1
|
Eun SH, Noh SH, Lee MG. Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:435-447. [PMID: 39198224 PMCID: PMC11362002 DOI: 10.4196/kjpp.2024.28.5.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 09/01/2024]
Abstract
Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum- to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgimediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.
Collapse
Affiliation(s)
- Sung Ho Eun
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
2
|
Dzaki N, Alenius M. A cilia-bound unconventional secretory pathway for Drosophila odorant receptors. BMC Biol 2024; 22:84. [PMID: 38610043 PMCID: PMC11015608 DOI: 10.1186/s12915-024-01877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Post-translational transport is a vital process which ensures that each protein reaches its site of function. Though most do so via an ordered ER-to-Golgi route, an increasing number of proteins are now shown to bypass this conventional secretory pathway. RESULTS In the Drosophila olfactory sensory neurons (OSNs), odorant receptors (ORs) are trafficked from the ER towards the cilia. Here, we show that Or22a, a receptor of various esters and alcoholic compounds, reaches the cilia partially through unconventional means. Or22a frequently present as puncta at the somatic cell body exit and within the dendrite prior to the cilia base. These rarely coincide with markers of either the intermediary ER-Golgi-intermediate-compartment (ERGIC) or Golgi structures. ERGIC and Golgi also displayed axonal localization biases, a further indication that at least some measure of OR transport may occur independently of their involvement. Additionally, neither the loss of several COPII genes involved in anterograde trafficking nor ERGIC itself affected puncta formation or Or22a transport to the cilium. Instead, we observed the consistent colocalization of Or22a puncta with Grasp65, the sole Drosophila homolog of mammalian GRASP55/Grh1, a marker of the unconventional pathway. The numbers of both Or22a and Grasp65-positive puncta were furthermore increased upon nutritional starvation, a condition known to enhance Golgi-bypassing secretory activity. CONCLUSIONS Our results demonstrate an alternative route of Or22a transport, thus expanding the repertoire of unconventional secretion mechanisms in neurons.
Collapse
Affiliation(s)
- Najat Dzaki
- Department of Molecular Biology, Umeå University, Umeå, 901 87, SE, Sweden
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, Umeå, 901 87, SE, Sweden.
| |
Collapse
|
3
|
Farinha CM, Santos L, Ferreira JF. Cell type-specific regulation of CFTR trafficking-on the verge of progress. Front Cell Dev Biol 2024; 12:1338892. [PMID: 38505263 PMCID: PMC10949533 DOI: 10.3389/fcell.2024.1338892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Trafficking of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is a complex process that starts with its biosynthesis and folding in the endoplasmic reticulum. Exit from the endoplasmic reticulum (ER) is coupled with the acquisition of a compact structure that can be processed and traffic through the secretory pathway. Once reaching its final destination-the plasma membrane, CFTR stability is regulated through interaction with multiple protein partners that are involved in its post-translation modification, connecting the channel to several signaling pathways. The complexity of the process is further boosted when analyzed in the context of the airway epithelium. Recent advances have characterized in detail the different cell types that compose the surface epithelium and shifted the paradigm on which cells express CFTR and on their individual and combined contribution to the total expression (and function) of this chloride/bicarbonate channel. Here we review CFTR trafficking and its relationship with the knowledge on the different cell types of the airway epithelia. We explore the crosstalk between these two areas and discuss what is still to be clarified and how this can be used to develop more targeted therapies for CF.
Collapse
Affiliation(s)
- Carlos M. Farinha
- Faculty of Sciences, BioISI—Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
4
|
Zhao SS, Qian Q, Chen XX, Lu Q, Xing G, Qiao S, Li R, Zhang G. Porcine reproductive and respiratory syndrome virus triggers Golgi apparatus fragmentation-mediated autophagy to facilitate viral self-replication. J Virol 2024; 98:e0184223. [PMID: 38179942 PMCID: PMC10878038 DOI: 10.1128/jvi.01842-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Macroautophagy/autophagy is a cellular degradation and recycling process that maintains the homeostasis of organisms. A growing number of studies have reported that autophagy participates in infection by a variety of viruses. Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe financial losses to the global swine industry. Although much research has shown that PRRSV triggers autophagy for its own benefits, the exact molecular mechanisms involved in PRRSV-triggered autophagy remain to be fully elucidated. In the current study, we demonstrated that PRRSV infection significantly induced Golgi apparatus (GA) fragmentation, which promoted autophagy to facilitate viral self-replication. Mechanistically, PRRSV nonstructural protein 2 was identified to interact with and degrade the Golgi reassembly and stacking protein 65 dependent on its papain-like cysteine protease 2 activity, resulting in GA fragmentation. Upon GA fragmentation, GA-resident Ras-like protein in brain 2 was disassociated from Golgi matrix protein 130 and subsequently bound to unc-51 like autophagy activating kinase 1 (ULK1), which enhanced phosphorylation of ULK1 and promoted autophagy. Taken together, all these results expand the knowledge of PRRSV-triggered autophagy as well as PRRSV pathogenesis to support novel potential avenues for prevention and control of the virus. More importantly, these results provide the detailed mechanism of GA fragmentation-mediated autophagy, deepening the understanding of autophagic processes.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious swine disease affecting pig farming worldwide. Despite that numerous studies have shown that PRRSV triggers autophagy for its self-replication, how PRRSV induces autophagy is incompletely understood. Here, we identify that PRRSV Nsp2 degrades GRASP65 to induce GA fragmentation, which dissociates RAB2 from GM130 and activates RAB2-ULK1-mediated autophagy to enhance viral replication. This work expands our understanding of PRRSV-induced autophagy and PRRSV replication, which is beneficial for anti-viral drug development.
Collapse
Affiliation(s)
- Shuang-shuang Zhao
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Qisheng Qian
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xin-xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Kava E, Garbelotti CV, Lopes JLS, Costa-Filho AJ. Myristoylated GRASP55 dimerizes in the presence of model membranes. J Biomol Struct Dyn 2024:1-12. [PMID: 38361284 DOI: 10.1080/07391102.2024.2317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The Golgi Reassembly and Stacking Proteins (GRASPs) are engaged in various functions within the cell, both in unconventional secretion mechanisms and structuring and organizing the Golgi apparatus. Understanding their specific role in each situation still requires more structural and functional data at the molecular level. GRASP55 is one of the GRASP members in mammals, anchored to the membrane via the myristoylation of a Gly residue at its N-terminus. Therefore, co-translational modifications, such as myristoylation, are fundamental when considering a strategy to obtain detailed information on the interactions between GRASP55 and membranes. Despite its functional relevance, the N-terminal myristoylation has been underappreciated in the studies reported to date, compromising the previously proposed models for GRASP-membrane interactions. Here, we investigated the synergy between the presence of the membrane and the formation of oligomeric structures of myristoylated GRASP55, using a series of biophysical techniques to perform the structural characterization of the lipidated GRASP55 and its interaction with biological lipid model membranes. Our data fulfill an unexplored gap: the adequate evaluation of the presence of lipidations and lipid membranes on the structure-function dyad of GRASPs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emanuel Kava
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina V Garbelotti
- Laboratório de Fisiologia Ecológica de Plantas, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Luiz S Lopes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Mohan AG, Calenic B, Ghiurau NA, Duncea-Borca RM, Constantinescu AE, Constantinescu I. The Golgi Apparatus: A Voyage through Time, Structure, Function and Implication in Neurodegenerative Disorders. Cells 2023; 12:1972. [PMID: 37566051 PMCID: PMC10417163 DOI: 10.3390/cells12151972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
This comprehensive review article dives deep into the Golgi apparatus, an essential organelle in cellular biology. Beginning with its discovery during the 19th century until today's recognition as an important contributor to cell function. We explore its unique organization and structure as well as its roles in protein processing, sorting, and lipid biogenesis, which play key roles in maintaining homeostasis in cellular biology. This article further explores Golgi biogenesis, exploring its intricate processes and dynamics that contribute to its formation and function. One key focus is its role in neurodegenerative diseases like Parkinson's, where changes to the structure or function of the Golgi apparatus may lead to their onset or progression, emphasizing its key importance in neuronal health. At the same time, we examine the intriguing relationship between Golgi stress and endoplasmic reticulum (ER) stress, providing insights into their interplay as two major cellular stress response pathways. Such interdependence provides a greater understanding of cellular reactions to protein misfolding and accumulation, hallmark features of many neurodegenerative diseases. In summary, this review offers an exhaustive examination of the Golgi apparatus, from its historical background to its role in health and disease. Additionally, this examination emphasizes the necessity of further research in this field in order to develop targeted therapeutic approaches for Golgi dysfunction-associated conditions. Furthermore, its exploration is an example of scientific progress while simultaneously offering hope for developing innovative treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania;
- Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Nicu Adrian Ghiurau
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410610 Oradea, Romania;
| | | | | | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
7
|
Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells 2023; 12:1396. [PMID: 37408229 PMCID: PMC10216988 DOI: 10.3390/cells12101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.
