1
|
Li B, Jia Y, Xu L, Zhang S, Long Z, Wang R, Guo Y, Zhang W, Jiao C, Li C, Xu Y. Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in barley and rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1282-1298. [PMID: 38124464 PMCID: PMC11022822 DOI: 10.1111/pbi.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Yong Jia
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Le Xu
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Zhoukai Long
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Rong Wang
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
2
|
Dondup D, Yang Y, Xu D, Namgyal L, Wang Z, Shen X, Dorji T, kyi N, Drolma L, Gao L, Ga Z, Sang Z, Ga Z, Mu W, Zhuoma P, Taba X, Jiao G, Liao W, Tang Y, Zeng X, Luobu Z, Wu Y, Wang C, Zhang J, Qi Z, Guo W, Guo G. Genome diversity and highland-adaptative variation in Tibet barley landrace population of China. FRONTIERS IN PLANT SCIENCE 2023; 14:1189642. [PMID: 37235004 PMCID: PMC10206316 DOI: 10.3389/fpls.2023.1189642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Barley landraces accumulated variation in adapting to extreme highland environments during long-term domestication in Tibet, but little is known about their population structure and genomic selection traces. In this study, tGBS (tunable genotyping by sequencing) sequencing, molecular marker and phenotypic analyses were conducted on 1,308 highland and 58 inland barley landraces in China. The accessions were divided into six sub-populations and clearly distinguished most six-rowed, naked barley accessions (Qingke in Tibet) from inland barley. Genome-wide differentiation was observed in all five sub-populations of Qingke and inland barley accessions. High genetic differentiation in the pericentric regions of chromosomes 2H and 3H contributed to formation of five types of Qingke. Ten haplotypes of the pericentric regions of 2H, 3H, 6H and 7H were further identified as associated with ecological diversification of these sub-populations. There was genetic exchange between eastern and western Qingke but they shared the same progenitor. The identification of 20 inland barley types indicated multiple origins of Qingke in Tibet. The distribution of the five types of Qingke corresponded to specific environments. Two predominant highland-adaptative variations were identified for low temperature tolerance and grain color. Our results provide new insights into the origin, genome differentiation, population structure and highland adaptation in highland barley which will benefit both germplasm enhancement and breeding of naked barley.
Collapse
Affiliation(s)
- Dawa Dondup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
- College of Plant Science, Tibet Agricultural and Husbandry University, Linzhi, China
| | - Yang Yang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Dongdong Xu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lhundrup Namgyal
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xia Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tsechoe Dorji
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Nyima kyi
- Tibet Climate Center, Tibet Meteorological Bureau, Lhasa, China
| | - Lhakpa Drolma
- Tibet Institute of Plateau Atmospheric and Environmental Sciences, Tibet Meteorological Bureau, Lhasa, China
- Key Laboratory of Atmospheric Environment of Tibet Autonomous Region, Tibet Meteorological Bureau, Lhasa, China
| | - Liyun Gao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Zhuo Ga
- College of Plant Science, Tibet Agricultural and Husbandry University, Linzhi, China
| | - Zha Sang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Zhuo Ga
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Wang Mu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Pubu Zhuoma
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Xiongnu Taba
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Guocheng Jiao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Wenhua Liao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Yawei Tang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Zhaxi Luobu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Chunchao Wang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Jing Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Ganggang Guo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, China
| |
Collapse
|
3
|
Massman C, Martínez-Subirà M, Bettenhausen H, Filichkin T, Fisk S, Helgerson L, Hayes PM. The Malting Barley Blues. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2023. [DOI: 10.1080/03610470.2023.2170615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Chris Massman
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way,Corvallis, OR97331, U.S.A
| | - Mariona Martínez-Subirà
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way,Corvallis, OR97331, U.S.A
| | | | - Tanya Filichkin
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way,Corvallis, OR97331, U.S.A
| | - Scott Fisk
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way,Corvallis, OR97331, U.S.A
| | - Laura Helgerson
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way,Corvallis, OR97331, U.S.A
| | - Patrick M. Hayes
- Department of Crop and Soil Science, Oregon State University, 3050 SW Campus Way,Corvallis, OR97331, U.S.A
| |
Collapse
|
4
|
Jia Y, Xu M, Hu H, Chapman B, Watt C, Buerte B, Han N, Zhu M, Bian H, Li C, Zeng Z. Comparative gene retention analysis in barley, wild emmer, and bread wheat pangenome lines reveals factors affecting gene retention following gene duplication. BMC Biol 2023; 21:25. [PMID: 36747211 PMCID: PMC9903521 DOI: 10.1186/s12915-022-01503-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gene duplication is a prevalent phenomenon and a major driving force underlying genome evolution. The process leading to the fixation of gene duplicates following duplication is critical to understand how genome evolves but remains fragmentally understood. Most previous studies on gene retention are based on gene duplicate analyses in single reference genome. No population-based comparative gene retention analysis has been performed to date. RESULTS Taking advantage of recently published genomic data in Triticeae, we dissected a divergent homogentisate phytyltransferase (HPT2) lineage caught in the middle stage of gene fixation following duplication. The presence/absence of HPT2 in barley (diploid), wild emmer (tetraploid), and bread wheat (hexaploid) pangenome lines appears to be associated with gene dosage constraint and environmental adaption. Based on these observations, we adopted a phylogeny-based orthology inference approach and performed comparative gene retention analyses across barley, wild emmer, and bread wheat. This led to the identification of 326 HPT2-pattern-like genes at whole genome scale, representing a pool of gene duplicates in the middle stage of gene fixation. Majority of these HPT2-pattern-like genes were identified as small-scale duplicates, such as dispersed, tandem, and proximal duplications. Natural selection analyses showed that HPT2-pattern-like genes have experienced relaxed selection pressure, which is generally accompanied with partial positive selection and transcriptional divergence. Functional enrichment analyses showed that HPT2-pattern-like genes are over-represented with molecular-binding and defense response functions, supporting the potential role of environmental adaption during gene retention. We also observed that gene duplicates from larger gene family are more likely to be lost, implying a gene dosage constraint effect. Further comparative gene retention analysis in barley and bread wheat pangenome lines revealed combined effects of species-specific selection and gene dosage constraint. CONCLUSIONS Comparative gene retention analyses at the population level support gene dosage constraint, environmental adaption, and species-specific selection as three factors that may affect gene retention following gene duplication. Our findings shed light on the evolutionary process leading to the retention of newly formed gene duplicates and will greatly improve our understanding on genome evolution via duplication.
