1
|
Tazza B, Caroccia N, Toschi A, Pascale R, Gkrania-Klotsas E, Navarro PO, Canziani LM, Tavelli A, Antinori A, Grossi PA, Peghin M, Tacconelli E, Palacios-Baena ZR, Viale P, Giannella M. ORCHESTRA Delphi consensus: diagnostic and therapeutic management of SARS-CoV-2 infection in solid organ transplant recipients. Clin Microbiol Infect 2025:S1198-743X(25)00069-2. [PMID: 39954948 DOI: 10.1016/j.cmi.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVES We aimed to address existing knowledge gaps regarding risk stratification, best use of diagnostic resources, optimal treatment, and general management of SARS-CoV-2 infection in solid organ transplant (SOT) recipients. As high-quality evidence specific to this fragile population is lacking, our final aim was to provide an expert consensus evidence-informed guidance that can aid clinicians in their daily practice. METHODS This study was conducted within the Working Package 4 (fragile population cohorts) of the H2020-funded ORCHESTRA study (https://orchestra-cohort.eu). Eight infectious disease and one clinical pharmacology specialists conducted a comprehensive scoping literature review which covered five key areas: the role of SOT as a risk factor for evolution to severe disease; the optimal use of diagnostic resources, considering cost-benefit ratios and appropriateness of active screening; population-specific therapeutic management, including antiviral use and drug-drug interactions and appropriate duration of treatment; the potential need for withdrawal of immunosuppressive agents and management of potential donors and recipients with recent and/or ongoing SARS-CoV-2 infection at the time of transplantation. On the basis of this review, a 28-item questionnaire was developed and administered to a panel of experts through two rounds, following the Delphi methodology. RESULTS The panel consisted of 21 experts, 13 females and 8 males, from Italy (n = 11), Spain (n = 5), Switzerland (n = 2), Brazil (n = 1), United States (n = 1), and United Kingdom (n = 1). Consensus was achieved for 18 out of 28 items after the first round and for 9 out of 13 items after the second round, according to agreement/disagreement levels obtained for each question and round, ten statements were finally produced. DISCUSSION The consensus statements derived from this study offer a framework for standardizing care and improving outcomes in SOT recipients affected by SARS-CoV-2 infection in a field where high-quality evidence specific to this high-risk population is currently lacking.
Collapse
Affiliation(s)
- Beatrice Tazza
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Natascia Caroccia
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alice Toschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Renato Pascale
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Effrosyni Gkrania-Klotsas
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom; Department of Infectious Diseases, Cambridge University Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Paula Olivares Navarro
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Instituto de Biomedicina de Sevilla/CSIC, Hospital Universitario Virgen Macarena, Seville, Spain; Departamento de Medicina, Universidad de Sevilla, Seville, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorenzo Maria Canziani
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Andrea Antinori
- Clinical Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Paolo Antonio Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi, Varese, Italy
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi, Varese, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Zaira Raquel Palacios-Baena
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Instituto de Biomedicina de Sevilla/CSIC, Hospital Universitario Virgen Macarena, Seville, Spain; Departamento de Medicina, Universidad de Sevilla, Seville, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Pierluigi Viale
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Chaudhry A, Gallais F, Falcoz PE, De Verdiere SC, Villeneuve T, Horeau D, Chatron E, Blanchard E, Collange O, Renaud-Picard B. Efficacy of convalescent plasma for the treatment of COVID-19 in lung transplant recipients: A multicenter French study. Respir Med Res 2024; 87:101145. [PMID: 39689664 DOI: 10.1016/j.resmer.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Lung transplant (LT) recipients are at greater risk of complications from COVID-19. Treatment options are limited partly due to interactions with immunosuppressive agents. Convalescent plasma (CP) is a potential treatment option, but it has not been extensively studied in LT patients. We aimed to assess the efficacy and safety of CP use in France for COVID-19 infected LT patients. MATERIAL AND METHODS We retrospectively recruited LT patients followed up in the 10 French LT centers, older than 18 years, infected with SARS-CoV-2 between the pandemic onset and July 1, 2023, and treated with high-titer CP. RESULTS We collected the data from 27 patients who received CP for a COVID-19 infection in six out of the 10 French LT centers. The average delay between symptom onset and CP administration was 19.5 days, and 51.8 % of patients received four units. In patients treated within the first 9 days of infection, the survival rate was 100 % at one and three months vs. 75 % (p = 0.28) for late administration patients. Average loss of forced expiratory volume in 1 second at three months was 10.5 % in the early group vs. 3.3 % in the late group (p = 0.58). The average length of hospital stay was 18 and 24 days respectively (p = 0.07). Early use of CP was also more frequent in 2023. DISCUSSION In this study highlighting the French experience for the use of CP in LT patients, we observed a limited, heterogenous but well-tolerated use of this therapy.
Collapse
Affiliation(s)
- Abouzar Chaudhry
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Floriane Gallais
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre-Emmanuel Falcoz
- Service de Chirurgie Thoracique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | - Eva Chatron
- Service de Pneumologie, Hospices Civils de Lyon, Lyon, France
| | - Elodie Blanchard
- Service de Pneumologie et Transplantation Pulmonaire, CHU de Bordeaux, Bordeaux, France
| | - Olivier Collange
- Service de réanimation chirurgicale polyvalente, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | |
Collapse
|
3
|
Di Germanio C, Deng X, Balasko BG, Simmons G, Martinelli R, Grebe E, Stone M, Spencer BR, Saa P, Yu EA, Lanteri MC, Green V, Wright D, Lartey I, Kleinman S, Jones J, Biggerstaff BJ, Contestable P, Busch MP. Spike and nucleocapsid antibody dynamics following SARS-CoV-2 infection and vaccination: Implications for sourcing COVID-19 convalescent plasma from routinely collected blood donations. Transfusion 2024; 64:2063-2074. [PMID: 39373096 DOI: 10.1111/trf.18017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) remains a treatment option for immunocompromised patients; however, the current FDA qualification threshold of ≥200 BAU/mL of spike antibody appears to be relatively low. We evaluated the levels of binding (bAb) and neutralizing antibodies (nAb) on serial samples from repeat blood donors who were vaccinated and/or infected to inform criteria for qualifying CCP from routinely collected plasma components. METHODS Donors were categorized into four groups: (1) infected, then vaccinated, (2) vaccinated then infected during the delta, or (3) omicron waves, (4) vaccinated without infection. IgG Spike and total Nuclecapsid bAb were measured, along with S variants and nAb titers using reporter viral particle neutralization. RESULTS Mean S IgG bAb peaks after infection alone were lower than after primary and booster vaccinations, and higher after delta and omicron infection in previously vaccinated donors. Half-lives for S IgG ranged from 34 to 66 days after first infection/vaccination events and up to 108 days after second events. The levels of S IgG bAb and nAb were similar across different variants, except for omicron, which were lower. Better correlations of nAb with bAb were observed at higher levels (hybrid immunity) than at the current FDA CCP qualifying threshold. DISCUSSION Routine plasma donations from donors with hybrid immunity had high S bAb and potent neutralizing activity for 3-6 months after infection. In donations with high (>4000 BAU/mL) S IgG, >95% had high nAb titers (>500) against ancestral and variant S, regardless of COVID-19 symptoms. These findings provide the basis for test-based criteria for qualifying CCP from routine blood donations.
Collapse
Affiliation(s)
- Clara Di Germanio
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Eduard Grebe
- Vitalant Research Institute, San Francisco, California, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Bryan R Spencer
- American Red Cross, Scientific Affairs, Dedham, Massachusetts, USA
| | - Paula Saa
- American Red Cross, Scientific Affairs, Rockville, Maryland, USA
| | - Elaine A Yu
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Marion C Lanteri
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- Creative Testing Solutions, Tempe, Arizona, USA
| | | | | | | | - Steven Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Jefferson Jones
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Shoham S. Convalescent Plasma for Immunocompromised Patients. Curr Top Microbiol Immunol 2024. [PMID: 39117848 DOI: 10.1007/82_2024_272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
COVID-19 convalescent plasma (CCP) is an important therapeutic option for immunocompromised patients with COVID-19. Such patients are at increased risk for serious complications of infection and may also develop a unique syndrome of persistent infection. This article reviews the rationale for CCP utilization in immunocompromised patients and the evidence for its value in immunosuppressed patients with both acute and persistent COVID-19. Both historical precedence and understanding of the mechanisms of action of antibody treatment support this use, as do several lines of evidence derived from case series, comparative studies, randomized trials, and systematic reviews of the literature. A summary of recommendations from multiple practice guidelines is also provided.
Collapse
Affiliation(s)
- Shmuel Shoham
- Department of Medicine, Johns Hopkins School of Medicine, 1830 East Monument St., Room 447, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Joyner MJ. Convalescent Plasma and the US Expanded Access Program: A Personal Narrative. Curr Top Microbiol Immunol 2024. [PMID: 38877204 DOI: 10.1007/82_2024_269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Between early April 2020 and late August 2020, nearly 100,000 patients hospitalized with SARS-CoV2 infections were treated with COVID-19 convalescent plasma (CCP) in the US under the auspices of an FDA-authorized Expanded Access Program (EAP) housed at the Mayo Clinic. Clinicians wishing to provide CCP to their patients during that 5-month period early in the COVID pandemic had to register their patients and provide clinical information to the EAP program. This program was utilized by some 2,200 US hospitals located in every state ranging from academic medical centers to small rural hospitals and facilitated the treatment of an ethnically and socio-economically diverse cross section of patients. Within 6 weeks of program initiation, the first signals of safety were found in 5,000 recipients of CCP, supported by a later analysis of 20,000 recipients (Joyner et al. in J Clin Invest 130:4791-4797, 2020a; Joyner et al. in Mayo Clin Proc 95:1888-1897, 2020b). By mid-summer of 2020, strong evidence was produced showing that high-titer CCP given early in the course of hospitalization could lower mortality by as much as a third (Joyner et al. in N Engl J Med 384:1015-1027, 2021; Senefeld et al. in PLoS Med 18, 2021a). These data were used by the FDA in its August decision to grant Emergency Use Authorization for CCP use in hospitals. This chapter provides a personal narrative by the principal investigator of the EAP that describes the events leading up to the program, some of its key outcomes, and some lessons learned that may be applicable to the next pandemic. This vast effort was a complete team response to a crisis and included an exceptional level of collaboration both inside and outside of the Mayo Clinic. Writing just 4 years after the initiation of the EAP, this intense professional effort, comprising many moving parts, remains hard to completely understand or fully explain in this brief narrative. As Nelson Mandela said of the perception of time during his decades in prison, "the days seemed like years, and the years seemed like days."
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Focosi D, Franchini M, Maggi F, Shoham S. COVID-19 therapeutics. Clin Microbiol Rev 2024; 37:e0011923. [PMID: 38771027 PMCID: PMC11237566 DOI: 10.1128/cmr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
SUMMARYSince the emergence of COVID-19 in 2020, an unprecedented range of therapeutic options has been studied and deployed. Healthcare providers have multiple treatment approaches to choose from, but efficacy of those approaches often remains controversial or compromised by viral evolution. Uncertainties still persist regarding the best therapies for high-risk patients, and the drug pipeline is suffering fatigue and shortage of funding. In this article, we review the antiviral activity, mechanism of action, pharmacokinetics, and safety of COVID-19 antiviral therapies. Additionally, we summarize the evidence from randomized controlled trials on efficacy and safety of the various COVID-19 antivirals and discuss unmet needs which should be addressed.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Fabrizio Maggi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Ripoll JG, Tulledge-Scheitel SM, Stephenson AA, Ford S, Pike ML, Gorman EK, Hanson SN, Juskewitch JE, Miller AJ, Zaremba S, Ovrom EA, Razonable RR, Ganesh R, Hurt RT, Fischer EN, Derr AN, Eberle MR, Larsen JJ, Carney CM, Theel ES, Parikh SA, Kay NE, Joyner MJ, Senefeld JW. Outpatient treatment with concomitant vaccine-boosted convalescent plasma for patients with immunosuppression and COVID-19. mBio 2024; 15:e0040024. [PMID: 38602414 PMCID: PMC11078006 DOI: 10.1128/mbio.00400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Although severe coronavirus disease 2019 (COVID-19) and hospitalization associated with COVID-19 are generally preventable among healthy vaccine recipients, patients with immunosuppression have poor immunogenic responses to COVID-19 vaccines and remain at high risk of infection with SARS-CoV-2 and hospitalization. In addition, monoclonal antibody therapy is limited by the emergence of novel SARS-CoV-2 variants that have serially escaped neutralization. In this context, there is interest in understanding the clinical benefit associated with COVID-19 convalescent plasma collected from persons who have been both naturally infected with SARS-CoV-2 and vaccinated against SARS-CoV-2 ("vax-plasma"). Thus, we report the clinical outcome of 386 immunocompromised outpatients who were diagnosed with COVID-19 and who received contemporary COVID-19-specific therapeutics (standard-of-care group) and a subgroup who also received concomitant treatment with very high titer COVID-19 convalescent plasma (vax-plasma group) with a specific focus on hospitalization rates. The overall hospitalization rate was 2.2% (5 of 225 patients) in the vax-plasma group and 6.2% (10 of 161 patients) in the standard-of-care group, which corresponded to a relative risk reduction of 65% (P = 0.046). Evidence of efficacy in nonvaccinated patients cannot be inferred from these data because 94% (361 of 386 patients) of patients were vaccinated. In vaccinated patients with immunosuppression and COVID-19, the addition of vax-plasma or very high titer COVID-19 convalescent plasma to COVID-19-specific therapies reduced the risk of disease progression leading to hospitalization.IMPORTANCEAs SARS-CoV-2 evolves, new variants of concern (VOCs) have emerged that evade available anti-spike monoclonal antibodies, particularly among immunosuppressed patients. However, high-titer COVID-19 convalescent plasma continues to be effective against VOCs because of its broad-spectrum immunomodulatory properties. Thus, we report clinical outcomes of 386 immunocompromised outpatients who were treated with COVID-19-specific therapeutics and a subgroup also treated with vaccine-boosted convalescent plasma. We found that the administration of vaccine-boosted convalescent plasma was associated with a significantly decreased incidence of hospitalization among immunocompromised COVID-19 outpatients. Our data add to the contemporary data providing evidence to support the clinical utility of high-titer convalescent plasma as antibody replacement therapy in immunocompromised patients.
