1
|
Bertola L, Pellizzoni B, Giudice C, Grieco V, Ferrari R, Chiti LE, Stefanello D, Manfredi M, De Zani D, Recordati C. Tumor-associated macrophages and tumor-infiltrating lymphocytes in canine cutaneous and subcutaneous mast cell tumors. Vet Pathol 2024; 61:882-895. [PMID: 38647163 DOI: 10.1177/03009858241244851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cutaneous and subcutaneous mast cell tumors (MCTs) are common canine neoplasms characterized by variable biological behavior. Tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs) can be effective prognostic markers in numerous human neoplasms and are increasingly investigated in dogs. The aim of this study was to characterize immune cells in canine MCTs and their relationship with histological location (cutaneous, subcutaneous) and histologic nodal metastatic status (HN0-3). Thirty-eight MCTs (26 cutaneous, 12 subcutaneous) from 33 dogs with known sentinel lymph node (SLN) metastatic status were immunolabeled for Iba1 (macrophages), CD20 (B cells), CD3 (T cells), and Foxp3 (regulatory T cells). Semiquantitative scoring of interstitial and perivascular CD3+, CD20+, and Foxp3+ cells and morphological evaluation of Iba1+ cells were performed. For each marker, the percent immunopositive area was evaluated by image analysis. All MCTs were diffusely infiltrated by Iba1+ cells and variably infiltrated by CD20+, CD3+, and rare Foxp3+ cells. Stellate/spindle Iba1+ cells were associated with HN2 and HN3 SLNs. Perivascular Foxp3+ cells, CD3+ cells, and percent CD3+ areas were increased in subcutaneous MCTs. Interstitial CD3+ cells were increased in cutaneous MCTs with HN0 SLNs. No differences in CD20+ cells were identified between cutaneous and subcutaneous MCTs and among SLN classes. MCTs were markedly infiltrated by TAMs and variably infiltrated by TILs. Stellate/spindle morphology of TAMs associated with HN2 and HN3 SLNs is suggestive of a pro-tumoral (M2) phenotype. Cutaneous and subcutaneous MCTs have different tumor-immune microenvironments, and T-cell infiltration might contribute to prevention of nodal metastatic spread of cutaneous MCTs.
Collapse
Affiliation(s)
- Luca Bertola
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Beebe E, Krudewig C, Motamed Z, Malbon A, Markkanen E. Stromal Expression Profiling Reveals Immune-Driven Adaption to Malignancy in Canine Melanoma Subtypes. Vet Comp Oncol 2024. [PMID: 39420530 DOI: 10.1111/vco.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Canine mucosal melanoma (CMM) is the most common oral malignancy in dogs and is significantly more aggressive than its cutaneous counterpart (CCM), yet the reasons for this disparity remain unclear. Cancer-associated stroma (CAS) plays a crucial role in tumour progression, but a detailed understanding of CAS in canine melanoma is missing. To assess stromal reprogramming, we analysed CAS from 21 CMM, 14 CCM and normal stroma from 10 skin and 9 oral mucosa samples by laser-capture microdissection followed by RNA sequencing. Results were assessed in relation to subtypes, prognostic factors including mitotic count (MC), ulceration, necrosis, pigmentation and immune cell infiltration (CD3, CD20 and CD68), scored using immunohistochemistry and RNA in situ hybridisation. Stromal reprogramming was evident in both subtypes but significantly more pronounced in CMM. Immune-excluded tumours exhibited higher MC than desert/cold ones. MC strongly correlated with genes associated with B-cells, T-helper cells and CTLA4 in CCM, suggesting CAS reprogramming to depend on tumour malignancy. Finally, we identify an immune-suppressive stromal signature in a subset of CMM characterised by the downregulation of key immune checkpoints and pathways. Together, these findings provide a solid foundation for understanding the role of CAS in canine melanoma, specific to cutaneous and mucosal subtypes.
Collapse
Affiliation(s)
- Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christiane Krudewig
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Zahra Motamed
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alexandra Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, Midlothian, UK
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Cronise KE, Coy J, Dow S, Hauck ML, Regan DP. Immunohistochemical and transcriptomic characterization of T and myeloid cell infiltrates in canine malignant melanoma. Vet Comp Oncol 2024; 22:377-387. [PMID: 38752589 PMCID: PMC11323233 DOI: 10.1111/vco.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 08/16/2024]
Abstract
Immune checkpoint inhibitor therapy can provide significant clinical benefit in patients with certain cancer types including melanoma; however, objective responses are only observed for a subset of patients. Mucosal melanoma is a rare melanoma subtype associated with a poor prognosis and, compared with cutaneous melanoma, is significantly less responsive to immune checkpoint inhibitors. Spontaneous canine tumours have emerged as valuable models to inform human cancer studies. In contrast to human melanoma, most canine melanomas are mucosal-an incidence that may be leveraged to better understand the subtype in humans. However, a more comprehensive understanding of the immune landscape of the canine disease is required. Here, we quantify tumour infiltrative T and myeloid cells in canine mucosal (n = 13) and cutaneous (n = 5) melanomas using immunohistochemical analysis of CD3 and MAC387 expression, respectively. Gene expression analysis using the Canine IO NanoString panel was also performed to identify genes and pathways associated with immune cell infiltration. T and myeloid cell densities were variable with geometric means of 158.7 cells/mm2 and 166.7 cells/mm2, respectively. Elevated T cell infiltration was associated with increased expression of cytolytic genes as well as genes encoding the coinhibitory checkpoint molecules PD-1, CTLA-4, TIM-3 and TIGIT; whereas increased myeloid cell infiltration was associated with elevated expression of protumourigenic cytokines. These data provide a basic characterization of the tumour microenvironment of canine malignant melanoma and suggest that, like human melanoma, inherent variability in anti-tumour T cell responses exists and that a subset of canine melanomas may respond better to immunomodulation.