Collapse
|
8
|
Bacalhau M, Ferreira FC, Kmit A, Souza FR, da Silva VD, Pimentel AS, Amaral MD, Buarque CD, Lopes-Pacheco M. Identification of novel F508del-CFTR traffic correctors among triazole derivatives. Eur J Pharmacol 2022; 938:175396. [PMID: 36410419 DOI: 10.1016/j.ejphar.2022.175396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The most prevalent cystic fibrosis (CF)-causing mutation - F508del - impairs the folding of CFTR protein, resulting in its defective trafficking and premature degradation. Small molecules termed correctors may rescue F508del-CFTR and therefore constitute promising pharmacotherapies acting on the fundamental cause of the disease. Here, we screened a collection of triazole compounds to identify novel F508del-CFTR correctors. The functional primary screen identified four hit compounds (LSO-18, LSO-24, LSO-28, and LSO-39), which were further validated and demonstrated to rescue F508del-CFTR processing, plasma membrane trafficking, and function. To interrogate their mechanism of action (MoA), we examined their additivity to the clinically approved drugs VX-661 and VX-445, low temperature, and genetic revertants of F508del-CFTR. Rescue of F508del-CFTR processing and function by LSO-18, LSO-24, and LSO-28, but not by LSO-39, was additive to VX-661, whereas LSO-28 and LSO-39, but not LSO-18 nor LSO-24, were additive to VX-445. All compounds under investigation demonstrated additive rescue of F508del-CFTR processing and function to low temperature as well as to rescue by genetic revertants G550E and 4RK. Nevertheless, none of these compounds was able to rescue processing nor function of DD/AA-CFTR, and LSO-39 (similarly to VX-661) exhibited no additivity to genetic revertant R1070W. From these findings, we suggest that LSO-39 (like VX-661) has a putative binding site at the NBD1:ICL4 interface, LSO-18 and LSO-24 seem to share the MoA with VX-445, and LSO-28 appears to act by a different MoA. Altogether, these findings represent an encouraging starting point to further exploit this chemical series for the development of novel CFTR correctors.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Filipa C Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Arthur Kmit
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Felipe R Souza
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Verônica D da Silva
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - André S Pimentel
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Camilla D Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
9
|
Choi W, Kang S, Kim J. New insights into the role of the Golgi apparatus in the pathogenesis and therapeutics of human diseases. Arch Pharm Res 2022; 45:671-692. [PMID: 36178581 DOI: 10.1007/s12272-022-01408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
The Golgi apparatus is an essential cellular organelle that mediates homeostatic functions, including vesicle trafficking and the post-translational modification of macromolecules. Its unique stacked structure and dynamic functions are tightly regulated, and several Golgi proteins play key roles in the functioning of unconventional protein secretory pathways triggered by cellular stress responses. Recently, an increasing number of studies have implicated defects in Golgi functioning in human diseases such as cancer, neurodegenerative, and immunological disorders. Understanding the extraordinary characteristics of Golgi proteins is important for elucidating its associated intracellular signaling mechanisms and has important ramifications for human health. Therefore, analyzing the mechanisms by which the Golgi participates in disease pathogenesis may be useful for developing novel therapeutic strategies. This review articulates the structural features and abnormalities of the Golgi apparatus reported in various diseases and the suspected mechanisms underlying the Golgi-associated pathologies. Furthermore, we review the potential therapeutic strategies based on Golgi function.
Collapse
Affiliation(s)
- Wooseon Choi
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Shinwon Kang
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
10
|
Crouch EE, Bhaduri A, Andrews MG, Cebrian-Silla A, Diafos LN, Birrueta JO, Wedderburn-Pugh K, Valenzuela EJ, Bennett NK, Eze UC, Sandoval-Espinosa C, Chen J, Mora C, Ross JM, Howard CE, Gonzalez-Granero S, Lozano JF, Vento M, Haeussler M, Paredes MF, Nakamura K, Garcia-Verdugo JM, Alvarez-Buylla A, Kriegstein AR, Huang EJ. Ensembles of endothelial and mural cells promote angiogenesis in prenatal human brain. Cell 2022; 185:3753-3769.e18. [PMID: 36179668 PMCID: PMC9550196 DOI: 10.1016/j.cell.2022.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.
Collapse
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Madeline G Andrews
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arantxa Cebrian-Silla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Loukas N Diafos
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kaylee Wedderburn-Pugh
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edward J Valenzuela
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Neal K Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ugomma C Eze
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carmen Sandoval-Espinosa
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jiapei Chen
- Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cristina Mora
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jayden M Ross
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare E Howard
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susana Gonzalez-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y 21 Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red 22 sobre Enfermedades Neurodegenerativas, Valencia, Spain
| | - Jaime Ferrer Lozano
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Maximilian Haeussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mercedes F Paredes
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ken Nakamura
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y 21 Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red 22 sobre Enfermedades Neurodegenerativas, Valencia, Spain
| | - Arturo Alvarez-Buylla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric J Huang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental & Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA; Pathology Service 113B, San Francisco Veterans Affairs Healthcare System, San Francisco, CA 94121, USA.
| |
Collapse
|
11
|
Park H, Seo SK, Sim J, Hwang SJ, Kim YJ, Shin DH, Jang DG, Noh SH, Park P, Ko SH, Shin MH, Choi JY, Ito Y, Kang C, Lee JM, Lee MG. TMED3 Complex Mediates ER Stress-Associated Secretion of CFTR, Pendrin, and SARS-CoV-2 Spike. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105320. [PMID: 35748162 PMCID: PMC9350134 DOI: 10.1002/advs.202105320] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/06/2022] [Indexed: 05/13/2023]
Abstract
Under ER stress conditions, the ER form of transmembrane proteins can reach the plasma membrane via a Golgi-independent unconventional protein secretion (UPS) pathway. However, the targeting mechanisms of membrane proteins for UPS are unknown. Here, this study reports that TMED proteins play a critical role in the ER stress-associated UPS of transmembrane proteins. The gene silencing results reveal that TMED2, TMED3, TMED9 and TMED10 are involved in the UPS of transmembrane proteins, such as CFTR, pendrin and SARS-CoV-2 Spike. Subsequent mechanistic analyses indicate that TMED3 recognizes the ER core-glycosylated protein cargos and that the heteromeric TMED2/3/9/10 complex mediates their UPS. Co-expression of all four TMEDs improves, while each single expression reduces, the UPS and ion transport function of trafficking-deficient ΔF508-CFTR and p.H723R-pendrin, which cause cystic fibrosis and Pendred syndrome, respectively. In contrast, TMED2/3/9/10 silencing reduces SARS-CoV-2 viral release. These results provide evidence for a common role of TMED3 and related TMEDs in the ER stress-associated, Golgi-independent secretion of transmembrane proteins.
