1
|
Luo H, Guan Y, Zhang Z, Zhang Z, Zhang Z, Li H. FveDREB1B improves cold tolerance of woodland strawberry by positively regulating FveSCL23 and FveCHS. PLANT, CELL & ENVIRONMENT 2024; 47:4630-4650. [PMID: 39051467 DOI: 10.1111/pce.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Cold stress has seriously inhibited the growth and development of strawberry during production. CBF/DREB1 is a key central transcription factor regulating plant cold tolerance, but its regulatory mechanisms are varied in different plants. Especially in strawberry, the molecular mechanism of CBF/DREB1 regulating cold tolerance is still unclear. In this study, we found that FveDREB1B was most significantly induced by cold stress in CBF/DREB1 family of diploid woodland strawberry. FveDREB1B was localized to the nucleus, and DREB1B sequences were highly conserved in diploid and octoploid strawberry, and even similar in Rosaceae. And FveDREB1B overexpressed strawberry plants showed delayed flowering and increased cold tolerance, while FveDREB1B silenced plants showed early flowering and decreased cold tolerance. Under cold stress, FveDREB1B activated FveSCL23 expression by directly binding to its promoter. Meanwhile, FveDREB1B and FveSCL23 interacted with FveDELLA, respectively. In addition, we also found that FveDREB1B promoted anthocyanin accumulation in strawberry leaves by directly activating FveCHS expression after cold treatment and recovery to 25°C. DREB1B genes were also detected to be highly expressed in cold-tolerant strawberry resources 'Fragaria mandschurica' and 'Fragaria nipponica'. In conclusion, our study reveals the molecular mechanism of FveDREB1B-FveSCL23-FveDELLA module and FveDREB1B-FveCHS module to enhance the cold tolerance of woodland strawberry. It provides a new idea for improving the cold tolerance of cultivated strawberry and evaluating the cold tolerance of strawberry germplasm resources.
Collapse
Affiliation(s)
- He Luo
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuhan Guan
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhuo Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zihui Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Li F, Liu B, Zhang H, Zhang J, Cai J, Cui J. Integrative multi-omics analysis of chilling stress in pumpkin (Cucurbita moschata). BMC Genomics 2024; 25:1042. [PMID: 39501146 PMCID: PMC11539673 DOI: 10.1186/s12864-024-10939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Pumpkin (Cucurbita moschata) is an important vegetable crop that often suffers from low-temperature stress during growth. However, the molecular mechanism involved in its response to chilling stress remains unknown. In this study, we comprehensively investigated the effect of chilling stress in pumpkin seedlings by conducting physiological, transcriptomic, and metabolomic analyses. RESULTS Under chilling stress, there was an overall increase in relative electrical conductivity, along with malondialdehyde, soluble sugar, and soluble protein contents, but decreased superoxide dismutase and peroxidase activities and chlorophyll contents in seedling leaves compared with controls. Overall, 5,780 differentially expressed genes (DEGs) and 178 differentially expressed metabolites (DEMs) were identified under chilling stress. Most DEGs were involved in plant hormone signal transduction and the phenylpropanoid biosynthesis pathway, and ERF, bHLH, WRKY, MYB, and HSF transcription factors were induced. Metabolomic analysis revealed that the contents of salicylic acid (SA), phenylalanine, and tyrosine increased in response to chilling stress. The findings indicated that the SA signaling and phenylpropanoid biosynthesis pathways are key to regulating the responses to chilling stress in pumpkins. CONCLUSION Overall, our study provides valuable insights into the comprehensive response of C. moschata to chilling stress, enriching the theoretical basis of this mechanism and facilitating the development of molecular breeding strategies for pumpkin tolerance to chilling stress.
Collapse
Affiliation(s)
- Fengmei Li
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China.
| | - Bobo Liu
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Hui Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Jiuming Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Jinling Cai
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, China
| | - Jian Cui
- Qingdao Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Si J, Fan ZQ, Wu CJ, Yang YY, Shan W, Kuang JF, Lu WJ, Wei W, Chen JY. MaHsf24, a novel negative modulator, regulates cold tolerance in banana fruits by repressing the expression of HSPs and antioxidant enzyme genes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2873-2886. [PMID: 38856080 DOI: 10.1111/pbi.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Transcriptional regulation mechanisms underlying chilling injury (CI) development have been widely investigated in model plants and cold-sensitive fruits, such as banana (Musa acuminata). However, unlike the well-known NAC and WRKY transcription factors (TFs), the function and deciphering mechanism of heat shock factors (HSFs) involving in cold response are still fragmented. Here, we showed that hot water treatment (HWT) alleviated CI in harvested banana fruits accomplishing with reduced reactive oxygen species (ROS) accumulation and increased antioxidant enzyme activities. A cold-inducible but HWT-inhibited HSF, MaHsf24, was identified. Using DNA affinity purification sequencing (DAP-seq) combined with RNA-seq analyses, we found three heat shock protein (HSP) genes (MaHSP23.6, MaHSP70-1.1 and MaHSP70-1.2) and three antioxidant enzyme genes (MaAPX1, MaMDAR4 and MaGSTZ1) were the potential targets of MaHsf24. Subsequent electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and dual-luciferase reporter (DLR) analyses demonstrated that MaHsf24 repressed the transcription of these six targets via directly binding to their promoters. Moreover, stably overexpressing MaHsf24 in tomatoes increased cold sensitivity by suppressing the expressions of HSPs and antioxidant enzyme genes, while HWT could recover cold tolerance, maintaining higher levels of HSPs and antioxidant enzyme genes, and activities of antioxidant enzymes. In contrast, transiently silencing MaHsf24 by virus-induced gene silencing (VIGS) in banana peels conferred cold resistance with the upregulation of MaHSPs and antioxidant enzyme genes. Collectively, our findings support the negative role of MaHsf24 in cold tolerance, and unravel a novel regulatory network controlling bananas CI occurrence, concerning MaHsf24-exerted inhibition of MaHSPs and antioxidant enzyme genes.