Collapse
Affiliation(s)
- Yong Jia
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Mingrui Xu
- grid.410595.c0000 0001 2230 9154College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 China
| | - Haifei Hu
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Brett Chapman
- grid.1025.60000 0004 0436 6763Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Calum Watt
- grid.1025.60000 0004 0436 6763Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia ,grid.516230.30000 0005 0233 6218Intergrain Pty Ltd, Bibra Lake, WA 6163 Australia
| | - B. Buerte
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ning Han
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Muyuan Zhu
- grid.13402.340000 0004 1759 700XInstitute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Hongwu Bian
- Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chengdao Li
- Western Crop Genetic Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA, 6151, Australia.
| | - Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Institute of Genetic and Regenerative Biology, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Gozzi M, Blandino M, Dall’Asta C, Martinek P, Bruni R, Righetti L. Anthocyanin Content and Fusarium Mycotoxins in Pigmented Wheat ( Triticum aestivum L. spp. aestivum): An Open Field Evaluation. PLANTS (BASEL, SWITZERLAND) 2023; 12:693. [PMID: 36840042 PMCID: PMC9965368 DOI: 10.3390/plants12040693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Twelve Triticum aestivum L. spp. aestivum varieties with pigmented grain, namely one red, six purple, three blue, and two black, were grown in open fields over two consecutive years and screened to investigate their risk to the accumulation of multiple Fusarium-related mycotoxins. Deoxynivalenol (DON) and its modified forms DON3Glc, 3Ac-DON, 15Ac-DON, and T-2, HT-2, ZEN, and Enniatin B were quantified by means of UHPLC-MS/MS, along with 14 different cyanidin, petunidin, delphinidin, pelargonidin, peonidin, and malvidin glycosides. A significant strong influence effect of the harvesting year (p = 0.0002) was noticed for DON content, which was more than doubled between harvesting years growing seasons (mean of 3746 µg kg-1 vs. 1463 µg kg-1). In addition, a striking influence of varieties with different grain colour on DON content (p < 0.0001) emerged in combination with the harvesting year (year×colour, p = 0.0091), with blue grains being more contaminated (mean of 5352 µg kg-1) and red grain being less contaminated (mean of 715 µg kg-1). The trend was maintained between the two harvesting years despite the highly variable absolute mycotoxin content. Varieties accumulating anthocyanins in the pericarp (purple coloration) had significantly lower DON content compared to those in which aleurone was involved (blue coloration).
