1
|
Sprent N, Cheung CYM, Shameer S, Ratcliffe RG, Sweetlove LJ, Töpfer N. Metabolic modeling reveals distinct roles of sugars and carboxylic acids in stomatal opening as well as unexpected carbon fluxes. THE PLANT CELL 2024; 37:koae252. [PMID: 39373603 DOI: 10.1093/plcell/koae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024]
Abstract
Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose could also accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolized in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.
Collapse
Affiliation(s)
- Noah Sprent
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - C Y Maurice Cheung
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Sanu Shameer
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - R George Ratcliffe
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Nadine Töpfer
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
2
|
Puzanskiy RK, Kirpichnikova AA, Bogdanova EM, Prokopiev IA, Shavarda AL, Romanyuk DA, Vanisov SA, Yemelyanov VV, Shishova MF. From Division to Death: Metabolomic Analysis of Nicotiana tabacum BY-2 Cells Reveals the Complexity of Life in Batch Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:3426. [PMID: 39683219 DOI: 10.3390/plants13233426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Tobacco BY-2 cell culture is one of the most widely used models in plant biology. The main advantage of BY-2 suspension cultures is the synchronization of cell development and the appearance of polar elongation. In batch culture, BY-2 cells passed through the lag, proliferation, elongation, and stationary phases. During this process, the composition of the growth medium changed dramatically. Sucrose was rapidly eliminated; hexose first accumulated and then depleted. The medium's pH initially decreased and then rose with aging. As a result of the crosstalk between the internal and external stimuli, cells pass through complicated systemic rearrangements, which cause metabolomic alterations. The early stages were characterized by high levels of amino acids and sterols, which could be interpreted as the result of synthetic activity. The most intense rearrangements occurred between the proliferation and active elongation stages, including repression of amino acid accumulation and up-regulation of sugar metabolism. Later stages were distinguished by higher levels of secondary metabolites, which may be a non-specific response to deteriorating conditions. Senescence was followed by some increase in fatty acids and sterols as well as amino acids, and probably led to self-destructive processes. A correlation analysis revealed relationships between metabolites' covariation, their biochemical ratio, and the growth phase.
Collapse
Affiliation(s)
- Roman K Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | | | - Ekaterina M Bogdanova
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ilya A Prokopiev
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
| | - Alexey L Shavarda
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia
- Center for Molecular and Cell Technologies, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Daria A Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Sergey A Vanisov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | | | - Maria F Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Goelzer A, Rajjou L, Chardon F, Loudet O, Fromion V. Resource allocation modeling for autonomous prediction of plant cell phenotypes. Metab Eng 2024; 83:86-101. [PMID: 38561149 DOI: 10.1016/j.ymben.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.
Collapse
Affiliation(s)
- Anne Goelzer
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Vincent Fromion
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| |
Collapse
|
4
|
Tolleter D, Smith EN, Dupont-Thibert C, Uwizeye C, Vile D, Gloaguen P, Falconet D, Finazzi G, Vandenbrouck Y, Curien G. The Arabidopsis leaf quantitative atlas: a cellular and subcellular mapping through unified data integration. QUANTITATIVE PLANT BIOLOGY 2024; 5:e2. [PMID: 38572078 PMCID: PMC10988163 DOI: 10.1017/qpb.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 04/05/2024]
Abstract
Quantitative analyses and models are required to connect a plant's cellular organisation with its metabolism. However, quantitative data are often scattered over multiple studies, and finding such data and converting them into useful information is time-consuming. Consequently, there is a need to centralise the available data and to highlight the remaining knowledge gaps. Here, we present a step-by-step approach to manually extract quantitative data from various information sources, and to unify the data format. First, data from Arabidopsis leaf were collated, checked for consistency and correctness and curated by cross-checking sources. Second, quantitative data were combined by applying calculation rules. They were then integrated into a unique comprehensive, referenced, modifiable and reusable data compendium representing an Arabidopsis reference leaf. This atlas contains the metrics of the 15 cell types found in leaves at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Dimitri Tolleter
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Edward N. Smith