Collapse
Affiliation(s)
- Jia Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhong-Qi Fan
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural/Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao-Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Yuan X, Li J, Zhang X, Ai X, Bi H. Auxin as a downstream signal positively participates in melatonin-mediated chilling tolerance of cucumber. PHYSIOLOGIA PLANTARUM 2024; 176:e14526. [PMID: 39318034 DOI: 10.1111/ppl.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Here, we elucidate the interaction between IAA and melatonin (MT) in response to chilling in cucumber. The results showed that chilling stress induced the increase of endogenous MT and IAA, and the application of MT promoted the synthesis of IAA, while IAA could not affect endogenous MT content under chilling stress. Moreover, MT and IAA application both remarkably increased the chilling tolerance of cucumber seedlings in terms of lower contents of MDA and ROS, higher mRNA abundance of cold response genes, net photosynthetic rate (Pn), maximum regeneration rate of ribulose-1,5-diphosphate (Jmax), Rubisco maximum carboxylation efficiency (Vcmax), the activities and gene expression of RCA and Rubisco, as well as the content of active P700 (I/I0) and photosynthetic electron transport, compared with the plants in H2O treatment. Further analysis revealed that the inhibition of IAA transportation significantly reduced the chilling tolerance induced by MT, whereas the inhibition of endogenous MT did not affect the chilling tolerance induced by IAA. Meanwhile, we found that overexpression of the MT biosynthesis gene CsASMT increased the chilling tolerance, which was blocked by inhibition of endogenous IAA, and the silence of IAA biosynthesis gene CsYUCCA10 decreased the chilling tolerance of cucumber, which could not be alleviated by MT. These data implied IAA acted as a downstream signal to participate in the MT-induced chilling tolerance of cucumber seedlings. The study has implications for the production of greenhouse cucumber in winter seasons.
Collapse
Affiliation(s)
- Xinru Yuan
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Junqi Li
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiaowei Zhang
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xizhen Ai
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Huangai Bi
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| |
Collapse
|
5
|
Li J, Lou S, Gong J, Liang J, Zhang J, Zhou X, Li J, Wang L, Zhai M, Duan L, Lei B. Coronatine-treated seedlings increase the tolerance of cotton to low-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108832. [PMID: 38896915 DOI: 10.1016/j.plaphy.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Coronatine, an analog of Jasmonic acid (JA), has been shown to enhance crop tolerance to abiotic stresses, including chilling stress. However, the underlying molecular mechanism remains largely unknown. In this study, we investigated the effect of Coronatine on cotton seedlings under low temperature using transcriptomic and metabolomics analysis. Twelve cDNA libraries from cotton seedlings were constructed, and pairwise comparisons revealed a total of 48,322 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the involvement of these unigenes in various metabolic pathways, including Starch and sucrose metabolism, Sesquiterpenoid and triterpenoid biosynthesis, Phenylpropanoid biosynthesis, alpha-Linolenic acid metabolism, ABC transporters, and Plant hormone signal transduction. Additionally, substantial accumulations of jasmonates (JAs), abscisic acid and major cell wall metabolites were observed. Transcriptome analysis revealed differential expression of regulatory genes, and qRT-PCR analysis confirmed the expression patterns of 9 selected genes. Co-expression analysis showed that the JA-responsive genes might form a network module with ABA biosynthesis genes or cell wall biosynthesis genes, suggesting the existence of a COR-JA-cellulose and COR-JA-ABA-cellulose regulatory pathway in cotton seedlings. Collectively, our findings uncover new insights into the molecular basis of coronatine--associated cold tolerance in cotton seedlings.
Collapse
Affiliation(s)
- Jin Li
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Shanwei Lou
- Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; State Key Laboratory of Plant Physiology & Biochemistry, Engineering Research Center of PGR, Ministry of Education & College of Agronomy and Biotechnology, and China Agricultural University, Beijing, 100193, China
| | - Jingyun Gong
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jing Liang
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jungao Zhang
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Xiaoyun Zhou
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Jie Li
- Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China
| | - Li Wang
- College of Agricultural, Xinjiang Agricultural University, Urumqi, 830091, China
| | - Menghua Zhai
- College of Agricultural, Xinjiang Agricultural University, Urumqi, 830091, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology & Biochemistry, Engineering Research Center of PGR, Ministry of Education & College of Agronomy and Biotechnology, and China Agricultural University, Beijing, 100193, China.
| | - Bin Lei
- Research Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Ministry of Agriculture, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; Xinjiang Crop Chemical Regulation Engineering Technology Research Center and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Xinjiang Key Laboratory of Crop Biotechnology, and Xinjiang Uygur Autonomous Region, Urumqi, 830091, China.
