1
|
Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang QY. BnIR: A multi-omics database with various tools for Brassica napus research and breeding. MOLECULAR PLANT 2023; 16:775-789. [PMID: 36919242 DOI: 10.1016/j.molp.2023.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/15/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In the post-genome-wide association study era, multi-omics techniques have shown great power and potential for candidate gene mining and functional genomics research. However, due to the lack of effective data integration and multi-omics analysis platforms, such techniques have not still been applied widely in rapeseed, an important oil crop worldwide. Here, we report a rapeseed multi-omics database (BnIR; http://yanglab.hzau.edu.cn/BnIR), which provides datasets of six omics including genomics, transcriptomics, variomics, epigenetics, phenomics, and metabolomics, as well as numerous "variation-gene expression-phenotype" associations by using multiple statistical methods. In addition, a series of multi-omics search and analysis tools are integrated to facilitate the browsing and application of these datasets. BnIR is the most comprehensive multi-omics database for rapeseed so far, and two case studies demonstrated its power to mine candidate genes associated with specific traits and analyze their potential regulatory mechanisms.
Collapse
Affiliation(s)
- Zhiquan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Shengbo Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Wei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiming Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yupeng Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfang Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuchen Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Congyuan Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Zhan Y, Zhang R, Zhou Y, Stoerger V, Hiller J, Awada T, Ge Y. Rapid online plant leaf area change detection with high-throughput plant image data. J Appl Stat 2022; 50:2984-2998. [PMID: 37808616 PMCID: PMC10557544 DOI: 10.1080/02664763.2022.2150753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
High-throughput plant phenotyping (HTPP) has become an emerging technique to study plant traits due to its fast, labor-saving, accurate and non-destructive nature. It has wide applications in plant breeding and crop management. However, the resulting massive image data has raised a challenge associated with efficient plant traits prediction and anomaly detection. In this paper, we propose a two-step image-based online detection framework for monitoring and quick change detection of the individual plant leaf area via real-time imaging data. Our proposed method is able to achieve a smaller detection delay compared with some baseline methods under some predefined false alarm rate constraint. Moreover, it does not need to store all past image information and can be implemented in real time. The efficiency of the proposed framework is validated by a real data analysis.
Collapse
Affiliation(s)
- Yinglun Zhan
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ruizhi Zhang
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yuzhen Zhou
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Vincent Stoerger
- Agricultural Research Division, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jeremy Hiller
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tala Awada
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yufeng Ge
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
3
|
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, Zhang YM. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:92. [PMID: 36076247 PMCID: PMC9461130 DOI: 10.1186/s13068-022-02191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022]
Abstract
Background The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. Results In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein–protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene–trait or gene–metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content. Conclusions This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02191-1.
Collapse
|
4
|
Zhu F, Ahchige MW, Brotman Y, Alseekh S, Zsögön A, Fernie AR. Bringing more players into play: Leveraging stress in genome wide association studies. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153657. [PMID: 35231821 DOI: 10.1016/j.jplph.2022.153657] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In order to meet the demand of the burgeoning human population as well as to adapt crops to the enhanced abiotic and biotic stress caused by the global climatic change, breeders focus on identifying valuable genes to improve both crop stress tolerance and crop quality. Recently, with the development of next-generation sequencing methods, millions of high quality single-nucleotide polymorphisms (SNPs) have been made available and genome-wide association studies (GWAS) are widely used in crop improvement studies to identify the associations between genetic variants of genomes and relevant crop agronomic traits. Here, we review classic cases of use of GWAS to identify genetic variants associated with valuable traits such as geographic adaptation, crop quality and metabolites. We discuss the power of stress GWAS to identify further associations including those with genes that are not, or only lowly, expressed during optimal growth conditions. Finally, we emphasize recent demonstrations of the efficiency and accuracy of time-resolved dynamic stress GWAS and GWAS based on genomic gene expression and structural variations, which can be applied to resolve more comprehensively the genetic regulation mechanisms of complex traits.