Collapse
Affiliation(s)
- Marco Gozzi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43100 Parma, Italy
| | - Massimo Blandino
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43100 Parma, Italy
| | - Petr Martinek
- Agrotest Fyto, Ltd., Havlíčkova 2787/121, 767 01 Kroměříž, Czech Republic
| | - Renato Bruni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43100 Parma, Italy
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43100 Parma, Italy
| |
Collapse
|
6
|
Xu D, Dondup D, Dou T, Wang C, Zhang R, Fan C, Guo A, Lhundrup N, Ga Z, Liu M, Wu B, Gao J, Zhang J, Guo G. HvGST plays a key role in anthocyanin accumulation in colored barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:47-59. [PMID: 36377282 DOI: 10.1111/tpj.16033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Blue aleurone of barley is caused by the accumulation of delphinidin-based derivatives. Although these compounds are ideal nutrients for human health, they are undesirable contaminants in malt brewing. Therefore, the ability to add and remove this trait easily would facilitate breeding barley for different purposes. Here we identified a glutathione S-transferase gene (HvGST) that was responsible for the blue aleurone trait in Tibetan qingke barley by performing a genome-wide association study and RNA-sequencing analysis. Gene variation and expression analysis indicated that HvGST also participates in the transport and accumulation of anthocyanin in purple barley. Haplotype and the geographic distribution analyses of HvGST alleles revealed two independent natural variants responsible for the emergence of white aleurone: a 203-bp deletion causing premature termination of translation in qingke barley and two key single nucleotide polymorphisms in the promoter resulting in low transcription in Western barley. This study contributes to a better understanding of mechanisms of colored barley formation, and provides a comprehensive reference for marker-assisted barley breeding.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Dawa Dondup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, China
| | - Tingyu Dou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Chunchao Wang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Renxu Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Chaofeng Fan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Aikui Guo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Namgyal Lhundrup
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, Tibet, China
| | - Zhuo Ga
- Agricultural and Animal Husbandry College of Tibet University, Linzhi, 860000, Tibet, China
| | - Minxuan Liu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Bin Wu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Jia Gao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Jing Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| | - Ganggang Guo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China
| |
Collapse
|
7
|
Zhao X, Zhang Y, Long T, Wang S, Yang J. Regulation Mechanism of Plant Pigments Biosynthesis: Anthocyanins, Carotenoids, and Betalains. Metabolites 2022; 12:871. [PMID: 36144275 PMCID: PMC9506007 DOI: 10.3390/metabo12090871] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Anthocyanins, carotenoids, and betalains are known as the three major pigments in the plant kingdom. Anthocyanins are flavonoids derived from the phenylpropanoid pathway. They undergo acylation and glycosylation in the cytoplasm to produce anthocyanin derivatives and deposits in the cytoplasm. Anthocyanin biosynthesis is regulated by the MBW (comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40) complex. Carotenoids are fat-soluble terpenoids whose synthetic genes also are regulated by the MBW complex. As precursors for the synthesis of hormones and nutrients, carotenoids are not only synthesized in plants, but also synthesized in some fungi and bacteria, and play an important role in photosynthesis. Betalains are special water-soluble pigments that exist only in Caryophyllaceae plants. Compared to anthocyanins and carotenoids, the synthesis and regulation mechanism of betalains is simpler, starting from tyrosine, and is only regulated by MYB (myeloblastosis). Recently, a considerable amount of novel information has been gathered on the regulation of plant pigment biosynthesis, specifically with respect to aspects. In this review, we summarize the knowledge and current gaps in our understanding with a view of highlighting opportunities for the development of pigment-rich plants.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueran Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Tuan Long
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Shouchuang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Zhao P, Chu L, Wang K, Zhao B, Li Y, Yang K, Wan P. Analyses on the pigment composition of different seed coat colors in adzuki bean. Food Sci Nutr 2022; 10:2611-2619. [PMID: 35959271 PMCID: PMC9361439 DOI: 10.1002/fsn3.2866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/20/2022] Open
Abstract
Seed coat color is an important quality and domestication trait. The adzuki bean has more than a dozen seed coat colors closely associated with the anthocyanin and flavonoid metabolism pathways. In this study, we explored the pigment composition of 10 different seed coat color adzuki beans including red, black mottle on red, black mottle on gray, golden, green, black, ivory, brown, and light brown. The results showed that anthocyanins are the main pigment in adzuki bean seed coat. There were no carotenoid or pelargonidin derivatives in the seed coats of any accessions. Different colors of adzuki bean seed coat have different pigment compositions and the combination of procyanidins and anthocyanins affected seed coat color. The ivory seed coat had an extremely low proanthocyanidin and anthocyanin content. Only the green adzuki bean seed coats contained chlorophyll. Our results explain the pigment composition of the different seed coat colors and the combination of proanthocyanidins and anthocyanins affected seed coat color in adzuki bean. These results can provide a theoretical basis for the study of adzuki bean coloring mechanism.