Collapse
Affiliation(s)
- Kathryn E Cronise
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jonathan Coy
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Dow
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Marlene L Hauck
- Global Innovation, Oncology, Boehringer Ingelheim Animal Health, Athens, Georgia, USA
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Lo Giudice A, Porcellato I, Pellegrini M, Rottenberg S, He C, Dentini A, Moretti G, Cagiola M, Mechelli L, Chiaradia E, Brachelente C. Establishment of Primary Cell Cultures from Canine Oral Melanomas via Fine-Needle Aspiration: A Novel Tool for Tumorigenesis and Cancer Progression Studies. Animals (Basel) 2024; 14:1948. [PMID: 38998060 PMCID: PMC11240394 DOI: 10.3390/ani14131948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Oral melanomas are the most common oral malignancies in dogs and are characterized by an aggressive nature, invasiveness, and poor prognosis. With biological and genetic similarities to human oral melanomas, they serve as a valuable spontaneous comparative model. Primary cell cultures are widely used in human medicine and, more recently, in veterinary medicine to study tumorigenesis, cancer progression, and innovative therapeutic approaches. This study aims to establish two- and three-dimensional primary cell lines from oral canine melanomas using fine-needle aspiration as a minimally invasive sampling method. For this study, samples were collected from six dogs, represented by four primary oral melanomas and five lymph nodal metastases. The cells were digested to obtain single-cell suspensions, seeded in flasks, or processed with Matrigel® to form organoids. The cell cultures were characterized through flow cytometry using antibodies against Melan-A, PNL2, and Sox-10. This technique offers a minimally invasive means to obtain cell samples, particularly beneficial for patients that are ineligible for surgical procedures, and enables the establishment of in vitro models crucial for comparative studies in mucosal melanoma oncology. To the best of our knowledge, this is the first work establishing neoplastic primary cell cultures via fine-needle aspiration in dogs.
Collapse
Affiliation(s)
- Adriana Lo Giudice
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Martina Pellegrini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (M.P.); (M.C.)
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (S.R.); (C.H.)
| | - Chang He
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (S.R.); (C.H.)
| | - Alfredo Dentini
- Clinica Veterinaria Tyrus, Strada delle Campore 30L, 05100 Terni, Italy;
| | - Giulia Moretti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Monica Cagiola
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (M.P.); (M.C.)
| | - Luca Mechelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| |
Collapse
|
5
|
Contel IJ, Fonseca-Alves CE, Ferrari HF, Laufer-Amorim R, Xavier-Júnior JCC. Review of the comparative pathological and immunohistochemical features of human and canine cutaneous melanocytic neoplasms. J Comp Pathol 2024; 211:26-35. [PMID: 38761560 DOI: 10.1016/j.jcpa.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 04/14/2024] [Indexed: 05/20/2024]
Abstract
Melanocytic neoplasms originate from melanocytes and melanoma, the malignant form, is a common canine neoplasm and the most aggressive human skin cancer. Despite many similarities between these neoplasms in both species, only a limited number of studies have approached these entities in a comparative manner. Therefore, this review compares benign and malignant melanocytic neoplasms in dogs and humans, exclusively those arising in the haired skin, with regard to their clinicopathological, immunohistochemical and molecular aspects. Shared features include spontaneous occurrence, macroscopic features and microscopic findings when comparing human skin melanoma in the advanced/invasive stage and canine cutaneous melanoma, immunohistochemical markers and several histopathological prognostic factors. Differences include the apparent absence of active mutations in the BRAF gene in canine cutaneous melanoma and less aggressive clinical behaviour in dogs than in humans. Further studies are required to elucidate the aetiology and genetic development pathways of canine cutaneous melanocytic neoplasms. Evaluation of the applicability of histopathological prognostic parameters commonly used in humans for dogs are also needed. The similarities between the species and the recent findings regarding genetic mutations in canine cutaneous melanomas suggest the potential utility of dogs as a natural model for human melanomas that are not related to ultraviolet radiation.