Collapse
Affiliation(s)
- Juan G. Ripoll
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Anthony A. Stephenson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shane Ford
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Marsha L. Pike
- Department of Nursing, Mayo Clinic, Rochester, Rochester, Minnesota, USA
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sara N. Hanson
- Department of Family Medicine, Mayo Clinic Health Care System, Mankato, Minnesota, USA
| | - Justin E. Juskewitch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Alex J. Miller
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Solomiia Zaremba
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik A. Ovrom
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymund R. Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravindra Ganesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan T. Hurt
- Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin N. Fischer
- Department of Nursing, Mayo Clinic, Rochester, Rochester, Minnesota, USA
| | - Amber N. Derr
- Division of Hematology and Infusion Therapy, Rochester, Minnesota, USA
| | - Michele R. Eberle
- Mayo Clinic Health System Northwest Wisconsin, Eau Claire, Wisconsin, USA
| | | | | | - Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Tse P, Yan J, Liu Y, Jamula E, Heddle N, Bazin R, Robitaille N, Cook R, Turgeon A, Fergusson D, Glesby M, Loftsgard KC, Cushing M, Chassé M, Daneman N, Finzi A, Sachais B, Bégin P, Callum J, Arnold DM, Xie F. Quality of life and cost-effectiveness of convalescent plasma compared to standard care for hospitalized COVID-19 patients in the CONCOR-1 trial. Transfusion 2024; 64:606-614. [PMID: 38511889 DOI: 10.1111/trf.17777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The CONvalescent Plasma for Hospitalized Adults With COVID-19 Respiratory Illness (CONCOR-1) trial was a multicenter randomized controlled trial assessing convalescent plasma in hospitalized COVID-19 patients. This study evaluates the cost-effectiveness of convalescent plasma and its impact on quality-of-life to provide insight into its potential as an alternative treatment in resource-constrained settings. METHODS Individual patient data on health outcomes and resource utilization from the CONCOR-1 trial were used to conduct the analysis from the Canadian public payer's perspective with a time horizon of 30 days post-randomization. Baseline and 30-day EQ-5D-5L were measured to calculate quality-adjusted survival. All costs are presented in 2021 Canadian dollars. The base case assessed the EQ-5D-5L scores of hospitalized inpatients reporting at both timepoints, and a utility score of 0 was assigned for patients who died within 30 days. Costs for all patients enrolled were used. The sensitivity analysis utilizes EQ-5D-5L scores from the same population but only uses costs from this population. RESULTS 940 patients were randomized: 627 received CCP and 313 received standard care. The total costs were $28,716 (standard deviation, $25,380) and $24,258 ($22,939) for the convalescent plasma and standard care arms respectively. EQ-5D-5L scores were 0.61 in both arms (p = .85) at baseline. At 30 days, EQ-5D-5L scores were 0.63 and 0.64 for patients in the convalescent plasma and standard care arms, respectively (p = .46). The incremental cost was $4458 and the incremental quality-adjusted life day was -0.078. DISCUSSION Convalescent plasma was less effective and more costly than standard care in treating hospitalized COVID-19.
Collapse
Affiliation(s)
- Preston Tse
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Jiajun Yan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Yang Liu
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Erin Jamula
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Nancy Heddle
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Renée Bazin
- Medical Affairs and Innovation, Héma-Québec, Québec City, Québec, Canada
| | - Nancy Robitaille
- Héma-Québec, Montreal, Québec, Canada
- Division of Hematology-Oncology, Department of Pediatrics, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Richard Cook
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Alexis Turgeon
- Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Université Laval, Québec City, Québec, Canada
| | - Dean Fergusson
- Canadian Blood Services, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marshall Glesby
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kent Cadogan Loftsgard
- UBC Health Team-Based Care, Vancouver, British Columbia, USA
- CIHR-Strategy for Patient-Oriented Research, Ottawa, Ontario, Canada
| | - Melissa Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michaël Chassé
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Québec, Canada
- Innovation Hub, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Québec, Canada
| | - Nick Daneman
- Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec, Canada
| | - Bruce Sachais
- New York Blood Center, New York, New York, USA
- Weil Cornell Medical College, New York, New York, USA
| | - Philippe Bégin
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Québec, Canada
- Department of Pediatrics, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Jeannie Callum
- Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre and Queen's University, Kingston, Ontario, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Donald M Arnold
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Feng Xie
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Kasten MJ, Lahr BD, Parisapogu A, Yetmar ZA, O'Horo JC, Orenstein R, Moreno Franco P, Razonable RR, Vergidis P, Shah AS, Enzler MJ, Inwards DJ, Bauer PR. COVID-19 outcome is not affected by anti-CD20 or high-titer convalescent plasma in immunosuppressed patients. Sci Rep 2023; 13:21249. [PMID: 38040756 PMCID: PMC10692159 DOI: 10.1038/s41598-023-48145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
The role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent plasma in the treatment of Coronavirus Disease 2019 (COVID-19) in immunosuppressed individuals remains controversial. We describe the course of COVID-19 in patients who had received anti-CD20 therapy within the 3 years prior to infection. We compared outcomes between those treated with and those not treated with high titer SARS-CoV2 convalescent plasma. We identified 144 adults treated at Mayo clinic sites who had received anti-CD20 therapies within a median of 5.9 months prior to the COVID-19 index date. About one-third (34.7%) were hospitalized within 14 days and nearly half (47.9%) within 90 days. COVID-19 directed therapy included anti-spike monoclonal antibodies (n = 30, 20.8%), and, among those hospitalized within 14 days (n = 50), remdesivir (n = 45, 90.0%), glucocorticoids (n = 36, 72.0%) and convalescent plasma (n = 24, 48.0%). The duration from receipt of last dose of anti-CD20 therapy did not correlate with outcomes. The overall 90-day mortality rate was 14.7%. Administration of convalescent plasma within 14 days of the COVID-19 diagnosis was not significantly associated with any study outcome. Further study of COVID-19 in CD20-depleted individuals is needed focusing on the early administration of new and potentially combination antiviral agents, associated or not with vaccine-boosted convalescent plasma.
Collapse
Affiliation(s)
- Mary J Kasten
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Brian D Lahr
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Zachary A Yetmar
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Infectious Disease, Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John C O'Horo
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Raymund R Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Paschalis Vergidis
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aditya S Shah
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mark J Enzler
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Inwards
- Division of Hematology, Emeritus Staff Center, Mayo Clinic, Rochester, MN, USA
| | - Philippe R Bauer
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Terada M, Saito S, Kutsuna S, Kinoshita-Iwamoto N, Togano T, Hangaishi A, Shiratori K, Takamatsu Y, Maeda K, Ishizaka Y, Ohtsu H, Satake M, Mitsuya H, Ohmagari N. Efficacy and Safety of Treatment with Plasma from COVID-19-Recovered Individuals. Life (Basel) 2023; 13:2184. [PMID: 38004324 PMCID: PMC10671928 DOI: 10.3390/life13112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Convalescent plasma therapy, which involves administering plasma from recovered coronavirus disease 2019 (COVID-19) patients to infected individuals, is being explored as a potential treatment for severe cases of COVID-19. This study aims to evaluate the efficacy and safety of convalescent plasma therapy in COVID-19 patients with moderate to severe illness. An open-label, single-arm intervention study was conducted without a control group. Plasma collected from recovered COVID-19 patients was administered to eligible participants. The primary endpoint was the proportion of patients who were placed on artificial ventilation or died within 14 days of transfusion. Secondary endpoints included clinical improvement, viral load measurements, and adverse event monitoring. A total of 59 cases were included in the study. The primary endpoint was evaluated by comparing the rate obtained in the study to an existing rate of 25%. The study also assessed clinical improvement, viral load changes, and safety endpoints through adverse event monitoring. Convalescent plasma therapy shows potential as a treatment option for COVID-19. This study aimed to provide evidence for the efficacy and safety of this therapy and may contribute to its future use in treating severe cases of COVID-19.
Collapse
Affiliation(s)
- Mari Terada
- Center for Clinical Sciences, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan (S.K.)
| | - Sho Saito
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan (S.K.)
| | - Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan (S.K.)
| | - Noriko Kinoshita-Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan (S.K.)
| | - Tomiteru Togano
- Department of Hematology, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Akira Hangaishi
- Department of Hematology, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Katsuyuki Shiratori
- Laboratory Testing Department, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Infections, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy Joint Research Center for Human Retrovirus Infection, Kagoshima University, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroshi Ohtsu
- Faculty of Health Data Science, Juntendo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiro Satake
- Central Blood Institute, Japanese Red Cross, Tatsumi, Koto-ku, Tokyo 135-8521, Japan
| | - Hiroaki Mitsuya
- Department of Intractable Diseases, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan (S.K.)
| |
Collapse
|
11
|
Senefeld JW, Joyner MJ. Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Replacement Therapy for Immunocompromised Patients. Clin Infect Dis 2023; 77:961-963. [PMID: 37337905 DOI: 10.1093/cid/ciad367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 06/21/2023] Open
Affiliation(s)
- Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. Compr Physiol 2023; 13:4879-4907. [PMID: 37358508 PMCID: PMC10853940 DOI: 10.1002/cphy.c220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C Wiggins
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah E Baker
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Bloch EM, Focosi D, Shoham S, Senefeld J, Tobian AAR, Baden LR, Tiberghien P, Sullivan DJ, Cohn C, Dioverti V, Henderson JP, So-Osman C, Juskewitch JE, Razonable RR, Franchini M, Goel R, Grossman BJ, Casadevall A, Joyner MJ, Avery RK, Pirofski LA, Gebo KA. Guidance on the Use of Convalescent Plasma to Treat Immunocompromised Patients With Coronavirus Disease 2019. Clin Infect Dis 2023; 76:2018-2024. [PMID: 36740590 PMCID: PMC10249987 DOI: 10.1093/cid/ciad066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is a safe and effective treatment for COVID-19 in immunocompromised (IC) patients. IC patients have a higher risk of persistent infection, severe disease, and death from COVID-19. Despite the continued clinical use of CCP to treat IC patients, the optimal dose, frequency/schedule, and duration of CCP treatment has yet to be determined, and related best practices guidelines are lacking. A group of individuals with expertise spanning infectious diseases, virology and transfusion medicine was assembled to render an expert opinion statement pertaining to the use of CCP for IC patients. For optimal effect, CCP should be recently and locally collected to match circulating variant. CCP should be considered for the treatment of IC patients with acute and protracted COVID-19; dosage depends on clinical setting (acute vs protracted COVID-19). CCP containing high-titer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, retains activity against circulating SARS-CoV-2 variants, which have otherwise rendered monoclonal antibodies ineffective.
Collapse
Affiliation(s)
- Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathon Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lindsey R Baden
- Department of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine-St-Denis and Université de Franche-Comté, Besançon, France
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Claudia Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Veronica Dioverti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey P Henderson
- Departments of Internal Medicine (Division of Infectious Diseases) and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia So-Osman
- Department Transfusion Medicine, Division Blood Bank, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
- Department Haematology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Justin E Juskewitch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester campus, Minnesota, USA
| | - Raymund R Razonable
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ruchika Goel
- Division of Hematology/Oncology, Simmons Cancer Institute at SIU School of Medicine and Mississippi Valley Regional Blood Center, Springfield, Illinois, USA
| | - Brenda J Grossman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin K Avery
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liise-anne Pirofski
- Department of Medicine, Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Tomisti L, Angelotti F, Lenzi M, Amadori F, Sarteschi G, Porcu A, Capria AL, Bertacca G, Lombardi S, Bianchini G, Vincenti A, Cesta N. Efficacy of Convalescent Plasma to Treat Long-Standing COVID-19 in Patients with B-Cell Depletion. Life (Basel) 2023; 13:1266. [PMID: 37374049 DOI: 10.3390/life13061266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The use of antivirals, corticosteroids, and IL-6 inhibitors has been recommended by the WHO to treat COVID-19. CP has also been considered for severe and critical cases. Clinical trials on CP have shown contradictory results, but an increasing number of patients, including immunocompromised ones, have shown benefits from this treatment. We reported two clinical cases of patients with prolonged COVID-19 infection and B-cell depletion who showed rapid clinical and virological recovery after the administration of CP. The first patient in this study was a 73-year-old female with a history of follicular non-Hodgkin lymphoma previously treated with bendamustine followed by maintenance therapy with rituximab. The second patient was a 68-year-old male with chronic obstructive pulmonary disease, bipolar disorder, alcoholic liver disease, and a history of mantellar non-Hodgkin lymphoma treated with rituximab and radiotherapy. After the administration of CP, both patients showed a resolution of symptoms, improvement of their clinical conditions, and a negative result of the nasopharyngeal swab test. The administration of CP might be effective in resolving symptoms and improving clinical and virological outcomes in patients with B-cell depletion and prolonged SARS-CoV2 infections.
