1
|
Nicolas Mala KL, Skalak J, Zemlyanskaya E, Dolgikh V, Jedlickova V, Robert HS, Havlickova L, Panzarova K, Trtilek M, Bancroft I, Hejatko J. Primary multistep phosphorelay activation comprises both cytokinin and abiotic stress responses: insights from comparative analysis of Brassica type-A response regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6346-6368. [PMID: 39171371 PMCID: PMC11523033 DOI: 10.1093/jxb/erae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Multistep phosphorelay (MSP) signaling integrates hormonal and environmental signals to control both plant development and adaptive responses. Type-A RESPONSE REGULATOR (RRA) genes, the downstream members of the MSP cascade and cytokinin primary response genes, are thought to mediate primarily the negative feedback regulation of (cytokinin-induced) MSP signaling. However, transcriptional data also suggest the involvement of RRA genes in stress-related responses. By employing evolutionary conservation with the well-characterized Arabidopsis thaliana RRA genes, we identified five and 38 novel putative RRA genes in Brassica oleracea and Brassica napus, respectively. Our phylogenetic analysis suggests the existence of gene-specific selective pressure, maintaining the homologs of ARR3, ARR6, and ARR16 as singletons during the evolution of Brassicaceae. We categorized RRA genes based on the kinetics of their cytokinin-mediated up-regulation and observed both similarities and specificities in this type of response across Brassicaceae species. Using bioinformatic analysis and experimental data demonstrating the cytokinin and abiotic stress responsiveness of the A. thaliana-derived TCSv2 reporter, we unveil the mechanistic conservation of cytokinin- and stress-mediated up-regulation of RRA genes in B. rapa and B. napus. Notably, we identify partial cytokinin dependency of cold stress-induced RRA transcription, thus further demonstrating the role of cytokinin signaling in crop adaptive responses.
Collapse
Affiliation(s)
- Katrina Leslie Nicolas Mala
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Jan Skalak
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vladislav Dolgikh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Veronika Jedlickova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Helene S Robert
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | | | - Klara Panzarova
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Martin Trtilek
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Ian Bancroft
- Department of Biology, University of York, York, UK
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Cheng Z, Zhu Y, He X, Fan G, Jiang J, Jiang T, Zhang X. Transcription factor PagERF110 inhibits leaf development by direct regulating PagHB16 in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112309. [PMID: 39490445 DOI: 10.1016/j.plantsci.2024.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Ethylene-responsive factor (ERF) family genes are crucial for plant growth and development. This study analyzed the functional role of the PagERF110 gene in leaf development of Populus alba×P. glandulosa. PagERF110 contains the AP2 conserved domain and exhibits transcriptional activation activity at its C-terminus. Overexpression of PagERF110 in transgenic poplar trees resulted in reduced leaf size, leaf area, and vein xylem thickness. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments confirmed that PagERF110 interacts with PagACD32.1. Transcriptome sequencing revealed that PagERF110 regulates the expression of key genes involved in leaf development. Furthermore, yeast one-hybrid (Y1H) assays, GUS staining, and ChIP experiments collectively confirmed that PagERF110 targets the expression of PagHB16. In summation, our findings demonstrate that PagERF110 functions as a negative regulator in poplar leaf development.
Collapse
Affiliation(s)
- Zihan Cheng
- College of Horticulture and Landscape Architecture, Yangtze University, Jingzhou, China.
| | - Yuandong Zhu
- College of Horticulture and Landscape Architecture, Yangtze University, Jingzhou, China.
| | - Xinyu He
- College of Horticulture and Landscape Architecture, Yangtze University, Jingzhou, China.
| | - Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| | - Xuemei Zhang
- College of Horticulture and Landscape Architecture, Yangtze University, Jingzhou, China.
| |
Collapse
|
3
|
Sanchez ER, Price RJ, Marangelli F, McLeary K, Harrison RJ, Kundu A. Overexpression of Vitis GRF4-GIF1 improves regeneration efficiency in diploid Fragaria vesca Hawaii 4. PLANT METHODS 2024; 20:160. [PMID: 39420380 PMCID: PMC11488064 DOI: 10.1186/s13007-024-01270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Plant breeding played a very important role in transforming strawberries from being a niche crop with a small geographical footprint into an economically important crop grown across the planet. But even modern marker assisted breeding takes a considerable amount of time, over multiple plant generations, to produce a plant with desirable traits. As a quicker alternative, plants with desirable traits can be raised through tissue culture by doing precise genetic manipulations. Overexpression of morphogenic regulators previously known for meristem development, the transcription factors Growth-Regulating Factors (GRFs) and the GRF-Interacting Factors (GIFs), provided an efficient strategy for easier regeneration and transformation in multiple crops. RESULTS We present here a comprehensive protocol for the diploid strawberry Fragaria vesca Hawaii 4 (strawberry) regeneration and transformation under control condition as compared to ectopic expression of different GRF4-GIF1 chimeras from different plant species. We report that ectopic expression of Vitis vinifera VvGRF4-GIF1 provides significantly higher regeneration efficiency during re-transformation over wild-type plants. On the other hand, deregulated expression of miRNA resistant version of VvGRF4-GIF1 or Triticum aestivum (wheat) TaGRF4-GIF1 resulted in abnormalities. Transcriptomic analysis between the different chimeric GRF4-GIF1 lines indicate that differential expression of FvExpansin might be responsible for the observed pleiotropic effects. Similarly, cytokinin dehydrogenase/oxygenase and cytokinin responsive response regulators also showed differential expression indicating GRF4-GIF1 pathway playing important role in controlling cytokinin homeostasis. CONCLUSION Our data indicate that ectopic expression of Vitis vinifera VvGRF4-GIF1 chimera can provide significant advantage over wild-type plants during strawberry regeneration without producing any pleiotropic effects seen for the miRNA resistant VvGRF4-GIF1 or TaGRF4-GIF1.
Collapse
Affiliation(s)
- Esther Rosales Sanchez
- Crop Science Centre, University of Cambridge, Cambridge, CB3 0LE, UK
- NIAB, Cambridge, CB3 0LE, UK
- Centre for Trophoblast Research, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | | | - Federico Marangelli
- Crop Science Centre, University of Cambridge, Cambridge, CB3 0LE, UK
- NIAB, Cambridge, CB3 0LE, UK
| | | | - Richard J Harrison
- NIAB, Cambridge, CB3 0LE, UK.
- Wageningen University and Research, Wageningen, 6708 PB, Netherlands.
| | | |
Collapse
|
4
|
Peng D, Guo Y, Hu H, Wang X, He S, Gao C, Liu Z, Chen M. Functional characterisation of BnaA02.TOP1α and BnaC02.TOP1α involved in true leaf biomass accumulation in Brassica napus L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39348559 DOI: 10.1111/tpj.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Leaves, as primary photosynthetic organs essential for high crop yield and quality, have attracted significant attention. The functions of DNA topoisomerase 1α (TOP1α) in various biological processes, including leaf development, in Brassica napus remain unknown. Here, four paralogs of BnaTOP1α, namely BnaA01.TOP1α, BnaA02.TOP1α, BnaC01.TOP1α and BnaC02.TOP1α, were identified and cloned in the B. napus inbred line 'K407'. Expression pattern analysis revealed that BnaA02.TOP1α and BnaC02.TOP1α, but not BnaA01.TOP1α and BnaC01.TOP1α, were persistently and highly expressed in B. napus true leaves. Preliminary analysis in Arabidopsis thaliana revealed that BnaA02.TOP1α and BnaC02.TOP1α paralogs, but not BnaA01.TOP1α and BnaC01.TOP1α, performed biological functions. Targeted mutations of four BnaTOP1α paralogs in B. napus using the CRISPR-Cas9 system revealed that BnaA02.TOP1α and BnaC02.TOP1α served as functional paralogs and redundantly promoted true leaf number and size, thereby promoting true leaf biomass accumulation. Moreover, BnaA02.TOP1α modulated the levels of endogenous gibberellins, cytokinins and auxins by indirectly regulating several genes related to their metabolism processes. BnaA02.TOP1α directly activated BnaA03.CCS52A2 and BnaC09.AN3 by facilitating the recruitment of RNA polymerase II and modulating H3K27me3, H3K36me2 and H3K36me3 levels at these loci and indirectly activated the BnaA08.PARL1 expression, thereby positively controlling the true leaf size in B. napus. Additionally, BnaA02.TOP1α indirectly activated the BnaA07.PIN1 expression to positively regulate the true leaf number. These results reveal the important functions of BnaTOP1α and provide insights into the regulatory network controlling true leaf biomass accumulation in B. napus.
Collapse
Affiliation(s)
- Danshuai Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huan Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenhao Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
5
|
Dziewit K, Amakorová P, Novák O, Szal B, Podgórska A. Systemic strategies for cytokinin biosynthesis and catabolism in Arabidopsis roots and leaves under prolonged ammonium nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108858. [PMID: 38924907 DOI: 10.1016/j.plaphy.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Cytokinins are growth-regulating plant hormones that are considered to adjust plant development under environmental stresses. During sole ammonium nutrition, a condition known to induce growth retardation of plants, altered cytokinin content can contribute to the characteristic ammonium toxicity syndrome. To understand the metabolic changes in cytokinin pools, cytokinin biosynthesis and degradation were analyzed in the leaves and roots of mature Arabidopsis plants. We found that in leaves of ammonium-grown plants, despite induction of biosynthesis on the expression level, there was no active cytokinin build-up because they were effectively routed toward their downstream catabolites. In roots, cytokinin conjugation was also induced, together with low expression of major synthetic enzymes, resulting in a decreased content of the trans-zeatin form under ammonium conditions. Based on these results, we hypothesized that in leaves and roots, cytokinin turnover is the major regulator of the cytokinin pool and does not allow active cytokinins to accumulate. A potent negative-regulator of root development is trans-zeatin, therefore its low level in mature root tissues of ammonium-grown plants may be responsible for occurrence of a wide root system. Additionally, specific cytokinin enhancement in apical root tips may evoke a short root phenotype in plants under ammonium conditions. The ability to flexibly regulate cytokinin metabolism and distribution in root and shoot tissues can contribute to adjusting plant development in response to ammonium stress.