Collapse
Affiliation(s)
- Pu Zhao
- Key Laboratory of New Technology in Agricultural ApplicationCollege of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
| | - Liwei Chu
- Key Laboratory of New Technology in Agricultural ApplicationCollege of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
- Institute of Modern Agricultural ResearchDalian UniversityLiaoningChina
| | - Kaili Wang
- Key Laboratory of New Technology in Agricultural ApplicationCollege of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
| | - Bo Zhao
- Key Laboratory of New Technology in Agricultural ApplicationCollege of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
| | - Yisong Li
- Key Laboratory of Urban Agriculture (North) of Ministry of AgricultureCollege of Bioscience and Resource EnvironmentBeijing University of AgricultureBeijingChina
| | - Kai Yang
- Key Laboratory of New Technology in Agricultural ApplicationCollege of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
| | - Ping Wan
- Key Laboratory of New Technology in Agricultural ApplicationCollege of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
| |
Collapse
|
9
|
Lin C, Xing P, Jin H, Zhou C, Li X, Song Z. Loss of anthocyanidin synthase gene is associated with white flowers of Salvia miltiorrhiza Bge. f. alba, a natural variant of S. miltiorrhiza. PLANTA 2022; 256:15. [PMID: 35725965 DOI: 10.1007/s00425-022-03921-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
SmANS deletion leads to white flower mutation in Salvia miltiorrhiza. SmANS deletion leads to white flower mutation in Salvia miltiorrhiza. Abstract Salvia miltiorrhiza is an essential traditional Chinese medicine (TCM) with purple flowers, and S. miltiorrhiza Bge. f. alba is a unique intraspecific variation with white flowers. The molecular mechanism of flower color formation in S. miltiorrhiza will provide vital information for the variation and evolution. Here, we performed HPLC, transcriptomic, and re-sequencing analyses of purple-flowered S. miltiorrhiza line 'Zihua105' (ZH105) and white-flowered S. miltiorrhiza Bge. f. alba line 'Baihua18' (BH18). Delphinidin was the most anthocyanidin in ZH105, which become the main different between ZH105 vs. BH18 flowers. Transcriptome analysis revealed 299 differentially expressed genes (DEGs). SmANS, the anthocyanidin synthase gene in the down-stream anthocyanin biosynthesis pathway, was significantly expressed in ZH105 corollas, suggesting it might play a key role in white petal formation. Whole-genome re-sequencing revealed that a 6.75 kb segment located on chromosome 5, which contains the complete sequence of the SmANS genes, was lost in BH18 and another S. miltiorrhiza Bge. f. alba line. In contrast, the other five purple-flowered S. miltiorrhiza lines both possessed this segment. Further molecular marker identification also confirmed that wild S. miltiorrhiza Bge. f. alba lines lost regions that contained a complete or important part of SmANS sequences. Subsequently, the research showed that the deletion mutant of SmANS genes resulted in the natural white flower color variant of S. miltiorrhiza.
Collapse
Affiliation(s)
- Caicai Lin
- Agronomy College, Shandong Agricultural University, Tai'an, 271028, Shandong, China
| | - Piyi Xing
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271028, Shandong, China
| | - Hua Jin
- Agronomy College, Shandong Agricultural University, Tai'an, 271028, Shandong, China
| | - Changhao Zhou
- Agronomy College, Shandong Agricultural University, Tai'an, 271028, Shandong, China
| | - Xingfeng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271028, Shandong, China.
| | - Zhenqiao Song
- Agronomy College, Shandong Agricultural University, Tai'an, 271028, Shandong, China.
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271028, Shandong, China.
| |
Collapse
|
10
|
Dwivedi SL, Mattoo AK, Garg M, Dutt S, Singh B, Ortiz R. Developing Germplasm and Promoting Consumption of Anthocyanin-Rich Grains for Health Benefits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.867897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malnutrition, unhealthy diets, and lifestyle changes are the major risk factors for overweight and obesity-linked chronic diseases in humans adversely impact achieving sustainable development goals. Colored grains are a source of anthocyanins, a group of flavonoids, that contribute positively to human health. This review focuses on genetic variation harnessed through breeding and biotechnology tools for developing anthocyanin-rich grain crops. Agronomic practices, genotype × environment interactions, different stresses, seed development and seed maturity are factors that impact the content and composition of anthocyanins. Significant progress has been made in characterizing genes associated with anthocyanin biosynthesis in cereal and other crops. Breeding has led to the development and release of grain anthocyanin-rich crop cultivars in Europe, America and in some countries in Asia. Notably, genetic engineering utilizing specific transcription factors and gene editing has led to the development of anthocyanin-rich genetic variants without any significant yield penalty. A variety of food products derived from colored grains or flours are now available in grocery stores and supermarkets worldwide. The public perception about anthocyanin-rich food is positive, but availability, affordability, and willingness to pay a higher price than before limit consumption. Together with other seed nutrition traits in breeding programs the inclusion of anthocyanins can ensure the development of cultivars that meet nutrition needs of humans, especially in the developing world.
Collapse
|
11
|
|
12
|
McClean PE, Lee R, Howe K, Osborne C, Grimwood J, Levy S, Haugrud AP, Plott C, Robinson M, Skiba RM, Tanha T, Zamani M, Thannhauser TW, Glahn RP, Schmutz J, Osorno JM, Miklas PN. The Common Bean V Gene Encodes Flavonoid 3'5' Hydroxylase: A Major Mutational Target for Flavonoid Diversity in Angiosperms. FRONTIERS IN PLANT SCIENCE 2022; 13:869582. [PMID: 35432409 PMCID: PMC9009181 DOI: 10.3389/fpls.2022.869582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The classic V (violet, purple) gene of common bean (Phaseolus vulgaris) functions in a complex genetic network that controls seed coat and flower color and flavonoid content. V was cloned to understand its role in the network and the evolution of its orthologs in the Viridiplantae. V mapped genetically to a narrow interval on chromosome Pv06. A candidate gene was selected based on flavonoid analysis and confirmed by recombinational mapping. Protein and domain modeling determined V encodes flavonoid 3'5' hydroxylase (F3'5'H), a P450 enzyme required for the expression of dihydromyricetin-derived flavonoids in the flavonoid pathway. Eight recessive haplotypes, defined by mutations of key functional domains required for P450 activities, evolved independently in the two bean gene pools from a common ancestral gene. V homologs were identified in Viridiplantae orders by functional domain searches. A phylogenetic analysis determined F3'5'H first appeared in the Streptophyta and is present in only 41% of Angiosperm reference genomes. The evolutionarily related flavonoid pathway gene flavonoid 3' hydroxylase (F3'H) is found nearly universally in all Angiosperms. F3'H may be conserved because of its role in abiotic stress, while F3'5'H evolved as a major target gene for the evolution of flower and seed coat color in plants.