Collapse
Affiliation(s)
- Luca Tomisti
- ASL Toscana Nord-Ovest, Internal Medicine Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Francesca Angelotti
- ASL Toscana Nord-Ovest, Internal Medicine Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Mirco Lenzi
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Francesco Amadori
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Giovanni Sarteschi
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Anna Porcu
- ASL Toscana Nord-Ovest, Pneumology Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Anna-Lisa Capria
- UOC Virologia, Dipartimento di Medicina di Laboratorio, AOUP Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
| | - Gloria Bertacca
- ASL Toscana Nord-Ovest, SSD Clinical Chemistry Analyses and Molecular Biology, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Stefania Lombardi
- ASL Toscana Nord-Ovest, SSD Clinical Chemistry Analyses and Molecular Biology, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Guido Bianchini
- ASL Toscana Nord-Ovest, Internal Medicine Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Antonella Vincenti
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| | - Novella Cesta
- ASL Toscana Nord-Ovest, Infectious Diseases Department, Nuovo Ospedale Apuano, 54100 Massa, Italy
| |
Collapse
|
15
|
Hoffman TW, Leavis HL, Smits BM, van der Veken LT, van Kessel DA. Prolonged Disease Course of COVID-19 in a Patient with CTLA-4 Haploinsufficiency. Case Reports Immunol 2023; 2023:3977739. [PMID: 37260564 PMCID: PMC10228224 DOI: 10.1155/2023/3977739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 04/23/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Patients with primary immunodeficiencies are especially vulnerable to developing severe coronavirus disease 2019 (COVID-19) after infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an important regulator of immune responses, and patients who suffer from CTLA4 haploinsufficiency have hyperactivation of effector T cells and infiltration of various organs. Overexpression of CTLA4 has been associated with a more severe disease course in patients with COVID-19, but there have only been a few reports on the disease course of COVID-19 in patients with CTLA4 haploinsufficiency. We report on a 33-year-old female with a history of immune thrombocytopenia, autoimmune haemolytic anaemia, granulomatous-lymphocytic interstitial lung disease, and common variable immunodeficiency who developed COVID-19. She was admitted and discharged from the hospital several times in the months thereafter and remained symptomatic and had a positive SARS-CoV-2 PCR for up to 137 days after the first symptoms. No SARS-CoV-2 antibodies were identified in the patients' serum. The disease was finally controlled after repeated infusions of convalescent plasma and treatment of concurrent bacterial and fungal infections. Genetic analysis revealed a likely pathogenic variant in CTLA4, and CTLA4 expression on regulatory T-cells was low. This case illustrates that patients with primary immunodeficiencies who have a protracted disease course of COVID-19 could benefit from convalescent plasma therapy.
Collapse
Affiliation(s)
- T. W. Hoffman
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, Netherlands
| | - H. L. Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - B. M. Smits
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - L. T. van der Veken
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - D. A. van Kessel
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, Netherlands
- Department of Pulmonology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| |
Collapse
|
16
|
Casadevall A, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan D, Paneth N, Focosi D. Convalescent plasma therapy in COVID-19: Unravelling the data using the principles of antibody therapy. Expert Rev Respir Med 2023:1-15. [PMID: 37129285 DOI: 10.1080/17476348.2023.2208349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION When the COVID-19 pandemic struck no specific therapies were available and many turned to COVID-19 convalescent plasma (CCP), a form of antibody therapy. The literature provides mixed evidence for CCP efficacy. AREAS COVERED PubMed was searched using the words COVID-19 and convalescent plasma and individual study designs were evaluated for adherence to the three principles of antibody therapy, i.e. that plasma 1) contain specific antibody; 2) have enough specific antibody to mediate a biological effect; and 3) be administered early in the course of disease. Using this approach, a diverse and seemingly contradictory collection of clinical findings was distilled into a consistent picture whereby CCP was effective when used according to the above principles of antibody therapy. In addition, CCP therapy in immunocompromised patients is useful at any time in the course of disease. EXPERT OPINION CCP is safe and effective when used appropriately. Today, most of humanity has some immunity to SARS-CoV-2 from vaccines and infection, which has lessened the need for CCP in the general population. However, COVID-19 in immunocompromised patients is a major therapeutic challenge, and with the deauthorization of all SARS-CoV-2-spike protein-directed monoclonal antibodies, CCP is the only antibody therapy available for this population.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nigel Paneth
- Departments of Epidemiology & Biostatistics and Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
17
|
Shoham S, Batista C, Ben Amor Y, Ergonul O, Hassanain M, Hotez P, Kang G, Kim JH, Lall B, Larson HJ, Naniche D, Sheahan T, Strub-Wourgaft N, Sow SO, Wilder-Smith A, Yadav P, Bottazzi ME. Vaccines and therapeutics for immunocompromised patients with COVID-19. EClinicalMedicine 2023; 59:101965. [PMID: 37070102 PMCID: PMC10091856 DOI: 10.1016/j.eclinm.2023.101965] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
The COVID-19 pandemic has disproportionately impacted immunocompromised patients. This diverse group is at increased risk for impaired vaccine responses, progression to severe disease, prolonged hospitalizations and deaths. At particular risk are people with deficiencies in lymphocyte number or function such as transplant recipients and those with hematologic malignancies. Such patients' immune responses to vaccination and infection are frequently impaired leaving them more vulnerable to prolonged high viral loads and severe complications of COVID-19. Those in turn, have implications for disease progression and persistence, development of immune escape variants and transmission of infection. Data to guide vaccination and treatment approaches in immunocompromised people are generally lacking and extrapolated from other populations. The large clinical trials leading to authorisation and approval of SARS-CoV-2 vaccines and therapeutics included very few immunocompromised participants. While experience is accumulating, studies focused on the special circumstances of immunocompromised patients are needed to inform prevention and treatment approaches.
Collapse
Affiliation(s)
- Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolina Batista
- Médecins Sans Frontières, Rio de Janeiro, Brazil
- Baraka Impact Finance, Geneva, Switzerland
| | - Yanis Ben Amor
- Center for Sustainable Development, Columbia University, New York, NY, USA
| | - Onder Ergonul
- Koc University Research Center for Infectious Diseases, Istanbul, Turkey
| | - Mazen Hassanain
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Peter Hotez
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Bhavna Lall
- University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
| | | | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Spain
| | - Timothy Sheahan
- University of North Carolina, Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Nathalie Strub-Wourgaft
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Spain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Samba O. Sow
- Center for Vaccine Development, Bamako, Mali
- University of Maryland, MD, USA
| | - Annelies Wilder-Smith
- London School of Hygiene & Tropical Medicine, London, UK
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Prashant Yadav
- Center for Global Development, Washington, DC, USA
- Harvard Medical School, Boston, MA, USA
- Technology and Operations Management, INSEAD, Fontainebleau, France
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Médecins Sans Frontières, Rio de Janeiro, Brazil
- Baraka Impact Finance, Geneva, Switzerland
- Center for Sustainable Development, Columbia University, New York, NY, USA
- Koc University Research Center for Infectious Diseases, Istanbul, Turkey
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
- Christian Medical College, Vellore, India
- International Vaccine Institute, Seoul, South Korea
- University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
- London School of Hygiene & Tropical Medicine, London, UK
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Spain
- University of North Carolina, Gillings School of Global Public Health, Chapel Hill, NC, USA
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
- Center for Vaccine Development, Bamako, Mali
- University of Maryland, MD, USA
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Center for Global Development, Washington, DC, USA
- Harvard Medical School, Boston, MA, USA
- Technology and Operations Management, INSEAD, Fontainebleau, France
| |
Collapse
|
18
|
Seidel A, Hoffmann S, Jahrsdörfer B, Körper S, Ludwig C, Vieweg C, Albers D, von Maltitz P, Müller R, Lotfi R, Wuchter P, Klüter H, Kirchhoff F, Schmidt M, Münch J, Schrezenmeier H. SARS-CoV-2 vaccination of convalescents boosts neutralization capacity against Omicron subvariants BA.1, BA.2 and BA.5 and can be predicted by anti-S antibody concentrations in serological assays. Front Immunol 2023; 14:1170759. [PMID: 37180152 PMCID: PMC10166809 DOI: 10.3389/fimmu.2023.1170759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Background Recent data on immune evasion of new SARS-CoV-2 variants raise concerns about the efficacy of antibody-based COVID-19 therapies. Therefore, in this study the in-vitro neutralization capacity against SARS-CoV-2 variant B.1 and the Omicron subvariants BA.1, BA.2 and BA.5 of sera from convalescent individuals with and without boost by vaccination was assessed. Methods and findings The study included 313 serum samples from 155 individuals with a history of SARS-CoV-2 infection, divided into subgroups without (n=25) and with SARS-CoV-2 vaccination (n=130). We measured anti-SARS-CoV-2 antibody concentrations by serological assays (anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S) and neutralizing titers against B.1, BA.1, BA.2 and BA.5 in a pseudovirus neutralization assay. Sera of the majority of unvaccinated convalescents did not effectively neutralize Omicron sublineages BA.1, BA.2 and BA.5 (51.7%, 24.1% and 51.7%, resp.). In contrast, 99.3% of the sera of superimmunized individuals (vaccinated convalescents) neutralized the Omicron subvariants BA.1 and BA.5 and 99.6% neutralized BA.2. Neutralizing titers against B.1, BA.1, BA.2 and BA.5 were significantly higher in vaccinated compared to unvaccinated convalescents (p<0.0001) with 52.7-, 210.7-, 141.3- and 105.4-fold higher geometric mean of 50% neutralizing titers (NT50) in vaccinated compared to unvaccinated convalescents. 91.4% of the superimmunized individuals showed neutralization of BA.1, 97.2% of BA.2 and 91.5% of BA.5 with a titer ≥ 640. The increase in neutralizing titers was already achieved by one vaccination dose. Neutralizing titers were highest in the first 3 months after the last immunization event. Concentrations of anti-S antibodies in the anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S assays predicted neutralization capacity against B.1 and Omicron subvariants BA.1, BA.2 and BA.5. Conclusions These findings confirm substantial immune evasion of the Omicron sublineages, which can be overcome by vaccination of convalescents. This informs strategies for choosing of plasma donors in COVID-19 convalescent plasma programs that shall select specifically vaccinated convalescents with very high titers of anti-S antibodies.
Collapse
Affiliation(s)
- Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Simone Hoffmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Carolin Ludwig
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christiane Vieweg
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg– Hessen, Mannheim, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg– Hessen, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg– Hessen, Mannheim, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
19
|
Sun J, Yang ZD, Xie X, Li L, Zeng HS, Gong B, Xu JQ, Wu JH, Qu BB, Song GW. Clinical application of SARS-CoV-2 antibody detection and monoclonal antibody therapies against COVID-19. World J Clin Cases 2023; 11:2168-2180. [PMID: 37122515 PMCID: PMC10131020 DOI: 10.12998/wjcc.v11.i10.2168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study was to investigate the clinical application of severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2) specific antibody detection and anti-SARS-CoV-2 specific monoclonal antibodies (mAbs) in the treatment of coronavirus infectious disease 2019 (COVID-19). The dynamic changes of SARS-CoV-2 specific antibodies during COVID-19 were studied. Immunoglobulin M (IgM) appeared earlier and lasted for a short time, while immunoglobulin G (IgG) appeared later and lasted longer. IgM tests can be used for early diagnosis of COVID-19, and IgG tests can be used for late diagnosis of COVID-19 and identification of asymptomatic infected persons. The combination of antibody testing and nucleic acid testing, which complement each other, can improve the diagnosis rate of COVID-19. Monoclonal anti-SARS-CoV-2 specific antibodies can be used to treat hospitalized severe and critically ill patients and non-hospitalized mild to moderate COVID-19 patients. COVID-19 convalescent plasma, highly concentrated immunoglobulin, and anti-SARS-CoV-2 specific mAbs are examples of anti-SARS-CoV-2 antibody products. Due to the continuous emergence of mutated strains of the novel coronavirus, especially omicron, its immune escape ability and infectivity are enhanced, making the effects of authorized products reduced or invalid. Therefore, the optimal application of anti-SARS-CoV-2 antibody products (especially anti-SARS-CoV-2 specific mAbs) is more effective in the treatment of COVID-19 and more conducive to patient recovery.