Collapse
Affiliation(s)
- Kacper Dziewit
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Petra Amakorová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Bożena Szal
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Anna Podgórska
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| |
Collapse
|
6
|
Singh VP, Jaiswal S, Wang Y, Feng S, Tripathi DK, Singh S, Gupta R, Xue D, Xu S, Chen ZH. Evolution of reactive oxygen species cellular targets for plant development. TRENDS IN PLANT SCIENCE 2024; 29:865-877. [PMID: 38519324 DOI: 10.1016/j.tplants.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Reactive oxygen species (ROS) are the key players in regulating developmental processes of plants. Plants have evolved a large array of gene families to facilitate the ROS-regulated developmental process in roots and leaves. However, the cellular targets of ROS during plant evolutionary development are still elusive. Here, we found early evolution and large expansions of protein families such as mitogen-activated protein kinases (MAPK) in the evolutionarily important plant lineages. We review the recent advances in interactions among ROS, phytohormones, gasotransmitters, and protein kinases. We propose that these signaling molecules act in concert to maintain cellular ROS homeostasis in developmental processes of root and leaf to ensure the fine-tuning of plant growth for better adaptation to the changing climate.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India.
| | - Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj-211002, India
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Shouli Feng
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur 208001, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310018, China
| | - Shengchun Xu
- Xianghu Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
7
|
Wei Y, Chen S, Zhou X, Ding D, Song J, Yang S. Endophytic Microorganisms in Tomato Roots, Changes in the Structure and Function of the Community at Different Growing Stages. Microorganisms 2024; 12:1251. [PMID: 38930633 PMCID: PMC11206058 DOI: 10.3390/microorganisms12061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
This study analyzed flower bud differentiation and fruiting stages to investigate how the structure of the plant endophytic microbial community in the roots of tomatoes changes with plant senescence. Based on high-throughput sequencing technology, the diversity and relative abundance of endophytic microorganisms (bacteria and fungi) in tomato stems at different growth stages were analyzed. At the same time, based on LEfSe analysis, the differences in endophytic microorganisms in tomato stems at different growth stages were studied. Based on PICRUSt2 function prediction and FUNGuild, we predicted the functions of endophytic bacterial and fungal communities in tomato stems at different growth stages to explore potential microbial functional traits. The results demonstrated that not only different unique bacterial genera but also unique fungal genera could be found colonizing tomato roots at different growth stages. In tomato seedlings, flower bud differentiation, and fruiting stages, the functions of colonizing endophytes in tomato roots could primarily contribute to the promotion of plant growth, stress resistance, and improvement in nutrient cycling, respectively. These results also suggest that different functional endophytes colonize tomato roots at different growth stages.
Collapse
Affiliation(s)
- Yufei Wei
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (Y.W.); (S.C.); (X.Z.); (D.D.)
| | - Siyu Chen
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (Y.W.); (S.C.); (X.Z.); (D.D.)
| | - Xinyan Zhou
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (Y.W.); (S.C.); (X.Z.); (D.D.)
| | - Diancao Ding
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (Y.W.); (S.C.); (X.Z.); (D.D.)
| | - Jingjing Song
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (Y.W.); (S.C.); (X.Z.); (D.D.)
| |
Collapse
|
8
|
Shi J, Li J, Pan Y, Zhao M, Zhang R, Xue Y, Liu Y. The Physiological Response Mechanism of Peanut Leaves under Al Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1606. [PMID: 38931038 PMCID: PMC11207616 DOI: 10.3390/plants13121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Aluminum (Al) toxicity in acidic soils can significantly reduce peanut yield. The physiological response of peanut leaves to Al poisoning stress still has not been fully explored. This research examined the influences of Al toxicity on peanut leaves by observing the leaf phenotype, scanning the leaf area and perimeter, and by measuring photosynthetic pigment content, physiological response indices, leaf hormone levels, and mineral element accumulation. Fluorescence quantitative RT-PCR (qPCR) was utilized to determine the relative transcript level of specific genes. The results indicated that Al toxicity hindered peanut leaf development, reducing their biomass, surface area, and perimeter, although the decrease in photosynthetic pigment content was minimal. Al toxicity notably affected the activity of antioxidative enzymes, proline content, and MDA (malondialdehyde) levels in the leaves. Additionally, Al poisoning resulted in the increased accumulation of iron (Fe), potassium (K), and Al in peanut leaves but reduced the levels of calcium (Ca), manganese (Mn), copper (Cu), zinc (Zn), and magnesium (Mg). There were significant changes in the content of hormones and the expression level of genes connected with hormones in peanut leaves. High Al concentrations may activate cellular defense mechanisms, enhancing antioxidative activity to mitigate excess reactive oxygen species (ROS) and affecting hormone-related gene expression, which may impede leaf biomass and development. This research aimed to elucidate the physiological response mechanisms of peanut leaves to Al poisoning stress, providing insights for breeding new varieties resistant to Al poisoning.
Collapse
Affiliation(s)
- Jianning Shi
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyu Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuhu Pan
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min Zhao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rui Zhang
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
9
|
Schmidt V, Skokan R, Depaepe T, Kurtović K, Haluška S, Vosolsobě S, Vaculíková R, Pil A, Dobrev PI, Motyka V, Van Der Straeten D, Petrášek J. Phytohormone profiling in an evolutionary framework. Nat Commun 2024; 15:3875. [PMID: 38719800 PMCID: PMC11079000 DOI: 10.1038/s41467-024-47753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.
Collapse
Affiliation(s)
- Vojtěch Schmidt
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roman Skokan
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Katarina Kurtović
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roberta Vaculíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Anthony Pil
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Petre Ivanov Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jan Petrášek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia.
| |
Collapse
|
10
|
Sakashita Y, Kurashima H, Fukuda M, Hirano H, Lamsal S, Katayama N, Fukao T. Possible Roles of Carbohydrate Management and Cytokinin in the Process of Defoliation-Regrowth Cycles in Rice. Int J Mol Sci 2024; 25:5070. [PMID: 38791109 PMCID: PMC11120658 DOI: 10.3390/ijms25105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Defoliation is an inevitable abiotic stress for forage and turf grasses because harvesting, grazing, and mowing are general processes for their production and management. Vegetative regrowth occurs upon defoliation, a crucial trait determining the productivity and persistence of these grasses. However, the information about the molecular regulation of this trait is limited because it is still challenging to perform molecular analyses in forage and turf grasses. Here, we used rice as a model to investigate vegetative regrowth upon defoliation at physiological and molecular levels. This study analyzed stubble and regrown leaves following periodic defoliation using two rice varieties with contrasting regrowth vigor. Vigorous regrowth was associated with maintained chlorophyll content and photosystem II performance; a restricted and promoted mRNA accumulation of sucrose synthase (SUS) I and III subfamilies, respectively; and reduced enzymatic activity of SUS. These results suggest that critical factors affecting vegetative regrowth upon defoliation are de novo carbohydrate synthesis by newly emerged leaves and proper carbohydrate management in leaves and stubble. Physiological and genetic analyses have demonstrated that the reduced sensitivity to and inhibited biosynthesis of cytokinin enhance regrowth vigor. Proper regulation of these metabolic and hormonal pathways identified in this study can lead to the development of new grass varieties with enhanced regrowth vigor following defoliation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Takeshi Fukao
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
11
|
Li P, He Y, Xiao L, Quan M, Gu M, Jin Z, Zhou J, Li L, Bo W, Qi W, Huang R, Lv C, Wang D, Liu Q, El-Kassaby YA, Du Q, Zhang D. Temporal dynamics of genetic architecture governing leaf development in Populus. THE NEW PHYTOLOGIST 2024; 242:1113-1130. [PMID: 38418427 DOI: 10.1111/nph.19649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus. We identified 42 time-specific and 18 consecutive genes that displayed different patterns of expression at various time points. We then constructed eight TO-GCNs that covered the cell proliferation, transition, and cell expansion stages of leaf development. Integrating GWAS and TO-GCN, we postulated the functions of 27 causative genes for GWAS and identified PtoGRF9 as a key player in leaf development. Genetic manipulation via overexpression and suppression of PtoGRF9 revealed its primary influence on leaf development by modulating cell proliferation. Furthermore, we elucidated that PtoGRF9 governs leaf development by activating PtoHB21 during the cell proliferation stage and attenuating PtoLD during the transition stage. Our study provides insights into the dynamic genetic underpinnings of leaf development and understanding the regulatory mechanism of PtoGRF9 in this dynamic process.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyue Gu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhuoying Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lianzheng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weina Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rui Huang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lv
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qing Liu
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT, 2601, Australia
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Ali J, Mukarram M, Ojo J, Dawam N, Riyazuddin R, Ghramh HA, Khan KA, Chen R, Kurjak D, Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14307. [PMID: 38705723 DOI: 10.1111/ppl.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Phytohormones, pivotal regulators of plant growth and development, are increasingly recognized for their multifaceted roles in enhancing crop resilience against environmental stresses. In this review, we provide a comprehensive synthesis of current research on utilizing phytohormones to enhance crop productivity and fortify their defence mechanisms. Initially, we introduce the significance of phytohormones in orchestrating plant growth, followed by their potential utilization in bolstering crop defences against diverse environmental stressors. Our focus then shifts to an in-depth exploration of phytohormones and their pivotal roles in mediating plant defence responses against biotic stressors, particularly insect pests. Furthermore, we highlight the potential impact of phytohormones on agricultural production while underscoring the existing research gaps and limitations hindering their widespread implementation in agricultural practices. Despite the accumulating body of research in this field, the integration of phytohormones into agriculture remains limited. To address this discrepancy, we propose a comprehensive framework for investigating the intricate interplay between phytohormones and sustainable agriculture. This framework advocates for the adoption of novel technologies and methodologies to facilitate the effective deployment of phytohormones in agricultural settings and also emphasizes the need to address existing research limitations through rigorous field studies. By outlining a roadmap for advancing the utilization of phytohormones in agriculture, this review aims to catalyse transformative changes in agricultural practices, fostering sustainability and resilience in agricultural settings.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
| | - James Ojo
- Department of Crop Production, Kwara State University, Malete, Nigeria
| | - Nancy Dawam
- Department of Zoology, Faculty of Natural and Applied Sciences, Plateau State University Bokkos, Diram, Nigeria
| | | | - Hamed A Ghramh
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Daniel Kurjak
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Ahmet Bayram
- Plant Protection, Faculty of Agriculture, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
13
|
Ezaki K, Koga H, Takeda-Kamiya N, Toyooka K, Higaki T, Sakamoto S, Tsukaya H. Precocious cell differentiation occurs in proliferating cells in leaf primordia in Arabidopsis angustifolia3 mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1322223. [PMID: 38689848 PMCID: PMC11058843 DOI: 10.3389/fpls.2024.1322223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
During leaf development, the timing of transition from cell proliferation to expansion is an important factor in determining the final organ size. However, the regulatory system involved in this transition remains less understood. To get an insight into this system, we investigated the compensation phenomenon, in which the cell number decreases while the cell size increases in organs with determinate growth. Compensation is observed in several plant species suggesting coordination between cell proliferation and expansion. In this study, we examined an Arabidopsis mutant of ANGUSTIFOLIA 3 (AN3)/GRF-INTERACTING FACTOR 1, a positive regulator of cell proliferation, which exhibits the compensation. Though the AN3 role has been extensively investigated, the mechanism underlying excess cell expansion in the an3 mutant remains unknown. Focusing on the early stage of leaf development, we performed kinematic, cytological, biochemical, and transcriptome analyses, and found that the cell size had already increased during the proliferation phase, with active cell proliferation in the an3 mutant. Moreover, at this stage, chloroplasts, vacuoles, and xylem cells developed earlier than in the wild-type cells. Transcriptome data showed that photosynthetic activity and secondary cell wall biosynthesis were activated in an3 proliferating cells. These results indicated that precocious cell differentiation occurs in an3 cells. Therefore, we suggest a novel AN3 role in the suppression of cell expansion/differentiation during the cell proliferation phase.