Collapse
Affiliation(s)
- Hak Park
- Department of PharmacologySeverance Biomedical Science InstituteYonsei University College of MedicineSeoul03722Korea
- Department of Laboratory MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Korea
| | - Soo Kyung Seo
- Department of PharmacologySeverance Biomedical Science InstituteYonsei University College of MedicineSeoul03722Korea
- Graduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoul03722Korea
| | - Ju‐Ri Sim
- Department of PharmacologySeverance Biomedical Science InstituteYonsei University College of MedicineSeoul03722Korea
- Graduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoul03722Korea
| | - Su Jin Hwang
- Graduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoul03722Korea
- Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesYonsei University College of MedicineSeoul03722Korea
| | - Ye Jin Kim
- Department of PharmacologySeverance Biomedical Science InstituteYonsei University College of MedicineSeoul03722Korea
- Graduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoul03722Korea
| | - Dong Hoon Shin
- Department of PharmacologySeverance Biomedical Science InstituteYonsei University College of MedicineSeoul03722Korea
| | - Dong Geon Jang
- Department of PharmacologySeverance Biomedical Science InstituteYonsei University College of MedicineSeoul03722Korea
- Graduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoul03722Korea
| | - Shin Hye Noh
- Department of PharmacologySeverance Biomedical Science InstituteYonsei University College of MedicineSeoul03722Korea
| | - Pil‐Gu Park
- Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesYonsei University College of MedicineSeoul03722Korea
| | - Si Hwan Ko
- Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesYonsei University College of MedicineSeoul03722Korea
| | - Mi Hwa Shin
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoul03722Korea
| | - Jae Young Choi
- Department of OtorhinolaryngologyYonsei University College of MedicineSeoul03722Korea
| | - Yukishige Ito
- Cluster for Pioneering ResearchRIKENWakoSaitama351‐0198Japan
- Graduate School of ScienceOsaka UniversityToyonakaOsaka560‐0043Japan
| | - Chung‐Min Kang
- Department of Pediatric DentistryCollege of DentistryYonsei UniversitySeoul03722Korea
| | - Jae Myun Lee
- Graduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoul03722Korea
- Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesYonsei University College of MedicineSeoul03722Korea
| | - Min Goo Lee
- Department of PharmacologySeverance Biomedical Science InstituteYonsei University College of MedicineSeoul03722Korea
- Graduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoul03722Korea
| |
Collapse
|
12
|
Ahat E, Bui S, Zhang J, da Veiga Leprevost F, Sharkey L, Reid W, Nesvizhskii AI, Paulson HL, Wang Y. GRASP55 regulates the unconventional secretion and aggregation of mutant huntingtin. J Biol Chem 2022; 298:102219. [PMID: 35780830 PMCID: PMC9352920 DOI: 10.1016/j.jbc.2022.102219] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies demonstrated that the Golgi reassembly stacking proteins (GRASPs), especially GRASP55, regulate Golgi-independent unconventional secretion of certain cytosolic and transmembrane cargoes; however, the underlying mechanism remains unknown. Here, we surveyed several neurodegenerative disease-related proteins, including mutant huntingtin (Htt-Q74), superoxide dismutase 1 (SOD1), tau, and TAR DNA-binding protein 43 (TDP-43), for unconventional secretion; our results show that Htt-Q74 is most robustly secreted in a GRASP55-dependent manner. Using Htt-Q74 as a model system, we demonstrate that unconventional secretion of Htt is GRASP55 and autophagy dependent and is enhanced under stress conditions such as starvation and endoplasmic reticulum stress. Mechanistically, we show that GRASP55 facilitates Htt secretion by tethering autophagosomes to lysosomes to promote autophagosome maturation and subsequent lysosome secretion and by stabilizing p23/TMED10, a channel for translocation of cytoplasmic proteins into the lumen of the endoplasmic reticulum-Golgi intermediate compartment. Moreover, we found that GRASP55 levels are upregulated by various stresses to facilitate unconventional secretion, whereas inhibition of Htt-Q74 secretion by GRASP55 KO enhances Htt aggregation and toxicity. Finally, comprehensive secretomic analysis identified novel cytosolic cargoes secreted by the same unconventional pathway, including transgelin (TAGLN), multifunctional protein ADE2 (PAICS), and peroxiredoxin-1 (PRDX1). In conclusion, this study defines the pathway of GRASP55-mediated unconventional protein secretion and provides important insights into the progression of Huntington's disease.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Lisa Sharkey
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Whitney Reid
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry L. Paulson
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
13
|
Iglesia RP, Prado MB, Alves RN, Escobar MIM, Fernandes CFDL, Fortes ACDS, Souza MCDS, Boccacino JM, Cangiano G, Soares SR, de Araújo JPA, Tiek DM, Goenka A, Song X, Keady JR, Hu B, Cheng SY, Lopes MH. Unconventional Protein Secretion in Brain Tumors Biology: Enlightening the Mechanisms for Tumor Survival and Progression. Front Cell Dev Biol 2022; 10:907423. [PMID: 35784465 PMCID: PMC9242006 DOI: 10.3389/fcell.2022.907423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Non-canonical secretion pathways, collectively known as unconventional protein secretion (UPS), are alternative secretory mechanisms usually associated with stress-inducing conditions. UPS allows proteins that lack a signal peptide to be secreted, avoiding the conventional endoplasmic reticulum-Golgi complex secretory pathway. Molecules that generally rely on the canonical pathway to be secreted may also use the Golgi bypass, one of the unconventional routes, to reach the extracellular space. UPS studies have been increasingly growing in the literature, including its implication in the biology of several diseases. Intercellular communication between brain tumor cells and the tumor microenvironment is orchestrated by various molecules, including canonical and non-canonical secreted proteins that modulate tumor growth, proliferation, and invasion. Adult brain tumors such as gliomas, which are aggressive and fatal cancers with a dismal prognosis, could exploit UPS mechanisms to communicate with their microenvironment. Herein, we provide functional insights into the UPS machinery in the context of tumor biology, with a particular focus on the secreted proteins by alternative routes as key regulators in the maintenance of brain tumors.
Collapse
Affiliation(s)
- Rebeca Piatniczka Iglesia
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mariana Brandão Prado
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Nunes Alves
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Melo Escobar
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Felix de Lima Fernandes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ailine Cibele dos Santos Fortes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Clara da Silva Souza
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Marcia Boccacino
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanni Cangiano
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samuel Ribeiro Soares
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Pedro Alves de Araújo
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deanna Marie Tiek
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Anshika Goenka
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xiao Song
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jack Ryan Keady
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bo Hu
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shi Yuan Cheng
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Marilene Hohmuth Lopes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Marilene Hohmuth Lopes,
| |
Collapse
|
14
|
Noh SH, Kim YJ, Lee MG. Autophagy-Related Pathways in Vesicular Unconventional Protein Secretion. Front Cell Dev Biol 2022; 10:892450. [PMID: 35774225 PMCID: PMC9237382 DOI: 10.3389/fcell.2022.892450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular proteins directed to the plasma membrane or released into the extracellular space can undergo a number of different pathways. Whereas the molecular mechanisms that underlie conventional ER-to-Golgi trafficking are well established, those associated with the unconventional protein secretion (UPS) pathways remain largely elusive. A pathway with an emerging role in UPS is autophagy. Although originally known as a degradative process for maintaining intracellular homeostasis, recent studies suggest that autophagy has diverse biological roles besides its disposal function and that it is mechanistically involved in the UPS of various secretory cargos including both leaderless soluble and Golgi-bypassing transmembrane proteins. Here, we summarize current knowledge of the autophagy-related UPS pathways, describing and comparing diverse features in the autophagy-related UPS cargos and autophagy machineries utilized in UPS. Additionally, we also suggest potential directions that further research in this field can take.
Collapse
Affiliation(s)
- Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ye Jin Kim
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Goo Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Wang X, Li X, Wang J, Wang J, Hu C, Zeng J, Shi A, Lin L. SMGL-1/NBAS acts as a RAB-8 GEF to regulate unconventional protein secretion. J Cell Biol 2022; 221:213235. [PMID: 35604368 PMCID: PMC9129922 DOI: 10.1083/jcb.202111125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 01/07/2023] Open
Abstract
Unconventional protein secretion (UPS) pathways are conserved across species. However, the underlying mechanisms that regulate Golgi-bypassing UPS of integral proteins remain elusive. In this study, we show that RAB-8 and SMGL-1/NBAS are required for the UPS of integral proteins in C. elegans intestine. SMGL-1 resides in the ER-Golgi intermediate compartment and adjacent RAB-8-positive structures, and NRZ complex component CZW-1/ZW10 is required for this residency. Notably, SMGL-1 acts as a guanine nucleotide exchange factor for RAB-8, ensuring UPS of integral proteins by driving the activation of RAB-8. Furthermore, we show that Pseudomonas aeruginosa infection elevated the expression of SMGL-1 and RAB-8. Loss of SMGL-1 or RAB-8 compromised resistance to environmental colchicine, arsenite, and pathogenic bacteria. These results suggest that the SMGL-1/RAB-8-mediated UPS could integrate environmental signals to serve as a host defense response. Together, by establishing the C. elegans intestine as a multicellular model, our findings provide insights into RAB-8-dependent Golgi-bypassing UPS, especially in the context of epithelia in vivo.
Collapse
Affiliation(s)
- Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinxin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junkai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Zeng
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Correspondence to Anbing Shi:
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,Long Lin:
| |
Collapse
|
16
|
Pothukuchi P, Agliarulo I, Pirozzi M, Rizzo R, Russo D, Turacchio G, Nüchel J, Yang JS, Gehin C, Capolupo L, Hernandez-Corbacho MJ, Biswas A, Vanacore G, Dathan N, Nitta T, Henklein P, Thattai M, Inokuchi JI, Hsu VW, Plomann M, Obeid LM, Hannun YA, Luini A, D'Angelo G, Parashuraman S. GRASP55 regulates intra-Golgi localization of glycosylation enzymes to control glycosphingolipid biosynthesis. EMBO J 2021; 40:e107766. [PMID: 34516001 PMCID: PMC8521277 DOI: 10.15252/embj.2021107766] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis‐trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI‐based retrograde transport vesicles, thus concentrating them in the trans‐Golgi. In genome‐edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis‐Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Marinella Pirozzi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Gabriele Turacchio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Julian Nüchel
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte Gehin
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Capolupo
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Ansuman Biswas
- National Center of Biological Sciences, Bengaluru, India
| | - Giovanna Vanacore
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Nina Dathan
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Petra Henklein
- Universitätsmedizin Berlin Institut für Biochemie Charité CrossOver Charitéplatz 1 / Sitz, Berlin, Germany
| | - Mukund Thattai
- National Center of Biological Sciences, Bengaluru, India
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Markus Plomann
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Lina M Obeid
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Giovanni D'Angelo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
17
|
Kava E, Mendes LFS, Batista MRB, Costa-Filho AJ. Myristoylation and its effects on the human Golgi Reassembly and Stacking Protein 55. Biophys Chem 2021; 279:106690. [PMID: 34600312 DOI: 10.1016/j.bpc.2021.106690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
GRASP55 is a myristoylated protein localized in the medial/trans-Golgi faces and involved in the Golgi structure maintenance and the regulation of unconventional secretion pathways. It is believed that GRASP55 achieves its main functionalities in the Golgi organization by acting as a tethering factor. When bound to the lipid bilayer, its orientation relative to the membrane surface is restricted to determine its proper trans-oligomerization. Despite the paramount role of myristoylation in GRASP function, the impact of such protein modification on the membrane-anchoring properties and the structural organization of GRASP remains elusive. Here, an optimized protocol for the myristoylation in E. coli of the membrane-anchoring domain of GRASP55 is presented. The biophysical properties of the myristoylated/non-myristoylated GRASP55 GRASP domain were characterized in a membrane-mimicking micellar environment. Although myristoylation did not cause any impact on the protein's secondary structure, according to our circular dichroism data, it had a significant impact on the protein's thermal stability and solubility. Electrophoresis of negatively charged liposomes incubated with the two GRASP55 constructions showed different electrophoretic mobility for the myristoylated anchored protein only, thus demonstrating that myristoylation is essential for the biological membrane anchoring. Molecular dynamics simulations were used to further explore the anchoring process in determining the restricted orientation of GRASPs in the membrane.