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Clémence Dupont-Thibert
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Clarisse Uwizeye
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Denis Vile
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), UMR 759, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Pauline Gloaguen
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | | | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| |
Collapse
|
5
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Yemelyanov VV, Shishova MF. Plant Heterotrophic Cultures: No Food, No Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:277. [PMID: 38256830 PMCID: PMC10821431 DOI: 10.3390/plants13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are capable of uptaking exogenous organic substances. This inherited trait allows the development of heterotrophic cell cultures in various plants. The most common of them are Nicotiana tabacum and Arabidopsis thaliana. Plant cells are widely used in academic studies and as factories for valuable substance production. The repertoire of compounds supporting the heterotrophic growth of plant cells is limited. The best growth of cultures is ensured by oligosaccharides and their cleavage products. Primarily, these are sucrose, raffinose, glucose and fructose. Other molecules such as glycerol, carbonic acids, starch, and mannitol have the ability to support growth occasionally, or in combination with another substrate. Culture growth is accompanied by processes of specialization, such as elongation growth. This determines the pattern of the carbon budget. Culture ageing is closely linked to substrate depletion, changes in medium composition, and cell physiological rearrangements. A lack of substrate leads to starvation, which results in a decrease in physiological activity and the mobilization of resources, and finally in the loss of viability. The cause of the instability of cultivated cells may be the non-optimal metabolism under cultural conditions or the insufficiency of internal regulation.
Collapse
Affiliation(s)
- Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia;
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | | | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| |
Collapse
|
6
|
Del Giúdice LZ, Falquetto-Gomes P, de Almeida Costa PM, Martins AO, Omena-Garcia RP, Araújo WL, Zsögön A, Picoli EADT, Nunes-Nesi A. Dynamic shifts in primary metabolism across fruit development stages in Capsicum chinense (cv. Habanero). JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154121. [PMID: 37924627 DOI: 10.1016/j.jplph.2023.154121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
The development of fleshy fruits involves changes in size and mass, followed by cell differentiation, which is associated with anatomical and histological changes. Parallel to these changes, metabolic alterations lead to the production of osmolytes and energy that modify cell turgor pressure, thereby promoting cell expansion and fruit growth. Detailed information is known about these processes in climacteric fruits (e.g. tomato); however, the regulation of metabolism and its association with anatomical changes in non-climacteric fruit development are poorly understood. In this study, we used detailed anatomical and histological analyses to define three developmental phases of chili pepper (Capsicum chinense cv. Habanero): cell division, cell expansion, and ripening. We showed that each was marked by distinct metabolic profiles, underpinning the switches in energy metabolism to support cellular processes. Interestingly, mitochondrial activity was high in the early stages of development and declined over time, with a modest increase in O2 consumption by pericarp tissues at the beginning of the ripening stage. This respiratory-like burst was associated with the degradation of starch and malate, which are the sources of energy and carbon required for other processes associated with fruit maturation.
Collapse
Affiliation(s)
- Luciana Zacour Del Giúdice
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Priscilla Falquetto-Gomes
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | | | - Auxiliadora O Martins
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rebeca Patrícia Omena-Garcia
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Agustín Zsögön
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | | | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Kirschner GK. Getting to the roots of metabolism: the role of fermentation in aerobic conditions in maize root tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1551-1552. [PMID: 38078536 DOI: 10.1111/tpj.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
|
8
|
Hunt H, Leape S, Sidhu JS, Ajmera I, Lynch JP, Ratcliffe RG, Sweetlove LJ. A role for fermentation in aerobic conditions as revealed by computational analysis of maize root metabolism during growth by cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1553-1570. [PMID: 37831626 DOI: 10.1111/tpj.16478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional-structural model captured the cell-anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end-products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.