Collapse
Affiliation(s)
- Feng Zhu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Micha Wijesingha Ahchige
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Yariv Brotman
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Agustin Zsögön
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
5
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
6
|
Liu L, Zhang Y, Wang Q, Tao X, Fang J, Zheng W, Zhu L, Jia B, Heng W, Li S. Identification of bZIP transcription factors and their responses to brown spot in pear. Genet Mol Biol 2022; 45:e20210175. [PMID: 35099498 PMCID: PMC8802300 DOI: 10.1590/1678-4685-gmb-2021-0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Basic leucine zipper (bZIP) is a conserved transcription factor (TF) widely
present in eukaryotes, and it plays an important role in regulating plant growth
and stress responses. To better understand the white pear bZIP
gene family, comprehensive bioinformatics analysis of the pear genome was
performed. A total of 84 PbbZIP genes were identified, which
were divided into 13 subfamilies by phylogenetic analysis. The 84
PbbZIP genes were all located in the nucleus, and 77 of
those genes were unevenly distributed across the 17 chromosomes of white pear.
The other 7 PbbZIP genes were located on the scaffold.
Subsequent expression profile analysis showed that PbbZIP genes
in exocarp were significantly upregulated or downregulated in ‘Huangguan’ pear
with brown spot (BS) compared with healthy pear and in response to hormonal
treatment with gibberellin A3 (GA3). These results provide
helpful insights into the characteristics of PbbZIP genes and
their responses to BS in ‘Huangguan’ pear.
Collapse
Affiliation(s)
- Li Liu
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Yuxin Zhang
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Qi Wang
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Xingyu Tao
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Jing Fang
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Wenjuan Zheng
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Liwu Zhu
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Bing Jia
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Wei Heng
- Anhui Agricultural University, School of Horticulture, Hefei, Anhui, P.R. China
| | - Shaowen Li
- Anhui Agriculture University, School of Information and Computer Science, Hefei, Anhui, P. R. China
| |
Collapse
|
7
|
Fernie AR, Alseekh S. Unravelling the molecular networks that regulate kiwifruit flavor. THE NEW PHYTOLOGIST 2022; 233:8-10. [PMID: 34628656 DOI: 10.1111/nph.17740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
8
|
Jiang X, Zhang W, Fernie AR, Wen W. Combining novel technologies with interdisciplinary basic research to enhance horticultural crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:35-46. [PMID: 34699639 DOI: 10.1111/tpj.15553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Horticultural crops mainly include fruits, vegetables, ornamental trees and flowers, and tea trees (Melaleuca alternifolia). They produce a variety of nutrients for the daily human diet in addition to the nutrition provided by staple crops, and some of them additionally possess ornamental and medicinal features. As such, horticultural crops make unique and important contributions to both food security and a colorful lifestyle. Under the current climate change scenario, the growing population and limited arable land means that agriculture, and especially horticulture, has been facing unprecedented challenges to meet the diverse demands of human daily life. Breeding horticultural crops with high quality and adaptability and establishing an effective system that combines cultivation, post-harvest handling, and sales becomes increasingly imperative for horticultural production. This review discusses characteristic and recent research highlights in horticultural crops, focusing on the breeding of quality traits and the mechanisms that underpin them. It additionally addresses challenges and potential solutions in horticultural production and post-harvest practices. Finally, we provide a prospective as to how emerging technologies can be implemented alongside interdisciplinary basic research to enhance our understanding and exploitation of horticultural crops.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Provincial Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
9
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
10
|
Zhang X, Luo W, Yao Y, Luo X, Han C, Zhong Y, Zhang B, Li D, Han L, Huang S, Greisen P, Shang Y. Enhanced chemoselectivity of a plant cytochrome P450 through protein engineering of surface and catalytic residues. ABIOTECH 2021; 2:215-225. [PMID: 36303887 PMCID: PMC9590459 DOI: 10.1007/s42994-021-00056-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/07/2021] [Indexed: 10/31/2022]
Abstract
Cytochrome P450s (P450s) are the most versatile catalysts utilized by plants to produce structurally and functionally diverse metabolites. Given the high degree of gene redundancy and challenge to functionally characterize plant P450s, protein engineering is used as a complementary strategy to study the mechanisms of P450-mediated reactions, or to alter their functions. We previously proposed an approach of engineering plant P450s based on combining high-accuracy homology models generated by Rosetta combined with data-driven design using evolutionary information of these enzymes. With this strategy, we repurposed a multi-functional P450 (CYP87D20) into a monooxygenase after redesigning its active site. Since most plant P450s are membrane-anchored proteins that are adapted to the micro-environments of plant cells, expressing them in heterologous hosts usually results in problems of expression or activity. Here, we applied computational design to tackle these issues by simultaneous optimization of the protein surface and active site. After screening 17 variants, effective substitutions of surface residues were observed to improve both expression and activity of CYP87D20. In addition, the identified substitutions were additive and by combining them a highly efficient C11 hydroxylase of cucurbitadienol was created to participate in the mogrol biosynthesis. This study shows the importance of considering the interplay between surface and active site residues for P450 engineering. Our integrated strategy also opens an avenue to create more tailoring enzymes with desired functions for the metabolic engineering of high-valued compounds like mogrol, the precursor of natural sweetener mogrosides. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00056-z.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