Collapse
Affiliation(s)
- Kazune Ezaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Noriko Takeda-Kamiya
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kiminori Toyooka
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Sardoei AS, Tahmasebi M, Bovand F, Ghorbanpour M. Exogenously applied gibberellic acid and benzylamine modulate growth and chemical constituents of dwarf schefflera: a stepwise regression analysis. Sci Rep 2024; 14:7896. [PMID: 38570571 PMCID: PMC10991322 DOI: 10.1038/s41598-024-57985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Ornamental foliage plants that have a dense appearance are highly valued. One way to achieve this is by using plant growth regulators as a tool for plant growth management. In a greenhouse with a mist irrigation system, a study was conducted on dwarf schefflera, an ornamental foliage plant, which was exposed to foliar application of gibberellic acid and benzyladenine hormones. The hormones were sprayed on dwarf schefflera leaves at 0, 100, and 200 mg/l concentrations, at 15-day intervals in three stages. The experiment was conducted as a factorial based on a completely randomized design, with four replicates. The combination of gibberellic acid and benzyladenine at 200 mg/l concentration had a significant effect on leaf number, leaf area, and plant height. The treatment also resulted in the highest content of photosynthetic pigments. Furthermore, the highest soluble carbohydrate to reducing sugars ratio was observed in treatments of 100 and 200 mg/l benzyladenine, and 200 mg/l gibberellic acid + benzyladenine. Stepwise regression analysis showed that root volume was the first variable to enter the model, explaining 44% of variations. The next variable was root fresh weight, and the two-variable model explained 63% of variations in leaf number. The greatest positive effect on leaf number was related to root fresh weight (0.43), which had a positive correlation with leaf number (0.47). The results showed that 200 mg/l concentration of gibberellic acid and benzyladenine significantly improved morphological growth, chlorophyll and carotenoid synthesis, and reducing sugar and soluble carbohydrate contents in dwarf schefflera.
Collapse
Affiliation(s)
- Ali Salehi Sardoei
- Crop and Horticultural Science Research Department, South Kerman Agricultural and Natural Resources Research and Education Center, AREEO, Jiroft, Iran.
| | - Mojtaba Tahmasebi
- Department of Landscape Architecture, University of Florida, Gainesville, FL, USA
| | - Fatemeh Bovand
- Department of Agronomy and Plant Breeding, Islamic Azad University, Arak, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
15
|
Wang Y, Qin M, Zhang G, Lu J, Zhang C, Ma N, Sun X, Gao J. Transcription factor RhRAP2.4L orchestrates cell proliferation and expansion to control petal size in rose. PLANT PHYSIOLOGY 2024; 194:2338-2353. [PMID: 38084893 DOI: 10.1093/plphys/kiad657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 04/02/2024]
Abstract
Maintaining proper flower size is vital for plant reproduction and adaption to the environment. Petal size is determined by spatiotemporally regulated cell proliferation and expansion. However, the mechanisms underlying the orchestration of cell proliferation and expansion during petal growth remains elusive. Here, we determined that the transition from cell proliferation to expansion involves a series of distinct and overlapping processes during rose (Rosa hybrida) petal growth. Changes in cytokinin content were associated with the transition from cell proliferation to expansion during petal growth. RNA sequencing identified the AP2/ERF transcription factor gene RELATED TO AP2 4-LIKE (RhRAP2.4L), whose expression pattern positively associated with cytokinin levels during rose petal development. Silencing RhRAP2.4L promoted the transition from cell proliferation to expansion and decreased petal size. RhRAP2.4L regulates cell proliferation by directly repressing the expression of KIP RELATED PROTEIN 2 (RhKRP2), encoding a cell cycle inhibitor. In addition, we also identified BIG PETALub (RhBPEub) as another direct target gene of RhRAP2.4L. Silencing RhBPEub decreased cell size, leading to reduced petal size. Furthermore, the cytokinin signaling protein ARABIDOPSIS RESPONSE REGULATOR 14 (RhARR14) activated RhRAP2.4L expression to inhibit the transition from cell proliferation to expansion, thereby regulating petal size. Our results demonstrate that RhRAP2.4L performs dual functions in orchestrating cell proliferation and expansion during petal growth.
Collapse
Affiliation(s)
- Yaru Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Meizhu Qin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guifang Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingyun Lu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chengkun Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Yu J, Gao B, Li D, Li S, Chiang VL, Li W, Zhou C. Ectopic Expression of PtrLBD39 Retarded Primary and Secondary Growth in Populus trichocarpa. Int J Mol Sci 2024; 25:2205. [PMID: 38396881 PMCID: PMC10889148 DOI: 10.3390/ijms25042205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Primary and secondary growth of trees are needed for increments in plant height and stem diameter, respectively, affecting the production of woody biomass for applications in timber, pulp/paper, and related biomaterials. These two types of growth are believed to be both regulated by distinct transcription factor (TF)-mediated regulatory pathways. Notably, we identified PtrLBD39, a highly stem phloem-specific TF in Populus trichocarpa and found that the ectopic expression of PtrLBD39 in P. trichocarpa markedly retarded both primary and secondary growth. In these overexpressing plants, the RNA-seq, ChIP-seq, and weighted gene co-expression network analysis (WGCNA) revealed that PtrLBD39 directly or indirectly regulates TFs governing vascular tissue development, wood formation, hormonal signaling pathways, and enzymes responsible for wood components. This regulation led to growth inhibition, decreased fibrocyte secondary cell wall thickness, and reduced wood production. Therefore, our study indicates that, following ectopic expression in P. trichocarpa, PtrLBD39 functions as a repressor influencing both primary and secondary growth.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Boyuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Danning Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (J.Y.); (B.G.); (D.L.); (S.L.); (V.L.C.); (W.L.)
| |
Collapse
|
17
|
Rathor P, Upadhyay P, Ullah A, Gorim LY, Thilakarathna MS. Humic acid improves wheat growth by modulating auxin and cytokinin biosynthesis pathways. AOB PLANTS 2024; 16:plae018. [PMID: 38601216 PMCID: PMC11005776 DOI: 10.1093/aobpla/plae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Humic acids have been widely used for centuries to enhance plant growth and productivity. The beneficial effects of humic acids have been attributed to different functional groups and phytohormone-like compounds enclosed in macrostructure. However, the mechanisms underlying the plant growth-promoting effects of humic acids are only partially understood. We hypothesize that the bio-stimulatory effect of humic acids is mainly due to the modulation of innate pathways of auxin and cytokinin biosynthesis in treated plants. A physiological investigation along with molecular characterization was carried out to understand the mechanism of bio-stimulatory effects of humic acid. A gene expression analysis was performed for the genes involved in auxin and cytokinin biosynthesis pathways in wheat seedlings. Furthermore, Arabidopsis thaliana transgenic lines generated by fusing the auxin-responsive DR5 and cytokinin-responsive ARR5 promoter to ß-glucuronidase (GUS) reporter were used to study the GUS expression analysis in humic acid treated seedlings. This study demonstrates that humic acid treatment improved the shoot and root growth of wheat seedlings. The expression of several genes involved in auxin (Tryptophan Aminotransferase of Arabidopsis and Gretchen Hagen 3.2) and cytokinin (Lonely Guy3) biosynthesis pathways were up-regulated in humic acid-treated seedlings compared to the control. Furthermore, GUS expression analysis showed that bioactive compounds of humic acid stimulate endogenous auxin and cytokinin-like activities. This study is the first report in which using ARR5:GUS lines we demonstrate the biostimulants activity of humic acid.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Punita Upadhyay
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Linda Yuya Gorim
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| | - Malinda S Thilakarathna
- Department of Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, 9011-116St, NW, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
18
|
Schneider M, Van Bel M, Inzé D, Baekelandt A. Leaf growth - complex regulation of a seemingly simple process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1018-1051. [PMID: 38012838 DOI: 10.1111/tpj.16558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.