Collapse
Affiliation(s)
- Hilary Hunt
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stefan Leape
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ishan Ajmera
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - R George Ratcliffe
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
9
|
Yu J, Wang X, Yuan Q, Shi J, Cai J, Li Z, Ma H. Elucidating the impact of in vitro cultivation on Nicotiana tabacum metabolism through combined in silico modeling and multiomics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1281348. [PMID: 38023876 PMCID: PMC10655011 DOI: 10.3389/fpls.2023.1281348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The systematical characterization and understanding of the metabolic behaviors are the basis of the efficient plant metabolic engineering and synthetic biology. Genome-scale metabolic networks (GSMNs) are indispensable tools for the comprehensive characterization of overall metabolic profile. Here we first constructed a GSMN of tobacco, which is one of the most widely used plant chassis, and then combined the tobacco GSMN and multiomics analysis to systematically elucidate the impact of in-vitro cultivation on the tobacco metabolic network. In-vitro cultivation is a widely used technique for plant cultivation, not only in the field of basic research but also for the rapid propagation of valuable horticultural and pharmaceutical plants. However, the systemic effects of in-vitro cultivation on overall plant metabolism could easily be overlooked and are still poorly understood. We found that in-vitro tobacco showed slower growth, less biomass and suppressed photosynthesis than soil-grown tobacco. Many changes of metabolites and metabolic pathways between in-vitro and soil-grown tobacco plants were identified, which notably revealed a significant increase of the amino acids content under in-vitro condition. The in silico investigation showed that in-vitro tobacco downregulated photosynthesis and primary carbon metabolism, while significantly upregulated the GS/GOGAT cycle, as well as producing more energy and less NADH/NADPH to acclimate in-vitro growth demands. Altogether, the combination of experimental and in silico analyses offers an unprecedented view of tobacco metabolism, with valuable insights into the impact of in-vitro cultivation, enabling more efficient utilization of in-vitro techniques for plant propagation and metabolic engineering.
Collapse
Affiliation(s)
- Jing Yu
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaowei Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qianqian Yuan
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiaxin Shi
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingyi Cai
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhichao Li
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
10
|
Lynch JP, Galindo-Castañeda T, Schneider HM, Sidhu JS, Rangarajan H, York LM. Root phenotypes for improved nitrogen capture. PLANT AND SOIL 2023; 502:31-85. [PMID: 39323575 PMCID: PMC11420291 DOI: 10.1007/s11104-023-06301-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2024]
Abstract
Background Suboptimal nitrogen availability is a primary constraint for crop production in low-input agroecosystems, while nitrogen fertilization is a primary contributor to the energy, economic, and environmental costs of crop production in high-input agroecosystems. In this article we consider avenues to develop crops with improved nitrogen capture and reduced requirement for nitrogen fertilizer. Scope Intraspecific variation for an array of root phenotypes has been associated with improved nitrogen capture in cereal crops, including architectural phenotypes that colocalize root foraging with nitrogen availability in the soil; anatomical phenotypes that reduce the metabolic costs of soil exploration, improve penetration of hard soil, and exploit the rhizosphere; subcellular phenotypes that reduce the nitrogen requirement of plant tissue; molecular phenotypes exhibiting optimized nitrate uptake kinetics; and rhizosphere phenotypes that optimize associations with the rhizosphere microbiome. For each of these topics we provide examples of root phenotypes which merit attention as potential selection targets for crop improvement. Several cross-cutting issues are addressed including the importance of soil hydrology and impedance, phenotypic plasticity, integrated phenotypes, in silico modeling, and breeding strategies using high throughput phenotyping for co-optimization of multiple phenes. Conclusions Substantial phenotypic variation exists in crop germplasm for an array of root phenotypes that improve nitrogen capture. Although this topic merits greater research attention than it currently receives, we have adequate understanding and tools to develop crops with improved nitrogen capture. Root phenotypes are underutilized yet attractive breeding targets for the development of the nitrogen efficient crops urgently needed in global agriculture.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | | | - Hannah M Schneider
- Department of Plant Sciences, Wageningen University and Research, PO Box 430, 6700AK Wageningen, The Netherlands
| | - Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | - Harini Rangarajan
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| |
Collapse
|
11
|