Collapse
Affiliation(s)
- Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Kevin Howe
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Caroline Osborne
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Shawn Levy
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Amanda Peters Haugrud
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Melanie Robinson
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Ryan M. Skiba
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Tabassum Tanha
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Mariam Zamani
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Theodore W. Thannhauser
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Raymond P. Glahn
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip N. Miklas
- USDA-ARS, Grain Legumes Genetics and Physiology Research Unit, Prosser, WA, United States
| |
Collapse
|
13
|
Zhang S, Sun F, Zhang C, Zhang M, Wang W, Zhang C, Xi Y. Anthocyanin Biosynthesis and a Regulatory Network of Different-Colored Wheat Grains Revealed by Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:887-900. [PMID: 35029408 DOI: 10.1021/acs.jafc.1c05029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colored wheat has always been a popular research area because of its high performance in the field and significant medical uses. Progress has been made mapping the genes of purple or blue grains; however, the reason why different grain colors form in wheat is not well understood. We created wheat lines with different grain colors (purple and blue) using the white grain cultivar Xiaoyan22 and located the candidate region related to the purple and blue grains in chromosome 2A, 2B, and 4D, 2A, respectively, by the bulked segregant RNA-seq. The transcriptomic and metabolomic analyses of the three grains at different developmental stages indicated that the upregulation of flavonoid 3'-hydroxylase/flavonoid 3',5'hydroxylase 2 and TaMYC1/TaMYC4 was important for the formation of purple/blue grains. The blue TaMYC4 had 16 nonsynonymous single nucleotide variants verified by Sanger sequencing and possessed a different splicing mode in the bHLH_MYC_N domain compared with the reference database. Targeted high-performance liquid chromatography-mass spectrometry/mass spectrometry analysis of anthocyanins found that the purple and blue grains contained more pelargonidin, cyanidin, and delphinidin, respectively. This study provides a comprehensive understanding of the different color formations of wheat grains and useful information about genetic improvements in wheat and other crops.
Collapse
Affiliation(s)
- Shumeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuqiu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Yakymchuk RА, Valyuk VF, Sobolenko LY, Sorokina SІ. Induction of useful mutations in Triticum aestivum in the conditions of the radionuclide-contaminated alienation zone of the Chornobyl Power Plant. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Induced mutagenesis opens great perspectives for radical genetic improvement of cultivated plants. Scientists seeking new sources and methodological approaches to improve the frequency and extend the range of mutations have drawn attention to the Zone of Alienation around the Chornobyl Nuclear Power Plant, where unique conditions of the influence of mutagenic factors have developed, and therefore needs to be studied for possible use of its territory in propagating parent material for selective breeding of wheat. Plants of winter wheat of Albatros Odesky and Zymoiarka varieties were grown within 10 km of the Chernobyl Plant, inside the Alienation Zone, in Chystohalivka, Kopachi and Yaniv villages of Chornobyl district of Kyiv Oblast. The exposure occurred in the dose of 7.2 ∙ 10–12– 50.0 ∙ 10–12 A/kg. As the control, we used the territory of the Research Institute of Physiology of Plants and Genetics of the Academy of Sciences of Ukraine (Hlevaha urbanized settlement of Vasylkivsky District of Kyiv Oblast), where the power of the exposure dose equaled 0.93 ∙ 10–12 A/kg. Frequency and spectrum of mutant forms were determined in M2–M3 generations according to the ratio of the number of families with mutagenic plants to studied M2 families. Among the observed mutations, we determined the share of the ones important for selective breeding. Chronic ionizing radiation throughout the vegetation period of winter wheat increased the level of noticeable mutations, the frequency of which exceeded the control parameters by 8.0–14.9 times. In the conditions of cultivation of winter wheat in the territory of Kopachi village, where the dose was the lowest, we recorded a high level of mutation variability which exceeded the control parameters by 8.0–9.2 times and was notably different from the frequency of mutations induced by radionuclide contamination of soil in the territories of Chystohalivka and Yaniv villages. The mutation range contained 12–20 types and depended on the density of soil contamination with radio nuclides, magnitude of exposure dose and genotype of plants. The predominant mutations were the ones related to the duration of vegetation period, length of the stem, morphology and awns of the ear. Among the detected mutations, the important selective ones accounted for 24.3–49.3%, predominant being low height, intense growth and long cylindrical ear. Because beneficial agronomic traits are highly likely to be inherited in complex with mutations that reduce the productivity of winter wheat, efficiency of direct selection of mutant forms that are valuable for selective breeding is limited. Enlargement of genetic diversity of the initial selection material using the radionuclide-induced mutagenesis resulting from contamination creates the possibility of using it in cross breeding for the purpose of implementing selective breeding genetic programs of improving wheat varieties.
