Branch, Guizhou Tobacco Company, Zunyi 563000, China
| | - Jun Wan
- Zunyi Branch, Guizhou Tobacco Company, Zunyi 563000, China
| | - Jing Liu
- Zunyi Branch, Guizhou Tobacco Company, Zunyi 563000, China
| | - Yi-Qiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Si-Qi Ma
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
8
|
Jones DE, Romenskaia I, Kosma DK, Ryan RO. Role of non-enzymatic chemical reactions in 3-methylglutaconic aciduria. FEBS J 2022; 289:2948-2958. [PMID: 34877790 PMCID: PMC9117401 DOI: 10.1111/febs.16316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
3-Methylglutaconic (3MGC) aciduria occurs in numerous inborn errors associated with compromised mitochondrial energy metabolism. In these disorders, 3MGC CoA is produced de novo from acetyl CoA in three steps with the final reaction catalysed by 3MGC CoA hydratase (AUH). In in vitro assays, whereas recombinant AUH dehydrated 3-hydroxy-3-methylglutaryl (HMG) CoA to 3MGC CoA, free CoA was also produced. Although HMG CoA is known to undergo non-enzymatic intramolecular cyclisation, forming HMG anhydride and free CoA, the amount of free CoA generated increased when AUH was present. To test the hypothesis that the AUH-dependent increase in CoA production is caused by intramolecular cyclisation of 3MGC CoA, gas chromatography-mass spectrometry analysis of organic acids was performed. In the absence of AUH, HMG CoA was converted to HMG acid while, in the presence of AUH, 3MGC acid was also detected. To determine which 3MGC acid diastereomer was formed, immunoblot assays were conducted with 3MGCylated BSA. In competition experiments, when α-3MGC IgG was preincubated with trans-3MGC acid or cis-3MGC acid, the cis diastereomer inhibited antibody binding to 3MGCylated BSA. When an AUH assay product mix served as competitor, α-3MGC IgG binding to 3MGCylated BSA was also inhibited, indicating cis-3MGC acid is produced in incubations of AUH and HMG CoA. Thus, non-enzymatic isomerisation of trans-3MGC CoA drives AUH-dependent HMG CoA dehydration and explains the occurrence of cis-3MGC acid in urine of subjects with 3MGC aciduria. Furthermore, the ability of cis-3MGC anhydride to non-enzymatically acylate protein substrates may have deleterious pathophysiological consequences.
Collapse
Affiliation(s)
- Dylan E. Jones
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557
| | - Irina Romenskaia
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557
| | - Dylan K. Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557
| | - Robert O. Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557
| |
Collapse
|
9
|
Latimer S, Keene SA, Stutts LR, Berger A, Bernert AC, Soubeyrand E, Wright J, Clarke CF, Block AK, Colquhoun TA, Elowsky C, Christensen A, Wilson MA, Basset GJ. A dedicated flavin-dependent monooxygenase catalyzes the hydroxylation of demethoxyubiquinone into ubiquinone (coenzyme Q) in Arabidopsis. J Biol Chem 2021; 297:101283. [PMID: 34626646 PMCID: PMC8559556 DOI: 10.1016/j.jbc.2021.101283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. In plants, it is not known how the C-6 hydroxylation of demethoxyubiquinone, the penultimate step in ubiquinone biosynthesis, is catalyzed. The combination of cross-species gene network modeling along with mining of embryo-defective mutant databases of Arabidopsis thaliana identified the embryo lethal locus EMB2421 (At1g24340) as a top candidate for the missing plant demethoxyubiquinone hydroxylase. In marked contrast with prototypical eukaryotic demethoxyubiquinone hydroxylases, the catalytic mechanism of which depends on a carboxylate-bridged di-iron domain, At1g24340 is homologous to FAD-dependent oxidoreductases that instead use NAD(P)H as an electron donor. Complementation assays in Saccharomyces cerevisiae and Escherichia coli demonstrated that At1g24340 encodes a functional demethoxyubiquinone hydroxylase and that the enzyme displays strict specificity for the C-6 position of the benzoquinone ring. Laser-scanning confocal microscopy also showed that GFP-tagged At1g24340 is targeted to mitochondria. Silencing of At1g24340 resulted in 40 to 74% decrease in ubiquinone content and de novo ubiquinone biosynthesis. Consistent with the role of At1g24340 as a benzenoid ring modification enzyme, this metabolic blockage could not be bypassed by supplementation with 4-hydroxybenzoate, the immediate precursor of ubiquinone's ring. Unlike in yeast, in Arabidopsis overexpression of demethoxyubiquinone hydroxylase did not boost ubiquinone content. Phylogenetic reconstructions indicated that plant demethoxyubiquinone hydroxylase is most closely related to prokaryotic monooxygenases that act on halogenated aromatics and likely descends from an event of horizontal gene transfer between a green alga and a bacterium.