Daloso DDM, Morais EG, Oliveira E Silva KF, Williams TCR. Cell-type-specific metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1093-1114. [PMID: 36987968 DOI: 10.1111/tpj.16214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/31/2023]
Abstract
Every plant organ contains tens of different cell types, each with a specialized function. These functions are intrinsically associated with specific metabolic flux distributions that permit the synthesis of the ATP, reducing equivalents and biosynthetic precursors demanded by the cell. Investigating such cell-type-specific metabolism is complicated by the mosaic of different cells within each tissue combined with the relative scarcity of certain types. However, techniques for the isolation of specific cells, their analysis in situ by microscopy, or modeling of their function in silico have permitted insight into cell-type-specific metabolism. In this review we present some of the methods used in the analysis of cell-type-specific metabolism before describing what we know about metabolism in several cell types that have been studied in depth; (i) leaf source and sink cells; (ii) glandular trichomes that are capable of rapid synthesis of specialized metabolites; (iii) guard cells that must accumulate large quantities of the osmolytes needed for stomatal opening; (iv) cells of seeds involved in storage of reserves; and (v) the mesophyll and bundle sheath cells of C4 plants that participate in a CO2 concentrating cycle. Metabolism is discussed in terms of its principal features, connection to cell function and what factors affect the flux distribution. Demand for precursors and energy, availability of substrates and suppression of deleterious processes are identified as key factors in shaping cell-type-specific metabolism.
Collapse
Affiliation(s)
- Danilo de Menezes Daloso
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Eva Gomes Morais
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Karen Fernanda Oliveira E Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília-DF, 70910-900, Brazil
| | | |
Collapse
|
12
|
Moreno-Villena JJ, Zhou H, Gilman IS, Tausta SL, Cheung CYM, Edwards EJ. Spatial resolution of an integrated C 4+CAM photosynthetic metabolism. SCIENCE ADVANCES 2022; 8:eabn2349. [PMID: 35930634 PMCID: PMC9355352 DOI: 10.1126/sciadv.abn2349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
C4 and CAM photosynthesis have repeatedly evolved in plants over the past 30 million years. Because both repurpose the same set of enzymes but differ in their spatial and temporal deployment, they have long been considered as distinct and incompatible adaptations. Portulaca contains multiple C4 species that perform CAM when droughted. Spatially explicit analyses of gene expression reveal that C4 and CAM systems are completely integrated in Portulaca oleracea, with CAM and C4 carbon fixation occurring in the same cells and CAM-generated metabolites likely incorporated directly into the C4 cycle. Flux balance analysis corroborates the gene expression findings and predicts an integrated C4+CAM system under drought. This first spatially explicit description of a C4+CAM photosynthetic metabolism presents a potential new blueprint for crop improvement.
Collapse
Affiliation(s)
- Jose J. Moreno-Villena
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Haoran Zhou
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ian S. Gilman
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - S. Lori Tausta
- Department of Molecular Biophysics and Biochemistry, Yale University, 600 West Campus, West Haven, CT 06516, USA
| | | | - Erika J. Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Cipriani C, Pacheco MP, Kishk A, Wachich M, Abankwa D, Schaffner-Reckinger E, Sauter T. Bruceine D Identified as a Drug Candidate against Breast Cancer by a Novel Drug Selection Pipeline and Cell Viability Assay. Pharmaceuticals (Basel) 2022; 15:179. [PMID: 35215292 PMCID: PMC8875459 DOI: 10.3390/ph15020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
The multi-target effects of natural products allow us to fight complex diseases like cancer on multiple fronts. Unlike docking techniques, network-based approaches such as genome-scale metabolic modelling can capture multi-target effects. However, the incompleteness of natural product target information reduces the prediction accuracy of in silico gene knockout strategies. Here, we present a drug selection workflow based on context-specific genome-scale metabolic models, built from the expression data of cancer cells treated with natural products, to predict cell viability. The workflow comprises four steps: first, in silico single-drug and drug combination predictions; second, the assessment of the effects of natural products on cancer metabolism via the computation of a dissimilarity score between the treated and control models; third, the identification of natural products with similar effects to the approved drugs; and fourth, the identification of drugs with the predicted effects in pathways of interest, such as the androgen and estrogen pathway. Out of the initial 101 natural products, nine candidates were tested in a 2D cell viability assay. Bruceine D, emodin, and scutellarein showed a dose-dependent inhibition of MCF-7 and Hs 578T cell proliferation with IC50 values between 0.7 to 65 μM, depending on the drug and cell line. Bruceine D, extracted from Brucea javanica seeds, showed the highest potency.