Collapse
Affiliation(s)
- Jin Sun
- Medical Innovation Research Office, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Zhen-Dong Yang
- Department of Respiratory, Beijing Jindu Children Hospital, Beijing 102208, China
- Innovative Medicine Working Committee of the Chinese Society of Water Resources and Electric Power Medical Science and Technology, Beijing 100053, China
- Department of Pediatrics, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Xiong Xie
- Department of Pediatrics, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Li Li
- Department of Intensive Care, First Clinical Medical College of Three Gorges University, Yichang 443000, Hubei Province, China
| | - Hua-Song Zeng
- Department of Allergy Immunology and Rheumatology, Guangzhou Children's Hospital, Women's and Children's Medical Center Affiliated with Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Bo Gong
- Central Laboratory, Shanghai Changning District Maternal and Child Health, Maternal and Child Health Hospital Affiliated with Shanghai East China Normal University, Shanghai 210000, China
| | - Jian-Qiang Xu
- Department of Respiratory and Critical Care Medicine, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Ji-Hong Wu
- School of Clinical Medicine, Beijing Tsinghua Chang Gung Hospital Affiliated to Tsinghua University, Beijing 102218, China
| | - Bei-Bei Qu
- Medical Innovation Research Office, Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443002, Hubei Province, China
| | - Guo-Wei Song
- Department of Emergency, Children's Hospital Affiliated with Beijing Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
20
|
Tayyar R, Wong LK, Dahlen A, Shu E, Pandey S, Liu AY. High-titer post-vaccine COVID-19 convalescent plasma for immunocompromised patients during the first omicron surge. Transpl Infect Dis 2023; 25:e14055. [PMID: 36929619 DOI: 10.1111/tid.14055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Transplant and hematologic malignancy patients have high Coronavirus disease 2019 (COVID-19) mortality and impaired vaccination responses. Omicron variant evades several monoclonal antibodies previously used in immunocompromised patients. Polyclonal COVID-19 convalescent plasma (CCP) may provide broader neutralizing capacity against new variants at high titers. Vaccination increases severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) titer in convalescent donors. METHODS We conducted a retrospective chart review of hospitalized immunocompromised patients with COVID-19 who received high-titer CCP during the first omicron surge, collected from vaccinated donors within 6 months of pre-omicron COVID-19. Data on safety and outcomes were extracted. RESULTS A total of 44 immunocompromised patients were included, 59.1% with solid organ transplant, 22.7% with hematopoietic cell transplant, 11.4% with hematologic malignancy, and 6.8% with autoimmune disease. Overall, 95% of CCP units transfused were from recently recovered and vaccinated donors and had SARS-CoV-2 antibody results 8- to 37-fold higher than the Food and Drug Administration's cutoff for high-titer CCP. There were two mild transfusion reactions. A total of 30-day mortality was 4.5%. There were no differences in 100-day mortality by underlying diagnosis, levels of immunosuppression, and timing of CCP administration. Patients with higher immunosuppression had significantly higher mean World Health Organization clinical progression scores at 30-day post-CCP compared to those with lower immunosuppression. CONCLUSIONS CCP is a safe, globally available treatment for immunocompromised patients with COVID-19. Mortality was lower in our cohort than that of COVID-19 patients with similar immunocompromising conditions. Post-vaccine CCP with very high titers should be prioritized for study in immunocompromised patients. Post-vaccine CCP has the potential to keep pace with new variants by overcoming mutations at sufficiently high titer.
Collapse
Affiliation(s)
- Ralph Tayyar
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Lisa Kanata Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Stanford Blood Center, Stanford, California, USA
| | - Alex Dahlen
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elaine Shu
- Stanford Blood Center, Stanford, California, USA
| | - Suchitra Pandey
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Stanford Blood Center, Stanford, California, USA
| | - Anne Y Liu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Convalescent Plasma Treatment of Patients Previously Treated with B-Cell-Depleting Monoclonal Antibodies Suffering COVID-19 Is Associated with Reduced Re-Admission Rates. Viruses 2023; 15:v15030756. [PMID: 36992465 PMCID: PMC10059055 DOI: 10.3390/v15030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Patients receiving treatment with B-cell-depleting monoclonal antibodies, such as anti-CD20 monoclonal antibodies, such as rituximab and obinutuzumab, either for hematological disease or another diagnosis, such as a rheumatological disease, are at an increased risk for medical complications and mortality from COVID-19. Since inconsistencies persist regarding the use of convalescent plasma (CP), especially in the vulnerable patient population that has received previous treatment with B-cell-depleting monoclonal antibodies, further studies should be performed in thisdirection. The aim of the present study was to describe the characteristics of patients with previous use of B-cell-depleting monoclonal antibodies and describe the potential beneficial effects of CP use in terms of mortality, ICU admission and disease relapse. In this retrospective cohort study, 39 patients with previous use of B-cell-depleting monoclonal antibodies hospitalized in the COVID-19 department of a tertiary hospital in Greece were recorded and evaluated. The mean age was 66.3 years and 51.3% were male. Regarding treatment for COVID-19, remdesivir was used in 89.7%, corticosteroids in 94.9% and CP in 53.8%. In-hospital mortality was 15.4%. Patients who died were more likely to need ICU admission and also had a trend towards a longer hospital stay, even though the last did not reach statistical significance. Patients treated with CP had a lower re-admission rate for COVID-19 after discharge. Further studies should be performed to identify the role of CP in patients with treatment with B-cell-depleting monoclonal antibodies suffering from COVID-19.
Collapse
|
22
|
Pirofski LA. COVID-19 convalescent plasma therapy through the lens of the third year of the pandemic. Clin Microbiol Infect 2023; 29:130-132. [PMID: 36343900 PMCID: PMC9633635 DOI: 10.1016/j.cmi.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Liise-anne Pirofski
- Corresponding author. Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Room 610. Bronx, New York 10461-1900
| |
Collapse
|
23
|
Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall A. Convergent Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves Emerge. Int J Mol Sci 2023; 24:2264. [PMID: 36768588 PMCID: PMC9917121 DOI: 10.3390/ijms24032264] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
The first 2 years of the COVID-19 pandemic were mainly characterized by recurrent mutations of SARS-CoV-2 Spike protein at residues K417, L452, E484, N501 and P681 emerging independently across different variants of concern (Alpha, Beta, Gamma, and Delta). Such homoplasy is a marker of convergent evolution. Since Spring 2022 and the third year of the pandemic, with the advent of Omicron and its sublineages, convergent evolution has led to the observation of different lineages acquiring an additional group of mutations at different amino acid residues, namely R346, K444, N450, N460, F486, F490, Q493, and S494. Mutations at these residues have become increasingly prevalent during Summer and Autumn 2022, with combinations showing increased fitness. The most likely reason for this convergence is the selective pressure exerted by previous infection- or vaccine-elicited immunity. Such accelerated evolution has caused failure of all anti-Spike monoclonal antibodies, including bebtelovimab and cilgavimab. While we are learning how fast coronaviruses can mutate and recombine, we should reconsider opportunities for economically sustainable escape-proof combination therapies, and refocus antibody-mediated therapeutic efforts on polyclonal preparations that are less likely to allow for viral immune escape.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Rodrigo Quiroga
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordova 5000, Argentina
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65201, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Körper S, Grüner B, Zickler D, Wiesmann T, Wuchter P, Blasczyk R, Zacharowski K, Spieth P, Tonn T, Rosenberger P, Paul G, Pilch J, Schwäble J, Bakchoul T, Thiele T, Knörlein J, Dollinger MM, Krebs J, Bentz M, Corman VM, Kilalic D, Schmidtke-Schrezenmeier G, Lepper PM, Ernst L, Wulf H, Ulrich A, Weiss M, Kruse JM, Burkhardt T, Müller R, Klüter H, Schmidt M, Jahrsdörfer B, Lotfi R, Rojewski M, Appl T, Mayer B, Schnecko P, Seifried E, Schrezenmeier H. One-year follow-up of the CAPSID randomized trial for high-dose convalescent plasma in severe COVID-19 patients. J Clin Invest 2022; 132:e163657. [PMID: 36326824 PMCID: PMC9753994 DOI: 10.1172/jci163657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUNDResults of many randomized trials on COVID-19 convalescent plasma (CCP) have been reported, but information on long-term outcome after CCP treatment is limited. The objectives of this extended observation of the randomized CAPSID trial are to assess long-term outcome and disease burden in patients initially treated with or without CCP.METHODSOf 105 randomized patients, 50 participated in the extended observation. Quality of life (QoL) was assessed by questionnaires and a structured interview. CCP donors (n = 113) with asymptomatic to moderate COVID-19 were included as a reference group.RESULTSThe median follow-up of patients was 396 days, and the estimated 1-year survival was 78.7% in the CCP group and 60.2% in the control (P = 0.08). The subgroup treated with a higher cumulative amount of neutralizing antibodies showed a better 1-year survival compared with the control group (91.5% versus 60.2%, P = 0.01). Medical events and QoL assessments showed a consistent trend for better results in the CCP group without reaching statistical significance. There was no difference in the increase in neutralizing antibodies after vaccination between the CCP and control groups.CONCLUSIONThe trial demonstrated a trend toward better outcome in the CCP group without reaching statistical significance. A predefined subgroup analysis showed a significantly better outcome (long-term survival, time to discharge from ICU, and time to hospital discharge) among those who received a higher amount of neutralizing antibodies compared with the control group. A substantial long-term disease burden remains after severe COVID-19.Trial registrationEudraCT 2020-001310-38 and ClinicalTrials.gov NCT04433910.FundingBundesministerium für Gesundheit (German Federal Ministry of Health).
Collapse
Affiliation(s)
- Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Beate Grüner
- Division of Infectious Diseases, University Hospital and Medical Center Ulm, Ulm, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Wiesmann
- Department of Anesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University, Germany
| | - Peter Spieth
- Department of Anesthesiology and Critical Care Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Torsten Tonn
- Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden and German Red Cross Blood Donation Service North-East gGmbH, Dresden, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Gregor Paul
- Department of Gastroenterology, Hepatology, Pneumology and Infectious Diseases, Klinikum Stuttgart, Stuttgart, Germany
| | - Jan Pilch
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Hospital, Homburg/Saar, Germany
| | - Joachim Schwäble
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Tamam Bakchoul
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Thiele
- Institute of Transfusion Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Julian Knörlein
- Clinic of Anesthesiology and Intensive Care Medicine, University Medical Center of Freiburg, Freiburg, Germany
| | | | - Jörg Krebs
- Clinic for Anesthesiology and Surgical Intensive Care Medicine, University of Mannheim, Mannheim, Germany
| | - Martin Bentz
- Department of Internal Medicine III, Hospital of Karlsruhe, Karlsruhe, Germany
| | - Victor M. Corman
- Institute of Virology, Charité - University Medicine Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Dzenan Kilalic
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | | | - Philipp M. Lepper
- Department of Internal Medicine V – Pneumology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Lucas Ernst
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hinnerk Wulf
- Department of Anesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Alexandra Ulrich
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Manfred Weiss
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Jan Matthias Kruse
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Burkhardt
- Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden and German Red Cross Blood Donation Service North-East gGmbH, Dresden, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
25
|
Ripoll JG, Gorman EK, Juskewitch JE, Razonable RR, Ganesh R, Hurt RT, Theel ES, Stubbs JR, Winters JL, Parikh SA, Kay NE, Joyner MJ, Senefeld JW. Vaccine-boosted convalescent plasma therapy for patients with immunosuppression and COVID-19. Blood Adv 2022; 6:5951-5955. [PMID: 36156121 PMCID: PMC9519378 DOI: 10.1182/bloodadvances.2022008932] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Neil E. Kay
- Division of Hematology
- Department of Immunology
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
26
|
Evaluation of a COVID-19 convalescent plasma program at a U.S. academic medical center. PLoS One 2022; 17:e0277707. [PMID: 36480499 PMCID: PMC9731422 DOI: 10.1371/journal.pone.0277707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
Amidst the therapeutic void at the onset of the COVID-19 pandemic, a critical mass of scientific and clinical interest coalesced around COVID-19 convalescent plasma (CCP). To date, the CCP literature has focused largely on safety and efficacy outcomes, but little on implementation outcomes or experience. Expert opinion suggests that if CCP has a role in COVID-19 treatment, it is early in the disease course, and it must deliver a sufficiently high titer of neutralizing antibodies (nAb). Missing in the literature are comprehensive evaluations of how local CCP programs were implemented as part of pandemic preparedness and response, including considerations of the core components and personnel required to meet demand with adequately qualified CCP in a timely and sustained manner. To address this gap, we conducted an evaluation of a local CCP program at a large U.S. academic medical center, the University of North Carolina Medical Center (UNCMC), and patterned our evaluation around the dimensions of the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework to systematically describe key implementation-relevant metrics. We aligned our evaluation with program goals of reaching the target population with severe or critical COVID-19, integrating into the structure of the hospital-wide pandemic response, adapting to shifting landscapes, and sustaining the program over time during a compassionate use expanded access program (EAP) era and a randomized controlled trial (RCT) era. During the EAP era, the UNCMC CCP program was associated with faster CCP infusion after admission compared with contemporaneous affiliate hospitals without a local program: median 29.6 hours (interquartile range, IQR: 21.2-48.1) for the UNCMC CCP program versus 47.6 hours (IQR 32.6-71.6) for affiliate hospitals; (P<0.0001). Sixty-eight of 87 CCP recipients in the EAP (78.2%) received CCP containing the FDA recommended minimum nAb titer of ≥1:160. CCP delivery to hospitalized patients operated with equal efficiency regardless of receiving treatment via a RCT or a compassionate-use mechanism. It was found that in a highly resourced academic medical center, rapid implementation of a local CCP collection, treatment, and clinical trial program could be achieved through re-deployment of highly trained laboratory and clinical personnel. These data provide important pragmatic considerations critical for health systems considering the use of CCP as part of an integrated pandemic response.