Collapse
Affiliation(s)
- Michele Schneider
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
19
|
Lv Z, Zhao W, Kong S, Li L, Lin S. Overview of molecular mechanisms of plant leaf development: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1293424. [PMID: 38146273 PMCID: PMC10749370 DOI: 10.3389/fpls.2023.1293424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
Leaf growth initiates in the peripheral region of the meristem at the apex of the stem, eventually forming flat structures. Leaves are pivotal organs in plants, serving as the primary sites for photosynthesis, respiration, and transpiration. Their development is intricately governed by complex regulatory networks. Leaf development encompasses five processes: the leaf primordium initiation, the leaf polarity establishment, leaf size expansion, shaping of leaf, and leaf senescence. The leaf primordia starts from the side of the growth cone at the apex of the stem. Under the precise regulation of a series of genes, the leaf primordia establishes adaxial-abaxial axes, proximal-distal axes and medio-lateral axes polarity, guides the primordia cells to divide and differentiate in a specific direction, and finally develops into leaves of a certain shape and size. Leaf senescence is a kind of programmed cell death that occurs in plants, and as it is the last stage of leaf development. Each of these processes is meticulously coordinated through the intricate interplay among transcriptional regulatory factors, microRNAs, and plant hormones. This review is dedicated to examining the regulatory influences of major regulatory factors and plant hormones on these five developmental aspects of leaves.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
20
|
Jing W, Gong F, Liu G, Deng Y, Liu J, Yang W, Sun X, Li Y, Gao J, Zhou X, Ma N. Petal size is controlled by the MYB73/TPL/HDA19-miR159-CKX6 module regulating cytokinin catabolism in Rosa hybrida. Nat Commun 2023; 14:7106. [PMID: 37925502 PMCID: PMC10625627 DOI: 10.1038/s41467-023-42914-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
The size of plant lateral organs is determined by well-coordinated cell proliferation and cell expansion. Here, we report that miR159, an evolutionarily conserved microRNA, plays an essential role in regulating cell division in rose (Rosa hybrida) petals by modulating cytokinin catabolism. We uncover that Cytokinin Oxidase/Dehydrogenase6 (CKX6) is a target of miR159 in petals. Knocking down miR159 levels results in the accumulation of CKX6 transcripts and earlier cytokinin clearance, leading to a shortened cell division period and smaller petals. Conversely, knocking down CKX6 causes cytokinin accumulation and a prolonged developmental cell division period, mimicking the effects of exogenous cytokinin application. MYB73, a R2R3-type MYB transcription repressor, recruits a co-repressor (TOPLESS) and a histone deacetylase (HDA19) to form a suppression complex, which regulates MIR159 expression by modulating histone H3 lysine 9 acetylation levels at the MIR159 promoter. Our work sheds light on mechanisms for ensuring the correct timing of the exit from the cell division phase and thus organ size regulation by controlling cytokinin catabolism.
Collapse
Affiliation(s)
- Weikun Jing
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guoqin Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yinglong Deng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiaqi Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenjing Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yonghong Li
- School of Food and Medicine, Shenzhen Polytechnic, Shenzhen, Guangdong, 518055, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Hu Y, Tang F, Zhang D, Shen S, Peng X. Integrating genome-wide association and transcriptome analysis to provide molecular insights into heterophylly and eco-adaptability in woody plants. HORTICULTURE RESEARCH 2023; 10:uhad212. [PMID: 38046852 PMCID: PMC10689056 DOI: 10.1093/hr/uhad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023]
Abstract
Heterophylly is regard as an important adaptive mechanism in response to different environments within plants. However, the genetic mechanisms responsible for heterophylly in woody plants are still poorly understood. Herein, the divergence of heterophyllous leaves was investigated at morphogenesis and using microdissection and physiological indexes in paper mulberry, and the genetic basis of heterophylly was further revealed combined with genome-wide association study (GWAS), transcriptome analysis and weighted gene coexpression network analysis (WGCNA). Our results revealed that the flavonoid content and antioxidant activity increased gradually from the entire leaf to the palmatisect leaf, while the hormone content and net photosynthetic rate decreased. Through GWAS and transcriptome analysis, a total of 98 candidate genes and 2338 differentially expressed genes associated with heterophylly were identified. Importantly, we uncovered critical variations in the candidate genes Bp07g0981 (WOX) and Bp07g0920 (HHO), along with significant differences in haplotypes and expression levels among heterophyllous leaves. Our results also suggested that the genes involved in hormone signaling pathways, antioxidant activity, and flavonoid metabolism might be closely related to the heterophylly of paper mulberry, which could account for the physiological data. Indeed, CR-wox mutant lines showed significant changes in leaf phenotypes, and differential expression profile analysis also highlighted the expression of genes related to phytohormones and transcription factors. Together, the genetic variations and candidate genes detected in this study provide novel insights into the genetic mechanism of heterophylly, and would improve the understanding of eco-adaptability in heterophyllous woody plants.
Collapse
Affiliation(s)
- Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Tang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Dan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
22
|
Bhatia N, Wilson-Sánchez D, Strauss S, Vuolo F, Pieper B, Hu Z, Rambaud-Lavigne L, Tsiantis M. Interspersed expression of CUP-SHAPED COTYLEDON2 and REDUCED COMPLEXITY shapes Cardamine hirsuta complex leaf form. Curr Biol 2023:S0960-9822(23)00822-9. [PMID: 37453425 DOI: 10.1016/j.cub.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
How genetically regulated growth shapes organ form is a key problem in developmental biology. Here, we investigate this problem using the leaflet-bearing complex leaves of Cardamine hirsuta as a model. Leaflet development requires the action of two growth-repressing transcription factors: REDUCED COMPLEXITY (RCO), a homeodomain protein, and CUP-SHAPED COTYLEDON2 (CUC2), a NAC-domain protein. However, how their respective growth-repressive actions are integrated in space and time to generate complex leaf forms remains unknown. By using live imaging, we show that CUC2 and RCO are expressed in an interspersed fashion along the leaf margin, creating a distinctive striped pattern. We find that this pattern is functionally important because forcing RCO expression in the CUC2 domain disrupts auxin-based marginal patterning and can abolish leaflet formation. By combining genetic perturbations with time-lapse imaging and cellular growth quantifications, we provide evidence that RCO-mediated growth repression occurs after auxin-based leaflet patterning and in association with the repression of cell proliferation. Additionally, through the use of genetic mosaics, we show that RCO is sufficient to repress both cellular growth and proliferation in a cell-autonomous manner. This mechanism of growth repression is different to that of CUC2, which occurs in proliferating cells. Our findings clarify how the two growth repressors RCO and CUC2 coordinate to subdivide developing leaf primordia into distinct leaflets and generate the complex leaf form. They also indicate different relationships between growth repression and cell proliferation in the patterning and post-patterning stages of organogenesis.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - David Wilson-Sánchez
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Ziliang Hu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Léa Rambaud-Lavigne
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
23
|
Yu D, Huang R, Yu S, Liang Q, Wang Y, Dang H, Zhang Y. Construction of the first high-density genetic linkage map and QTL mapping of flavonoid and leaf-size related traits in Epimedium. BMC PLANT BIOLOGY 2023; 23:278. [PMID: 37231361 PMCID: PMC10210407 DOI: 10.1186/s12870-023-04257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Leaves are the main medicinal organ in Epimedium herbs, and leaf flavonoid content is an important criterion of Epimedium herbs. However, the underlying genes that regulate leaf size and flavonoid content are unclear, which limits the use of breeding for Epimedium development. This study focuses on QTL mapping of flavonoid and leaf-size related traits in Epimedium. RESULTS We constructed the first high-density genetic map (HDGM) using 109 F1 hybrids of Epimedium leptorrhizum and Epimedium sagittatum over three years (2019-2021). Using 5,271 single nucleotide polymorphism (SNP) markers, an HDGM with an overall distance of 2,366.07 cM and a mean gap of 0.612 cM was generated by utilizing genotyping by sequencing (GBS) technology. Every year for three years, 46 stable quantitative trait loci (QTLs) for leaf size and flavonoid contents were discovered, including 31 stable loci for Epimedin C (EC), one stable locus for total flavone content (TFC), 12 stable loci for leaf length (LL), and two stable loci for leaf area (LA). For flavonoid content and leaf size, the phenotypic variance explained for these loci varied between 4.00 and 16.80% and 14.95 and 17.34%, respectively. CONCLUSIONS Forty-six stable QTLs for leaf size and flavonoid content traits were repeatedly detected over three years. The HDGM and stable QTLs are laying the basis for breeding and gene investigation in Epimedium and will contribute to accelerating the identification of desirable genotypes for Epimedium breeding.
Collapse
Affiliation(s)
- Dongyue Yu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ruoqi Huang
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Shuxia Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China.