Collapse
Affiliation(s)
- Emanuel Kava
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis F S Mendes
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| | - Mariana R B Batista
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio J Costa-Filho
- Molecular Biophysics Laboratory, Ribeirão Preto School of Philosophy, Sciences and Literature, Physics Department, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
18
|
Pachikov AN, Gough RR, Christy CE, Morris ME, Casey CA, LaGrange CA, Bhat G, Kubyshkin AV, Fomochkina II, Zyablitskaya EY, Makalish TP, Golubinskaya EP, Davydenko KA, Eremenko SN, Riethoven JJM, Maroli AS, Payne TS, Powers R, Lushnikov AY, Macke AJ, Petrosyan A. The non-canonical mechanism of ER stress-mediated progression of prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:289. [PMID: 34521429 PMCID: PMC8439065 DOI: 10.1186/s13046-021-02066-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/08/2021] [Indexed: 01/12/2023]
Abstract
Background The development of persistent endoplasmic reticulum (ER) stress is one of the cornerstones of prostate carcinogenesis; however, the mechanism is missing. Also, alcohol is a physiological ER stress inducer, and the link between alcoholism and progression of prostate cancer (PCa) is well documented but not well characterized. According to the canonical model, the mediator of ER stress, ATF6, is cleaved sequentially in the Golgi by S1P and S2P proteases; thereafter, the genes responsible for unfolded protein response (UPR) undergo transactivation. Methods Cell lines used were non-malignant prostate epithelial RWPE-1 cells, androgen-responsive LNCaP, and 22RV1 cells, as well as androgen-refractory PC-3 cells. We also utilized PCa tissue sections from patients with different Gleason scores and alcohol consumption backgrounds. Several sophisticated approaches were employed, including Structured illumination superresolution microscopy, Proximity ligation assay, Atomic force microscopy, and Nuclear magnetic resonance spectroscopy. Results Herein, we identified the trans-Golgi matrix dimeric protein GCC185 as a Golgi retention partner for both S1P and S2P, and in cells lacking GCC185, these enzymes lose intra-Golgi situation. Progression of prostate cancer (PCa) is associated with overproduction of S1P and S2P but monomerization of GCC185 and its downregulation. Utilizing different ER stress models, including ethanol administration, we found that PCa cells employ an elegant mechanism that auto-activates ER stress by fragmentation of Golgi, translocation of S1P and S2P from Golgi to ER, followed by intra-ER cleavage of ATF6, accelerated UPR, and cell proliferation. The segregation of S1P and S2P from Golgi and activation of ATF6 are positively correlated with androgen receptor signaling, different disease stages, and alcohol consumption. Finally, depletion of ATF6 significantly retarded the growth of xenograft prostate tumors and blocks production of pro-metastatic metabolites. Conclusions We found that progression of PCa associates with translocation of S1P and S2P proteases to the ER and subsequent ATF6 cleavage. This obviates the need for ATF6 transport to the Golgi and enhances UPR and cell proliferation. Thus, we provide the novel mechanistic model of ATF6 activation and ER stress implication in the progression of PCa, suggesting ATF6 is a novel promising target for prostate cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02066-7.
Collapse
Affiliation(s)
- Artem N Pachikov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE, 68198, USA
| | - Ryan R Gough
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE, 68198, USA.,Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, 68105, USA
| | - Caroline E Christy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mary E Morris
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Carol A Casey
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, 68105, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Chad A LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ganapati Bhat
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, 560078, India
| | - Anatoly V Kubyshkin
- Department of Pathological Physiology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Iryna I Fomochkina
- Department of Pathological Physiology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Evgeniya Y Zyablitskaya
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Tatiana P Makalish
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Elena P Golubinskaya
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Kateryna A Davydenko
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Sergey N Eremenko
- Saint Luc's Clinique, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Jean-Jack M Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amith S Maroli
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Thomas S Payne
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert Powers
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Alexander Y Lushnikov
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Amanda J Macke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,The Fred and Pamela Buffett Cancer Center, Omaha, NE, 68198, USA. .,Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, 68105, USA.
| |
Collapse
|
19
|
Tan X, Shi L, Banerjee P, Liu X, Guo HF, Yu J, Bota-Rabassedas N, Rodriguez BL, Gibbons DL, Russell WK, Creighton CJ, Kurie JM. A protumorigenic secretory pathway activated by p53 deficiency in lung adenocarcinoma. J Clin Invest 2021; 131:137186. [PMID: 32931483 DOI: 10.1172/jci137186] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Therapeutic strategies designed to target TP53-deficient cancer cells remain elusive. Here, we showed that TP53 loss initiated a pharmacologically actionable secretory process that drove lung adenocarcinoma (LUAD) progression. Molecular, biochemical, and cell biological studies showed that TP53 loss increased the expression of Golgi reassembly and stacking protein 55 kDa (G55), a Golgi stacking protein that maintains Golgi organelle integrity and is part of a GOLGIN45 (G45)-myosin IIA-containing protein complex that activates secretory vesicle biogenesis in the Golgi. TP53 loss activated G55-dependent secretion by relieving G55 and myosin IIA from miR-34a-dependent silencing. G55-dependent secreted proteins enhanced the proliferative and invasive activities of TP53-deficient LUAD cells and promoted angiogenesis and CD8+ T cell exhaustion in the tumor microenvironment. A small molecule that blocks G55-G45 interactions impaired secretion and reduced TP53-deficient LUAD growth and metastasis. These results identified a targetable secretory vulnerability in TP53-deficient LUAD cells.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
Bunz M, Ritter M, Schindler M. HCV egress - unconventional secretion of assembled viral particles. Trends Microbiol 2021; 30:364-378. [PMID: 34483048 DOI: 10.1016/j.tim.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
It is believed that hepatitis C virus (HCV) particles are released through the canonical secretory route: from the endoplasmic reticulum (ER), via the Golgi, to the plasma membrane. While the Golgi is important for HCV release per se, its direct involvement in the trafficking of assembled virions has not yet been established. In fact, data from studies analyzing HCV egress are compatible with several potential pathways of HCV secretion. Here, we summarize and discuss the current knowledge related to the HCV export pathway. Apart from the prototypical anterograde transport, possible routes of HCV release include ER-to-endosomal transport, secretory autophagy, and poorly described mechanisms of unconventional protein secretion. Studying HCV egress promises to shed light on unconventional cellular trafficking and secretory routes.
Collapse
Affiliation(s)
- Maximilian Bunz
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ritter
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
22
|
Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection. Cell Death Differ 2021; 28:2957-2969. [PMID: 34285384 PMCID: PMC8481228 DOI: 10.1038/s41418-021-00830-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022] Open
Abstract
SidE family of Legionella effectors catalyze non-canonical phosphoribosyl-linked ubiquitination (PR-ubiquitination) of host proteins during bacterial infection. SdeA localizes predominantly to ER and partially to the Golgi apparatus, and mediates serine ubiquitination of multiple ER and Golgi proteins. Here we show that SdeA causes disruption of Golgi integrity due to its ubiquitin ligase activity. The Golgi linking proteins GRASP55 and GRASP65 are PR-ubiquitinated on multiple serine residues, thus preventing their ability to cluster and form oligomeric structures. In addition, we found that the functional consequence of Golgi disruption is not linked to the recruitment of Golgi membranes to the growing Legionella-containing vacuoles. Instead, it affects the host secretory pathway. Taken together, our study sheds light on the Golgi manipulation strategy by which Legionella hijacks the secretory pathway and promotes bacterial infection.