Collapse
|
27
|
Lanza F, Monaco F, Ciceri F, Cairoli R, Sacchi MV, Guidetti A, Marchetti M, Massaia M, Arcaini L, Krampera M, Mohamed S, Gherlinzoni F, Mecucci C, Gentile M, Romano I, Venditti A, Ruggeri M, Ferrero D, Coviello E, Fabbri E, Corradini P, Passamonti F. Lack of efficacy of convalescent plasma in COVID-19 patients with concomitant hematological malignancies: An Italian retrospective study. Hematol Oncol 2022; 40:857-863. [PMID: 35932208 PMCID: PMC9538413 DOI: 10.1002/hon.3060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 12/13/2022]
Abstract
A multicenter retrospective study was designed to assess clinical outcome of COVID-19 in patients with hematological malignancies (HM) following treatment with anti-SARS-CoV-2 convalescent plasma (CP) or standard of care therapy. To this aim, a propensity score matching was used to assess the role of non-randomized administration of CP in this high-risk cohort of patients from the Italian Hematology Alliance on COVID-19 (ITA-HEMA-COV) project, now including 2049 untreated control patients. We investigated 30- and 90-day mortality, rate of admission to intensive care unit, proportion of patients requiring mechanical ventilatory support, hospitalization time, and SARS-CoV-2 clearance in 79 CP recipients and compared results with 158 propensity score-matched controls. Results indicated a lack of efficacy of CP in the study group compared with the untreated group, thus confirming the negative results obtained from randomized studies in immunocompetent individuals with COVID-19. In conclusion, this retrospective analysis did not meet the primary and secondary end points in any category of immunocompromized patients affected by HM.
Collapse
Affiliation(s)
| | | | - Fabio Ciceri
- IRCCS Ospedale San RaffaeleUniversity Vita‐Salute San RaffaeleMilanoItaly
| | | | - Maria Vittoria Sacchi
- Hematology Unit, SCDU Ematologia ‐ Az Ospedaliera Santi Antonio e Biagio e Cesare ArrigoAlessandriaItaly
| | | | - Monia Marchetti
- Hematology Unit, SCDU Ematologia ‐ Az Ospedaliera Santi Antonio e Biagio e Cesare ArrigoAlessandriaItaly
| | | | - Luca Arcaini
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo and Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Sara Mohamed
- Hematology UnitAzienda Sanitaria Universitaria Giuliano IsontinaTriesteItaly
| | | | | | | | | | - Adriano Venditti
- Hematology, Department of Biomedicine and PreventionUniversity Tor VergataRomaItaly
| | | | | | | | | | | | | |
Collapse
|
28
|
Kiss-Dala N, Szabo BG, Lakatos B, Reti M, Szlavik J, Valyi-Nagy I. Use of convalescent plasma therapy in hospitalised adult patients with non-critical COVID-19: a focus on the elderly from Hungary. GeroScience 2022; 44:2427-2445. [PMID: 36367599 PMCID: PMC9650173 DOI: 10.1007/s11357-022-00683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Convalescent plasma therapy might be a feasible option for treatment of novel infections. During the early phases of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, several promising results were published with convalescent plasma therapy, followed by more disappointing findings of randomised controlled trials. In our single-centre, open-label, prospective, cohort study, we assessed the findings of 180 patients treated with convalescent plasma during the first four waves of the pandemic in Hungary. The primary outcome was all-cause mortality; secondary outcomes were clinical improvement and need for intensive care unit admission by day 28. Subgroup analysis comparing elderly and non-elderly (less than 65 years of age) was performed. Twenty (11.4%) patients died by day 28, at significantly higher rates in the elderly subgroup (3 vs. 17, p < 0.01). One hundred twenty-eight (72.7%) patients showed clinical improvement, and 15 (8.5%) were transferred to the intensive care unit until day 28. Non-elderly patients showed clinical improvement by day 28 in significantly higher rates (improvement 74 vs. 54, no improvement 15 vs. 11, worsening or death 4 vs. 18 patients, p < 0.01). In conclusion, we found similar clinical outcome results as randomised controlled trials, and the impact of risk factors for unfavourable clinical outcomes among patients in the elderly population.
Collapse
Affiliation(s)
- Noemi Kiss-Dala
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary.
| | - Balint Gergely Szabo
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Botond Lakatos
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Marienn Reti
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Janos Szlavik
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Istvan Valyi-Nagy
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| |
Collapse
|
29
|
Freise NF, Gliga S, Fischer J, Lübke N, Lutterbeck M, Schöler M, Bölke E, Orth HM, Feldt T, Roemmele C, Wilke D, Schneider J, Wille K, Hohmann C, Strauss R, Hower M, Ruf A, Schubert J, Isberner N, Stecher M, Pilgram L, Vehreschild JJ, Hanses F, Luedde T, Jensen B, Jung N, Göpel S, Westhoff T, Hohenstein B, Rothfuss K, Rieg S, Ruethrich MM, Rupp J, Hanses F, Luedde T, Jensen B. Convalescent plasma treatment for SARS-CoV-2 infected high-risk patients: a matched pair analysis to the LEOSS cohort. Sci Rep 2022; 12:19035. [PMID: 36351986 PMCID: PMC9643921 DOI: 10.1038/s41598-022-23200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Establishing the optimal treatment for COVID-19 patients remains challenging. Specifically, immunocompromised and pre-diseased patients are at high risk for severe disease course and face limited therapeutic options. Convalescent plasma (CP) has been considered as therapeutic approach, but reliable data are lacking, especially for high-risk patients. We performed a retrospective analysis of 55 hospitalized COVID-19 patients from University Hospital Duesseldorf (UKD) at high risk for disease progression, in a substantial proportion due to immunosuppression from cancer, solid organ transplantation, autoimmune disease, dialysis. A matched-pairs analysis (1:4) was performed with 220 patients from the Lean European Open Survey on SARS-CoV-2-infected Patients (LEOSS) who were treated or not treated with CP. Both cohorts had high mortality (UKD 41.8%, LEOSS 34.1%). A matched-pairs analysis showed no significant effect on mortality. CP administration before the formation of pulmonary infiltrates showed the lowest mortality in both cohorts (10%), whereas mortality in the complicated phase was 27.8%. CP administration during the critical phase revealed the highest mortality: UKD 60.9%, LEOSS 48.3%. In our cohort of COVID-19 patients with severe comorbidities CP did not significantly reduce mortality in a retrospective matched-pairs analysis. However, our data supports the concept that a reduction in mortality is achievable by early CP administration.
Collapse
Affiliation(s)
- Noemi F. Freise
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Smaranda Gliga
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Johannes Fischer
- grid.411327.20000 0001 2176 9917Department for Transfusion Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Nadine Lübke
- grid.411327.20000 0001 2176 9917Institute of Virology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Matthias Lutterbeck
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Miriam Schöler
- grid.411327.20000 0001 2176 9917Heinrich Heine University, Duesseldorf, Germany
| | - Edwin Bölke
- grid.411327.20000 0001 2176 9917Department of Radiotherapy and Radio Oncology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Hans Martin Orth
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Torsten Feldt
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Christoph Roemmele
- grid.419801.50000 0000 9312 0220Department of Internal Medicine III, Gastroenterology and Infectious Diseases, University Hospital Augsburg, Augsburg, Germany
| | - Dominik Wilke
- grid.412282.f0000 0001 1091 2917University Hospital Carl Gustav Carus, Dresden, Germany
| | - Jochen Schneider
- grid.6936.a0000000123222966Technical University of Munich, Munich, Germany
| | - Kai Wille
- grid.5570.70000 0004 0490 981XJohannes Wesling Klinikum Minden, Ruhr-University Bochum, Bochum, Germany
| | - Christian Hohmann
- grid.419807.30000 0004 0636 7065Department of Oncology and Infectious Diseases, Klinikum Bremen-Mitte, Bremen, Germany
| | - Richard Strauss
- grid.411668.c0000 0000 9935 6525University Hospital Erlangen, Erlangen, Germany
| | - Martin Hower
- grid.473616.10000 0001 2200 2697Department of Internal Medicine, Klinikum Dortmund gGmbH, Dortmund, Germany
| | - Andreas Ruf
- grid.419594.40000 0004 0391 0800Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | | | - Nora Isberner
- grid.411760.50000 0001 1378 7891Department of Internal Medicine II, Division of Infectious Diseases, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Melanie Stecher
- grid.6190.e0000 0000 8580 3777Faculty of Medicine, University Clinics, Department I of Internal Medicine, University of Cologne, Cologne, Germany ,grid.452463.2German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Lisa Pilgram
- grid.6363.00000 0001 2218 4662Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany ,grid.411088.40000 0004 0578 8220Center for Internal Medicine, Medical Department 2, Hematology, Oncology and Infectious Diseases, University Hospital of Frankfurt, Frankfurt, Germany
| | - Jörg J. Vehreschild
- grid.6190.e0000 0000 8580 3777Faculty of Medicine, University Clinics, Department I of Internal Medicine, University of Cologne, Cologne, Germany ,grid.452463.2German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany ,grid.411088.40000 0004 0578 8220Center for Internal Medicine, Medical Department 2, Hematology, Oncology and Infectious Diseases, University Hospital of Frankfurt, Frankfurt, Germany
| | | | - Frank Hanses
- grid.411941.80000 0000 9194 7179Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | - Tom Luedde
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Björn Jensen
- grid.411327.20000 0001 2176 9917Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Grubovic Rastvorceva RM, Useini S, Stevanovic M, Demiri I, Petkovic E, Franchini M, Focosi D. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients-An Open-Label Phase II Clinical Trial. Life (Basel) 2022; 12:1565. [PMID: 36295001 PMCID: PMC9605182 DOI: 10.3390/life12101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023] Open
Abstract
Background: COVID-19 convalescent plasma (CCP) is an important antiviral option for selected patients with COVID-19. Materials and Methods: In this open-label, phase 2, clinical trial conducted from 30 April 2020 till 10 May 2021 in the Republic of North Macedonia, we evaluated the efficacy and safety of CCP in hospitalized patients. Treatment was with a single unit of CCP having an anti-RBD IgG concentration higher than 5 AU/mL. Results: There were 189 patients that completed the study, of which 65 (34.4%) had WHO 8-point clinical progression scale score of 3 (requiring hospital care but not oxygen support), 65 (34.4%) had a score of 4 (hospitalized and requiring supplemental oxygen by mask or nasal prongs), and 59 (31.2%) had a score of 5 (hospitalized and requiring supplemental oxygen by non-invasive ventilation or high-flow oxygen). Mean age was 57 years (range 22−94), 78.5% were males, 80.4% had elevated body mass index, and 70.9% had comorbidity. Following CCP transfusion, we observed clinical improvement with increase rates in oxygenation-free days of 32.3% and 58.5% at 24 h and seven days after CCP transfusion, a decline in WHO scores, and reduced progression to severe disease (only one patient was admitted to ICU after CCP transfusion). Mortality in the entire cohort was 11.6% (22/189). We recorded 0% mortality in WHO score 3 (0/65) and in patients that received CCP transfusion in the first seven days of disease, 4.6% mortality in WHO score 4 (3/65), and 30.5% mortality in WHO score 5 (18/59). Mortality correlated with WHO score (Chi-square 19.3, p < 0.001) and with stay in the ICU (Chi-square 55.526, p ≤ 0.001). No severe adverse events were reported. Conclusions: This study showed that early administration of CCP to patients with moderate disease was a safe and potentially effective treatment for hospitalized COVID-19 patients. The trial was registered at clinicaltrials.gov (NCT04397523).