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China.
| |
Collapse
|
24
|
Nwogha JS, Wosene AG, Raveendran M, Obidiegwu JE, Oselebe HO, Kambale R, Chilaka CA, Rajagopalan VR. Comparative Metabolomics Profiling Reveals Key Metabolites and Associated Pathways Regulating Tuber Dormancy in White Yam ( Dioscorea rotundata Poir.). Metabolites 2023; 13:metabo13050610. [PMID: 37233651 DOI: 10.3390/metabo13050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Yams are economic and medicinal crops with a long growth cycle, spanning between 9-11 months due to their prolonged tuber dormancy. Tuber dormancy has constituted a major constraint in yam production and genetic improvement. In this study, we performed non-targeted comparative metabolomic profiling of tubers of two white yam genotypes, (Obiaoturugo and TDr1100873), to identify metabolites and associated pathways that regulate yam tuber dormancy using gas chromatography-mass spectrometry (GC-MS). Yam tubers were sampled between 42 days after physiological maturity (DAPM) till tuber sprouting. The sampling points include 42-DAPM, 56-DAPM, 87DAPM, 101-DAPM, 115-DAPM, and 143-DAPM. A total of 949 metabolites were annotated, 559 in TDr1100873 and 390 in Obiaoturugo. A total of 39 differentially accumulated metabolites (DAMs) were identified across the studied tuber dormancy stages in the two genotypes. A total of 27 DAMs were conserved between the two genotypes, whereas 5 DAMs were unique in the tubers of TDr1100873 and 7 DAMs were in the tubers of Obiaoturugo. The differentially accumulated metabolites (DAMs) spread across 14 major functional chemical groups. Amines and biogenic polyamines, amino acids and derivatives, alcohols, flavonoids, alkaloids, phenols, esters, coumarins, and phytohormone positively regulated yam tuber dormancy induction and maintenance, whereas fatty acids, lipids, nucleotides, carboxylic acids, sugars, terpenoids, benzoquinones, and benzene derivatives positively regulated dormancy breaking and sprouting in tubers of both yam genotypes. Metabolite set enrichment analysis (MSEA) revealed that 12 metabolisms were significantly enriched during yam tuber dormancy stages. Metabolic pathway topology analysis further revealed that six metabolic pathways (linoleic acid metabolic pathway, phenylalanine metabolic pathway, galactose metabolic pathway, starch and sucrose metabolic pathway, alanine-aspartate-glutamine metabolic pathways, and purine metabolic pathway) exerted significant impact on yam tuber dormancy regulation. This result provides vital insights into molecular mechanisms regulating yam tuber dormancy.
Collapse
Affiliation(s)
- Jeremiah S Nwogha
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma P.O. Box 307, Ethiopia
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Yam Research Programme, National Root Crops Research Institute, Umudike 440001, Nigeria
| | - Abtew G Wosene
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, Jimma P.O. Box 307, Ethiopia
| | - Muthurajan Raveendran
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Jude E Obidiegwu
- Yam Research Programme, National Root Crops Research Institute, Umudike 440001, Nigeria
| | - Happiness O Oselebe
- Department of Crop Production and Landscape Management, Ebonyi State University, Abakaliki 480282, Nigeria
| | - Rohit Kambale
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Cynthia A Chilaka
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Veera Ranjani Rajagopalan
- Centre for Plant Molecular Biology & Biotechnology, Departments of Plant Biotechnology and Biochemistry, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
25
|
Tang HB, Wang J, Wang L, Shang GD, Xu ZG, Mai YX, Liu YT, Zhang TQ, Wang JW. Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1386-1407. [PMID: 36748203 PMCID: PMC10118278 DOI: 10.1093/plcell/koad031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 05/17/2023]
Abstract
Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.
Collapse
Affiliation(s)
- Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Juan Wang
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhehaote 010070, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Yan-Xia Mai
- Core Facility Center of CEMPS, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Ye-Tong Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai 200234, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
26
|
Bernal-Gallardo JJ, Zuñiga-Mayo VM, Marsch-Martinez N, de Folter S. Novel Roles of SPATULA in the Control of Stomata and Trichome Number, and Anthocyanin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:596. [PMID: 36771679 PMCID: PMC9919660 DOI: 10.3390/plants12030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The bHLH transcription factor SPATULA (SPT) has been identified as a regulator during different stages of Arabidopsis development, including the control of leaf size. However, the mechanism via which it performs this function has not been elucidated. To better understand the role of SPT during leaf development, we used a transcriptomic approach to identify putative target genes. We found putative SPT target genes related to leaf development, and to stomata and trichome formation. Furthermore, genes related to anthocyanin biosynthesis. In this work, we demonstrate that SPT is a negative regulator of stomata number and a positive regulator of trichome number. In addition, SPT is required for sucrose-mediated anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Mexico
| | - Victor M. Zuñiga-Mayo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Mexico
- CONACYT, Instituto de Fitosanidad, Colegio de Postgraduados, Campus Montecillo, Texcoco 56230, Mexico
| | - Nayelli Marsch-Martinez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Mexico
| |
Collapse
|
27
|
Balakhonova V, Dobisova T, Benedikty Z, Panzarova K, Pytela J, Koci R, Spyroglou I, Kovacova I, Arnaud D, Skalak J, Trtilek M, Hejatko J. iReenCAM: automated imaging system for kinetic analysis of photosynthetic pigment biosynthesis at high spatiotemporal resolution during early deetiolation. FRONTIERS IN PLANT SCIENCE 2023; 14:1093292. [PMID: 37152154 PMCID: PMC10160634 DOI: 10.3389/fpls.2023.1093292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Seedling de-etiolation is one of the key stages of the plant life cycle, characterized by a strong rearrangement of the plant development and metabolism. The conversion of dark accumulated protochlorophyllide to chlorophyll in etioplasts of de-etiolating plants is taking place in order of ns to µs after seedlings illumination, leading to detectable increase of chlorophyll levels in order of minutes after de-etiolation initiation. The highly complex chlorophyll biosynthesis integrates number of regulatory events including light and hormonal signaling, thus making de-etiolation an ideal model to study the underlying molecular mechanisms. Here we introduce the iReenCAM, a novel tool designed for non-invasive fluorescence-based quantitation of early stages of chlorophyll biosynthesis during de-etiolation with high spatial and temporal resolution. iReenCAM comprises customized HW configuration and optimized SW packages, allowing synchronized automated measurement and analysis of the acquired fluorescence image data. Using the system and carefully optimized protocol, we show tight correlation between the iReenCAM monitored fluorescence and HPLC measured chlorophyll accumulation during first 4h of seedling de-etiolation in wild type Arabidopsis and mutants with disturbed chlorophyll biosynthesis. Using the approach, we demonstrate negative effect of exogenously applied cytokinins and ethylene on chlorophyll biosynthesis during early de-etiolation. Accordingly, we identify type-B response regulators, the cytokinin-responsive transcriptional activators ARR1 and ARR12 as negative regulators of early chlorophyll biosynthesis, while contrasting response was observed in case of EIN2 and EIN3, the components of canonical ethylene signaling cascade. Knowing that, we propose the use of iReenCAM as a new phenotyping tool, suitable for quantitative and robust characterization of the highly dynamic response of seedling de-etiolation.
Collapse
Affiliation(s)
- Veronika Balakhonova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tereza Dobisova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | | | | | - Radka Koci
- Photon Systems Instruments, Drasov, Czechia
| | - Ioannis Spyroglou
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Ingrid Kovacova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Dominique Arnaud
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jan Skalak
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | | | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|
28
|
Navarro-Cartagena S, Micol JL. Is auxin enough? Cytokinins and margin patterning in simple leaves. TRENDS IN PLANT SCIENCE 2023; 28:54-73. [PMID: 36180378 DOI: 10.1016/j.tplants.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.
Collapse
Affiliation(s)
- Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
29
|
Pavlů J, Kerchev P, Černý M, Novák J, Berka M, Jobe TO, López Ramos JM, Saiz-Fernández I, Rashotte AM, Kopriva S, Brzobohatý B. Cytokinin modulates the metabolic network of sulfur and glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7417-7433. [PMID: 36226742 DOI: 10.1093/jxb/erac391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The phytohormone cytokinin is implicated in a range of growth, developmental, and defense processes. A growing body of evidence supports a crosstalk between cytokinin and nutrient signaling pathways, such as nitrate availability. Cytokinin signaling regulates sulfur-responsive gene expression, but the underlying molecular mechanisms and their impact on sulfur-containing metabolites have not been systematically explored. Using a combination of genetic and pharmacological tools, we investigated the interplay between cytokinin signaling and sulfur homeostasis. Exogenous cytokinin triggered sulfur starvation-like gene expression accompanied by a decrease in sulfate and glutathione content. This process was uncoupled from the activity of the major transcriptional regulator of sulfate starvation signaling SULFUR LIMITATION 1 and an important glutathione-degrading enzyme, γ-glutamyl cyclotransferase 2;1, expression of which was robustly up-regulated by cytokinin. Conversely, glutathione accumulation was observed in mutants lacking the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE 3 and in cytokinin-deficient plants. Cytokinin-deficient plants displayed improved root growth upon exposure to glutathione-depleting chemicals which was attributed to a higher capacity to maintain glutathione levels. These results shed new light on the interplay between cytokinin signaling and sulfur homeostasis. They position cytokinin as an important modulator of sulfur uptake, assimilation, and remobilization in plant defense against xenobiotics and root growth.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Timothy O Jobe
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - José Maria López Ramos
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Aaron Michael Rashotte
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
30
|
Stoynova-Bakalova E, Bakalov DV, Baskin TI. Ethylene represses the promoting influence of cytokinin on cell division and expansion of cotyledons in etiolated Arabidopsis thaliana seedlings. PeerJ 2022; 10:e14315. [PMID: 36340204 PMCID: PMC9632460 DOI: 10.7717/peerj.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/07/2022] [Indexed: 01/22/2023] Open
Abstract
The plant hormones ethylene and cytokinin influence many processes; sometimes they act cooperatively, other times antagonistically. To study their antagonistic interaction, we used the cotyledons of etiolated, intact seedlings of Arabidopsis thaliana. We focused on cell division and expansion, because both processes are quantified readily in paradermal sections. Here, we show that exogenous cytokinins modestly stimulate cell division and expansion in the cotyledon, with a phenyl-urea class compound exerting a larger effect than benzyl-adenine. Similarly, both processes were stimulated modestly when ethylene response was inhibited, either chemically with silver nitrate or genetically with the eti5 ethylene-insensitive mutant. However, combining cytokinin treatment with ethylene insensitivity was synergistic, strongly stimulating both cell division and expansion. Evidently, ethylene represses the growth promoting influence of cytokinin, whether endogenous or applied. We suggest that the intact etiolated cotyledon offers a useful system to characterize how ethylene antagonizes cytokinin responsiveness.