Collapse
|
15
|
Meziani S, Nadaud I, Tasleem-Tahir A, Nurit E, Benguella R, Branlard G. Wheat aleurone layer: A site enriched with nutrients and bioactive molecules with potential nutritional opportunities for breeding. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Zhou C, Zeng Z, Suo J, Li X, Bian H, Wang J, Zhu M, Han N. Manipulating a Single Transcription Factor, Ant1, Promotes Anthocyanin Accumulation in Barley Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5306-5317. [PMID: 33908247 DOI: 10.1021/acs.jafc.0c08147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Barley has abundant anthocyanin-rich accessions, which renders it an ideal model to investigate the regulatory mechanism of anthocyanin biosynthesis. This study functionally characterized two transcription factors: Ant1 and Ant2. Sequence alignment showed that the coding sequences of Ant1 and Ant2 are conserved among 11 colored hulless barley and noncolored barley varieties. The expression profiles of Ant1 and Ant2 were divergent between species, and significantly higher expression was found in two colored Qingke accessions. The co-expression of Ant1 and Ant2 resulted in purple pigmentation in transient transformation systems via the promotion of the transcription of four structural genes. Ant1 interacted with Ant2, and overexpression of Ant1 activated the transcription of Ant2. Moreover, overexpression of Ant1 led to anthocyanin accumulation in the pericarp and aleurone layer of transgenic barley grains. Overall, our results suggest that anthocyanin-enriched barley grains can be produced by manipulating Ant1 expression.
Collapse
Affiliation(s)
- Chenlu Zhou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Zhanghui Zeng
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Jingqi Suo
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Xipu Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Hongwu Bian
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Junhui Wang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310012, Zhejiang, China
| |
Collapse
|
17
|
Han Y, Broughton S, Liu L, Zhang XQ, Zeng J, He X, Li C. Highly efficient and genotype-independent barley gene editing based on anther culture. PLANT COMMUNICATIONS 2021; 2:100082. [PMID: 33898972 PMCID: PMC8060703 DOI: 10.1016/j.xplc.2020.100082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 05/05/2023]
Abstract
Recalcitrance to tissue culture and genetic transformation is the major bottleneck for gene manipulation in crops. In barley, immature embryos of Golden Promise have typically been used as explants for transformation. However, the genotype dependence of this approach limits the genetic modification of commercial varieties. Here, we developed an anther culture-based system that permits the effective creation of transgenic and gene-edited plants from commercial barley varieties. The protocol was tested in Golden Promise and four Australian varieties, which differed in phenology, callus induction, and green plant regeneration responses. Agrobacterium-mediated transformation was performed on microspore-derived callus to target the HvPDS gene, and T0 albinos with targeted mutations were successfully obtained from commercial varieties. Further editing of three targets was achieved with an average mutation rate of 53% in the five varieties. In 51 analyzed T0 individuals, Cas9 induced a large proportion (69%) of single-base indels and two-base deletions in the target sites, with variable mutation rates among targets and varieties. Both on-target and off-target activities were detected in T1 progenies. Compared with immature embryo protocols, this genotype-independent platform can deliver a high editing efficiency and more regenerant plants within a similar time frame. It shows promise for functional genomics and the application of CRISPR technologies for the precise improvement of commercial varieties.
Collapse
Affiliation(s)
- Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Sue Broughton
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Li Liu
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaoyan He
- College of Agronomy, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
18
|
Yang CJ, Russell J, Ramsay L, Thomas W, Powell W, Mackay I. Overcoming barriers to the registration of new plant varieties under the DUS system. Commun Biol 2021; 4:302. [PMID: 33686157 PMCID: PMC7940638 DOI: 10.1038/s42003-021-01840-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/08/2021] [Indexed: 01/30/2023] Open
Abstract
Distinctness, Uniformity and Stability (DUS) is an intellectual property system introduced in 1961 by the International Union for the Protection of New Varieties of Plants (UPOV) for safeguarding the investment and rewarding innovation in developing new plant varieties. Despite the rapid advancement in our understanding of crop biology over the past 60 years, the DUS system has changed little and is still largely dependent upon a set of morphological traits for testing candidate varieties. As the demand for more plant varieties increases, the barriers to registration of new varieties become more acute and thus require urgent review to the system. To highlight the challenges and remedies in the current system, we evaluated a comprehensive panel of 805 UK barley varieties that span the entire history of DUS testing. Our findings reveal the system deficiencies such as inconsistencies in DUS traits across environments, limitations in DUS trait combinatorial space, and inadequacies in currently available DUS markers. We advocate the concept of genomic DUS and provide evidence for a shift towards a robust genomics-enabled registration system for new crop varieties.