Collapse
Affiliation(s)
- Claudia Cipriani
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maria Pires Pacheco
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Ali Kishk
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maryem Wachich
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Elisabeth Schaffner-Reckinger
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Thomas Sauter
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| |
Collapse
|
14
|
Shameer S, Wang Y, Bota P, Ratcliffe RG, Long SP, Sweetlove LJ. A hybrid kinetic and constraint-based model of leaf metabolism allows predictions of metabolic fluxes in different environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:295-313. [PMID: 34699645 DOI: 10.1111/tpj.15551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
While flux balance analysis (FBA) provides a framework for predicting steady-state leaf metabolic network fluxes, it does not readily capture the response to environmental variables without being coupled to other modelling formulations. To address this, we coupled an FBA model of 903 reactions of soybean (Glycine max) leaf metabolism with e-photosynthesis, a dynamic model that captures the kinetics of 126 reactions of photosynthesis and associated chloroplast carbon metabolism. Successful coupling was achieved in an iterative formulation in which fluxes from e-photosynthesis were used to constrain the FBA model and then, in turn, fluxes computed from the FBA model used to update parameters in e-photosynthesis. This process was repeated until common fluxes in the two models converged. Coupling did not hamper the ability of the kinetic module to accurately predict the carbon assimilation rate, photosystem II electron flux, and starch accumulation of field-grown soybean at two CO2 concentrations. The coupled model also allowed accurate predictions of additional parameters such as nocturnal respiration, as well as analysis of the effect of light intensity and elevated CO2 on leaf metabolism. Predictions included an unexpected decrease in the rate of export of sucrose from the leaf at high light, due to altered starch-sucrose partitioning, and altered daytime flux modes in the tricarboxylic acid cycle at elevated CO2 . Mitochondrial fluxes were notably different between growing and mature leaves, with greater anaplerotic, tricarboxylic acid cycle and mitochondrial ATP synthase fluxes predicted in the former, primarily to provide carbon skeletons and energy for protein synthesis.
Collapse
Affiliation(s)
- Sanu Shameer
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Yu Wang
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stephen P Long
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
15
|
Harrison Day BL, Carins-Murphy MR, Brodribb TJ. Reproductive water supply is prioritized during drought in tomato. PLANT, CELL & ENVIRONMENT 2022; 45:69-79. [PMID: 34705293 DOI: 10.1111/pce.14206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Reproductive success largely defines the fitness of plant species. Understanding how heat and drought affect plant reproduction is thus key to predicting future plant fitness under rising global temperatures. Recent work suggests reproductive tissues are highly vulnerable to water stress in perennial plants where reproductive sacrifice could preserve plant survival. However, most crop species are annuals where such a strategy would theoretically reduce fitness. We examined the reproductive strategy of tomato (Solanum lycopersicum var. Rheinlands Ruhm) to determine whether water supply to fruits is prioritized above vegetative tissues during drought. Using optical methods, we mapped xylem cavitation and tissue shrinkage in vegetative and reproductive organs during dehydration to determine the priority of water flow under acute water stress. Stems and peduncles of tomato showed significantly greater xylem cavitation resistance than leaves. This maintenance of intact water supply enabled tomato fruit to continue to expand during acute water stress, utilizing xylem water made available by tissue collapse and early cavitation of leaves. Here, tomato plants prioritize water supply to reproductive tissues, maintaining fruit development under drought conditions. These results emphasize the critical role of water transport in shaping life history and suggest a broad relevance of hydraulic prioritization in plant ecology.