| |
Collapse
|
6
|
Praat M, Jiang Z, Earle J, Smeekens S, van Zanten M. Using a thermal gradient table to study plant temperature signalling and response across a temperature spectrum. PLANT METHODS 2024; 20:114. [PMID: 39075474 PMCID: PMC11285400 DOI: 10.1186/s13007-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Plants must cope with ever-changing temperature conditions in their environment. In many plant species, suboptimal high and low temperatures can induce adaptive mechanisms that allow optimal performance. Thermomorphogenesis is the acclimation to high ambient temperature, whereas cold acclimation refers to the acquisition of cold tolerance following a period of low temperatures. The molecular mechanisms underlying thermomorphogenesis and cold acclimation are increasingly well understood but neither signalling components that have an apparent role in acclimation to both cold and warmth, nor factors determining dose-responsiveness, are currently well defined. This can be explained in part by practical limitations, as applying temperature gradients requires the use of multiple growth conditions simultaneously, usually unavailable in research laboratories. Here we demonstrate that commercially available thermal gradient tables can be used to grow and assess plants over a defined and adjustable steep temperature gradient within one experiment. We describe technical and thermodynamic aspects and provide considerations for plant growth and treatment. We show that plants display the expected morphological, physiological, developmental and molecular responses that are typically associated with high temperature and cold acclimation. This includes temperature dose-response effects on seed germination, hypocotyl elongation, leaf development, hyponasty, rosette growth, temperature marker gene expression, stomatal conductance, chlorophyll content, ion leakage and hydrogen peroxide levels. In conclusion, thermal gradient table systems enable standardized and predictable environments to study plant responses to varying temperature regimes and can be swiftly implemented in research on temperature signalling and response.
Collapse
Affiliation(s)
- Myrthe Praat
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Joe Earle
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
- Present address: Evolutionary Plant Ecophysiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, The Netherlands.
- Netherlands Plant Eco-Phenotyping Centre, Institute of Environmental Biology, Utrecht University, Padualaan 6, Utrecht, 3584CH, The Netherlands.
| |
Collapse
|
7
|
Zhang J, Liu Y, Zhou Z, Yang L, Xue Z, Li Q, Cai B. Genome-Wide Characterization of Fructose 1,6-Bisphosphate Aldolase Genes and Expression Profile Reveals Their Regulatory Role in Abiotic Stress in Cucumber. Int J Mol Sci 2024; 25:7687. [PMID: 39062929 PMCID: PMC11276831 DOI: 10.3390/ijms25147687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The fructose-1,6-bisphosphate aldolase (FBA) gene family exists in higher plants, with the genes of this family playing significant roles in plant growth and development, as well as response to abiotic stresses. However, systematic reports on the FBA gene family and its functions in cucumber are lacking. In this study, we identified five cucumber FBA genes, named CsFBA1-5, that are distributed randomly across chromosomes. Phylogenetic analyses involving these cucumber FBAs, alongside eight Arabidopsis FBA proteins and eight tomato FBA proteins, were conducted to assess their homology. The CsFBAs were grouped into two clades. We also analyzed the physicochemical properties, motif composition, and gene structure of the cucumber FBAs. This analysis highlighted differences in the physicochemical properties and revealed highly conserved domains within the CsFBA family. Additionally, to explore the evolutionary relationships of the CsFBA family further, we constructed comparative syntenic maps with Arabidopsis and tomato, which showed high homology but only one segmental duplication event within the cucumber genome. Expression profiles indicated that the CsFBA gene family is responsive to various abiotic stresses, including low temperature, heat, and salt. Taken together, the results of this study provide a theoretical foundation for understanding the evolution of and future research into the functional characterization of cucumber FBA genes during plant growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Baoding 171000, China; (J.Z.); (Y.L.); (Z.Z.); (L.Y.); (Z.X.)
| | - Bingbing Cai
- College of Horticulture, Hebei Agricultural University, Baoding 171000, China; (J.Z.); (Y.L.); (Z.Z.); (L.Y.); (Z.X.)
| |
Collapse
|
8
|
Bokhary SUF, Madebo MP, Zhao Y, Ru X, Bao Y, You W, Zheng Y, Jin P. Genome-wide identification and role of HSFs in antioxidant response of hot water treated zucchini fruit during cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108743. [PMID: 38788295 DOI: 10.1016/j.plaphy.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Zucchini squashes are cold-sensitive and vulnerable to chilling injury (CI) resulting from reactive oxygen species (ROS) and hot water (HW) immersing effectively reduce CI symptoms during cold storage. However, mechanism involved in reduced ROS due to HW treatment has not been characterized well. In this study, tender green zucchini fruit were treated with HW for 15 min at 45 ± 1 °C and stored for 15 d at 4 ± 1 °C and above 90 % relative humidity. Results showed substantial reduction in CI index, electrolyte leakage, malonaldehyde (MDA) contents and ROS accumulation along with increased activity of ROS-scavenging enzymes due to HW treatment. To gain insight into the molecular mechanism involved in antioxidant defense system, transcriptomic analysis revealed that heat shock factors (HSF) accumulated due to HW treatment regulated the ROS pathway during cold stress. CpHSFA4a was one of the highly expressed transcription factors (TF) due to HW treatment that regulated the transcription of ROS enzymes related genes. CpHSFA4a bind actively with heat shock element (HSE) in promoter regions of CpSOD, CpCAT, CpAPX1, CpAPX2, and CpAPX3, activated and increased the expression of these genes. In conclusion, HW treatment alleviated the CI by maintaining ROS homeostasis through CpHSFA4a mediated ROS pathway in zucchini squashes during cold storage.