Collapse
Affiliation(s)
- Chin Jian Yang
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Luke Ramsay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - William Thomas
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Wayne Powell
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Ian Mackay
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
- IMplant Consultancy Ltd., Chelmsford, UK.
| |
Collapse
|
19
|
Lu C, Li Y, Cui Y, Ren J, Qi F, Qu J, Huang H, Dai S. Isolation and Functional Analysis of Genes Involved in Polyacylated Anthocyanin Biosynthesis in Blue Senecio cruentus. FRONTIERS IN PLANT SCIENCE 2021; 12:640746. [PMID: 33692819 PMCID: PMC7937962 DOI: 10.3389/fpls.2021.640746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 05/07/2023]
Abstract
Polyacylated anthocyanins with multiple glycosyl and aromatic acyl groups tend to make flowers display bright and stable blue colours. However, there are few studies on the isolation and functional characterization of genes involved in the polyacylated anthocyanin biosynthesis mechanism, which limits the molecular breeding of truly blue flowers. Senecio cruentus is an important potted ornamental plant, and its blue flowers contain 3',7-polyacylated delphinidin-type anthocyanins that are not reported in any other plants, suggesting that it harbours abundant gene resources for the molecular breeding of blue flowers. In this study, using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis of blue, carmine and white colours of cineraria cultivars "Venezia" (named VeB, VeC, and VeW, respectively), we found that 3',7-polyacylated anthocyanin, cinerarin, was the main pigment component that determined the blue colour of ray florets of cineraria. Based on the transcriptome sequencing and differential gene expression (DEG) analysis combined with RT- and qRT-PCR, we found two genes encoding uridine diphosphate glycosyltransferase, named ScUGT1 and ScUGT4; two genes encoding acyl-glucoside-dependent glucosyltransferases which belong to glycoside hydrolase family 1 (GH1), named ScAGGT11 and ScAGGT12; one gene encoding serine carboxypeptidase-like acyltransferase ScSCPL2; and two MYB transcriptional factor genes ScMYB2 and ScMYB4, that were specifically highly expressed in the ray florets of VeB, which indicated that these genes may be involved in cinerarin biosynthesis. The function of ScSCPL2 was analysed by virus-induced gene silencing (VIGS) in cineraria leaves combined with HPLC-MS/MS. ScSCPL2 mainly participated in the 3' and 7-position acylation of cinerarin. These results will provide new insight into the molecular basis of the polyacylated anthocyanin biosynthesis mechanism in higher plants and are of great significance for blue flower molecular breeding of ornamental plants.
Collapse
|
20
|
Strygina KV. Synthesis of Flavonoid Pigments in Grain of Representatives of Poaceae: General Patterns and Exceptions in N.I. Vavilov’s Homologous Series. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Dong Q, Zhao H, Huang Y, Chen Y, Wan M, Zeng Z, Yao P, Li C, Wang X, Chen H, Wu Q. FtMYB18 acts as a negative regulator of anthocyanin/proanthocyanidin biosynthesis in Tartary buckwheat. PLANT MOLECULAR BIOLOGY 2020; 104:309-325. [PMID: 32833148 DOI: 10.1007/s11103-020-01044-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE FtMYB18 plays a role in the repression of anthocyanins and proanthocyanidins accumulation by strongly down-regulating the CHS and DFR genes in Tartary buckwheat, and the C5 motif plays an important role in this process. Anthocyanins and proanthocyanidins (PAs) are important flavonoids in Tartary buckwheat (Fagopyrum tataricum Gaertn.), which provides various vibrant color and stronge abiotic stress resistance. Their synthesis is generally regulated by MYB transcription factors at transcription level. However, the negative regulations of MYB and their effects on flavonol metabolism are poorly understood. A SG4-like MYB subfamily TF, FtMYB18, containing C5 motif was identified from Tartary buckwheat. The expression of FtMYB18 was not only showed a negative correlation with anthocyanins and PAs content but also strongly respond to MeJA and ABA. As far as the transgenic lines with FtMYB18 overexpression, anthocyanins and PAs accumulations were decreased through down-regulating expression levels of NtCHS and NtDFR in tobacco, AtDFR and AtTT12 in Arabidopsis, FtCHS, FtDFR and FtANS in Tartary buckwheat hairy roots, respectively. However, FtMYB18 showed no effect on the FLS gene expression and the metabolites content in flavonol synthesis branch. The further molecular interaction analysis indicated FtMYB18 could mediate the inhibition of anthocyanins and PAs synthesis by forming MBW transcriptional complex with FtTT8 and FtTTG1, or MYB-JAZ complex with FtJAZ1/-3/-4/-7. Importantly, in FtMYB18 mutant lines with C5 motif deletion (FtMYB18-C), both of anthocyanins and PAs accumulations had recovered to the similar level as that in wild type, which was attributed to the weakened MBW complex activity or the deficient molecular interaction between FtMYB18ΔC5 with FtJAZ3/-4. The results showed that FtMYB18 could suppress anthocyanins and PAs synthesis at transcription level through the specific interaction of C5 motif with other proteins in Tartary buckwheat.