| | - Wei Luo
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500 China
| | - Yinying Yao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuming Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
| | - Chao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yang Zhong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bo Zhang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500 China
| | - Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
| | - Per Greisen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
- Novo Nordisk Research Center Seattle Inc, Seattle, WA 98109 USA
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500 China
| |
Collapse
|
11
|
Genome-wide association studies: assessing trait characteristics in model and crop plants. Cell Mol Life Sci 2021; 78:5743-5754. [PMID: 34196733 PMCID: PMC8316211 DOI: 10.1007/s00018-021-03868-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023]
Abstract
GWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and linkage disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with the emergence of pan-genomic datasets.
Collapse
|
12
|
Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME. Designing Future Crops: Genomics-Assisted Breeding Comes of Age. TRENDS IN PLANT SCIENCE 2021; 26:631-649. [PMID: 33893045 DOI: 10.1016/j.tplants.2021.03.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 05/18/2023]
Abstract
Over the past decade, genomics-assisted breeding (GAB) has been instrumental in harnessing the potential of modern genome resources and characterizing and exploiting allelic variation for germplasm enhancement and cultivar development. Sustaining GAB in the future (GAB 2.0) will rely upon a suite of new approaches that fast-track targeted manipulation of allelic variation for creating novel diversity and facilitate their rapid and efficient incorporation in crop improvement programs. Genomic breeding strategies that optimize crop genomes with accumulation of beneficial alleles and purging of deleterious alleles will be indispensable for designing future crops. In coming decades, GAB 2.0 is expected to play a crucial role in breeding more climate-smart crop cultivars with higher nutritional value in a cost-effective and timely manner.
Collapse
Affiliation(s)
- Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Abhishek Bohra
- Crop Improvement Division, ICAR- Indian Institute of Pulses Research (ICAR- IIPR), Kanpur, India
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crops Plant Research (IPK), Gatersleben, Germany
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Mark E Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Fernie AR. Associating primary and specialized metabolism with salt induced osmotic stress tolerance in maize. THE NEW PHYTOLOGIST 2021; 230:2091-2093. [PMID: 33880794 DOI: 10.1111/nph.17363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
14
|
Aluko OO, Li C, Wang Q, Liu H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int J Mol Sci 2021; 22:4704. [PMID: 33946791 PMCID: PMC8124652 DOI: 10.3390/ijms22094704] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source-sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ's metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| |
Collapse
|
15
|
Scossa F, Fernie AR. Ancestral sequence reconstruction - An underused approach to understand the evolution of gene function in plants? Comput Struct Biotechnol J 2021; 19:1579-1594. [PMID: 33868595 PMCID: PMC8039532 DOI: 10.1016/j.csbj.2021.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Whilst substantial research effort has been placed on understanding the interactions of plant proteins with their molecular partners, relatively few studies in plants - by contrast to work in other organisms - address how these interactions evolve. It is thought that ancestral proteins were more promiscuous than modern proteins and that specificity often evolved following gene duplication and subsequent functional refining. However, ancestral protein resurrection studies have found that some modern proteins have evolved de novo from ancestors lacking those functions. Intriguingly, the new interactions evolved as a consequence of just a few mutations and, as such, acquisition of new functions appears to be neither difficult nor rare, however, only a few of them are incorporated into biological processes before they are lost to subsequent mutations. Here, we detail the approach of ancestral sequence reconstruction (ASR), providing a primer to reconstruct the sequence of an ancestral gene. We will present case studies from a range of different eukaryotes before discussing the few instances where ancestral reconstructions have been used in plants. As ASR is used to dig into the remote evolutionary past, we will also present some alternative genetic approaches to investigate molecular evolution on shorter timescales. We argue that the study of plant secondary metabolism is particularly well suited for ancestral reconstruction studies. Indeed, its ancient evolutionary roots and highly diverse landscape provide an ideal context in which to address the focal issue around the emergence of evolutionary novelties and how this affects the chemical diversification of plant metabolism.