Collapse
|
23
|
Nüchel J, Tauber M, Nolte JL, Mörgelin M, Türk C, Eckes B, Demetriades C, Plomann M. An mTORC1-GRASP55 signaling axis controls unconventional secretion to reshape the extracellular proteome upon stress. Mol Cell 2021; 81:3275-3293.e12. [PMID: 34245671 PMCID: PMC8382303 DOI: 10.1016/j.molcel.2021.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 01/13/2023]
Abstract
Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress. mTORC1 phosphorylates GRASP55 directly at the Golgi in non-stressed cells mTORC1 inactivation by stress leads to GRASP55 dephosphorylation and relocalization GRASP55 relocalization to autophagosomes and MVBs drives UPS of selected cargo mTORC1-GRASP55 link cellular stress to changes in the extracellular proteome via UPS
Collapse
Affiliation(s)
- Julian Nüchel
- Max Planck Institute for Biology of Ageing (MPI-AGE), 50931 Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Biochemistry, 50931 Cologne, Germany
| | - Marina Tauber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Biochemistry, 50931 Cologne, Germany
| | - Janica L Nolte
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | | | - Clara Türk
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Beate Eckes
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Matrix Biology, 50931 Cologne, Germany
| | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), 50931 Cologne, Germany; University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany.
| | - Markus Plomann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Biochemistry, 50931 Cologne, Germany.
| |
Collapse
|
24
|
Li S, Liao Z, Luo R, Song Y, Wang K, Feng X, Ou Y, Wu X, Zhang Y, Gao Y, Yin H, Yang C. Autophagy-Based Unconventional Secretory for AIM2 Inflammasome Drives DNA Damage Resistance During Intervertebral Disc Degeneration. Front Cell Dev Biol 2021; 9:672847. [PMID: 34239872 PMCID: PMC8258158 DOI: 10.3389/fcell.2021.672847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the primary cause of low back pain. Stress-induced DNA damage is closely relevant to the pathogenesis of IDD; however, the underlying mechanisms remain unclear. This study investigated the role of the absent in melanoma 2 (AIM2) inflammasome as a DNA damage sensor in nucleus pulposus (NP) cells. We found that the level of AIM2 increased in degenerated discs and was correlated to the degree of IDD. Knockdown of AIM2 ameliorated H2O2-induced DNA damage and apoptosis in NP cells in vitro, and retarded the progression of IDD in vivo. Furthermore, the induction of autophagy protected against cellular DNA damage via the unconventional secretion of AIM2. We further identified the Golgi re-assembly and stacking protein 55 (GRASP55) as mediator of the transport and secretion of AIM2 via an autophagic pathway. Taken together, our researches illustrate the role and regulatory mechanism of the AIM2 inflammasome during IDD. Targeting the AIM2 inflammasome may offer a promising therapeutic strategy for patients with IDD.
Collapse
Affiliation(s)
- Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangliu Ou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huipeng Yin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Balmer EA, Faso C. The Road Less Traveled? Unconventional Protein Secretion at Parasite-Host Interfaces. Front Cell Dev Biol 2021; 9:662711. [PMID: 34109175 PMCID: PMC8182054 DOI: 10.3389/fcell.2021.662711] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
Protein secretion in eukaryotic cells is a well-studied process, which has been known for decades and is dealt with by any standard cell biology textbook. However, over the past 20 years, several studies led to the realization that protein secretion as a process might not be as uniform among different cargos as once thought. While in classic canonical secretion proteins carry a signal sequence, the secretory or surface proteome of several organisms demonstrated a lack of such signals in several secreted proteins. Other proteins were found to indeed carry a leader sequence, but simply circumvent the Golgi apparatus, which in canonical secretion is generally responsible for the modification and sorting of secretory proteins after their passage through the endoplasmic reticulum (ER). These alternative mechanisms of protein translocation to, or across, the plasma membrane were collectively termed “unconventional protein secretion” (UPS). To date, many research groups have studied UPS in their respective model organism of choice, with surprising reports on the proportion of unconventionally secreted proteins and their crucial roles for the cell and survival of the organism. Involved in processes such as immune responses and cell proliferation, and including far more different cargo proteins in different organisms than anyone had expected, unconventional secretion does not seem so unconventional after all. Alongside mammalian cells, much work on this topic has been done on protist parasites, including genera Leishmania, Trypanosoma, Plasmodium, Trichomonas, Giardia, and Entamoeba. Studies on protein secretion have mainly focused on parasite-derived virulence factors as a main source of pathogenicity for hosts. Given their need to secrete a variety of substrates, which may not be compatible with canonical secretion pathways, the study of mechanisms for alternative secretion pathways is particularly interesting in protist parasites. In this review, we provide an overview on the current status of knowledge on UPS in parasitic protists preceded by a brief overview of UPS in the mammalian cell model with a focus on IL-1β and FGF-2 as paradigmatic UPS substrates.
Collapse
Affiliation(s)
- Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Liu X, Chen Y, You B, Peng Y, Chen Y, Yang Z, Zhang Y, Chen J. Molecular mechanism mediating enteric bacterial translocation after severe burn: the role of cystic fibrosis transmembrane conductance regulator. BURNS & TRAUMA 2021; 9:tkaa042. [PMID: 33501367 PMCID: PMC7809362 DOI: 10.1093/burnst/tkaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Indexed: 11/23/2022]
Abstract
Background Gut ischemia and hypoxia post severe burn leads to breakdown of intestinal epithelial
barrier and enteric bacterial translocation (EBT), resulting in serious complications,
such as systemic inflammatory response syndrome, sepsis and multiple organ failure.
Cystic fibrosis transmembrane conductance regulator (CFTR) is known to be downregulated
by hypoxia and modulate junctional complexes, which are crucial structures maintaining
the intestinal barrier. This study aimed to investigate whether CFTR plays a role in
both regulating the intestinal barrier and mediating EBT post severe burn, as well as
the signaling pathways involved in these processes. Methods An in vitro Caco-2 cell model subjected to hypoxic injury and an
in vivo mouse model with a 30% total body surface area full-thickness
dermal burn were established. DF 508 mice (mice with F508del CFTR gene mutation) were
used as an in vivo model to further demonstrate the role of CFTR in maintaining normal
intestinal barrier function. QRT-PCR, western blot, ELISA, TER assay and
immunofluorescence staining were used to detect the expression and localization of CFTR
and tight junction proteins, as well as the function of tight junctions. Results Our data indicated that, in Caco-2 cells, the hypoxia condition significantly reduced
CFTR expression; activated extracellular signal-regulated kinase and nuclear factor-κB
signaling; elevated secretion of inflammatory factors (tumor necrosis factor-α,
interleukin-1β and interleukin-8); downregulated zonula occludens-1, occludin and
E-cadherin expression; decreased transepithelial electrical resistance values; and led
to a cellular mislocation of ZO-1. More importantly, knockdown of CFTR caused similar
alterations. The upregulation of inflammatory factors and downregulation of tight
junction proteins (ZO-1 and occludin) induced by knockdown of CFTR could be reversed by
specific extracellular signal-regulated kinase or nuclear factor-κB inhibition. In
support of the in vitro data, exuberant secretion of pro-inflammatory
mediators and EBT was observed in the intestine of severely burnt mice in
vivo. EBT occurred in DF508 mice (mice with the F508del CFTR gene mutation),
accompanied by augmented tumor necrosis factor-α, interleukin-1β and interleukin-8
levels in the ileum compared to wildtype mice. In addition, vitamin D3 was shown to
protect the intestinal epithelial barrier from hypoxic injury. Conclusions Collectively, the present study illustrated that CFTR and downstream signaling were
critical in modulating the intestinal epithelial junction and EBT post severe burn.
Collapse
Affiliation(s)
- Xinzhu Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Bo You
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China.,Department of Burn and Plastic Surgery, No. 958 Hospital of Army, Southwest Hospital, Third Military Medical University (Army Military Medical University), Jian Xin Dong Street, Chongqing 400020, China
| | - Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhi Zao Ju Road, Shanghai 200011, China
| | - Yajie Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Zichen Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhi Zao Ju Road, Shanghai 200011, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| |
Collapse
|
27
|
Padmanabhan S, Manjithaya R. Facets of Autophagy Based Unconventional Protein Secretion-The Road Less Traveled. Front Mol Biosci 2020; 7:586483. [PMID: 33363205 PMCID: PMC7755989 DOI: 10.3389/fmolb.2020.586483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Unconventional protein secretion (UCPS) of leaderless proteins bypasses the conventional endoplasmic reticulum (ER)-Golgi route. The proportion of UCPS in the secretome varies tremendously across eukaryotes. Interestingly, macroautophagy, an intracellular recycling process that is generally involved in cargo degradation, also participates in UCPS. This emerging field of secretory mode of autophagy is underexplored and has several unanswered questions regarding the composition of players, cargo, and the mechanisms that drive it. As secretomes vary considerably across cell types and physiological conditions, the contribution of secretory autophagy in healthy and pathophysiological states remain to be elucidated. Recent studies have begun to shed light on this enigmatic process.