Collapse
Affiliation(s)
| | - Dimitar V. Bakalov
- Department of Pathophysiology, Medical University of Sofia, Sofia, Bulgaria
| | - Tobias I. Baskin
- Biology Department, University of Massachusetts at Amherst, Amherst, MA, United States of America
| |
Collapse
|
31
|
Wang H, Li X, Wolabu T, Wang Z, Liu Y, Tadesse D, Chen N, Xu A, Bi X, Zhang Y, Chen J, Tadege M. WOX family transcriptional regulators modulate cytokinin homeostasis during leaf blade development in Medicago truncatula and Nicotiana sylvestris. THE PLANT CELL 2022; 34:3737-3753. [PMID: 35766878 PMCID: PMC9516142 DOI: 10.1093/plcell/koac188] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific family of WUSCHEL (WUS)-related homeobox (WOX) transcription factors is key regulators of embryogenesis, meristem maintenance, and lateral organ development in flowering plants. The modern/WUS clade transcriptional repressor STENOFOLIA/LAMINA1(LAM1), and the intermediate/WOX9 clade transcriptional activator MtWOX9/NsWOX9 antagonistically regulate leaf blade expansion, but the molecular mechanism is unknown. Using transcriptome profiling and biochemical methods, we determined that NsCKX3 is the common target of LAM1 and NsWOX9 in Nicotiana sylvestris. LAM1 and NsWOX9 directly recognize and bind to the same cis-elements in the NsCKX3 promoter to repress and activate its expression, respectively, thus controlling the levels of active cytokinins in vivo. Disruption of NsCKX3 in the lam1 background yielded a phenotype similar to the knockdown of NsWOX9 in lam1, while overexpressing NsCKX3 resulted in narrower and shorter lam1 leaf blades reminiscent of NsWOX9 overexpression in the lam1 mutant. Moreover, we established that LAM1 physically interacts with NsWOX9, and this interaction is required to regulate NsCKX3 transcription. Taken together, our results indicate that repressor and activator WOX members oppositely regulate a common downstream target to function in leaf blade outgrowth, offering a novel insight into the role of local cytokinins in balancing cell proliferation and differentiation during lateral organ development.
Collapse
Affiliation(s)
- Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tezera Wolabu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Ziyao Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ye Liu
- Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dimiru Tadesse
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Naichong Chen
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Aijiao Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| |
Collapse
|
32
|
Pan L, Berka M, Černý M, Novák J, Luklová M, Brzobohatý B, Saiz-Fernández I. Cytokinin Deficiency Alters Leaf Proteome and Metabolome during Effector-Triggered Immunity in Arabidopsis thaliana Plants. PLANTS 2022; 11:plants11162123. [PMID: 36015426 PMCID: PMC9415597 DOI: 10.3390/plants11162123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
The involvement of cytokinins (CK) in biotic stresses has been recognized, while knowledge regarding the effects of CK deficiency on plant response against pathogens is less abundant. Thus, the purpose of this study was to reveal the effects of CK deficiency on proteomics and metabolomic responses of flg22-triggered immunity. We conducted a series of histochemical assays to investigate the activity of the downstream pathways caused by flg22, such as accumulation of ROS, induction of defence genes, and callose deposition, that occurred in Arabidopsis thaliana transgenic lines overexpressing the Hordeum vulgare CKX2 gene (HvCKX2), which are therefore CK-deficient. We also used GC and LC-MS-based technology to quantify variations in stress hormone levels and metabolomic and proteomic responses in flg22-treated HvCKX2 and wild-type Arabidopsis plants. We found that CK deficiency alters the flg22-triggered plant defence response, especially through induction of callose deposition, upregulation of defence response-related proteins, increased amino acid biosynthesis, and regulation of plant photosynthesis. We also indicated that JA might be an important contributor to immune response in plants deficient in CKs. The present study offers new evidence on the fundamental role of endogenous CK in the response to pathogens, as well as the possibility of altering plant biotic tolerance by manipulating CK pools.
Collapse
Affiliation(s)
- Ling Pan
- College of Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
- Correspondence: (L.P.); (I.S.-F.)
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
- Correspondence: (L.P.); (I.S.-F.)
| |
Collapse
|
33
|
Molecular mechanisms underlying nitrate responses in plants. Curr Biol 2022; 32:R433-R439. [DOI: 10.1016/j.cub.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Liu S, Strauss S, Adibi M, Mosca G, Yoshida S, Dello Ioio R, Runions A, Andersen TG, Grossmann G, Huijser P, Smith RS, Tsiantis M. Cytokinin promotes growth cessation in the Arabidopsis root. Curr Biol 2022; 32:1974-1985.e3. [PMID: 35354067 DOI: 10.1016/j.cub.2022.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
The Arabidopsis root offers good opportunities to investigate how regulated cellular growth shapes different tissues and organs, a key question in developmental biology. Along the root's longitudinal axis, cells sequentially occupy different developmental states. Proliferative meristematic cells give rise to differentiating cells, which rapidly elongate in the elongation zone, then mature and stop growing in the differentiation zone. The phytohormone cytokinin contributes to this zonation by positioning the boundary between the meristem and the elongation zone, called the transition zone. However, the cellular growth profile underlying root zonation is not well understood, and the cellular mechanisms that mediate growth cessation remain unclear. By using time-lapse imaging, genetics, and computational analysis, we analyze the effect of cytokinin on root zonation and cellular growth. We found that cytokinin promotes growth cessation in the distal (shootward) elongation zone in conjunction with accelerating the transition from elongation to differentiation. We estimated cell-wall stiffness by using osmotic treatment experiments and found that cytokinin-mediated growth cessation is associated with cell-wall stiffening and requires the action of an auxin influx carrier, AUX1. Our measurement of growth and cell-wall mechanical properties at a cellular resolution reveal mechanisms via which cytokinin influences cell behavior to shape tissue patterns.
Collapse
Affiliation(s)
- Shanda Liu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Milad Adibi
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Gabriella Mosca
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany; Physics Department, Technical University Munich, James-Franck-Str. 1/I, 85748 Garching b. Munich, Germany
| | - Saiko Yoshida
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza, via dei Sardi, 70, 00185 Rome, Italy
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Tonni Grube Andersen
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Guido Grossmann
- Institute for Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany; Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
35
|
Zuch DT, Doyle SM, Majda M, Smith RS, Robert S, Torii KU. Cell biology of the leaf epidermis: Fate specification, morphogenesis, and coordination. THE PLANT CELL 2022; 34:209-227. [PMID: 34623438 PMCID: PMC8774078 DOI: 10.1093/plcell/koab250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/18/2021] [Indexed: 05/02/2023]
Abstract
As the outermost layer of plants, the epidermis serves as a critical interface between plants and the environment. During leaf development, the differentiation of specialized epidermal cell types, including stomatal guard cells, pavement cells, and trichomes, occurs simultaneously, each providing unique and pivotal functions for plant growth and survival. Decades of molecular-genetic and physiological studies have unraveled key players and hormone signaling specifying epidermal differentiation. However, most studies focus on only one cell type at a time, and how these distinct cell types coordinate as a unit is far from well-comprehended. Here we provide a review on the current knowledge of regulatory mechanisms underpinning the fate specification, differentiation, morphogenesis, and positioning of these specialized cell types. Emphasis is given to their shared developmental origins, fate flexibility, as well as cell cycle and hormonal controls. Furthermore, we discuss computational modeling approaches to integrate how mechanical properties of individual epidermal cell types and entire tissue/organ properties mutually influence each other. We hope to illuminate the underlying mechanisms coordinating the cell differentiation that ultimately generate a functional leaf epidermis.
Collapse
Affiliation(s)
- Daniel T Zuch
- Department of Molecular Biosciences, Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Siamsa M Doyle
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Mateusz Majda
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| | - Keiko U Torii
- Department of Molecular Biosciences, Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
36
|
Kameniarová M, Černý M, Novák J, Ondrisková V, Hrušková L, Berka M, Vankova R, Brzobohatý B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:887103. [PMID: 35755673 PMCID: PMC9221075 DOI: 10.3389/fpls.2022.887103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 05/04/2023]
Abstract
The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in 1-month-old Arabidopsis thaliana (Col-0) plants exposed for 1 week to 4°C at short-day conditions under white (100 and 20 μmol m-2s-1), blue, or red (20 μmol m-2s-1) light conditions. An upregulated expression of CBF1, inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accession, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light-treated plants at low temperatures and showed that the cold response is highly accession-specific. In general, blue light increased mainly the cold-stress-related proteins and red light-induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light-driven cell function maintaining program and blue light-activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Collapse
Affiliation(s)
- Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Jan Novák
| | - Vladěna Ondrisková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Lenka Hrušková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czechia
| | - Bretislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
37
|
Li J, Feng X, Xie J. A simple method for the application of exogenous phytohormones to the grass leaf base protodermal zone to improve grass leaf epidermis development research. PLANT METHODS 2021; 17:128. [PMID: 34903247 PMCID: PMC8667372 DOI: 10.1186/s13007-021-00828-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/30/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND The leaf epidermis functions to prevent the loss of water and reduce gas exchange. As an interface between the plant and its external environment, it helps prevent damage, making it an attractive system for studying cell fate and development. In monocotyledons, the leaf epidermis grows from the basal meristem that contains protodermal cells. Leaf protoderm zone is covered by the leaf sheath or coleoptile in maize and wheat, preventing traditional exogenous phytohormone application methods, such as directly spraying on the leaf surface or indirectly via culture media, from reaching the protoderm areas directly. The lack of a suitable application method limits research on the effect of phytohormone on the development of grass epidermis. RESULTS Here, we describe a direct and straightforward method to apply exogenous phytohormones to the leaf protoderms of maize and wheat. We used the auxin analogs 2,4-D and cytokinin analogs 6-BA to test the system. After 2,4-D treatment, the asymmetrical division events and initial stomata development were decreased, and the subsidiary cells were induced in maize, the number of GMC (guard mother cell), SMC (subsidiary mother cell) and young stomata were increased in wheat, and the size of the epidermal cells increased after 6-BA treatment in maize. Thus, the method is suitable for the application of phytohormone to the grass leaf protodermal areas. CONCLUSIONS The method to apply hormones to the mesocotyls of maize and wheat seedlings is simple and direct. Only a small amount of externally applied substances are needed to complete the procedure in this method. The entire experimental process lasts for ten days generally, and it is easy to evaluate the phytohormones' effect on the epidermis development.