Collapse
Affiliation(s)
| | | | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
16
|
Wu T, Kerbler SM, Fernie AR, Zhang Y. Plant cell cultures as heterologous bio-factories for secondary metabolite production. PLANT COMMUNICATIONS 2021; 2:100235. [PMID: 34746764 PMCID: PMC8554037 DOI: 10.1016/j.xplc.2021.100235] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 08/19/2021] [Indexed: 05/06/2023]
Abstract
Synthetic biology has been developing rapidly in the last decade and is attracting increasing attention from many plant biologists. The production of high-value plant-specific secondary metabolites is, however, limited mostly to microbes. This is potentially problematic because of incorrect post-translational modification of proteins and differences in protein micro-compartmentalization, substrate availability, chaperone availability, product toxicity, and cytochrome p450 reductase enzymes. Unlike other heterologous systems, plant cells may be a promising alternative for the production of high-value metabolites. Several commercial plant suspension cell cultures from different plant species have been used successfully to produce valuable metabolites in a safe, low cost, and environmentally friendly manner. However, few metabolites are currently being biosynthesized using plant platforms, with the exception of the natural pigment anthocyanin. Both Arabidopsis thaliana and Nicotiana tabacum cell cultures can be developed by multiple gene transformations and CRISPR-Cas9 genome editing. Given that the introduction of heterologous biosynthetic pathways into Arabidopsis and N. tabacum is not widely used, the biosynthesis of foreign metabolites is currently limited; however, therein lies great potential. Here, we discuss the exemplary use of plant cell cultures and prospects for using A. thaliana and N. tabacum cell cultures to produce valuable plant-specific metabolites.
Collapse
Affiliation(s)
- Tong Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sandra M. Kerbler
- Leibniz-Institute für Gemüse- und Zierpflanzenbau, Theodor-Echtermeyer-Weg 1, 14979 Groβbeeren, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
17
|
Sahu A, Blätke MA, Szymański JJ, Töpfer N. Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput Struct Biotechnol J 2021; 19:4626-4640. [PMID: 34471504 PMCID: PMC8382995 DOI: 10.1016/j.csbj.2021.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The availability of multi-omics data sets and genome-scale metabolic models for various organisms provide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models and various data-integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models. However, both data and model size can hamper a straightforward biological interpretation of the estimated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with complementary data analysis and modeling techniques offers the potential to overcome these challenges. In particular machine learning approaches have emerged as the tool of choice for data reduction and selection of most important variables in big data sets. Kinetic models and formal languages can be used to simulate dynamic behavior. This review article provides an overview of integrative studies that combine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the mathematical aspects and biological applications of these integrated approaches and outline challenges and future perspectives.
Collapse
Affiliation(s)
- Ankur Sahu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Jędrzej Jakub Szymański
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Nadine Töpfer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| |
Collapse
|
18
|
Chen J, Beauvoit B, Génard M, Colombié S, Moing A, Vercambre G, Gomès E, Gibon Y, Dai Z. Modelling predicts tomatoes can be bigger and sweeter if biophysical factors and transmembrane transports are fine-tuned during fruit development. THE NEW PHYTOLOGIST 2021; 230:1489-1502. [PMID: 33550584 DOI: 10.1111/nph.17260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
The trade-off between yield and quality, a major problem for the production of fleshy fruits, involves fruit expansive growth and sugar metabolism. Here we developed an integrative model by coupling a biophysical model of fleshy fruit growth processes, including water and carbon fluxes and organ expansion, with an enzyme-based kinetic model of sugar metabolism to better understand the interactions between these two processes. The integrative model was initially tested on tomato fruit, a model system for fleshy fruit. The integrative model closely simulated the biomass and major carbon metabolites of tomato fruit developing under optimal or stress conditions. The model also performed robustly when simulating the fruit size and sugar concentrations of different tomato genotypes including wild species. The validated model was used to explore ways of uncoupling the size-sweetness trade-off in fruit. Model-based virtual experiments suggested that larger sweeter tomatoes could be obtained by simultaneously manipulating certain biophysical factors and transmembrane transports. The integrative fleshy fruit model provides a promising tool to facilitate the targeted bioengineering and breeding of tomatoes and other fruits.