Collapse
Affiliation(s)
- Sreedevi Padmanabhan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.,Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
28
|
The exquisite structural biophysics of the Golgi Reassembly and Stacking Proteins. Int J Biol Macromol 2020; 164:3632-3644. [DOI: 10.1016/j.ijbiomac.2020.08.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
|
29
|
Zhang X, Wang Y. Nonredundant Roles of GRASP55 and GRASP65 in the Golgi Apparatus and Beyond. Trends Biochem Sci 2020; 45:1065-1079. [PMID: 32893104 PMCID: PMC7641999 DOI: 10.1016/j.tibs.2020.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
It has been demonstrated that two Golgi stacking proteins, GRASP55 and GRASP65, self-interact to form trans-oligomers that tether adjacent Golgi membranes into stacks and ribbons in mammalian cells. This ensures proper functioning of the Golgi apparatus in protein trafficking and processing. More recently, GRASP proteins have drawn extensive attention from researchers due to their diverse and essential roles in and out of the Golgi in different organisms. In this review, we summarize their established roles in Golgi structure formation and function under physiological conditions. We then highlight the emerging and divergent roles for individual GRASP proteins, focusing on GRASP65 in cell migration and apoptosis and GRASP55 in unconventional protein secretion and autophagy under stress or pathological conditions.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Reddy ST, Uversky VN, Costa-Filho AJ. Biophysical characterization of intrinsically disordered human Golgi matrix protein GRASP65. Int J Biol Macromol 2020; 162:1982-1993. [DOI: 10.1016/j.ijbiomac.2020.08.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 01/21/2023]
|
31
|
Kim YH, Kwak MS, Lee B, Shin JM, Aum S, Park IH, Lee MG, Shin JS. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy 2020; 17:2345-2362. [PMID: 33017561 PMCID: PMC8496717 DOI: 10.1080/15548627.2020.1826690] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nuclear protein HMGB1 is secreted in response to various stimuli and functions as a danger-associated molecular pattern. Extracellular HMGB1 induces inflammation, cytokine production, and immune cell recruitment via activation of various receptors. As HMGB1 does not contain an endoplasmic reticulum-targeting signal peptide, HMGB1 is secreted via the endoplasmic reticulum-Golgi independently via an unconventional secretion pathway. However, the mechanism underlying HMGB1 secretion remains largely unknown. Here, we investigated the role of secretory autophagy machinery and vesicular trafficking in HMGB1 secretion. We observed that HSP90AA1 (heat shock protein 90 alpha family class A member 1), a stress-inducible protein, regulates the translocation of HMGB1 from the nucleus to the cytoplasm and its secretion through direct interaction. Additionally, geldanamycin, an HSP90AA1 inhibitor, reduced HMGB1 secretion. GORASP2/GRASP55 (golgi reassembly stacking protein 2), ARF1Q71L (ADP ribosylation factor 1), and SAR1AT39N (secretion associated Ras related GTPase 1A), which promoted unconventional protein secretion, increased HMGB1 secretion. HMGB1 secretion was inhibited by an early autophagy inhibitor and diminished in ATG5-deficient cells even when GORASP2 was overexpressed. In contrast, a late autophagy inhibitor increased HMGB1 secretion under the same conditions. The multivesicular body formation inhibitor GW4869 dramatically decreased HMGB1 secretion under HMGB1 secretion-inducing conditions. Thus, we demonstrated that secretory autophagy and multivesicular body formation mediate HMGB1 secretion.
Collapse
Affiliation(s)
- Young Hun Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Bin Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Min Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sowon Aum
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - In Ho Park
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Min Goo Lee
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, Korea
| |
Collapse
|
32
|
Wu H, Li T, Zhao J. GRASP55: A Multifunctional Protein. Curr Protein Pept Sci 2020; 21:544-552. [DOI: 10.2174/1389203721666200218105302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
GRASP55 was first found as Golgi cisternae stacking protein. Due to the crucial role of
Golgi in vesicular trafficking and protein modification, GRASP55 was found to function in these two
aspects. Further investigation revealed that GRASP55 also participates in the unconventional secretory
pathway under stress. Moreover, GRASP55 is involved in autophagy initiation and autophagosome
maturation, as well as cell activity.
Collapse
Affiliation(s)
- Hongrong Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Tianjiao Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Jianfeng Zhao
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
33
|
van Ziel AM, Scheper W. The UPR in Neurodegenerative Disease: Not Just an Inside Job. Biomolecules 2020; 10:biom10081090. [PMID: 32707908 PMCID: PMC7465596 DOI: 10.3390/biom10081090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Neurons are highly specialized cells that continuously and extensively communicate with other neurons, as well as glia cells. During their long lifetime, the post-mitotic neurons encounter many stressful situations that can disrupt protein homeostasis (proteostasis). The importance of tight protein quality control is illustrated by neurodegenerative disorders where disturbed neuronal proteostasis causes neuronal dysfunction and loss. For their unique function, neurons require regulated and long-distance transport of membrane-bound cargo and organelles. This highlights the importance of protein quality control in the neuronal endomembrane system, to which the unfolded protein response (UPR) is instrumental. The UPR is a highly conserved stress response that is present in all eukaryotes. However, recent studies demonstrate the existence of cell-type-specific aspects of the UPR, as well as cell non-autonomous UPR signaling. Here we discuss these novel insights in view of the complex cellular architecture of the brain and the implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Maria van Ziel
- Department of Clinical Genetics, Amsterdam University Medical Centers location VUmc, 1081 HV Amsterdam, The Netherlands;
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), 1081 HV Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Clinical Genetics, Amsterdam University Medical Centers location VUmc, 1081 HV Amsterdam, The Netherlands;
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-5982771
| |
Collapse
|
34
|
Strub MD, McCray, Jr. PB. Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molecule Modulators for the Treatment of Cystic Fibrosis Lung Disease. Genes (Basel) 2020; 11:genes11050546. [PMID: 32414011 PMCID: PMC7288469 DOI: 10.3390/genes11050546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The diversity of mutations and the multiple ways by which the protein is affected present challenges for therapeutic development. The observation that the Phe508del-CFTR mutant protein is temperature sensitive provided proof of principle that mutant CFTR could escape proteosomal degradation and retain partial function. Several specific protein interactors and quality control checkpoints encountered by CFTR during its proteostasis have been investigated for therapeutic purposes, but remain incompletely understood. Furthermore, pharmacological manipulation of many CFTR interactors has not been thoroughly investigated for the rescue of Phe508del-CFTR. However, high-throughput screening technologies helped identify several small molecule modulators that rescue CFTR from proteosomal degradation and restore partial function to the protein. Here, we discuss the current state of CFTR transcriptomic and biogenesis research and small molecule therapy development. We also review recent progress in CFTR proteostasis modulators and discuss how such treatments could complement current FDA-approved small molecules.
Collapse
Affiliation(s)
- Matthew D. Strub
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray, Jr.
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)-335-6844
| |
Collapse
|
35
|
Grasp55 -/- mice display impaired fat absorption and resistance to high-fat diet-induced obesity. Nat Commun 2020; 11:1418. [PMID: 32184397 PMCID: PMC7078302 DOI: 10.1038/s41467-020-14912-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/31/2020] [Indexed: 12/27/2022] Open
Abstract
The Golgi apparatus plays a central role in the intracellular transport of macromolecules. However, molecular mechanisms of Golgi-mediated lipid transport remain poorly understood. Here, we show that genetic inactivation of the Golgi-resident protein GRASP55 in mice reduces whole-body fat mass via impaired intestinal fat absorption and evokes resistance to high-fat diet induced body weight gain. Mechanistic analyses reveal that GRASP55 participates in the Golgi-mediated lipid droplet (LD) targeting of some LD-associated lipases, such as ATGL and MGL, which is required for sustained lipid supply for chylomicron assembly and secretion. Consequently, GRASP55 deficiency leads to reduced chylomicron secretion and abnormally large LD formation in intestinal epithelial cells upon exogenous lipid challenge. Notably, deletion of dGrasp in Drosophila causes similar defects of lipid accumulation in the midgut. These results highlight the importance of the Golgi complex in cellular lipid regulation, which is evolutionary conserved, and uncover potential therapeutic targets for obesity-associated diseases. The physiological roles of the Golgi reassembly-stacking protein 55 (GRASP55/GORASP55) remain largely elusive. Here, the authors show that the Golgi-resident protein GRASP55 plays a crucial role in lipid homeostasis by regulating intestinal lipid uptake.
Collapse
|
36
|
Abstract
The mammalian Golgi apparatus is a highly dynamic organelle, which is normally localized in the juxtanuclear space and plays an essential role in the regulation of cellular homeostasis. While posttranslational modification of cargo is mediated by the resident enzymes (glycosyltransferases, glycosidases, and kinases), the ribbon structure of Golgi and its cisternal stacking mostly rely on the cooperation of coiled-coil matrix golgins. Among them, giantin, GM130, and GRASPs are unique, because they form a tripartite complex and serve as Golgi docking sites for cargo delivered from the endoplasmic reticulum (ER). Golgi undergoes significant disorganization in many pathologies associated with a block of the ER-to-Golgi or intra-Golgi transport, including cancer, different neurological diseases, alcoholic liver damage, ischemic stress, viral infections, etc. In addition, Golgi fragments during apoptosis and mitosis. Here, we summarize and analyze clinically relevant observations indicating that Golgi fragmentation is associated with the selective loss of Golgi residency for some enzymes and, conversely, with the relocation of some cytoplasmic proteins to the Golgi. The central concept is that ER and Golgi stresses impair giantin docking site but have no impact on the GM130-GRASP65 complex, thus inducing mislocalization of giantin-sensitive enzymes only. This cardinally changes the processing of proteins by eliminating the pathways controlled by the missing enzymes and by activating the processes now driven by the GM130-GRASP65-dependent proteins. This type of Golgi disorganization is different from the one induced by the cytoskeleton alteration, which despite Golgi de-centralization, neither impairs function of golgins nor alters trafficking.