Collapse
Affiliation(s)
- Jieping Li
- College of Agriculture, School of Life Science, State Key Laboratory of Cotton Biology/State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China.
| | - Xinlei Feng
- College of Agriculture, School of Life Science, State Key Laboratory of Cotton Biology/State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
| | - Jinjin Xie
- College of Agriculture, School of Life Science, State Key Laboratory of Cotton Biology/State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
| |
Collapse
|
38
|
Lin W, Wang Y, Coudert Y, Kierzkowski D. Leaf Morphogenesis: Insights From the Moss Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2021; 12:736212. [PMID: 34630486 PMCID: PMC8494982 DOI: 10.3389/fpls.2021.736212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/02/2021] [Indexed: 05/17/2023]
Abstract
Specialized photosynthetic organs have appeared several times independently during the evolution of land plants. Phyllids, the leaf-like organs of bryophytes such as mosses or leafy liverworts, display a simple morphology, with a small number of cells and cell types and lack typical vascular tissue which contrasts greatly with flowering plants. Despite this, the leaf structures of these two plant types share many morphological characteristics. In this review, we summarize the current understanding of leaf morphogenesis in the model moss Physcomitrium patens, focusing on the underlying cellular patterns and molecular regulatory mechanisms. We discuss this knowledge in an evolutionary context and identify parallels between moss and flowering plant leaf development. Finally, we propose potential research directions that may help to answer fundamental questions in plant development using moss leaves as a model system.
Collapse
Affiliation(s)
- Wenye Lin
- IRBV, Department of Biological Sciences, University of Montréal, Montréal, Montréal, QC, Canada
| | - Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, INRIA, Lyon, France
| | - Daniel Kierzkowski
- IRBV, Department of Biological Sciences, University of Montréal, Montréal, Montréal, QC, Canada
| |
Collapse
|
39
|
Abdolinejad R, Shekafandeh A, Jowkar A. In vitro tetraploidy induction creates enhancements in morphological, physiological and phytochemical characteristics in the fig tree (Ficus Carica L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:191-202. [PMID: 34118682 DOI: 10.1016/j.plaphy.2021.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 05/05/2023]
Abstract
Fig tree (Ficus carica L.) is a precious fruit tree in semi-arid and arid areas worldwide which has difficulties in its conventional breeding programs. This study was carried out to make new genotypes with superior features based on the ploidy induction method. Thus, in vitro tetraploidization in two fig cultivars, namely 'Sabz' and 'Torsh', was successfully established using shoot tip explants and colchicine as the antimitotic agent in MS medium. The flow cytometry and chromosome counting techniques were used to verify tetraploid plants. The results revealed that, in comparison to the original diploid plants of both cultivars, tetraploid plants significantly had taller stems, larger leaves, a greater number of chloroplasts in guard cells, and higher chlorophyll content and photosynthesis rate. UPLC-MS analysis revealed that the level of growth stimulator phytohormones, including ZR, IAA, GA3, SA, and JA in the tetraploid plants of both cultivars were significantly higher than their diploid controls. In contrast, they had less accumulated growth inhibitor phytohormone (ABA) than their diploid explant source. Moreover, tetraploid plants had significantly accumulated a higher content of phenolic compounds, total soluble sugars, and total soluble proteins, but showed a significantly less total antioxidant activity. Consequently, it is concluded that the growth advantages of tetraploid figs created in this study are substantial in terms of phytohormonal, physiological, and phytochemical superiorities, as compared to their corresponding diploid plants. Polyploidization proves as a promising breeding tool for future breeding programs of the fig tree.
Collapse
Affiliation(s)
- Ruhollah Abdolinejad
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, P.O. Box 65186-71441, Iran.
| | - Akhtar Shekafandeh
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, P.O. Box 65186-71441, Iran.
| | - Abolfazl Jowkar
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, P.O. Box 65186-71441, Iran.
| |
Collapse
|
40
|
Auxin and Cytokinin Interplay during Leaf Morphogenesis and Phyllotaxy. PLANTS 2021; 10:plants10081732. [PMID: 34451776 PMCID: PMC8400353 DOI: 10.3390/plants10081732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/03/2022]
Abstract
Auxins (IAA) and cytokinins (CKs) are the most influential phytohormones, having multifaceted roles in plants. They are key regulators of plant growth and developmental processes. Additionally, their interplay exerts tight control on plant development and differentiation. Although several reviews have been published detailing the auxin-cytokinin interplay in controlling root growth and differentiation, their roles in the shoot, particularly in leaf morphogenesis are largely unexplored. Recent reports have provided new insights on the roles of these two hormones and their interplay on leaf growth and development. In this review, we focus on the effect of auxins, CKs, and their interactions in regulating leaf morphogenesis. Additionally, the regulatory effects of the auxins and CKs interplay on the phyllotaxy of plants are discussed.
Collapse
|
41
|
Cui G, Zhao M, Tan H, Wang Z, Meng M, Sun F, Zhang C, Xi Y. RNA Sequencing Reveals Dynamic Carbohydrate Metabolism and Phytohormone Signaling Accompanying Post-mowing Regeneration of Forage Winter Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:664933. [PMID: 34394136 PMCID: PMC8358837 DOI: 10.3389/fpls.2021.664933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Winter wheat (Triticum aestivum L.) is used as fresh green winter forage worldwide, and its ability to regenerate after mowing determines whether it can be used for forage production; however, the molecular mechanism of regeneration is poorly understood. This study identified long-chain coding and non-coding RNAs in the wheat cultivar "XN9106," which is cultivated for forage and grain production separately in winter and summer, and analyzed their function during post-mowing regeneration. The results showed that the degradation of carbohydrate plays an important role in regeneration, as demonstrated by decreased carbohydrate content. The increased gene expression of enzymes including β-amylase, β-fructofuranosidase, sucrose synthase, sucrose-6-phosphate synthase, trehalose-6-phosphate synthase, and trehalose-6-phosphate phosphatase in mowed seedlings suggests regeneration is fueled by degraded carbohydrates that provide energy and carbon skeletons for the Krebs cycle and amino acid synthesis. The decreased auxin content relieved the inhibition of cytokinin synthesis, that controls the transition from cell division to cell expansion and stimulates cell expansion and differentiation during the cell expansion phase, and eventually accelerate post-mowing regeneration of seedlings. Additionally, differentially expressed long-chain non-coding RNAs (lncRNAs) might participate in the regulation of gene expression related to carbohydrate metabolism and hormone signal transduction. This study demonstrated the responses of key mRNAs and lncRNAs during post-mowing regeneration of winter wheat and revealed the importance of carbohydrate and hormone during regeneration, providing valuable information for genetic improvement of forage wheat.
Collapse
Affiliation(s)
- Guibin Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Mei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Hongbin Tan
- Shaanxi Province Seed Industry Group Co., Ltd., Xi’an, China
| | - Zhulin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Min Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Wheat Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Yangling, China
| |
Collapse
|
42
|
Leuendorf JE, Schmülling T. Meeting at the DNA: Specifying Cytokinin Responses through Transcription Factor Complex Formation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071458. [PMID: 34371661 PMCID: PMC8309282 DOI: 10.3390/plants10071458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/10/2023]
Abstract
Cytokinin is a plant hormone regulating numerous biological processes. Its diverse functions are realized through the expression control of specific target genes. The transcription of the immediate early cytokinin target genes is regulated by type-B response regulator proteins (RRBs), which are transcription factors (TFs) of the Myb family. RRB activity is controlled by phosphorylation and protein degradation. Here, we focus on another step of regulation, the interaction of RRBs among each other or with other TFs to form active or repressive TF complexes. Several examples in Arabidopsis thaliana illustrate that RRBs form homodimers or complexes with other TFs to specify the cytokinin response. This increases the variability of the output response and provides opportunities of crosstalk between the cytokinin signaling pathway and other cellular signaling pathways. We propose that a targeted approach is required to uncover the full extent and impact of RRB interaction with other TFs.
Collapse
|
43
|
Wang H, Kong F, Zhou C. From genes to networks: The genetic control of leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1181-1196. [PMID: 33615731 DOI: 10.1111/jipb.13084] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 05/15/2023]
Abstract
Substantial diversity exists for both the size and shape of the leaf, the main photosynthetic organ of flowering plants. The two major forms of leaf are simple leaves, in which the leaf blade is undivided, and compound leaves, which comprise several leaflets. Leaves form at the shoot apical meristem from a group of undifferentiated cells, which first establish polarity, then grow and differentiate. Each of these processes is controlled by a combination of transcriptional regulators, microRNAs and phytohormones. The present review documents recent advances in our understanding of how these various factors modulate the development of both simple leaves (focusing mainly on the model plant Arabidopsis thaliana) and compound leaves (focusing mainly on the model legume species Medicago truncatula).