Collapse
Affiliation(s)
- Rada M. Grubovic Rastvorceva
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
- Faculty of Medical Sciences, University Goce Delcev, 2000 Stip, North Macedonia
| | - Sedula Useini
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | - Milena Stevanovic
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Ilir Demiri
- University Clinic for Infectious Diseases, 1000 Skopje, North Macedonia
| | - Elena Petkovic
- Institute for Transfusion Medicine of RNM, 1000 Skopje, North Macedonia
| | | | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
31
|
Razumikhin M, Smolyanova T, Nikolaeva A, Orlova E, Ivanov A, Belyakova O, Vyaznikova T, Selezneva N, Perevozchikov A, Sokolova A, Zubkova N, Efimova I, Dolzhikova I, Logunov D, Sakanjan E. Development and characterization of anti-SARS-CoV-2 intravenous immunoglobulin from COVID-19 convalescent plasma. Immunotherapy 2022; 14:1133-1147. [PMID: 35892311 PMCID: PMC9328115 DOI: 10.2217/imt-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The authors describe the developmental process of intravenous anti-COVID-19 hyperimmune immunoglobulin from anti-SARS-CoV-2 neutralizing antibody-containing plasma. Furthermore, the authors investigated its safety and protective activity in animal models. Materials & methods: The manufacturing process included standard ethanol fractionation, chromatographic purification steps and virus removal or inactivation. Results: The authors produced pure and safe immunoglobulin for intravenous administration, with 98.1 ± 6.5 mg/ml protein content, of which 97.6 ± 0.7% was IgG. The concentration factor of SARS-CoV-2 neutralizing antibodies was 9.4 ± 1.4-times. Safety studies in animals showed no signs of acute/chronic toxicity or allergenic or thrombogenic properties. Intravenous anti-COVID-19 hyperimmune immunoglobulin protected immunosuppressed hamsters against SARS-Cov-2. Conclusion: The obtained results can allow the start of clinical trials to study the safety and efficacy in healthy adults.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga Belyakova
- JSC NPO Microgen, 10, 2-nd Volkonsky, Moscow, 127473, Russia
| | | | | | | | - Alina Sokolova
- JSC NPO Microgen, 10, 2-nd Volkonsky, Moscow, 127473, Russia
| | | | - Irina Efimova
- JSC NPO Microgen, 10, 2-nd Volkonsky, Moscow, 127473, Russia
| | - Inna Dolzhikova
- Federal State Budget Institution “National Research Centre for Epidemiology & Microbiology named after Honorary Academician N F Gamaleya” of The Ministry of Health of The Russian Federation, 18 Gamaleya Str., Moscow, 123098, Russia
| | - Denis Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology & Microbiology named after Honorary Academician N F Gamaleya” of The Ministry of Health of The Russian Federation, 18 Gamaleya Str., Moscow, 123098, Russia
| | - Elena Sakanjan
- JSC NPO Microgen, 10, 2-nd Volkonsky, Moscow, 127473, Russia
| |
Collapse
|
32
|
Focosi D, Franchini M, Pirofski LA, Burnouf T, Paneth N, Joyner MJ, Casadevall A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin Microbiol Rev 2022; 35:e0020021. [PMID: 35262370 PMCID: PMC9491201 DOI: 10.1128/cmr.00200-21] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convalescent plasma (CP) recurs as a frontline treatment in epidemics because it is available as soon as there are survivors. The COVID-19 pandemic represented the first large-scale opportunity to shed light on the mechanisms of action, safety, and efficacy of CP using modern evidence-based medicine approaches. Studies ranging from observational case series to randomized controlled trials (RCTs) have reported highly variable efficacy results for COVID-19 CP (CCP), resulting in uncertainty. We analyzed variables associated with efficacy, such as clinical settings, disease severity, CCP SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antibody levels and function, dose, timing of administration (variously defined as time from onset of symptoms, molecular diagnosis, diagnosis of pneumonia, or hospitalization, or by serostatus), outcomes (defined as hospitalization, requirement for ventilation, clinical improvement, or mortality), CCP provenance and time for collection, and criteria for efficacy. The conflicting trial results, along with both recent WHO guidelines discouraging CCP usage and the recent expansion of the FDA emergency use authorization (EUA) to include outpatient use of CCP, create confusion for both clinicians and patients about the appropriate use of CCP. A review of 30 available RCTs demonstrated that signals of efficacy (including reductions in mortality) were more likely if the CCP neutralizing titer was >160 and the time to randomization was less than 9 days. The emergence of the Omicron variant also reminds us of the benefits of polyclonal antibody therapies, especially as a bridge to the development and availability of more specific therapies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Gachoud D, Pillonel T, Tsilimidos G, Battolla D, Dumas D, Opota O, Fontana S, Vollenweider P, Manuel O, Greub G, Bertelli C, Rufer N. Antibody response and intra-host viral evolution after plasma therapy in COVID-19 patients pre-exposed or not to B-cell-depleting agents. Br J Haematol 2022; 199:549-559. [PMID: 36101920 PMCID: PMC9539045 DOI: 10.1111/bjh.18450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 12/16/2022]
Abstract
Administration of plasma therapy may contribute to viral control and survival of COVID-19 patients receiving B-cell-depleting agents that impair humoral immunity. However, little is known on the impact of anti-CD20 pre-exposition on the kinetics of SARS-CoV-2-specific antibodies. Here, we evaluated the relationship between anti-spike immunoglobulin G (IgG) kinetics and the clinical status or intra-host viral evolution after plasma therapy in 36 eligible hospitalized COVID-19 patients, pre-exposed or not to B-cell-depleting treatments. The majority of anti-CD20 pre-exposed patients (14/17) showed progressive declines of anti-spike IgG titres following plasma therapy, contrasting with the 4/19 patients who had not received B-cell-depleting agents (p = 0.0006). Patients with antibody decay also depicted prolonged clinical symptoms according to the World Health Organization (WHO) severity classification (p = 0.0267) and SARS-CoV-2 viral loads (p = 0.0032) before complete virus clearance. Moreover, they had higher mutation rates than patients able to mount an endogenous humoral response (p = 0.015), including three patients with one to four spike mutations, potentially associated with immune escape. No relevant differences were observed between patients treated with plasma from convalescent and/or mRNA-vaccinated donors. Our study emphasizes the need for an individualized clinical care and follow-up in the management of COVID-19 patients with B-cell lymphopenia.
Collapse
Affiliation(s)
- David Gachoud
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland,Medical Education Unit, School of Medicine, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Trestan Pillonel
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Gerasimos Tsilimidos
- Division of Hematology, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Dunia Battolla
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Dominique Dumas
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Onya Opota
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Stefano Fontana
- Interregional Blood Transfusion SRCBernSwitzerland,Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Peter Vollenweider
- Department of Internal MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, Department of MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Gilbert Greub
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland,Infectious Diseases Service and Transplantation Center, Department of MedicineLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Claire Bertelli
- Institute of MicrobiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Nathalie Rufer
- Interregional Blood Transfusion SRCEpalingesSwitzerland,Department of OncologyLausanne University Hospital and University of LausanneEpalingesSwitzerland
| |
Collapse
|
34
|
Joyner MJ, Carter RE, Fairweather D, Wright RS. Convalescent plasma and COVID-19: Time for a second-second look? Transfus Med 2022; 33:16-20. [PMID: 36089562 PMCID: PMC9538409 DOI: 10.1111/tme.12915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
In this short narrative, we highlight some of our experiences leading the US Convalescent Plasma Program at the beginning of the pandemic in the spring and summer of 2020. This includes a brief summary of how the program emerged and high-level lessons we learned. We also share our impressions about why convalescent plasma was used at scale in the United States, early in the pandemic and share ideas that might inform the use of convalescent plasma in future outbreaks of novel infectious diseases.
Collapse
Affiliation(s)
- Michael J. Joyner
- Department of Anesthesiology & Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Division of Clinical Trials & BiostatisticsMayo ClinicJacksonvilleFloridaUSA
| | | | - R. Scott Wright
- Department of Cardiovascular DiseasesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
35
|
Birschmann I, von Bargen K, Teune M, Flottmann C, Knüttgen F, Knabbe C. Retrospective study shows that early administration of convalescent plasma in hospitalized COVID-19 patients may have a positive effect on disease progression. Health Sci Rep 2022; 5:e714. [PMID: 35957967 PMCID: PMC9362730 DOI: 10.1002/hsr2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Ingvild Birschmann
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| | - Katharina von Bargen
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| | - Michelle Teune
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| | - Christian Flottmann
- Lukas Krankenhaus BündeMedizinische Klinik II – Innere Medizin und KardiologieBündeGermany
| | - Franziska Knüttgen
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| | - Cornelius Knabbe
- Herz‐ und Diabeteszentrum Nordrhein‐Westfalen, Universitätsklinik der Ruhr‐Universität BochumInstitut für Laboratoriums‐ und TransfusionsmedizinBad OeynhausenGermany
| |
Collapse
|
36
|
Del Bello A, Marion O, Izopet J, Kamar N. Can the COVID-19 Pandemic Improve the Management of Solid Organ Transplant Recipients? Viruses 2022; 14:v14091860. [PMID: 36146666 PMCID: PMC9500961 DOI: 10.3390/v14091860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Increased mortality due to SARS-CoV-2 infection was observed among solid organ transplant patients. During the pandemic, in order to prevent and treat COVID-19 infections in this context, several innovative procedures and therapies were initiated within a short period of time. A large number of these innovations can be applied and expanded to improve the management of non-COVID-19 infectious diseases in solid organ transplant patients and in the case of a future pandemic. In this vein, the present paper reviews and discusses medical care system adaptation, modification of immunosuppression, adjuvant innovative therapies, the role of laboratory expertise, and the prevention of infections as examples of such innovations.
Collapse
Affiliation(s)
- Arnaud Del Bello
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, 31059 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR 1291, 31300 Toulouse, France
| | - Olivier Marion
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, 31059 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR 1291, 31300 Toulouse, France
| | - Jacques Izopet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR 1291, 31300 Toulouse, France
- University Toulouse III—Paul Sabatier, 31000 Toulouse, France
- Laboratory of Virology, Toulouse Purpan University Hospital, 31300 Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, 31059 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR 1291, 31300 Toulouse, France
- University Toulouse III—Paul Sabatier, 31000 Toulouse, France
- Correspondence: ; Tel.: +33-5-61-32-23-35; Fax: +33-5-61-32-39-89
| |
Collapse
|
37
|
Weisser M, Khanna N, Hedstueck A, Tschudin Sutter S, Roesch S, Stehle G, Sava M, Deigendesch N, Battegay M, Infanti L, Holbro A, Bassetti S, Pargger H, Hirsch HH, Leuzinger K, Kaiser L, Vu D, Baur K, Massaro N, Busch MP, Simmons G, Stone M, Felgner PL, de Assis RR, Khan S, Tsai C, Robinson PV, Seftel D, Irsch J, Bagri A, Buser AS, Corash L. Characterization of Pathogen Inactivated
COVID
‐19 Convalescent Plasma and Responses in Transfused Patients. Transfusion 2022; 62:1997-2011. [PMID: 36054476 PMCID: PMC9538076 DOI: 10.1111/trf.17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 12/15/2022]
Abstract
Background Efficacy of donated COVID‐19 convalescent plasma (dCCP) is uncertain and may depend on antibody titers, neutralizing capacity, timing of administration, and patient characteristics. Study Design and Methods In a single‐center hypothesis‐generating prospective case–control study with 1:2 matched dCCP recipients to controls according to disease severity at day 1, hospitalized adults with COVID‐19 pneumonia received 2 × 200 ml pathogen‐reduced treated dCCP from 2 different donors. We evaluated severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) antibodies in COVID‐19 convalescent plasma donors and recipients using multiple antibody assays including a Coronavirus antigen microarray (COVAM), and binding and neutralizing antibody assays. Outcomes were dCCP characteristics, antibody responses, 28‐day mortality, and dCCP ‐related adverse events in recipients. Results Eleven of 13 dCCPs (85%) contained neutralizing antibodies (nAb). PRT did not affect dCCP antibody activity. Fifteen CCP recipients and 30 controls (median age 64 and 65 years, respectively) were enrolled. dCCP recipients received 2 dCCPs from 2 different donors after a median of one hospital day and 11 days after symptom onset. One dCCP recipient (6.7%) and 6 controls (20%) died (p = 0.233). We observed no dCCP‐related adverse events. Transfusion of unselected dCCP led to heterogeneous SARS CoV‐2 antibody responses. COVAM clustered dCCPs in 4 distinct groups and showed endogenous immune responses to SARS‐CoV‐2 antigens over 14–21 days post dCCP in all except 4 immunosuppressed recipients. Discussion PRT did not impact dCCP anti‐virus neutralizing activity. Transfusion of unselected dCCP did not impact survival and had no adverse effects. Variable dCCP antibodies and post‐transfusion antibody responses indicate the need for controlled trials using well‐characterized dCCP with informative assays.
Collapse
Affiliation(s)
- Maja Weisser
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
| | - Nina Khanna
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
| | - Anemone Hedstueck
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
| | - Sarah Tschudin Sutter
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
| | - Sandra Roesch
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
| | - Gregor Stehle
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Mihaela Sava
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
| | | | - Manuel Battegay
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
| | - Laura Infanti
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Andreas Holbro
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Stefano Bassetti
- Department of Clinical Research University Hospital Basel Basel Switzerland
- Department of Internal Medicine University Hospital Basel Basel Switzerland
| | - Hans Pargger
- Department of Clinical Research University Hospital Basel Basel Switzerland
- Department of Intensive Care University Hospital Basel Basel Switzerland
| | - Hans H. Hirsch
- Division of Infectious Diseases & Hospital Epidemiology University and University Hospital of Basel Basel Switzerland
- Department of Clinical Research University Hospital Basel Basel Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine University of Basel Basel Switzerland
| | - Karoline Leuzinger
- Transplantation & Clinical Virology, Department of Biomedicine University of Basel Basel Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland; Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine University of Geneva Geneva Switzerland
| | - Diem‐Lan Vu
- Division of Infectious Diseases Geneva University Hospitals Geneva Switzerland
| | - Katharina Baur
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Nadine Massaro
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | - Michael Paul Busch
- Department of Laboratory Medicine University of California, San Francisco San Francisco CA USA
- Vitalant Research Institute San Francisco CA
| | - Graham Simmons
- Department of Laboratory Medicine University of California, San Francisco San Francisco CA USA
- Vitalant Research Institute San Francisco CA
| | - Mars Stone
- Department of Laboratory Medicine University of California, San Francisco San Francisco CA USA
- Vitalant Research Institute San Francisco CA
| | - Philip L. Felgner
- Department of Physiology and Biophysics, Vaccine Research and Development Laboratory University of California, Irvine Irvine CA USA
| | - Rafael R. de Assis
- Department of Physiology and Biophysics, Vaccine Research and Development Laboratory University of California, Irvine Irvine CA USA
| | - Saahir Khan
- Division of Infectious Diseases, Department of Medicine, Keck School of Medicine University of Southern California Los Angeles CA USA
| | | | | | | | | | | | - Andreas S. Buser
- Department of Clinical Research University Hospital Basel Basel Switzerland
- Regional Blood Transfusion Service, Swiss Red Cross, Basel Basel Switzerland
| | | |
Collapse
|
38
|
Avery RK. Update on COVID-19 Therapeutics for Solid Organ Transplant Recipients, Including the Omicron Surge. Transplantation 2022; 106:1528-1537. [PMID: 35700481 PMCID: PMC9311293 DOI: 10.1097/tp.0000000000004200] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Major changes have occurred in therapeutics for coronavirus-19 (COVID-19) infection over the past 12-18 mo, most notably in early outpatient therapy. In most cases, solid organ transplant recipients were not included in the original clinical trials of these agents, so studies of real-world outcomes have been important in building our understanding of their utility. This review examines what is known about clinical outcomes in solid organ transplant recipients with newer therapies. SARS-CoV-2 monoclonal antibodies for early treatment or prophylaxis have likely prevented many hospitalizations and deaths. In addition, convalescent plasma, the oral drugs nirmatrelvir/ritonavir and molnupiravir, remdesivir for early outpatient treatment, anti-inflammatory therapy, and investigational virus-specific T-cell therapy will be discussed. Finally, the later consequences of COVID-19, such as secondary infections, long COVID symptoms, and persistent active infection, are identified as areas for future research.