Collapse
Affiliation(s)
- Qixin Dong
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Yunji Huang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Ying Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Panfeng Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Xiaoli Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
22
|
Selva C, Riboni M, Baumann U, Würschum T, Whitford R, Tucker MR. Hybrid breeding in wheat: how shaping floral biology can offer new perspectives. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:675-694. [PMID: 32534601 DOI: 10.1071/fp19372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Hybrid breeding in wheat (Triticum aestivum L.) has the potential to deliver major yield increases. This is a requisite to guarantee food security for increasing population demands and to counterbalance the effects of extreme environmental conditions. Successful hybrid breeding in wheat relies on forced outcrossing while preventing self-pollination. To achieve this, research has been directed towards identifying and improving fertility control systems. To maximise cross-pollination and seed set, however, fertility control systems need to be complemented by breeding phenotypically distinct male and female lines. This review summarises existing and novel male sterility systems for wheat hybridisation. We also consider the genetic resources that can be used to alter wheat's floral development and spike morphology, with a focus on the genetic variation already available. Exploiting these resources can lead to enhanced outcrossing, a key requirement in the progress towards hybrid wheat breeding.
Collapse
Affiliation(s)
- Caterina Selva
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Matteo Riboni
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ryan Whitford
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; and Corresponding authors. ;
| | - Matthew R Tucker
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; and Corresponding authors. ;
| |
Collapse
|
23
|
Zhao S, Xi X, Zong Y, Li S, Li Y, Cao D, Liu B. Overexpression of ThMYC4E Enhances Anthocyanin Biosynthesis in Common Wheat. Int J Mol Sci 2019; 21:E137. [PMID: 31878210 PMCID: PMC6982250 DOI: 10.3390/ijms21010137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
The basic helix-loop helix (bHLH) transcription factor has been inferred to play an important role in blue and purple grain traits in common wheat, but to date, its overexpression has not been reported. In this study, the bHLH transcription factor ThMYC4E, the candidate gene controlling the blue grain trait from Th. Ponticum, was transferred to the common wheat JW1. The positive transgenic lines displayed higher levels of purple anthocyanin pigments in their grains, leaves and glumes. Stripping the glumes (light treatment) caused white grains to become purple in transgenic lines. RNA-Seq and qRT-PCR analysis demonstrated that the transcript levels of structural genes associated with anthocyanin biosynthesis were higher in transgenic wheat than the wild-type (WT), which indicated that ThMYC4E activated anthocyanin biosynthesis in the transgenic lines. Correspondingly, the anthocyanin contents in grains, roots, stems, leaves and glumes of transgenic lines were higher than those in the WT. Metabolome analysis demonstrated that the anthocyanins were composed of cyanidin and delphinidin in the grains of the transgenic lines. Moreover, the transgenic lines showed higher antioxidant activity, in terms of scavenging DPPH radicals, in the ethanol extracts of their grains. The overexpression of ThMYC4E sheds light on the traits related to anthocyanin biosynthesis in common wheat and provide a new way to improve anthocyanin content.
Collapse
Affiliation(s)
- Shuo Zhao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyuan Xi
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (S.Z.); (X.X.); (Y.Z.); (S.L.); (Y.L.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
24
|
Riaz B, Chen H, Wang J, Du L, Wang K, Ye X. Overexpression of Maize ZmC1 and ZmR Transcription Factors in Wheat Regulates Anthocyanin Biosynthesis in a Tissue-Specific Manner. Int J Mol Sci 2019; 20:E5806. [PMID: 31752300 PMCID: PMC6887777 DOI: 10.3390/ijms20225806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
Maize ZmC1 and ZmR transcription factors belong to the MYB-type and bHLH families, respectively, and control anthocyanin biosynthesis. In this study, Agrobacterium-mediated transformation was used to generate transgenic wheat plants that overexpress ZmC1 and ZmR or both, with the objective of developing anthocyanin-enriched wheat germplasm. Three kinds of stable transgenic wheat lines were obtained. The integration of target genes in the transgenic wheat plants was confirmed by fluorescence in situ hybridization (FISH) analysis. We found that single overexpression of ZmC1 regulates pigmentation in the vegetative tissues such as coleoptiles, auricles, and stems. The single overexpression of ZmR controls the coloration in reproductive tissue like spikelets and seeds. The simultaneous overexpression of ZmC1 and ZmR showed the strongest pigmentation in almost all tissues. Furthermore, quantitative real-time PCR (qRT-PCR) analysis revealed that expression of the two transgenes, and of two conserved homologous and six associated structural genes involved in anthocyanin biosynthesis in wheat were greatly up-regulated in the transgenic plants. Similarly, quantitative analysis for anthocyanin amounts based on HPLC-MS also confirmed that the transgenic wheat plants with combined overexpression of ZmC1 and ZmR accumulated the highest quantity of pigment products. Moreover, developing seeds overexpressing ZmR exposed to light conditions showed up-regulated transcript levels of anthocyanin biosynthesis-related genes compared to dark exposure, which suggests an important role of light in regulating anthocyanin biosynthesis. This study provides a foundation for breeding wheat materials with high anthocyanin accumulation and understanding the mechanism of anthocyanin biosynthesis in wheat.
Collapse
Affiliation(s)
| | | | | | | | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.R.); (H.C.); (J.W.); (L.D.)
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.R.); (H.C.); (J.W.); (L.D.)
| |
Collapse
|