Collapse
Affiliation(s)
- A Petrosyan
- College of Medicine, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE 68588, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE 68106, USA
| |
Collapse
|
37
|
Park H, Shin DH, Sim JR, Aum S, Lee MG. IRE1α kinase-mediated unconventional protein secretion rescues misfolded CFTR and pendrin. SCIENCE ADVANCES 2020; 6:eaax9914. [PMID: 32128399 PMCID: PMC7030921 DOI: 10.1126/sciadv.aax9914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/04/2019] [Indexed: 05/02/2023]
Abstract
The most prevalent pathogenic mutations in the CFTR (ΔF508) and SLC26A4/pendrin (p.H723R), which cause cystic fibrosis and congenital hearing loss, respectively, evoke protein misfolding and subsequent defects in their cell surface trafficking. Here, we report that activation of the IRE1α kinase pathway can rescue the cell surface expression of ΔF508-CFTR and p.H723R-pendrin through a Golgi-independent unconventional protein secretion (UPS) route. In mammalian cells, inhibition of IRE1α kinase, but not inhibition of IRE1α endonuclease and the downstream effector XBP1, inhibited CFTR UPS. Treatment with the IRE1α kinase activator, (E)-2-(2-chlorostyryl)-3,5,6-trimethyl-pyrazine (CSTMP), rescued cell surface expression and functional activity of ΔF508-CFTR and p.H723R-pendrin. Treatment with a nontoxic dose of CSTMP to ΔF508-CFTR mice restored CFTR surface expression and CFTR-mediated anion transport in the mouse colon. These findings suggest that UPS activation via IRE1α kinase is a strategy to treat diseases caused by defective cell surface trafficking of membrane proteins, including ΔF508-CFTR and p.H723R-pendrin.
Collapse
|
38
|
Cell stress in cortical organoids impairs molecular subtype specification. Nature 2020; 578:142-148. [PMID: 31996853 PMCID: PMC7433012 DOI: 10.1038/s41586-020-1962-0] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/26/2019] [Indexed: 01/09/2023]
Abstract
Cortical organoids are self-organizing three-dimensional cultures that model features of the developing human cerebral cortex1,2. However, the fidelity of organoid models remains unclear3-5. Here we analyse the transcriptomes of individual primary human cortical cells from different developmental periods and cortical areas. We find that cortical development is characterized by progenitor maturation trajectories, the emergence of diverse cell subtypes and areal specification of newborn neurons. By contrast, organoids contain broad cell classes, but do not recapitulate distinct cellular subtype identities and appropriate progenitor maturation. Although the molecular signatures of cortical areas emerge in organoid neurons, they are not spatially segregated. Organoids also ectopically activate cellular stress pathways, which impairs cell-type specification. However, organoid stress and subtype defects are alleviated by transplantation into the mouse cortex. Together, these datasets and analytical tools provide a framework for evaluating and improving the accuracy of cortical organoids as models of human brain development.
Collapse
|
39
|
Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int J Mol Sci 2020; 21:ijms21020452. [PMID: 31936842 PMCID: PMC7013518 DOI: 10.3390/ijms21020452] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians in North America and a significant portion of Europe. The disease arises from one of many mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator, or CFTR. The most common disease-associated allele, F508del, along with several other mutations affect the folding, transport, and stability of CFTR as it transits from the endoplasmic reticulum (ER) to the plasma membrane, where it functions primarily as a chloride channel. Early data demonstrated that F508del CFTR is selected for ER associated degradation (ERAD), a pathway in which misfolded proteins are recognized by ER-associated molecular chaperones, ubiquitinated, and delivered to the proteasome for degradation. Later studies showed that F508del CFTR that is rescued from ERAD and folds can alternatively be selected for enhanced endocytosis and lysosomal degradation. A number of other disease-causing mutations in CFTR also undergo these events. Fortunately, pharmacological modulators of CFTR biogenesis can repair CFTR, permitting its folding, escape from ERAD, and function at the cell surface. In this article, we review the many cellular checkpoints that monitor CFTR biogenesis, discuss the emergence of effective treatments for CF, and highlight future areas of research on the proteostatic control of CFTR.
Collapse
|
40
|
Reddy ST, Uversky VN, Costa-Filho AJ. Nucleation-dependent amyloid fibrillation of human GRASP55 in aqueous solution. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:133-143. [DOI: 10.1007/s00249-019-01419-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022]
|
41
|
Frisbie CP, Lushnikov AY, Krasnoslobodtsev AV, Riethoven JJM, Clarke JL, Stepchenkova EI, Petrosyan A. Post-ER Stress Biogenesis of Golgi Is Governed by Giantin. Cells 2019; 8:E1631. [PMID: 31847122 PMCID: PMC6953117 DOI: 10.3390/cells8121631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Golgi apparatus undergoes disorganization in response to stress, but it is able to restore compact and perinuclear structure under recovery. This self-organization mechanism is significant for cellular homeostasis, but remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. METHODS In HeLa and different prostate cancer cells, we used the model of cellular stress induced by Brefeldin A (BFA). The conformational structure of giantin was assessed by proximity ligation assay and atomic force microscopy. The post-BFA distribution of Golgi resident enzymes was examined by 3D SIM high-resolution microscopy. RESULTS We detected that giantin is rather flexible than an extended coiled-coil dimer and BFA-induced Golgi disassembly was associated with giantin monomerization. A fusion of the nascent Golgi membranes after BFA washout is forced by giantin re-dimerization via disulfide bond in its luminal domain and assisted by Rab6a GTPase. GM130-GRASP65-dependent enzymes are able to reach the nascent Golgi membranes, while giantin-sensitive enzymes appeared at the Golgi after its complete recovery via direct interaction of their cytoplasmic tail with N-terminus of giantin. CONCLUSION Post-stress recovery of Golgi is conducted by giantin dimer and Golgi proteins refill membranes according to their docking affiliation rather than their intra-Golgi location.
Collapse
Affiliation(s)
- Cole P. Frisbie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
| | - Alexander Y. Lushnikov
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
| | - Alexey V. Krasnoslobodtsev
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
- Department of Physics, University of Nebraska-Omaha, Omaha, NE 68182-0266, USA
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
| | - Jennifer L. Clarke
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583-0963, USA
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia;
- Department of Genetics, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- The Fred and Pamela Buffett Cancer Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
42
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
Reddy ST, Mendes LFS, Fontana NA, Costa-Filho AJ. Exploring structural aspects of the human Golgi matrix protein GRASP55 in solution. Int J Biol Macromol 2019; 135:481-489. [DOI: 10.1016/j.ijbiomac.2019.05.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
|
44
|
Ahat E, Li J, Wang Y. New Insights Into the Golgi Stacking Proteins. Front Cell Dev Biol 2019; 7:131. [PMID: 31380369 PMCID: PMC6660245 DOI: 10.3389/fcell.2019.00131] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
The Golgi stacking proteins, GRASP55 and GRASP65, are best known for their roles in Golgi structure formation. These peripheral Golgi proteins form trans-oligomers that hold the flat cisternal membranes into stacks. Depletion of both GRASP proteins in cells disrupts the Golgi stack structure, increases protein trafficking, but impairs accurate glycosylation, and sorting. Golgi unstacking by GRASPs depletion also reduces cell adhesion and migration in an integrin-dependent manner. In addition to Golgi structure formation and regulation of cellular activities, GRASPs, in particular GRASP55, have recently drawn attention in their roles in autophagy, and unconventional secretion. In autophagy, GRASP55 senses the energy level by O-GlcNAcylation, which regulates GRASP55 translocation from the Golgi to the autophagosome-lysosome interface, where it interacts with LC3 and LAMP2 to facilitate autophagosome-lysosome fusion. This newly discovered function of GRASP55 in autophagy may help explain its role in the stress-induced, autophagosome-dependent unconventional secretion. In this review, we summarize the emerging functions of the GRASP proteins, focusing on their roles in cell adhesion and migration, autophagy, unconventional secretion, as well as on novel GRASP-interacting proteins.
Collapse
Affiliation(s)
- Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
45
|
van Ziel AM, Largo-Barrientos P, Wolzak K, Verhage M, Scheper W. Unconventional secretion factor GRASP55 is increased by pharmacological unfolded protein response inducers in neurons. Sci Rep 2019; 9:1567. [PMID: 30733486 PMCID: PMC6367349 DOI: 10.1038/s41598-018-38146-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER), defined as ER stress, results in activation of the unfolded protein response (UPR). UPR activation is commonly observed in neurodegenerative diseases. ER stress can trigger unconventional secretion mediated by Golgi reassembly and stacking proteins (GRASP) relocalization in cell lines. Here we study the regulation of GRASP55 by the UPR upon pharmacological induction of ER stress in primary mouse neurons. We demonstrate that UPR activation induces mRNA and protein expression of GRASP55, but not GRASP65, in cortical neurons. UPR activation does not result in relocalization of GRASP55. UPR-induced GRASP55 expression is reduced by inhibition of the PERK pathway of the UPR and abolished by inhibition of the endonuclease activity of the UPR transducer IRE1. Expression of the IRE1 target XBP1s in the absence of ER stress is not sufficient to increase GRASP55 expression. Knockdown of GRASP55 affects neither induction nor recovery of the UPR. We conclude that the UPR regulates the unconventional secretion factor GRASP55 via a mechanism that requires the IRE1 and the PERK pathway of the UPR in neurons.