Collapse
Key Words
- APR, ancestral protein resurrection
- ASR, ancestral sequence reconstruction
- Ancestral sequence reconstruction
- CDS, coding sequence
- Evolution
- GR, glucocorticoid receptor
- GWAS, genome wide association study
- Genomics
- InDel, insertion/deletion
- MCMC, Markov Chain Monte Carlo
- ML, maximum likelihood
- MP, maximum parsimony
- MR, mineralcorticoid receptor
- MSA, multiple sequence alignment
- Metabolism
- NJ, neighbor-joining
- Phylogenetics
- Plants
- SFS, site frequency spectrum
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institute of Molecular Plant Physiology (MPI-MP), 14476 Potsdam-Golm, Germany
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), Rome, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology (MPI-MP), 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
16
|
Scossa F, Alseekh S, Fernie AR. Integrating multi-omics data for crop improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153352. [PMID: 33360148 DOI: 10.1016/j.jplph.2020.153352] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 05/26/2023]
Abstract
Our agricultural systems are now in urgent need to secure food for a growing world population. To meet this challenge, we need a better characterization of plant genetic and phenotypic diversity. The combination of genomics, transcriptomics and metabolomics enables a deeper understanding of the mechanisms underlying the complex architecture of many phenotypic traits of agricultural relevance. We review the recent advances in plant genomics to see how these can be integrated with broad molecular profiling approaches to improve our understanding of plant phenotypic variation and inform crop breeding strategies.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178, Rome, Italy.
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.
| |
Collapse
|
17
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
18
|
Sonnewald U, Fernie AR, Gruissem W, Schläpfer P, Anjanappa RB, Chang SH, Ludewig F, Rascher U, Muller O, van Doorn AM, Rabbi IY, Zierer W. The Cassava Source-Sink project: opportunities and challenges for crop improvement by metabolic engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1655-1665. [PMID: 32502321 DOI: 10.1111/tpj.14865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Cassava (Manihot esculenta Crantz) is one of the important staple foods in Sub-Saharan Africa. It produces starchy storage roots that provide food and income for several hundred million people, mainly in tropical agriculture zones. Increasing cassava storage root and starch yield is one of the major breeding targets with respect to securing the future food supply for the growing population of Sub-Saharan Africa. The Cassava Source-Sink (CASS) project aims to increase cassava storage root and starch yield by strategically integrating approaches from different disciplines. We present our perspective and progress on cassava as an applied research organism and provide insight into the CASS strategy, which can serve as a blueprint for the improvement of other root and tuber crops. Extensive profiling of different field-grown cassava genotypes generates information for leaf, phloem, and root metabolic and physiological processes that are relevant for biotechnological improvements. A multi-national pipeline for genetic engineering of cassava plants covers all steps from gene discovery, cloning, transformation, molecular and biochemical characterization, confined field trials, and phenotyping of the seasonal dynamics of shoot traits under field conditions. Together, the CASS project generates comprehensive data to facilitate conventional breeding strategies for high-yielding cassava genotypes. It also builds the foundation for genome-scale metabolic modelling aiming to predict targets and bottlenecks in metabolic pathways. This information is used to engineer cassava genotypes with improved source-sink relations and increased yield potential.