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
| |
Collapse
|
44
|
Saidi A, Hajibarat Z. Phytohormones: plant switchers in developmental and growth stages in potato. J Genet Eng Biotechnol 2021; 19:89. [PMID: 34142228 PMCID: PMC8211815 DOI: 10.1186/s43141-021-00192-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Potato is one of the most important food crops worldwide, contributing key nutrients to the human diet. Plant hormones act as vital switchers in the regulation of various aspects of developmental and growth stages in potato. Due to the broad impacts of hormones on many developmental processes, their role in potato growth and developmental stages has been investigated. This review presents a description of hormonal basic pathways, various interconnections between hormonal network and reciprocal relationships, and clarification of molecular events underlying potato growth. In the last decade, new findings have emerged regarding their function during sprout development, vegetative growth, tuber initiation, tuber development, and maturation in potato. Hormones can control the regulation of various aspects of growth and development in potato, either individually or in combination with other hormones. The molecular characterization of interplay between cytokinins (CKs), abscisic acid (ABA), and auxin and/or gibberellins (GAs) during tuber formation requires further undertaking. Recently, new evidences regarding the relative functions of hormones during various stages and an intricate network of several hormones controlling potato tuber formation are emerging. Although some aspects of their functions are widely covered, remarkable breaks in our knowledge and insights yet exist in the regulation of hormonal networks and their interactions during different stages of growth and various aspects of tuber formation. SHORT CONCLUSION The present review focuses on the relative roles of hormones during various developmental stages with a view to recognize their mechanisms of function in potato tuber development. For better insight, relevant evidences available on hormonal interaction during tuber development in other species are also described. We predict that the present review highlights some of the conceptual developments in the interplay of hormones and their associated downstream events influencing tuber formation.
Collapse
Affiliation(s)
- Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zahra Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
45
|
Liu S, Jobert F, Rahneshan Z, Doyle SM, Robert S. Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:525-550. [PMID: 34143651 DOI: 10.1146/annurev-arplant-080720-081920] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The plant epidermis serves many essential functions, including interactions with the environment, protection, mechanical strength, and regulation of tissue and organ growth. To achieve these functions, specialized epidermal cells develop into particular shapes. These include the intriguing interdigitated jigsaw puzzle shape of cotyledon and leaf pavement cells seen in many species, the precise functions of which remain rather obscure. Although pavement cell shape regulation is complex and still a long way from being fully understood, the roles of the cell wall, mechanical stresses, cytoskeleton, cytoskeletal regulatory proteins, and phytohormones are becoming clearer. Here, we provide a review of this current knowledge of pavement cell morphogenesis, generated from a wealth of experimental evidence and assisted by computational modeling approaches. We also discuss the evolution and potential functions of pavement cell interdigitation. Throughout the review, we highlight some of the thought-provoking controversies and creative theories surrounding the formation of the curious puzzle shape of these cells.
Collapse
Affiliation(s)
- Sijia Liu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Zahra Rahneshan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Siamsa M Doyle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden; ,
| |
Collapse
|
46
|
Bhatia N, Runions A, Tsiantis M. Leaf Shape Diversity: From Genetic Modules to Computational Models. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:325-356. [PMID: 34143649 DOI: 10.1146/annurev-arplant-080720-101613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant leaves display considerable variation in shape. Here, we introduce key aspects of leaf development, focusing on the morphogenetic basis of leaf shape diversity. We discuss the importance of the genetic control of the amount, duration, and direction of cellular growth for the emergence of leaf form. We highlight how the combined use of live imaging and computational frameworks can help conceptualize how regulated cellular growth is translated into different leaf shapes. In particular, we focus on the morphogenetic differences between simple and complex leaves and how carnivorous plants form three-dimensional insect traps. We discuss how evolution has shaped leaf diversity in the case of complex leaves, by tinkering with organ-wide growth and local growth repression, and in carnivorous plants, by modifying the relative growth of the lower and upper sides of the leaf primordium to create insect-digesting traps.
Collapse
Affiliation(s)
- Neha Bhatia
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Adam Runions
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Current affiliation: Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| |
Collapse
|
47
|
Wu W, Du K, Kang X, Wei H. The diverse roles of cytokinins in regulating leaf development. HORTICULTURE RESEARCH 2021; 8:118. [PMID: 34059666 PMCID: PMC8167137 DOI: 10.1038/s41438-021-00558-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 05/24/2023]
Abstract
Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized. Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well as their interaction, determine the phyllotaxis pattern. The activities of cytokinins in various regions of the leaf, especially at the margins, collectively determine the final leaf morphology (e.g., simple or compound). The area of a leaf is generally determined by the number and size of the cells in the leaf. Cytokinins promote cell division and increase cell expansion during the proliferation and expansion stages of leaf cell development, respectively. During leaf senescence, cytokinins reduce sugar accumulation, increase chlorophyll synthesis, and prolong the leaf photosynthetic period. We also briefly describe the roles of other hormones, including auxin and ethylene, during the whole leaf developmental process. In this study, we review the regulatory roles of cytokinins in various leaf developmental stages, with a focus on cytokinin metabolism and signal transduction processes, in order to shed light on the molecular mechanisms underlying leaf development.
Collapse
Affiliation(s)
- Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, PR China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China.
- Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
48
|
Zakharova EV, Timofeeva GV, Fateev AD, Kovaleva LV. Caspase-like proteases and the phytohormone cytokinin as determinants of S-RNAse-based self-incompatibility-induced PCD in Petunia hybrida L. PROTOPLASMA 2021; 258:573-586. [PMID: 33230626 DOI: 10.1007/s00709-020-01587-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
S-RNAse-based self-incompatibility (SI) in petunia (Petunia hybrida L.) is a self-/non-self-recognition system underlying the pistil rejection of self-pollen. Using different methods, including a TUNEL assay, we have recently shown that programmed cell death (PCD) is a factor of the SI in petunia. Here, we show that the growth of self-incompatible pollen tubes in the style tissues during 4 h after pollination is accompanied by five-sixfold increase in a caspase-like protease (CLP) activity. Exogenous cytokinin (CK) inhibits the pollen tube growth and stimulates the CLP activity in compatible pollen tubes. The actin depolymerization with latrunculin B induces a sharp drop in the CLP activity in self-incompatible pollen tubes and its increase in compatible pollen tubes. Altogether, our results suggest that a CLP is involved in the SI-induced PCD and that CK is a putative activator of the CLP. We assume that CK provokes acidification of the cytosol and thus promotes the activation of a CLP. Thus, our results suggest that CK and CLP are involved in the S-RNAse-based SI-induced PCD in petunia. Potential relations between these components in PCD signaling are discussed.
Collapse
Affiliation(s)
| | - Galina V Timofeeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Arseny D Fateev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Kovaleva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
49
|
Wu W, Li J, Wang Q, Lv K, Du K, Zhang W, Li Q, Kang X, Wei H. Growth-regulating factor 5 (GRF5)-mediated gene regulatory network promotes leaf growth and expansion in poplar. THE NEW PHYTOLOGIST 2021; 230:612-628. [PMID: 33423287 PMCID: PMC8048564 DOI: 10.1111/nph.17179] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/28/2020] [Indexed: 05/07/2023]
Abstract
Although polyploid plants have larger leaves than their diploid counterparts, the molecular mechanisms underlying this difference (or trait) remain elusive. Differentially expressed genes (DEGs) between triploid and full-sib diploid poplar trees were identified from two transcriptomic data sets followed by a gene association study among DEGs to identify key leaf growth regulators. Yeast one-hybrid system, electrophoretic mobility shift assay, and dual-luciferase assay were employed to substantiate that PpnGRF5-1 directly regulated PpnCKX1. The interactions between PpnGRF5-1 and growth-regulating factor (GRF)-interacting factors (GIFs) were experimentally validated and a multilayered hierarchical regulatory network (ML-hGRN)-mediated by PpnGRF5-1 was constructed with top-down graphic Gaussian model (GGM) algorithm by combining RNA-sequencing data from its overexpression lines and DAP-sequencing data. PpnGRF5-1 is a negative regulator of PpnCKX1. Overexpression of PpnGRF5-1 in diploid transgenic lines resulted in larger leaves resembling those of triploids, and significantly increased zeatin and isopentenyladenine in the apical buds and third leaves. PpnGRF5-1 also interacted with GIFs to increase its regulatory diversity and capacity. An ML-hGRN-mediated by PpnGRF5-1 was obtained and could largely elucidate larger leaves. PpnGRF5-1 and the ML-hGRN-mediated by PpnGRF5-1 were underlying the leaf growth and development.
Collapse
Affiliation(s)
- Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijing100083China
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijing100083China
| | - Qiao Wang
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijing100091China
| | - Kaiwen Lv
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinHeilongjiang150040China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijing100083China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijing100091China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijing100083China
| | - Hairong Wei
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMI49931USA
| |
Collapse
|
50
|
Saiz-Fernández I, Černý M, Skalák J, Brzobohatý B. Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level. PLANT METHODS 2021; 17:7. [PMID: 33422104 PMCID: PMC7797125 DOI: 10.1186/s13007-020-00706-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Split-root systems (SRS) have many applications in plant sciences, but their implementation, depending on the experimental design, can be difficult and time-consuming. Additionally, the system is not exempt from limitations, since the time required for the establishment of the SRS imposes a limit to how early in plant development experiments can be performed. Here, we optimized and explained in detail a method for establishing a SRS in young Arabidopsis thaliana seedlings, both in vitro and in soil. RESULTS We found that the partial de-rooting minimized the recovery time compared to total de-rooting, thus allowing the establishment of the split-root system in younger plants. Analysis of changes in the Arabidopsis leaf proteome following the de-rooting procedure highlighted the distinct metabolic alterations that totally and partially de-rooted plants undergo during the healing process. This system was also validated for its use in drought experiments, as it offers a way to apply water-soluble compounds to plants subjected to drought stress. By growing plants in a split-root system with both halves being water-deprived, it is possible to apply the required compound to one half of the root system, which can be cut from the main plant once the compound has been absorbed, thus minimizing rehydration and maintaining drought conditions. CONCLUSIONS Partial de-rooting is the suggested method for obtaining split-root systems in small plants like Arabidopsis thaliana, as growth parameters, survival rate, and proteomic analysis suggest that is a less stressful procedure than total de-rooting, leading to a final rosette area much closer to that of uncut plants. Additionally, we provide evidence that split root-systems can be used in drought experiments where water-soluble compounds are applied with minimal effects of rehydration.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- Functional Genomics & Proteomics of Plants, CEITEC MU, Central European Institute of Technology, Kamenice 5, 625 00, Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|