Collapse
Affiliation(s)
- Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA.
| | - Shea A Keene
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Lauren R Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Antoine Berger
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Ann C Bernert
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Eric Soubeyrand
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Janet Wright
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, ARS, USDA, Gainesville, Florida, USA
| | - Thomas A Colquhoun
- Department of Environmental Horticulture, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alan Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
10
|
Block AK, Tang HV, Hopkins D, Mendoza J, Solemslie RK, du Toit LJ, Christensen SA. A maize leucine-rich repeat receptor-like protein kinase mediates responses to fungal attack. PLANTA 2021; 254:73. [PMID: 34529190 DOI: 10.1007/s00425-021-03730-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/09/2021] [Indexed: 05/19/2023]
Abstract
A maize receptor kinase controls defense response to fungal pathogens by regulating jasmonic acid and antimicrobial phytoalexin production. Plants use a range of pattern recognition receptors to detect and respond to biotic threats. Some of these receptors contain leucine-rich repeat (LRR) domains that recognize microbial proteins or peptides. Maize (Zea mays) has 226 LRR-receptor like kinases, making it challenging to identify those important for pathogen recognition. In this study, co-expression analysis with genes for jasmonic acid and phytoalexin biosynthesis was used to identify a fungal induced-receptor like protein kinase (FI-RLPK) likely involved in the response to fungal pathogens. Loss-of-function mutants in fi-rlpk displayed enhanced susceptibility to the necrotrophic fungal pathogen Cochliobolus heterostrophus and reduced accumulation of jasmonic acid and the anti-microbial phytoalexins -kauralexins and zealexins- in infected tissues. In contrast, fi-rlpk mutants displayed increased resistance to stem inoculation with the hemibiotrophic fungal pathogen Fusarium graminearum. These data indicate that FI-RLPK is important for fungal recognition and activation of defenses, and that F. graminearum may be able to exploit FI-RLPK function to increase its virulence.
Collapse
Affiliation(s)
- Anna K Block
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA.
| | - Hoang V Tang
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Dorothea Hopkins
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
- Sakata Seed America, Inc., Ft. Myers Research Station, Fort Myers, FL, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Ryan K Solemslie
- Department of Plant Pathology, Washington State University, Mount Vernon, WA, USA
- Sakata Seed America, Inc., Mount Vernon Research Station, Mount Vernon, WA, USA
| | - Lindsey J du Toit
- Department of Plant Pathology, Washington State University, Mount Vernon, WA, USA
| | - Shawn A Christensen
- Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| |
Collapse
|
11
|
Heinemann B, Hildebrandt TM. The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4634-4645. [PMID: 33993299 DOI: 10.1093/jxb/erab182] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/26/2021] [Indexed: 05/26/2023]
Abstract
The adaptation of plant metabolism to stress-induced energy deficiency involves profound changes in amino acid metabolism. Anabolic reactions are suppressed, whereas respiratory pathways that use amino acids as alternative substrates are activated. This review highlights recent progress in unraveling the stress-induced amino acid oxidation pathways, their regulation, and the role of amino acids as signaling molecules. We present an updated map of the degradation pathways for lysine and the branched-chain amino acids. The regulation of amino acid metabolism during energy deprivation, including the coordinated induction of several catabolic pathways, is mediated by the balance between TOR and SnRK signaling. Recent findings indicate that some amino acids might act as nutrient signals in TOR activation and thus promote a shift from catabolic to anabolic pathways. The metabolism of the sulfur-containing amino acid cysteine is highly interconnected with TOR and SnRK signaling. Mechanistic details have recently been elucidated for cysteine signaling during the abscisic acid-dependent drought response. Local cysteine synthesis triggers abscisic acid production and, in addition, cysteine degradation produces the gaseous messenger hydrogen sulfide, which promotes stomatal closure via protein persulfidation. Amino acid signaling in plants is still an emerging topic with potential for fundamental discoveries.
Collapse
Affiliation(s)
- Björn Heinemann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße, Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße, Hannover, Germany
| |
Collapse
|
12
|
Wang JJ, Peng YJ, Feng MG, Ying SH. Functional analysis of the mitochondrial gene mitofilin in the filamentous entomopathogenic fungus Beauveria bassiana. Fungal Genet Biol 2019; 132:103250. [DOI: 10.1016/j.fgb.2019.103250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023]
|
13
|
Wang M, Toda K, Block A, Maeda HA. TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in Arabidopsis thaliana. J Biol Chem 2019; 294:3563-3576. [PMID: 30630953 PMCID: PMC6416433 DOI: 10.1074/jbc.ra118.006539] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Indexed: 12/18/2022] Open
Abstract
Plants produce various l-tyrosine (Tyr)-derived compounds that are critical for plant adaptation and have pharmaceutical or nutritional importance for human health. Tyrosine aminotransferases (TATs) catalyze the reversible reaction between Tyr and 4-hydroxyphenylpyruvate (HPP), representing the entry point in plants for both biosynthesis of various natural products and Tyr degradation in the recycling of energy and nutrients. To better understand the roles of TATs and how Tyr is metabolized in planta, here we characterized single and double loss-of-function mutants of TAT1 (At5g53970) and TAT2 (At5g36160) in the model plant Arabidopsis thaliana As reported previously, tat1 mutants exhibited elevated and decreased levels of Tyr and tocopherols, respectively. The tat2 mutation alone had no impact on Tyr and tocopherol levels, but a tat1 tat2 double mutant had increased Tyr accumulation and decreased tocopherol levels under high-light stress compared with the tat1 mutant. Relative to WT and the tat2 mutant, the tat1 mutant displayed increased vulnerability to continuous dark treatment, associated with an early drop in respiratory activity and sucrose depletion. During isotope-labeled Tyr feeding in the dark, we observed that the tat1 mutant exhibits much slower 13C incorporation into tocopherols, fumarate, and other tricarboxylic acid (TCA) cycle intermediates than WT and the tat2 mutant. These results indicate that TAT1 and TAT2 function together in tocopherol biosynthesis, with TAT2 having a lesser role, and that TAT1 plays the major role in Tyr degradation in planta Our study also highlights the importance of Tyr degradation under carbon starvation conditions during dark-induced senescence in plants.
Collapse
Affiliation(s)
- Minmin Wang
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Kyoko Toda
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Anna Block
- the Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida 32608, and
| | - Hiroshi A Maeda
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| |
Collapse
|