Collapse
Affiliation(s)
- Robin Kimiko Avery
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
39
|
Benites BD, Costa-Lima C, Pinto FBR, da Costa VA, Duarte ADSS, Zangirolami AB, Amaro EC, Granja F, Proenca-Modena JL, Saad STO, Addas-Carvalho M. Selection of plasma donors for the production of anti-SARS-CoV-2 immunoglobulin-based therapies: Strategies for quantitative antibody measurements. Transfus Apher Sci 2022; 61:103513. [PMID: 35871137 PMCID: PMC9293395 DOI: 10.1016/j.transci.2022.103513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/02/2022] [Accepted: 07/16/2022] [Indexed: 01/04/2023]
Abstract
Even after two years of the pandemic, a completely effective treatment against SARS-CoV-2 has not yet been established. Considering this fact and the emergence of successive new viral variants, the development of therapies based on natural polyclonal antibodies recovered from convalescent plasma remains relevant. This study presents a comparison between different methods of screening antibodies in samples of 41 individuals previously diagnosed with COVID-19. We found a significant correlation between Abbot Architect anti-SARS-CoV-2 IgG and Abbott Allinity SARS-CoV-2 IgG II Quantitative assay intensity of reactivity and neutralizing antibody (nAb) titers. Thus, we propose an initial antibody screening with IgG anti-N Abbott Architect test, with an index of, for example, > 3.25 or SARS-CoV-2 IgG II Quantitative Abbott Allinity assay > 137.65 AU/mL as good predictors of Nab ≥ 1:80. For the quantitative method, this threshold demonstrated a 100 % sensitivity and 80 % specificity, with 97.3 % accuracy. An interesting observation was the increase in the neutralizing activity of the anti-SARS-CoV-2 antibodies with the longest interval between the end of the symptoms and the collection, demonstrating that the delay in plasma collection does not affect the achievement of adequate nAbs levels. These results demonstrate the possibility of using faster and more widely available commercial serological tests with a good correlation with viral neutralization tests in culture, allowing for optimized large-scale donor selection, which will be of utmost importance for the development of therapies such as hyperimmune immunoglobulin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fabiana Granja
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Brazil; Biodiversity Research Centre, Federal University of Roraima, Boa Vista, Brazil
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Brazil
| | | | | |
Collapse
|
40
|
Long-term SARS-CoV-2 Asymptomatic Carriage in an Immunocompromised Host: Clinical, Immunological, and Virological Implications. J Clin Immunol 2022; 42:1371-1378. [PMID: 35779200 DOI: 10.1007/s10875-022-01313-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE SARS-CoV-2 infection in immunocompromised hosts is challenging, and prolonged viral shedding can be a common complication in these patients. We describe the clinical, immunological, and virological course of a patient with eosinophilic granulomatosis with polyangiitis, who developed the status of long-term asymptomatic SARS-CoV-2 carrier for more than 7 months. METHODS Over the study period, the patient underwent 20 RT-PCR tests for SARS-CoV-2 detection on nasopharyngeal swabs. In addition, viral cultures and genetic investigation of SARS-CoV-2 were performed. As for immunological assessment, serological and specific T-cell testing was provided at different time points. RESULTS Despite the patient showing a deep drug-induced B and T adaptive immunity impairment, he did not experience COVID-19 progression to severe complications, and the infection remained asymptomatic during the follow-up period, but he was not able to achieve viral clearance for more than 7 months. The infection was finally cleared by SARS-CoV-2-specific monoclonal antibody treatment, after that remdesivir and convalescent plasma failed in this scope. The genetic investigations evidenced that the infection was sustained by multiple viral subpopulations that had apparently evolved intra-host during the infection. CONCLUSION Our case suggests that people with highly impaired B- and T-cell adaptive immunity can prevent COVID-19 progression to severe complications, but they may not be able to clear SARS-CoV-2 infection. Immunocompromised hosts with a long-term infection may play a role in the emergence of viral variants.
Collapse
|
41
|
Vachtenheim J, Novysedlak R, Svorcova M, Lischke R, Strizova Z. How COVID-19 Affects Lung Transplantation: A Comprehensive Review. J Clin Med 2022; 11:jcm11123513. [PMID: 35743583 PMCID: PMC9225085 DOI: 10.3390/jcm11123513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Lung transplant (LuTx) recipients are at a higher risk of developing serious illnesses from COVID-19, and thus, we have closely reviewed the consequences of the COVID-19 pandemic on lung transplantation. In most transplant centers, the overall LuTx activity significantly declined and led to a specific period of restricting lung transplantation to urgent cases. Moreover, several transplant centers reported difficulties due to the shortage of ICU capacities. The fear of donor-derived transmission generated extensive screening programs. Nevertheless, reasonable concerns about the unnecessary losses of viable organs were also raised. The overall donor shortage resulted in increased waiting-list mortality, and COVID-19-associated ARDS became an indication of lung transplantation. The impact of specific immunosuppressive agents on the severity of COVID-19 varied. Corticosteroid discontinuation was not found to be beneficial for LuTx patients. Tacrolimus concentrations were reported to increase during the SARS-CoV-2 infection, and in combination with remdesivir, tacrolimus may clinically impact renal functions. Monoclonal antibodies were shown to reduce the risk of hospitalization in SOT recipients. However, understanding the pharmacological interactions between the anti-COVID-19 drugs and the immunosuppressive drugs requires further research.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Prague Lung Transplant Program, 3rd Department of Surgery, First Faculty of Medicine, Charles University, University Hospital Motol, 150 06 Prague, Czech Republic; (J.V.J.); (R.N.); (M.S.); (R.L.)
| | - Rene Novysedlak
- Prague Lung Transplant Program, 3rd Department of Surgery, First Faculty of Medicine, Charles University, University Hospital Motol, 150 06 Prague, Czech Republic; (J.V.J.); (R.N.); (M.S.); (R.L.)
| | - Monika Svorcova
- Prague Lung Transplant Program, 3rd Department of Surgery, First Faculty of Medicine, Charles University, University Hospital Motol, 150 06 Prague, Czech Republic; (J.V.J.); (R.N.); (M.S.); (R.L.)
| | - Robert Lischke
- Prague Lung Transplant Program, 3rd Department of Surgery, First Faculty of Medicine, Charles University, University Hospital Motol, 150 06 Prague, Czech Republic; (J.V.J.); (R.N.); (M.S.); (R.L.)
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University, University Hospital Motol, 150 06 Prague, Czech Republic
- Correspondence: ; Tel.: +420-604712471
| |
Collapse
|
42
|
Metcalf RA, Cohn CS, Allen ES, Bakhtary S, Gniadek T, Gupta G, Harm S, Haspel R, Hess A, Jacobson J, Lokhandwala PM, Murphy C, Poston J, Prochaska MT, Raval JS, Saifee NH, Salazar E, Shan H, Zantek N, Pagano MB. Current advances in transfusion medicine 2021: A critical review of selected topics by the AABB Clinical Transfusion Medicine Committee. Transfusion 2022; 62:1435-1445. [PMID: 35713186 DOI: 10.1111/trf.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Each year the AABB Clinical Transfusion Medicine Committee (CTMC) procures a synopsis highlighting new, important, and clinically relevant studies in the field of transfusion medicine (TM). This has been made available as a publication in Transfusion since 2018. METHODS CTMC members reviewed and identified original manuscripts covering TM-related topics published electronically (ahead-of-print) or in print from December 2020 to December 2021. Selection of publications was discussed at committee meetings and chosen based on perceived relevance and originality. Next, committee members worked in pairs to create a synopsis of each topic, which was then reviewed by additional committee members. The first and senior authors assembled the final manuscript. Although this synopsis is extensive, it is not exhaustive, and some articles may have been excluded or missed. RESULTS The following topics are included: blood products; convalescent plasma; donor collections and testing; hemoglobinopathies; immunohematology and genomics; hemostasis; patient blood management; pediatrics; therapeutic apheresis; and cell therapy. CONCLUSIONS This synopsis highlights and summarizes recent key developments in TM and may be useful for educational purposes.
Collapse
Affiliation(s)
- Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth S Allen
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Sara Bakhtary
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Gniadek
- Department of Pathology, NorthShore University Health System, Chicago, Illinois, USA
| | - Gaurav Gupta
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sarah Harm
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Richard Haspel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Aaron Hess
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jessica Jacobson
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Colin Murphy
- Department of Pathology, University of Maryland, Baltimore, Maryland, USA
| | - Jacqueline Poston
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Micah T Prochaska
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Eric Salazar
- Department of Pathology, UT Health San Antonio, San Antonio, Texas, USA
| | - Hua Shan
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Nichole Zantek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Monica B Pagano
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Belov A, Huang Y, Villa CH, Whitaker BI, Forshee R, Anderson SA, Eder A, Verdun N, Joyner MJ, Wright SR, Carter RE, Hung DT, Homer M, Hoffman C, Lauer M, Marks P. Early administration of COVID-19 convalescent plasma with high titer antibody content by live viral neutralization assay is associated with modest clinical efficacy. Am J Hematol 2022; 97:770-779. [PMID: 35303377 PMCID: PMC9082011 DOI: 10.1002/ajh.26531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
The efficacy of COVID‐19 convalescent plasma (CCP) as a treatment for hospitalized patients with COVID‐19 remains somewhat controversial; however, many studies have not evaluated CCP documented to have high neutralizing antibody titer by a highly accurate assay. To evaluate the correlation of the administration of CCP with titer determined by a live viral neutralization assay with 7‐ and 28‐day death rates during hospitalization, a total of 23 118 patients receiving a single unit of CCP were stratified into two groups: those receiving high titer CCP (>250 50% inhibitory dilution, ID50; n = 13 636) or low titer CCP (≤250 ID50; n = 9482). Multivariable Cox regression was performed to assess risk factors. Non‐intubated patients who were transfused with high titer CCP showed 1.1% and 1.7% absolute reductions in overall 7‐ and 28‐day death rates, respectively, compared to those non‐intubated patients receiving low titer CCP. No benefit of CCP was observed in intubated patients. The relative benefit of high titer CCP was confirmed in multivariable Cox regression. Administration of CCP with high titer antibody content determined by live viral neutralization assay to non‐intubated patients is associated with modest clinical efficacy. Although shown to be only of modest clinical benefit, CCP may play a role in the future should viral variants develop that are not neutralized by other available therapeutics.
Collapse
Affiliation(s)
- Artur Belov
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Yin Huang
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Carlos H. Villa
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Barbee I. Whitaker
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Richard Forshee
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Steven A. Anderson
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Anne Eder
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Nicole Verdun
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic Rochester Minnesota USA
| | - Scott R. Wright
- Department of Cardiology and the Human Research Protection Program Mayo Clinic Rochester Minnesota USA
| | - Rickey E. Carter
- Department of Quantitative Health Sciences Mayo Clinic Jacksonville Florida USA
| | - Deborah T. Hung
- Infectious Disease and Microbiome Program Broad Institute Cambridge Massachusetts USA
| | - Mary Homer
- Biomedical Advanced Research and Development Authority (BARDA) District of Columbia Washington USA
| | - Corey Hoffman
- Biomedical Advanced Research and Development Authority (BARDA) District of Columbia Washington USA
| | - Michael Lauer
- Office of the Director National Institutes of Health Bethesda Maryland USA
| | - Peter Marks
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | | |
Collapse
|
44
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted all aspects of healthcare including solid organ transplantation. In this review, we discuss the specific impact of COVID-19 on the pediatric solid organ transplant population including access to grafts for pediatric transplant candidates as well as COVID-19 disease manifestations in pediatric transplant recipients. We address the current knowledge of prevention and management of COVID-19 in pediatric transplant recipients and provide additional information regarding social distancing, infection prevention and return to school.