Collapse
Affiliation(s)
- Anna Maria van Ziel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), Amsterdam, The Netherlands.,Clinical Genetics, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Pablo Largo-Barrientos
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), Amsterdam, The Netherlands
| | - Kimberly Wolzak
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), Amsterdam, The Netherlands.,Clinical Genetics, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), Amsterdam, The Netherlands. .,Clinical Genetics, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands. .,Alzheimer Center, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Li J, Tang D, Ireland SC, Wang Y. DjA1 maintains Golgi integrity via interaction with GRASP65. Mol Biol Cell 2018; 30:478-490. [PMID: 30566031 PMCID: PMC6594443 DOI: 10.1091/mbc.e18-10-0613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In mammalian cells, the Golgi reassembly stacking protein of 65 kDa (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers. To better understand its function and regulation, we used biochemical methods to identify the DnaJ homolog subfamily A member 1 (DjA1) as a novel GRASP65-binding protein. In cells, depletion of DjA1 resulted in Golgi fragmentation, short and improperly aligned cisternae, and delayed Golgi reassembly after nocodazole washout. In vitro, immunodepletion of DjA1 from interphase cytosol reduced its activity to enhance GRASP65 oligomerization and Golgi membrane fusion, while adding purified DjA1 enhanced GRASP65 oligomerization. DjA1 is a cochaperone of Heat shock cognate 71-kDa protein (Hsc70), but the activity of DjA1 in Golgi structure formation is independent of its cochaperone activity or Hsc70, rather, through DjA1-GRASP65 interaction to promote GRASP65 oligomerization. Thus, DjA1 interacts with GRASP65 to enhance Golgi structure formation through the promotion of GRASP65 trans-oligomerization.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Stephen C Ireland
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085
| |
Collapse
|
47
|
Noh SH, Gee HY, Kim Y, Piao H, Kim J, Kang CM, Lee G, Mook-Jung I, Lee Y, Cho JW, Lee MG. Specific autophagy and ESCRT components participate in the unconventional secretion of CFTR. Autophagy 2018; 14:1761-1778. [PMID: 29969945 DOI: 10.1080/15548627.2018.1489479] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The most common mutation in cystic fibrosis patients is a phenylalanine deletion at position 508 (ΔF508) in the CFTR (cystic fibrosis transmembrane conductance regulator) gene. This mutation impairs cell-surface trafficking of CFTR. During cellular stress, core-glycosylated CFTRΔF508 is transported to the cell surface from the endoplasmic reticulum (ER) via an unconventional route that bypasses the Golgi. However, the mechanisms for this unconventional secretory pathway of CFTR are not well delineated. Here, we report that components of the macroautophagy/autophagy and ESCRT (endosomal sorting complex required for transport) pathways are involved in unconventional secretion of CFTR. In mammalian cells, we found that autophagic pathways were modulated by conditions that also stimulate unconventional secretion, namely ER stress and an ER-to-Golgi transport blockade. Additionally, we found that knockdown of early autophagy components, ATG5 and ATG7, and treatment with pharmacological autophagy inhibitors, wortmannin and 3-methyladenine, abolished the unconventional secretion of CFTR that had been stimulated by ER stress and an ER-to-Golgi blockade. Interestingly, immunoelectron microscopy revealed that GORASP2/GRASP55, which mediates unconventional CFTR trafficking, is present in multivesicular bodies (MVB) and autophagosomal structures under ER stress conditions. A custom small-interfering RNA screen of mammalian ESCRT proteins that mediate MVB biogenesis showed that silencing of some ESCRTs, including MVB12B, inhibited unconventional CFTRΔF508 secretion. Furthermore, MVB12B overexpression partially rescued cell-surface expression and Cl- channel function of CFTRΔF508. Taken together, these results suggest that components involved in early autophagosome formation and the ESCRT/MVB pathway play a key role in the stress-induced unconventional secretion of CFTR.
Collapse
Affiliation(s)
- Shin Hye Noh
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Heon Yung Gee
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Yonjung Kim
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - He Piao
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Jiyoon Kim
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Chung Min Kang
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Gahyung Lee
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| | - Inhee Mook-Jung
- b Department of Biochemistry & Biomedical Sciences , Seoul National University College of Medicine , Seoul , Korea
| | - Yangsin Lee
- c Glycostylation Network Research Center , Yonsei University , Seoul , Korea
| | - Jin Won Cho
- c Glycostylation Network Research Center , Yonsei University , Seoul , Korea.,d Department of Systems Biology, Interdisciplinary Program of Integrated OMICS for Biomedical Science , Yonsei University , Seoul , Korea
| | - Min Goo Lee
- a Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute , Yonsei University College of Medicine , Seoul , Korea
| |
Collapse
|
48
|
Kim J, Gee HY, Lee MG. Unconventional protein secretion – new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci 2018; 131:131/12/jcs213686. [DOI: 10.1242/jcs.213686] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Most secretory proteins travel through a well-documented conventional secretion pathway involving the endoplasmic reticulum (ER) and the Golgi complex. However, recently, it has been shown that a significant number of proteins reach the plasma membrane or extracellular space via unconventional routes. Unconventional protein secretion (UPS) can be divided into two types: (i) the extracellular secretion of cytosolic proteins that do not bear a signal peptide (i.e. leaderless proteins) and (ii) the cell-surface trafficking of signal-peptide-containing transmembrane proteins via a route that bypasses the Golgi. Understanding the UPS pathways is not only important for elucidating the mechanisms of intracellular trafficking pathways but also has important ramifications for human health, because many of the proteins that are unconventionally secreted by mammalian cells and microorganisms are associated with human diseases, ranging from common inflammatory diseases to the lethal genetic disease of cystic fibrosis. Therefore, it is timely and appropriate to summarize and analyze the mechanisms of UPS involvement in disease pathogenesis, as they may be of use for the development of new therapeutic approaches. In this Review, we discuss the intracellular trafficking pathways of UPS cargos, particularly those related to human diseases. We also outline the disease mechanisms and the therapeutic potentials of new strategies for treating UPS-associated diseases.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
49
|
Hareza A, Bakun M, Świderska B, Dudkiewicz M, Koscielny A, Bajur A, Jaworski J, Dadlez M, Pawłowski K. Phosphoproteomic insights into processes influenced by the kinase-like protein DIA1/C3orf58. PeerJ 2018; 6:e4599. [PMID: 29666759 PMCID: PMC5896498 DOI: 10.7717/peerj.4599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Many kinases are still ‘orphans,’ which means knowledge about their substrates, and often also about the processes they regulate, is lacking. Here, DIA1/C3orf58, a member of a novel predicted kinase-like family, is shown to be present in the endoplasmic reticulum and to influence trafficking via the secretory pathway. Subsequently, DIA1 is subjected to phosphoproteomics analysis to cast light on its signalling pathways. A liquid chromatography–tandem mass spectrometry proteomic approach with phosphopeptide enrichment is applied to membrane fractions of DIA1-overexpressing and control HEK293T cells, and phosphosites dependent on the presence of DIA1 are elucidated. Most of these phosphosites belonged to CK2- and proline-directed kinase types. In parallel, the proteomics of proteins immunoprecipitated with DIA1 reported its probable interactors. This pilot study provides the basis for deeper studies of DIA1 signalling.
Collapse
Affiliation(s)
- Agnieszka Hareza
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,International Institute of Molecular and Cellular Biology, Warszawa, Poland
| | - Magda Bakun
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Małgorzata Dudkiewicz
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland
| | - Alicja Koscielny
- International Institute of Molecular and Cellular Biology, Warszawa, Poland
| | - Anna Bajur
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,International Institute of Molecular and Cellular Biology, Warszawa, Poland.,Current affiliation: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jacek Jaworski
- International Institute of Molecular and Cellular Biology, Warszawa, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Department of Translational Medicine, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
50
|
Gee HY, Kim J, Lee MG. Unconventional secretion of transmembrane proteins. Semin Cell Dev Biol 2018; 83:59-66. [PMID: 29580969 DOI: 10.1016/j.semcdb.2018.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
Over the past 20 years it has become evident that eukaryotic cells utilize both conventional and unconventional pathways to deliver proteins to their target sites. Most proteins with a signal peptide and/or a transmembrane domain are conventionally transported through the endoplasmic reticulum to the Golgi apparatus and then to the plasma membrane. However, an increasing number of both soluble cargos (Type I, II, and III) and integral membrane proteins (Type IV) have been found to reach the plasma membrane via unconventional protein secretion (UPS) pathways that bypass the Golgi apparatus under certain conditions, such as cellular stress or development. Well-known examples of transmembrane proteins that undergo Type IV UPS pathways are position-specific antigen subunit alpha 1 integrin, cystic fibrosis transmembrane conductance regulator, myeloproliferative leukemia virus oncogene, and pendrin. Although we collectively refer to all Golgi-bypassing routes as UPS, individual trafficking pathways are diverse compared to the conventional pathways, and the molecular mechanisms of UPS pathways are not yet completely defined. This review summarizes the intracellular trafficking pathways of UPS cargo proteins, particularly those with transmembrane domains, and discusses the molecular machinery involved in the UPS of transmembrane proteins.
Collapse
Affiliation(s)
- Heon Yung Gee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jiyoon Kim
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|