Collapse
Affiliation(s)
- Syed Umar Farooq Bokhary
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Miilion Paulos Madebo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yaqin Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xueyin Ru
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yinqiu Bao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wanli You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
9
|
Dong D, Qi C, Zhang J, Deng Q, Xia P, Li P, Jia C, Zhao B, Zhang N, Guo YD. CsHSFA1d Promotes Drought Stress Tolerance by Increasing the Content of Raffinose Family Oligosaccharides and Scavenging Accumulated Reactive Oxygen Species in Cucumber. PLANT & CELL PHYSIOLOGY 2024; 65:809-822. [PMID: 38564325 DOI: 10.1093/pcp/pcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Drought is the most severe form of stress experienced by plants worldwide. Cucumber is a vegetable crop that requires a large amount of water throughout the growth period. In our previous study, we identified that overexpression of CsHSFA1d could improve cold tolerance and the content of endogenous jasmonic acid in cucumber seedlings. To explore the functional diversities of CsHSFA1d, we treat the transgenic plants under drought conditions. In this study, we found that the heat shock transcription factor HSFA1d (CsHSFA1d) could improve drought stress tolerance in cucumber. CsHSFA1d overexpression increased the expression levels of galactinol synthase (CsGolS3) and raffinose synthase (CsRS) genes, encoding the key enzymes for raffinose family oligosaccharide (RFO) biosynthesis. Furthermore, the lines overexpressing CsHSFA1d showed higher enzymatic activity of GolS and raffinose synthase to increase the content of RFO. Moreover, the CsHSFA1d-overexpression lines showed lower reactive oxygen species (ROS) accumulation and higher ROS-scavenging enzyme activity after drought treatment. The expressions of antioxidant genes CsPOD2, CsAPX1 and CsSOD1 were also upregulated in CsHSFA1d-overexpression lines. The expression levels of stress-responsive genes such as CsRD29A, CsLEA3 and CsP5CS1 were increased in CsHSFA1d-overexpression lines after drought treatment. We conclude that CsHSFA1d directly targets and regulates the expression of CsGolS3 and CsRS to promote the enzymatic activity and accumulation of RFO to increase the tolerance to drought stress. CsHSFA1d also improves ROS-scavenging enzyme activity and gene expression indirectly to reduce drought-induced ROS overaccumulation. This study therefore offers a new gene target to improve drought stress tolerance in cucumber and revealed the underlying mechanism by which CsHSFA1d functions in the drought stress by increasing the content of RFOs and scavenging the excessive accumulation of ROS.
Collapse
Affiliation(s)
- Danhui Dong
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Chuandong Qi
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan Hongshan District, Nanhudadao No. 43, Wuhan, Hubei Province 430064, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Qilin Deng
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Pingxin Xia
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Ping Li
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Congyang Jia
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| |
Collapse
|
10
|
Li X, Chen L, Liu T, Chen Y, Wang J, Song B. Integrated analysis of ATAC-seq and transcriptomic reveals the ScDof3-ScproC molecular module regulating the cold acclimation capacity of potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108576. [PMID: 38608502 DOI: 10.1016/j.plaphy.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Low temperature severely affects the geographical distribution and production of potato, which may incur cold damage in early spring or winter. Cultivated potatoes, mainly derived from Solanum tuberosum, are sensitive to freezing stress, but wild species of potato such as S. commersonii exhibit both constitutive freezing tolerance and/or cold acclimation tolerance. Hence, such wild species could assist in cold hardiness breeding. Yet the key transcription factors and their downstream functional genes that confer freezing tolerance are far from clear, hindering the breeding process. Here, we used ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) alongside RNA-seq to investigate the variation in chromatin accessibility and patterns of gene expression in freezing-tolerant CMM5 (S. commersonii), before and after its cold treatment. Our results suggest that after exposure to cold, transcription factors including Dof3, ABF2, PIF4, and MYB4 were predicted to further control the genes active in the synthetic/metabolic pathways of plant hormones, namely abscisic acid, polyamine, and reductive glutathione (among others). This suggests these transcription factors could regulate freezing tolerance of CMM5 leaves. In particular, ScDof3 was proven to regulate the expression of ScproC (pyrroline-5-carboxylate reductase, P5CR) according to dual-LUC assays. Overexpressing ScDof3 in Nicotiana benthamiana leaves led to an increase in both the proline content and expression level of NbproC (homolog of ScproC). These results demonstrate the ScDof3-ScproC module regulates the proline content and thus promotes freezing tolerance in potato. Our research provides valuable genetic resources to further study the molecular mechanisms underpinning cold tolerance in potato.
Collapse
Affiliation(s)
- Xin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lin Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, PR China
| | - Tiantian Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ye Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, PR China; Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
11
|
Tan W, Zhou P, Huang X, Liao R, Wang X, Wu Y, Ni Z, Shi T, Yu X, Zhang H, Ma C, Gao F, Ma Y, Bai Y, Hayat F, Omondi OK, Coulibaly D, Gao Z. Haplotype-resolved genome of Prunus zhengheensis provides insight into its evolution and low temperature adaptation in apricot. HORTICULTURE RESEARCH 2024; 11:uhae103. [PMID: 38689698 PMCID: PMC11059810 DOI: 10.1093/hr/uhae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
Prunus zhengheensis, an extremely rare population of apricots, originated in warm South-East China and is an excellent material for genetic breeding. However, most apricots and two related species (P. sibirica, P. mandshurica) are found in the cold northern regions in China and the mechanism of their distribution is still unclear. In addition, the classification status of P. zhengheensis is controversial. Thus, we generated a high-quality haplotype-resolved genome for P. zhengheensis, exploring key genetic variations in its adaptation and the causes of phylogenetic incongruence. We found extensive phylogenetic discordances between the nuclear and organelle phylogenies of P. zhengheensis, which could be explained by incomplete lineage sorting. A 242.22-Mb pan-genome of the Armeniaca section was developed with 13 chromosomal genomes. Importantly, we identified a 566-bp insertion in the promoter of the HSFA1d gene in apricot and showed that the activity of the HSFA1d promoter increased under low temperatures. In addition, HSFA1d overexpression in Arabidopsis thaliana indicated that HSFA1d positively regulated plant growth under chilling. Therefore, we hypothesized that the insertion in the promoter of HSFA1d in apricot improved its low-temperature adaptation, allowing it to thrive in relatively cold locations. The findings help explain the weather adaptability of Armeniaca plants.