Collapse
Affiliation(s)
- Jinliang Chen
- INRAE, Bordeaux Science Agro, EGFV, UMR 1287, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Bertrand Beauvoit
- INRAE, Biologie du Fruit et Pathologie, UMR 1332, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Michel Génard
- UR 1115 Plantes et Systèmes de Culture Horticoles, INRAE, Avignon Cedex 9, F-84914, France
| | - Sophie Colombié
- INRAE, Biologie du Fruit et Pathologie, UMR 1332, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Annick Moing
- INRAE, Biologie du Fruit et Pathologie, UMR 1332, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Gilles Vercambre
- UR 1115 Plantes et Systèmes de Culture Horticoles, INRAE, Avignon Cedex 9, F-84914, France
| | - Eric Gomès
- INRAE, Bordeaux Science Agro, EGFV, UMR 1287, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Yves Gibon
- INRAE, Biologie du Fruit et Pathologie, UMR 1332, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Zhanwu Dai
- INRAE, Bordeaux Science Agro, EGFV, UMR 1287, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
19
|
Daloso DDM, Williams TCR. Current Challenges in Plant Systems Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:155-170. [DOI: 10.1007/978-3-030-80352-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Suthers PF, Foster CJ, Sarkar D, Wang L, Maranas CD. Recent advances in constraint and machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility and kinetic law formalisms. Metab Eng 2020; 63:13-33. [PMID: 33310118 DOI: 10.1016/j.ymben.2020.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Understanding the governing principles behind organisms' metabolism and growth underpins their effective deployment as bioproduction chassis. A central objective of metabolic modeling is predicting how metabolism and growth are affected by both external environmental factors and internal genotypic perturbations. The fundamental concepts of reaction stoichiometry, thermodynamics, and mass action kinetics have emerged as the foundational principles of many modeling frameworks designed to describe how and why organisms allocate resources towards both growth and bioproduction. This review focuses on the latest algorithmic advancements that have integrated these foundational principles into increasingly sophisticated quantitative frameworks.
Collapse
Affiliation(s)
- Patrick F Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, USA
| | - Charles J Foster
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Debolina Sarkar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
21
|
Anand S, Mukherjee K, Padmanabhan P. An insight to flux-balance analysis for biochemical networks. Biotechnol Genet Eng Rev 2020; 36:32-55. [PMID: 33292061 DOI: 10.1080/02648725.2020.1847440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Systems biology is one of the integrated ways to study biological systems and is more favourable than the earlier used approaches. It includes metabolic pathway analysis, modelling, and regulatory as well as signal transduction for getting insights into cellular behaviour. Among the various techniques of modelling, simulation, analysis of networks and pathways, flux-based analysis (FBA) has been recognised because of its extensibility as well as simplicity. It is widely accepted because it is not like a mechanistic simulation which depends on accurate kinetic data. The study of fluxes through the network is informative and can give insights even in the absence of kinetic data. FBA is one of the widely used tools to study biochemical networks and needs information of reaction stoichiometry, growth requirements, specific measurement parameters of the biological system, in particular the reconstruction of the metabolic network for the genome-scale, many of which have already been built previously. It defines the boundaries of flux distributions which are possible and achievable with a defined set of genes. This review article gives an insight into FBA, from the extension of flux balancing to mathematical representation followed by a discussion about the formulation of flux-balance analysis problems, defining constraints for the stoichiometry of the pathways and the tools that can be used in FBA such as FASIMA, COBRA toolbox, and OptFlux. It also includes broader areas in terms of applications which can be covered by FBA as well as the queries which can be addressed through FBA.