Collapse
Affiliation(s)
- Amy G Feldman
- Pediatric Liver Transplant Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
| | - Lara A Danziger-Isakov
- Immunocompromised Host Infectious Disease, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, MLC 7017, Cincinnati, OH 45229, United States.
| |
Collapse
|
45
|
Ravlić S, Hećimović A, Kurtović T, Ivančić Jelečki J, Forčić D, Slović A, Kurolt IC, Mačak Šafranko Ž, Mušlin T, Rnjak D, Jakšić O, Sorić E, Džepina G, Đaković Rode O, Kujavec Šljivac K, Vuk T, Jukić I, Markotić A, Halassy B. Is Better Standardization of Therapeutic Antibody Quality in Emerging Diseases Epidemics Possible? Front Immunol 2022; 13:816159. [PMID: 35273599 PMCID: PMC8902244 DOI: 10.3389/fimmu.2022.816159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 01/01/2023] Open
Abstract
During the ongoing COVID-19 epidemic many efforts have gone into the investigation of the SARS-CoV-2–specific antibodies as possible therapeutics. Currently, conclusions cannot be drawn due to the lack of standardization in antibody assessments. Here we describe an approach of establishing antibody characterisation in emergent times which would, if followed, enable comparison of results from different studies. The key component is a reliable and reproducible assay of wild-type SARS-CoV-2 neutralisation based on a banking system of its biological components - a challenge virus, cells and an anti-SARS-CoV-2 antibody in-house standard, calibrated to the First WHO International Standard immediately upon its availability. Consequently, all collected serological data were retrospectively expressed in an internationally comparable way. The neutralising antibodies (NAbs) among convalescents ranged from 4 to 2869 IU mL-1 in a significant positive correlation to the disease severity. Their decline in convalescents was on average 1.4-fold in a one-month period. Heat-inactivation resulted in 2.3-fold decrease of NAb titres in comparison to the native sera, implying significant complement activating properties of SARS-CoV-2 specific antibodies. The monitoring of NAb titres in the sera of immunocompromised COVID-19 patients that lacked their own antibodies evidenced the successful transfusion of antibodies by the COVID-19 convalescent plasma units with NAb titres of 35 IU mL-1 or higher.
Collapse
Affiliation(s)
- Sanda Ravlić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Virus Immunology and Vaccines (CERVirVac), Zagreb, Croatia
| | - Ana Hećimović
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Tihana Kurtović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Virus Immunology and Vaccines (CERVirVac), Zagreb, Croatia
| | - Jelena Ivančić Jelečki
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Virus Immunology and Vaccines (CERVirVac), Zagreb, Croatia
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Virus Immunology and Vaccines (CERVirVac), Zagreb, Croatia
| | - Anamarija Slović
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Virus Immunology and Vaccines (CERVirVac), Zagreb, Croatia
| | - Ivan Christian Kurolt
- Center of Excellence for Virus Immunology and Vaccines (CERVirVac), Zagreb, Croatia.,Research Department, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Zagreb, Croatia
| | - Željka Mačak Šafranko
- Center of Excellence for Virus Immunology and Vaccines (CERVirVac), Zagreb, Croatia.,Research Department, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Zagreb, Croatia
| | - Tatjana Mušlin
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Dina Rnjak
- Clinics for Pulmonary Diseases, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ozren Jakšić
- Department of Hematology, University Hospital Dubrava, Zagreb, Croatia
| | - Ena Sorić
- Department of Hematology, University Hospital Dubrava, Zagreb, Croatia
| | - Gorana Džepina
- Department for Transfusion Medicine, University Hospital Dubrava, Zagreb, Croatia
| | - Oktavija Đaković Rode
- Department for Clinical Microbiology, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Zagreb, Croatia.,School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Kristina Kujavec Šljivac
- Clinical Institute for Transfusion Medicine, Clinical University Hospital Centre Osijek, Osijek, Croatia
| | - Tomislav Vuk
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Irena Jukić
- Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Alemka Markotić
- Center of Excellence for Virus Immunology and Vaccines (CERVirVac), Zagreb, Croatia.,Research Department, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Zagreb, Croatia.,School of Medicine, Catholic University of Croatia, Zagreb, Croatia.,Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Beata Halassy
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia.,Center of Excellence for Virus Immunology and Vaccines (CERVirVac), Zagreb, Croatia
| |
Collapse
|
46
|
Steiner S, Schwarz T, Corman VM, Gebert L, Kleinschmidt MC, Wald A, Gläser S, Kruse JM, Zickler D, Peric A, Meisel C, Meyer T, Staudacher OL, Wittke K, Kedor C, Bauer S, Besher NA, Kalus U, Pruß A, Drosten C, Volk HD, Scheibenbogen C, Hanitsch LG. SARS-CoV-2 T Cell Response in Severe and Fatal COVID-19 in Primary Antibody Deficiency Patients Without Specific Humoral Immunity. Front Immunol 2022; 13:840126. [PMID: 35359967 PMCID: PMC8960624 DOI: 10.3389/fimmu.2022.840126] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
Morbidity and mortality of COVID-19 is increased in patients with inborn errors of immunity (IEI). Age and comorbidities and also impaired type I interferon immunity were identified as relevant risk factors. In patients with primary antibody deficiency (PAD) and lack of specific humoral immune response to SARS-CoV-2, clinical disease outcome is very heterogeneous. Despite extensive clinical reports, underlying immunological mechanisms are poorly characterized and levels of T cellular and innate immunity in severe cases remain to be determined. In the present study, we report clinical and immunological findings of 5 PAD patients with severe and fatal COVID-19 and undetectable specific humoral immune response to SARS-CoV-2. Reactive T cells to SARS-CoV-2 spike (S) and nucleocapsid (NCAP) peptide pools were analyzed comparatively by flow cytometry in PAD patients, convalescents and naïve healthy individuals. All examined PAD patients developed a robust T cell response. The presence of polyfunctional cytokine producing activated CD4+ T cells indicates a memory-like phenotype. An analysis of innate immune response revealed elevated CD169 (SIGLEC1) expression on monocytes, a surrogate marker for type I interferon response, and presence of type I interferon autoantibodies was excluded. SARS-CoV-2 RNA was detectable in peripheral blood in three severe COVID-19 patients with PAD. Viral clearance in blood was observed after treatment with COVID-19 convalescent plasma/monoclonal antibody administration. However, prolonged mucosal viral shedding was observed in all patients (median 67 days) with maximum duration of 127 days. PAD patients without specific humoral SARS-CoV-2 immunity may suffer from severe or fatal COVID-19 despite robust T cell and normal innate immune response. Intensified monitoring for long persistence of SARS-CoV-2 viral shedding and (prophylactic) convalescent plasma/specific IgG as beneficial treatment option in severe cases with RNAemia should be considered in seronegative PAD patients.
Collapse
Affiliation(s)
- Sophie Steiner
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and German Centre for Infection Research, Associated Partner, Charitéplatz 1, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M. Corman
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and German Centre for Infection Research, Associated Partner, Charitéplatz 1, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Laura Gebert
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
| | - Malte C. Kleinschmidt
- Department of Infectious Diseases and Respiratory Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Wald
- Department of Pulmonary Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Sven Gläser
- Department of Pulmonary Medicine and Infectious Diseases, Vivantes-Klinikum Neukölln, Berlin, Germany
| | - Jan M. Kruse
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander Peric
- Department of Pulmonary Medicine and Infectious Diseases, Vivantes-Klinikum Friedrichshain, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
- Department of Immunology, Labor Berlin GmbH, Berlin, Germany
| | - Tim Meyer
- Department of Immunology, Labor Berlin GmbH, Berlin, Germany
| | - Olga L. Staudacher
- Department of Immunology, Labor Berlin GmbH, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
| | - Claudia Kedor
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
| | - Sandra Bauer
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
| | - Nabeel Al Besher
- Institute of Transfusion Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Kalus
- Institute of Transfusion Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and German Centre for Infection Research, Associated Partner, Charitéplatz 1, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Charitéplatz 1, Berlin, Germany
- Berlin Center for Advanced Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Charitéplatz 1, Berlin, Germany
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
47
|
Veyrenche N, Pisoni A, Debiesse S, Bollore K, Bedin AS, Makinson A, Niel C, Alcocer-Cordellat C, Mondain AM, Le Moing V, Van de Perre P, Tuaillon E. SARS-CoV-2 nucleocapsid urine antigen in hospitalized patients with Covid-19. J Infect Dis 2022; 226:812-821. [PMID: 35230450 PMCID: PMC8903449 DOI: 10.1093/infdis/jiac073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background SARS-CoV-2 nucleocapsid antigen (N-Ag) can be detected in the blood of patients with Covid-19. We used a highly sensitive and specific assay to explore the presence of N-Ag in urine during the course of Covid-19, and explore its relationship with the severity of the disease. Methods We studied urine and blood N-Ag using highly sensitive immunoassay in 82 patients with a SARS-CoV-2 infection proven by PCR. Results In the first and second weeks of Covid-19, hospitalized patients tested positive for urinary N-Ag (81.25% and 71.79%, respectively), and blood N-Ag (93.75% and 94.87%, respectively). High urinary N-Ag levels were associated with the absence of SARS-CoV-2 nucleocapsid antibodies, admission in intensive care units, high C-reactive protein levels, lymphopenia, eosinopenia, and high lactate dehydrogenase. A higher accuracy was observed for urine N-Ag as a predictor of severe Covid-19 compared to blood N-Ag. Conclusions Our study demonstrate that N-Ag is present in the urine of patients hospitalized in the early phase of Covid-19. As a direct marker of SARS-CoV-2, urinary N-Ag reflects the dissemination of viral compounds in the body. Urine N-Ag may be a useful marker for disease severity of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Nicolas Veyrenche
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles; CHU Montpellier, Montpellier, France
| | - Amandine Pisoni
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles; CHU Montpellier, Montpellier, France
| | - Ségolène Debiesse
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Karine Bollore
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Anne-Sophie Bedin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles, Montpellier, France
| | - Alain Makinson
- Tropical and Infectious Diseases, University Hospital, Montpellier, France. INSERM U1175/IRD UMI 233, IRD, Montpellier, France
| | - Clémence Niel
- Montpellier University Hospital, Montpellier, France
| | | | | | - Vincent Le Moing
- Tropical and Infectious Diseases, University Hospital, Montpellier, France. INSERM U1175/IRD UMI 233, IRD, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles; CHU Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, University of Antilles; CHU Montpellier, Montpellier, France
| |
Collapse
|
48
|
Paneth N, Casadevall A, Pirofski LA, Henderson JP, Grossman BJ, Shoham S, Joyner MJ. WHO covid-19 drugs guideline: reconsider using convalescent plasma. BMJ 2022; 376:o295. [PMID: 35135758 DOI: 10.1136/bmj.o295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nigel Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, Michigan, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | | | | | - Brenda J Grossman
- Department of Pathology and Immunology and Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Shmuel Shoham
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
49
|
Hartmann J, Bloch EM, Burnouf T. Experience with
COVID
‐19 convalescent plasma provides vital guidance to future pandemics. Transfusion 2022; 62:681-684. [DOI: 10.1111/trf.16810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Jan Hartmann
- Department of Medical Affairs Haemonetics Corporation Boston Massachusetts USA
| | - Evan M. Bloch
- Department of Pathology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering and International PhD Program in Biomedical Engineering, College of Biomedical Engineering Taipei Medical University Taipei Taiwan
| |
Collapse
|
50
|
van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, Engel JJ, Wiersinga WJ, Vlaar APJ, Shankar-Hari M, van der Poll T, Bonten M, Angus DC, van der Meer JWM, Netea MG. A guide to immunotherapy for COVID-19. Nat Med 2022; 28:39-50. [PMID: 35064248 DOI: 10.1038/s41591-021-01643-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
Immune dysregulation is an important component of the pathophysiology of COVID-19. A large body of literature has reported the effect of immune-based therapies in patients with COVID-19, with some remarkable successes such as the use of steroids or anti-cytokine therapies. However, challenges in clinical decision-making arise from the complexity of the disease phenotypes and patient heterogeneity, as well as the variable quality of evidence from immunotherapy studies. This Review aims to support clinical decision-making by providing an overview of the evidence generated by major clinical trials of host-directed therapy. We discuss patient stratification and propose an algorithm to guide the use of immunotherapy strategies in the clinic. This will not only help guide treatment decisions, but may also help to design future trials that investigate immunotherapy in other severe infections.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| | | | - Peter Pickkers
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lennie Derde
- Department of Intensive Care, University Medical Center Utrecht, Utrecht, the Netherlands.,Julius Center for Health Sciences and Primary Care, Utrecht, the Netherlands
| | - Helen Leavis
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Job J Engel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - W Joost Wiersinga
- Division of Infectious Diseases, Center for Experimental Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care Medicine and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Manu Shankar-Hari
- School of Immunobiology and Microbial Sciences, King's College London, London, UK
| | - Tom van der Poll
- Division of Infectious Diseases, Center for Experimental Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marc Bonten
- Julius Center for Health Sciences and Primary Care, Utrecht, the Netherlands
| | - Derek C Angus
- UPMC and University of Pittsburgh, Pittsburgh, PA, United States
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands. .,Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|