Collapse
Affiliation(s)
- Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyu Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruyu Liao
- Institute of Fruit, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Xiaoan Wang
- Institute of Fruit, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yaoyao Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiqin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chengdong Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufan Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Faisal Hayat
- Department of Pomology, College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ouma Kenneth Omondi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Crops, Horticulture and Soils, Faculty of Agriculture, Egerton University, P.O. Box 536, Egerton 20115, Kenya
| | - Daouda Coulibaly
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Agricultural Sciences and Techniques-Horticulture, Rural Polytechnic Institute for Training and Applied Research (IPR/IFRA) of Katibougou, Koulikoro B.P.224, Mali
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Yang Y, Yin J, Zhu L, Xu L, Wu W, Lu Y, Chen J, Shi J, Hao Z. Genome-Wide Analysis of the Liriodendron chinense Hsf Gene Family under Abiotic Stress and Characterization of the LcHsfA2a Gene. Int J Mol Sci 2024; 25:2733. [PMID: 38473982 DOI: 10.3390/ijms25052733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Heat shock factors (Hsfs) play a crucial role in plant defense processes. However, the distribution and functional characteristics of Hsf genes in the relict plant Liriodendron chinense are still unclear. In this study, a total of 19 LcHsfs were identified and divided into three separate subgroups, comprising 10 LcHsfA, 7 LcHsfB, and 2 LcHsfC genes, respectively, based on their phylogenetic tree and the presence/absence of conserved protein domains. Whole-genome duplication and segmental duplication led to an expansion of the LhHsf gene family. The promoters of LcHsf genes are enriched for different types of cis-acting elements, including hormone responsive and abiotic-stress-responsive elements. The expression of LcHsfA3, LcHsfA4b, LcHsfA5, LcHsfB1b, and LcHsfB2b increased significantly as a result of both cold and drought treatments. LcHsfA2a, LcHsfA2b, and LcHsfA7 act as important genes whose expression levels correlate strongly with the expression of the LcHsp70, LcHsp110, and LcAPX genes under heat stress. In addition, we found that transiently transformed 35S:LcHsfA2a seedlings showed significantly lower levels of hydrogen peroxide (H2O2) after heat stress and showed a stronger thermotolerance. This study sheds light on the possible functions of LcHsf genes under abiotic stress and identifies potentially useful genes to target for molecular breeding, in order to develop more stress-resistant varieties.
Collapse
Affiliation(s)
- Yun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jianchao Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Weihuang Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Li J, Lv K, Wu J, Xie Y, Zhang J, Zhang N, Xu W. Exogenous Melatonin Promotes Cold Tolerance in Grape Seedlings: Physiological, Transcriptomic, and Functional Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19970-19985. [PMID: 38055343 DOI: 10.1021/acs.jafc.3c05907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Melatonin (MEL) is an antioxidant molecule that enhances plant tolerance to environmental stress. However, the mechanisms by which MEL regulates cold signaling pathways in grapes under cold stress remain elusive. Here, we investigated the physiological and transcriptomic changes in grape seedlings treated with exogenous MEL to determine their protective role under cold stress. Results showed that 150 μM MEL effectively attenuated cold-induced cell damage by reducing reactive oxygen species (ROS) and preserving the chloroplast structure and function. MEL also inhibited tannin degradation, which contributed to its protective effect. Exogenous MEL promoted the synthesis of endogenous MEL, abscisic acid, auxin, and cytokinin while inhibiting gibberellin. Transcriptomic profiling revealed 776 differentially expressed transcripts in MEL-treated samples compared to controls. Functional analysis of a candidate hub gene, VvHSFA6b, showed that its overexpression in grape calli enhances cold tolerance by activating jasmonic acid synthesis pathway genes, promoting JA accumulation, and inhibiting JAZ-repressed transcription factors.
Collapse
Affiliation(s)
- Junduo Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Kai Lv
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Jieping Wu
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Yaping Xie
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Junxia Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Ningbo Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Weirong Xu
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| |
Collapse
|
14
|
Dong S, Li C, Tian H, Wang W, Yang X, Beckles DM, Liu X, Guan J, Gu X, Sun J, Miao H, Zhang S. Natural variation in STAYGREEN contributes to low-temperature tolerance in cucumber. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2552-2568. [PMID: 37811725 DOI: 10.1111/jipb.13571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA , but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.