Collapse
Affiliation(s)
- Shreya Anand
- Department of Bio-Engineering, Birla Institute of Technology , Ranchi, JH, India
| | - Koel Mukherjee
- Department of Bio-Engineering, Birla Institute of Technology , Ranchi, JH, India
| | - Padmini Padmanabhan
- Department of Bio-Engineering, Birla Institute of Technology , Ranchi, JH, India
| |
Collapse
|
22
|
Cakpo CB, Vercambre G, Baldazzi V, Roch L, Dai Z, Valsesia P, Memah MM, Colombié S, Moing A, Gibon Y, Génard M. Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species. ANNALS OF BOTANY 2020; 126:455-470. [PMID: 32333754 PMCID: PMC7424760 DOI: 10.1093/aob/mcaa082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/23/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Sugar concentration is a key determinant of fruit quality. Soluble sugars and starch concentrations in fruits vary greatly from one species to another. The aim of this study was to investigate similarities and differences in sugar accumulation strategies across ten contrasting fruit species using a modelling approach. METHODS We developed a coarse-grained model of primary metabolism based on the description of the main metabolic and hydraulic processes (synthesis of compounds other than sugar and starch, synthesis and hydrolysis of starch, and water dilution) involved in the accumulation of soluble sugars during fruit development. KEY RESULTS Statistical analyses based on metabolic rates separated the species into six groups according to the rate of synthesis of compounds other than sugar and starch. Herbaceous species (cucumber, tomato, eggplant, pepper and strawberry) were characterized by a higher synthesis rate than woody species (apple, nectarine, clementine, grape and kiwifruit). Inspection of the dynamics of the processes involved in sugar accumulation revealed that net sugar importation, metabolism and dilution processes were remarkably synchronous in most herbaceous plants, whereas in kiwifruit, apple and nectarine, processes related to starch metabolism were temporally separated from other processes. Strawberry, clementine and grape showed a distinct dynamic compared with all other species. CONCLUSIONS Overall, these results provide fresh insights into species-specific regulatory strategies and into the role of starch metabolism in the accumulation of soluble sugars in fleshy fruits. In particular, inter-specific differences in development period shape the co-ordination of metabolic processes and affect priorities for carbon allocation across species. The six metabolic groups identified by our analysis do not show a clear separation into climacteric and non-climacteric species, possibly suggesting that the metabolic processes related to sugar concentration are not greatly affected by ethylene-associated events.
Collapse
Affiliation(s)
- Coffi Belmys Cakpo
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Gilles Vercambre
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | - Valentina Baldazzi
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
- Université Côte d’Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Université Côte d’Azur, Inria, INRAE, Sorbonne Université, BIOCORE, Sophia-Antipolis, France
| | - Léa Roch
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, Villenave d’Ornon, France
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Pierre Valsesia
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | | | - Sophie Colombié
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Annick Moing
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
- Bordeaux Metabolome Facility– MetaboHUB, Villenave d’Ornon, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, UMR1332 Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Michel Génard
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| |
Collapse
|
23
|
Curran DM, Grote A, Nursimulu N, Geber A, Voronin D, Jones DR, Ghedin E, Parkinson J. Modeling the metabolic interplay between a parasitic worm and its bacterial endosymbiont allows the identification of novel drug targets. eLife 2020; 9:e51850. [PMID: 32779567 PMCID: PMC7419141 DOI: 10.7554/elife.51850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
The filarial nematode Brugia malayi represents a leading cause of disability in the developing world, causing lymphatic filariasis in nearly 40 million people. Currently available drugs are not well-suited to mass drug administration efforts, so new treatments are urgently required. One potential vulnerability is the endosymbiotic bacteria Wolbachia-present in many filariae-which is vital to the worm. Genome scale metabolic networks have been used to study prokaryotes and protists and have proven valuable in identifying therapeutic targets, but have only been applied to multicellular eukaryotic organisms more recently. Here, we present iDC625, the first compartmentalized metabolic model of a parasitic worm. We used this model to show how metabolic pathway usage allows the worm to adapt to different environments, and predict a set of 102 reactions essential to the survival of B. malayi. We validated three of those reactions with drug tests and demonstrated novel antifilarial properties for all three compounds.
Collapse
Affiliation(s)
- David M Curran
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Nirvana Nursimulu
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
| | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | | | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
- Department of Epidemiology, School of Global Public Health, New York UniversityNew YorkUnited States
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|