Collapse
Affiliation(s)
- Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
- Advanced Plant Biotechnology Center, Institute of Biotechnology, National Chung Hsing University, Xingda Road, South District, Taichung City, 402, Taiwan
| | - Pascal Schläpfer
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| | - Ravi B Anjanappa
- Department of Biology, Plant Biotechnology, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| | - Shu-Heng Chang
- Advanced Plant Biotechnology Center, Institute of Biotechnology, National Chung Hsing University, Xingda Road, South District, Taichung City, 402, Taiwan
| | - Frank Ludewig
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Uwe Rascher
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Leo-Brandt-Str, Jülich, 52425, Germany
| | - Onno Muller
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Leo-Brandt-Str, Jülich, 52425, Germany
| | - Anna M van Doorn
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Leo-Brandt-Str, Jülich, 52425, Germany
| | - Ismail Y Rabbi
- International Institue for Tropical Agriculture, Oyo Road, Ibadan, Oyo State, 200001, Nigeria
| | - Wolfgang Zierer
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, Erlangen, 91058, Germany
| |
Collapse
|
19
|
Tohge T, Scossa F, Wendenburg R, Frasse P, Balbo I, Watanabe M, Alseekh S, Jadhav SS, Delfin JC, Lohse M, Giavalisco P, Usadel B, Zhang Y, Luo J, Bouzayen M, Fernie AR. Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. MOLECULAR PLANT 2020; 13:1027-1046. [PMID: 32305499 DOI: 10.1016/j.molp.2020.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/01/2020] [Accepted: 04/11/2020] [Indexed: 05/10/2023]
Abstract
While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC-MS- and LC-MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, via Ardeatina 546 00178 Rome, Italy
| | - Regina Wendenburg
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Pierre Frasse
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Sagar Sudam Jadhav
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jay C Delfin
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192 Japan
| | - Marc Lohse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Max Planck Institute for Biology of Ageing, Joseph Stelzmann Strasse 9b, 50931 Cologne, Germany
| | - Bjoern Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52056 Aachen, Germany
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Castanet-Tolosan 31326, France
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Plant Systems Biology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
20
|
Rutter MT, Murren CJ, Callahan HS, Bisner AM, Leebens-Mack J, Wolyniak MJ, Strand AE. Distributed phenomics with the unPAK project reveals the effects of mutations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:199-211. [PMID: 31155775 DOI: 10.1111/tpj.14427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Determining how genes are associated with traits in plants and other organisms is a major challenge in modern biology. The unPAK project - undergraduates phenotyping Arabidopsis knockouts - has generated phenotype data for thousands of non-lethal insertion mutation lines within a single Arabidopsis thaliana genomic background. The focal phenotypes examined by unPAK are complex macroscopic fitness-related traits, which have ecological, evolutionary and agricultural importance. These phenotypes are placed in the context of the wild-type and also natural accessions (phytometers), and standardized for environmental differences between assays. Data from the unPAK project are used to describe broad patterns in the phenotypic consequences of insertion mutation, and to identify individual mutant lines with distinct phenotypes as candidates for further study. Inclusion of undergraduate researchers is at the core of unPAK activities, and an important broader impact of the project is providing students an opportunity to obtain research experience.
Collapse
Affiliation(s)
- Matthew T Rutter
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Hilary S Callahan
- Department of Biology, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| | - April M Bisner
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, 120 Carlton St, Athens, GA, 30602, USA
| | | | - Allan E Strand
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| |
Collapse
|
21
|
Fernie AR, Yan J. De Novo Domestication: An Alternative Route toward New Crops for the Future. MOLECULAR PLANT 2019; 12:615-631. [PMID: 30999078 DOI: 10.1016/j.molp.2019.03.016] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 05/19/2023]
Abstract
Current global agricultural production must feed over 7 billion people. However, productivity varies greatly across the globe and is under threat from both increased competitions for land and climate change and associated environmental deterioration. Moreover, the increase in human population size and dietary changes are putting an ever greater burden on agriculture. The majority of this burden is met by the cultivation of a very small number of species, largely in locations that differ from their origin of domestication. Recent technological advances have raised the possibility of de novo domestication of wild plants as a viable solution for designing ideal crops while maintaining food security and a more sustainable low-input agriculture. Here we discuss how the discovery of multiple key domestication genes alongside the development of technologies for accurate manipulation of several target genes simultaneously renders de novo domestication a route toward crops for the future.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|