Collapse
Affiliation(s)
- Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Caixia Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haojie Tian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiping Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA, 95616, USA
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
15
|
Ling C, Liu Y, Yang Z, Xu J, Ouyang Z, Yang J, Wang S. Genome-Wide Identification of HSF Gene Family in Kiwifruit and the Function of AeHSFA2b in Salt Tolerance. Int J Mol Sci 2023; 24:15638. [PMID: 37958622 PMCID: PMC10649126 DOI: 10.3390/ijms242115638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Heat shock transcription factors (HSFs) play a crucial role in regulating plant growth and response to various abiotic stresses. In this study, we conducted a comprehensive analysis of the AeHSF gene family at genome-wide level in kiwifruit (Actinidia eriantha), focusing on their functions in the response to abiotic stresses. A total of 41 AeHSF genes were identified and categorized into three primary groups, namely, HSFA, HSFB, and HSFC. Further transcriptome analysis revealed that the expression of AeHSFA2b/2c and AeHSFB1c/1d/2c/3b was strongly induced by salt, which was confirmed by qRT-PCR assays. The overexpression of AeHSFA2b in Arabidopsis significantly improved the tolerance to salt stress by increasing AtRS5, AtGolS1 and AtGolS2 expression. Furthermore, yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays demonstrated that AeHSFA2b could bind to the AeRFS4 promoter directly. Therefore, we speculated that AeHSFA2b may activate AeRFS4 expression by directly binding its promoter to enhance the kiwifruit's tolerance to salt stress. These results will provide a new insight into the evolutionary and functional mechanisms of AeHSF genes in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Yang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agriculture University, Hefei 230036, China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agriculture University, Hefei 230036, China
| |
Collapse
|
16
|
Li Z, Huang C, Han L. Differential Regulations of Antioxidant Metabolism and Cold-Responsive Genes in Three Bermudagrass Genotypes under Chilling and Freezing Stress. Int J Mol Sci 2023; 24:14070. [PMID: 37762373 PMCID: PMC10530996 DOI: 10.3390/ijms241814070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
As a typical warm-season grass, bermudagrass growth and turf quality begin to decrease when the environmental temperature drops below 20 °C. The current study investigated the differential responses of three bermudagrass genotypes to chilling stress (8/4 °C) for 15 days and then freezing stress (2/-2 °C) for 2 days. The three genotypes exhibited significant variation in chilling and freezing tolerance, and Chuannong-3, common bermudagrass 001, and Tifdwarf were ranked as cold-tolerant, -intermediate, and -sensitive genotypes based on evaluations of chlorophyll content, the photochemical efficiency of photosystem II, oxidative damage, and cell membrane stability, respectively. Chuannong-3 achieved better tolerance through enhancing the antioxidant defense system to stabilize cell membrane and reactive oxygen species homeostasis after being subjected to chilling and freezing stresses. Chuannong-3 also downregulated the ethylene signaling pathway by improving CdCTR1 expression and suppressing the transcript levels of CdEIN3-1 and CdEIN3-2; however, it upregulated the hydrogen sulfide signaling pathway via an increase in CdISCS expression under cold stress. In addition, the molecular basis of cold tolerance could be associated with the mediation of key genes in the heat shock pathway (CdHSFA-2b, CdHSBP-1, CdHSP22, and CdHSP40) and the CdOSMOTIN in Chuannong-3 because the accumulation of stress-defensive proteins, including heat shock proteins and osmotin, plays a positive role in osmoprotection, osmotic adjustment, or the repair of denatured proteins as molecular chaperones under cold stress. The current findings give an insight into the physiological and molecular mechanisms of cold tolerance in the new cultivar Chuannong-3, which provides valuable information for turfgrass breeders and practitioners.
Collapse
Affiliation(s)
- Zhou Li
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Huang
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Guo L, Cao M, Li Y, Wang J, He L, Li P, Lin X, Li X, Yuan X, Zhao B, Zhang N, Guo YD. RING finger ubiquitin E3 ligase CsCHYR1 targets CsATAF1 for degradation to modulate the drought stress response of cucumber through the ABA-dependent pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107928. [PMID: 37582305 DOI: 10.1016/j.plaphy.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
CsCHYR1 (CHY ZINC-FINGER AND RING PROTEIN1) encodes a RING (Really Interesting New Gene) finger E3 ubiquitin ligase involved in ubiquitin-mediated protein degradation and plays an important role for cucumber to resist drought stress. Here, we obtain one of the candidate proteins CsCHYR1 that probably interacts with CsATAF1 by yeast-two hybrid screening. Subsequently, it is verified that CsCHYR1 interacts with CsATAF1 and has self-ubiquitination activity. When the cysteine residue at 180 in the RING domain of CsCHYR1 is replaced by serine or alanine, ubiquitin could not be transported from E2 to the substrate. CsCHYR1 ubiquitinates CsATAF1 and affects the stability of CsATAF1 when plants are subjected to drought stress. The expression level of CsCHYR1 is increased by 4-fold after ABA treatment at 9 h. The Atchyr1 mutants perform an ABA-hyposensitive phenotype and have a lower survival rate than Col-0 and CsCHYR1 Atchyr1 lines. In addition, CsCHYR1 interacts with CsSnRK2.6. Therefore, our study reveals a CsSnRK2.6-CsCHYR1-CsATAF1 complex to promote the drought stress response by decreasing CsATAF1 protein accumulation and inducing stomatal closure. Those findings provide new ideas for cucumber germplasm innovation from the perspective of biochemistry and molecular biology.
Collapse
Affiliation(s)
- Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, China
| | - Meng Cao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jinfang Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lingfeng He
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ping Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinpeng Lin
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xingsheng Li
- Huasheng Seed Group Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Xiaowei Yuan
- Huasheng Seed Group Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China.
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China.
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
18
|
Jiang D, Xia M, Xing H, Gong M, Jiang Y, Liu H, Li HL. Exploring the Heat Shock Transcription Factor ( HSF) Gene Family in Ginger: A Genome-Wide Investigation on Evolution, Expression Profiling, and Response to Developmental and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2999. [PMID: 37631210 PMCID: PMC10459109 DOI: 10.3390/plants12162999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Ginger is a valuable crop known for its nutritional, seasoning, and health benefits. However, abiotic stresses, such as high temperature and drought, can adversely affect its growth and development. Heat shock transcription factors (HSFs) have been recognized as crucial elements for enhancing heat and drought resistance in plants. Nevertheless, no previous study has investigated the HSF gene family in ginger. In this research, a total of 25 ZoHSF members were identified in the ginger genome, which were unevenly distributed across ten chromosomes. The ZoHSF members were divided into three groups (HSFA, HSFB, and HSFC) based on their gene structure, protein motifs, and phylogenetic relationships with Arabidopsis. Interestingly, we found more collinear gene pairs between ZoHSF and HSF genes from monocots, such as rice, wheat, and banana, than dicots like Arabidopsis thaliana. Additionally, we identified 12 ZoHSF genes that likely arose from duplication events. Promoter analysis revealed that the hormone response elements (MEJA-responsiveness and abscisic acid responsiveness) were dominant among the various cis-elements related to the abiotic stress response in ZoHSF promoters. Expression pattern analysis confirmed differential expression of ZoHSF members across different tissues, with most showing responsiveness to heat and drought stress. This study lays the foundation for further investigations into the functional role of ZoHSFs in regulating abiotic stress responses in ginger.
Collapse
Affiliation(s)
- Dongzhu Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
- College of Horticulture and Gardening, Yangtze University, Jingzhou 433200, China
| | - Maoqin Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
| | - Haitao Xing
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
| | - Min Gong
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Yajun Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
| | - Huanfang Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (D.J.); (M.X.); (H.X.); (Y.J.)
| |
Collapse
|
19
|
Xie K, Guo J, Wang S, Ye W, Sun F, Zhang C, Xi Y. Genome-wide identification, classification, and expression analysis of heat shock transcription factor family in switchgrass (Panicum virgatum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107848. [PMID: 37392668 DOI: 10.1016/j.plaphy.2023.107848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
Switchgrass is one of the most promising bioenergy crops and is generally cultivated in arid climates and poor soils. Heat shock transcription factors (Hsfs) are key regulators of plant responses to abiotic and biotic stressors. However, their role and mechanism of action in switchgrass have not been elucidated. Hence, this study aimed to identify the Hsf family in switchgrass and understand its functional role in heat stress signal transduction and heat tolerance by using bioinformatics and RT-PCR analysis. Forty-eight PvHsfs were identified and divided into three main classes based on their gene structure and phylogenetic relationships: HsfA, HsfB, and HsfC. The results of the bioinformatics analysis showed a DNA-binding domain (DBD) at the N-terminal in PvHsfs, and they were not evenly distributed on all chromosomes except for chromosomes 8 N and 8 K. Many cis-elements related to plant development, stress responses, and plant hormones were identified in the promoter sequence of each PvHsf. Segmental duplication is the primary force underlying Hsf family expansion in switchgrass. The results of the expression pattern of PvHsfs in response to heat stress showed that PvHsf03 and PvHsf25 might play critical roles in the early and late stages of switchgrass response to heat stress, respectively, and HsfB mainly showed a negative response to heat stress. Ectopic expression of PvHsf03 in Arabidopsis significantly increased the heat resistance of seedlings. Overall, our research lays a notable foundation for studying the regulatory network in response to deleterious environments and for further excavating tolerance genes in switchgrass.
Collapse
Affiliation(s)
- Kunliang Xie
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| | - Jinliang Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Shaoyu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Wenjie Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
20
|
Li C, Dong S, Beckles DM, Liu X, Guan J, Gu X, Miao H, Zhang S. GWAS reveals novel loci and identifies a pentatricopeptide repeat-containing protein (CsPPR) that improves low temperature germination in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1116214. [PMID: 37235012 PMCID: PMC10208356 DOI: 10.3389/fpls.2023.1116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/24/2023] [Indexed: 05/28/2023]
Abstract
Low temperatures (LTs) negatively affect the percentage and rate of cucumber (Cucumis sativus L.) seed germination, which has deleterious effects on yield. Here, a genome-wide association study (GWAS) was used to identify the genetic loci underlying low temperature germination (LTG) in 151 cucumber accessions that represented seven diverse ecotypes. Over two years, phenotypic data for LTG i.e., relative germination rate (RGR), relative germination energy (RGE), relative germination index (RGI) and relative radical length (RRL), were collected in two environments, and 17 of the 151 accessions were found to be highly cold tolerant using cluster analysis. A total of 1,522,847 significantly associated single-nucleotide polymorphism (SNP) were identified, and seven loci associated with LTG, on four chromosomes, were detected: gLTG1.1, gLTG1.2, gLTG1.3, gLTG4.1, gLTG5.1, gLTG5.2, and gLTG6.1 after resequencing of the accessions. Of the seven loci, three, i.e., gLTG1.2, gLTG4.1, and gLTG5.2, showed strong signals that were consistent over two years using the four germination indices, and are thus strong and stable for LTG. Eight candidate genes associated with abiotic stress were identified, and three of them were potentially causal to LTG: CsaV3_1G044080 (a pentatricopeptide repeat-containing protein) for gLTG1.2, CsaV3_4G013480 (a RING-type E3 ubiquitin transferase) for gLTG4.1, and CsaV3_5G029350 (a serine/threonine-protein kinase) for gLTG5.2. The function for CsPPR (CsaV3_1G044080) in regulating LTG was confirmed, as Arabidopsis lines ectopically expressing CsPPR showed higher germination and survival rates at 4°C compared to the wild-type, which preliminarily illustrates that CsPPR positively regulates cucumber cold tolerance at the germination stage. This study will provide insights into cucumber LT-tolerance mechanisms and further promote cucumber breeding development.
Collapse
Affiliation(s)
- Caixia Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diane M. Beckles
- Department of Plant Sciences, University of California Davis, Davis, CA, United States
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
He Q, Zhang X, He M, Zhang X, Ma Y, Zhu Y, Dong J, Ying J, Wang Y, Liu L, Xu L. Genome-wide characterization of RsHSP70 gene family reveals positive role of RsHSP70-20 gene in heat stress response in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107710. [PMID: 37087887 DOI: 10.1016/j.plaphy.2023.107710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Radish is an economical cool-season root vegetable crop worldwide. Heat shock protein 70 (HSP70) plays indispensable roles in plant growth, development and abiotic stress responses. Nevertheless, little information is available regarding the identification and functional characterization of HSP70 gene family in radish. Herein, a total of 34 RsHSP70 genes were identified at the radish genome level, among which nine and 25 RsHSP70s were classified into the HSP110/SSE and DnaK subfamilies, respectively. RNA-seq analysis revealed that some RsHSP70 genes had differential expression profile in radish leaf, root, stamen and pistil. A range of RsHSP70 genes exhibited differential expression under several abiotic stresses such as heat, salt and heavy metals. Intriguingly, the expression of four RsHSP70 genes (RsHSP70-7, RsHSP70-12, RsHSP70-20 and RsHSP70-22) was dramatically up-regulated under heat stress (HS). RT-qPCR and transient LUC reporter assay indicated that both the expression and promoter activity of RsHSP70-20 was strongly induced by HS. Notably, overexpression of RsHSP70-20 significantly enhanced thermotolerance by decreasing reactive oxygen species and promoting proline accumulation in radish, whereas its knock-down plants exhibited increased thermosensitivity, indicating that RsHSP70-20 positively regulate HS response in radish. These results would provide valuable information to decipher the molecular basis of RsHSP70-mediated thermotolerance in radish.
Collapse
Affiliation(s)
- Qing He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xinyu Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Min He
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yingfei Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
22
|
Tan C, Li N, Wang Y, Yu X, Yang L, Cao R, Ye X. Integrated Physiological and Transcriptomic Analyses Revealed Improved Cold Tolerance in Cucumber (Cucumis sativus L.) by Exogenous Chitosan Oligosaccharide. Int J Mol Sci 2023; 24:ijms24076202. [PMID: 37047175 PMCID: PMC10094205 DOI: 10.3390/ijms24076202] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cucumber (Cucumis sativus L.), sensitive to cold stress, is one of the most economically important vegetables. Here, we systematically investigated the roles of exogenous glycine betaine, chitosan, and chitosan oligosaccharide in alleviating cold stress in cucumber seedlings. The results showed that 50 mg·L−1 chitosan oligosaccharide had the best activity. It effectively increases plant growth, chlorophyll content, photosynthetic capacity, osmotic regulatory substance content, and antioxidant enzyme activities while reducing relative electrical conductivity and malondialdehyde levels in cucumber seedlings under cold stress. To reveal the protective effects of chitosan oligosaccharide in cold stress, cucumber seedlings pretreated with 50 mg·L−1 chitosan oligosaccharide were sampled after 0, 3, 12, and 24 h of cold stress for transcriptome analysis, with distilled water as a control. The numbers of differentially expressed genes in the four comparison groups were 656, 1274, 1122, and 957, respectively. GO functional annotation suggested that these genes were mainly involved in “voltage-gated calcium channel activity”, “carbohydrate metabolic process”, “jasmonic acid biosynthetic”, and “auxin response” biological processes. KEGG enrichment analysis indicated that these genes performed important functions in “phenylpropanoid biosynthesis”, “MAPK signaling pathway—plant”, “phenylalanine metabolism”, and “plant hormone signal transduction.” These findings provide a theoretical basis for the use of COS to alleviate the damage caused by cold stress in plant growth and development.
Collapse
|
23
|
Friero I, Larriba E, Martínez-Melgarejo PA, Justamante MS, Alarcón MV, Albacete A, Salguero J, Pérez-Pérez JM. Transcriptomic and hormonal analysis of the roots of maize seedlings grown hydroponically at low temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111525. [PMID: 36328179 DOI: 10.1016/j.plantsci.2022.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Prolonged cold stress has a strong effect on plant growth and development, especially in subtropical crops such as maize. Soil temperature limits primary root elongation, mainly during early seedling establishment. However, little is known about how moderate temperature fluctuations affect root growth at the molecular and physiological levels. We have studied root tips of young maize seedlings grown hydroponically at 30 ºC and after a short period (up to 24 h) of moderate cooling (20 ºC). We found that both cell division and cell elongation in the root apical meristem are affected by temperature. Time-course analyses of hormonal and transcriptomic profiles were achieved after temperature reduction from 30 ºC to 20 ºC. Our results highlighted a complex regulation of endogenous pathways leading to adaptive root responses to moderate cooling conditions.
Collapse
Affiliation(s)
- Iván Friero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, 06006 Badajoz, Spain.
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.
| | | | | | - M Victoria Alarcón
- Área de Agronomía de Cultivos Leñosos y Hortícolas, Instituto de Investigaciones Agrarias "La Orden-Valdesequera" (CICYTEX), Junta de Extremadura, 06187 Badajoz, Spain.
| | - Alfonso Albacete
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Julio Salguero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, 06006 Badajoz, Spain.
| | | |
Collapse
|