Collapse
Affiliation(s)
- Isabeli J Contel
- Department of Pathology, Botucatu Medical School, São Paulo State University, Av. Prof. Mário R. Guimarães Montenegro, s/n, Campus Botucatu, 18618-687, Botucatu, SP, Brazil
| | - Carlos E Fonseca-Alves
- Institute of Health Sciences, Paulista University, Rua Luiz Levorato, 140, Jardim Marabá, 17048-290, Bauru, SP, Brazil
| | - Heitor F Ferrari
- University Center of Adamantina, Rua Nove de Julho, 730, Centro, 17800-057, Adamantina, SP, Brazil
| | - Renee Laufer-Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University, Rua Prof. Doutor Walter Mauricio Correa, s/n, Campus de Botucatu, 18618-681, Botucatu, SP, Brazil
| | - José C C Xavier-Júnior
- Department of Pathology, Botucatu Medical School, São Paulo State University, Av. Prof. Mário R. Guimarães Montenegro, s/n, Campus Botucatu, 18618-687, Botucatu, SP, Brazil; Salesian Catholic University Center Auxilium, Medical School, Rod. Sen. Teotônio Vilela, 3821, Jardim Alvorada, 16016-500, Araçatuba, SP, Brazil.
| |
Collapse
|
6
|
Brachelente C, Torrigiani F, Porcellato I, Drigo M, Brescia M, Treggiari E, Ferro S, Zappulli V, Sforna M. Tumor Immune Microenvironment and Its Clinicopathological and Prognostic Associations in Canine Splenic Hemangiosarcoma. Animals (Basel) 2024; 14:1224. [PMID: 38672372 PMCID: PMC11047608 DOI: 10.3390/ani14081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor cells can induce important cellular and molecular modifications in the tissue or host where they grow. The idea that the host and tumor interact with each other has led to the concept of a tumor microenvironment, composed of immune cells, stromal cells, blood vessels, and extracellular matrix, representing a unique environment participating and, in some cases, promoting cancer progression. The study of the tumor immune microenvironment, particularly focusing on the role of tumor-infiltrating lymphocytes (TILs), is highly relevant in oncology due to the prognostic and therapeutic significance of TILs in various tumors and their identification as targets for therapeutic intervention. Canine splenic hemangiosarcoma (HSA) is a common tumor; however, its immune microenvironment remains poorly understood. This retrospective study aimed to characterize the histological and immunohistochemical features of 56 cases of canine splenic HSA, focusing particularly on tumor-infiltrating lymphocytes (TILs). We assessed the correlations between the lymphocytic response, the macroscopic and histological characteristics of the tumor, and the survival data. Our study demonstrated that FoxP3 distribution was associated with tumor-related death and survival, while the CD20 count was associated with metastasis. This study provides an in-depth characterization of the tumor immune microenvironment in canine splenic HSA and describes potential prognostic factors.
Collapse
Affiliation(s)
- Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.B.); (M.B.); (M.S.)
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy; (F.T.); (S.F.); (V.Z.)
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.B.); (M.B.); (M.S.)
| | - Michele Drigo
- Department of Animal Medicine, Production and Health, University of Padua, AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - Martina Brescia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.B.); (M.B.); (M.S.)
| | - Elisabetta Treggiari
- Clinica Veterinaria Croce Blu, via San Giovanni Bosco 27/C, 15121 Alessandria, Italy;
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy; (F.T.); (S.F.); (V.Z.)
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, AGRIPOLIS, Viale dell’Università 16, 35020 Legnaro, Italy; (F.T.); (S.F.); (V.Z.)
| | - Monica Sforna
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (C.B.); (M.B.); (M.S.)
| |
Collapse
|
7
|
Vanhaezebrouck IF, Bakhle KM, Mendez-Valenzuela CR, Lyle LT, Konradt K, Scarpelli ML. Single institution study of the immune landscape for canine oral melanoma based on transcriptome analysis of the primary tumor. Front Vet Sci 2024; 10:1285909. [PMID: 38260202 PMCID: PMC10800815 DOI: 10.3389/fvets.2023.1285909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Understanding a tumor's immune context is paramount in the fight against cancer. Oral melanoma in dogs serves as an excellent translational model for human immunotherapy. However, additional study is necessary to comprehend the immune landscape of dog oral melanomas, including their similarity to human melanomas in this context. Methods This retrospective study utilizes formalin-fixed paraffin-embedded (FFPE) tissue samples to analyze RNA sequences associated with oral melanoma in dogs. Nanostring Technologies was used for conducting RNA sequencing. The focus is on understanding the differences between melanoma tumors restricted to the oral cavity (OL) and the same primary oral tumors with a history of metastasis to the lymph nodes or other organs (OM). Normal buccal mucosa samples are also included as a normal tissue reference. Results In the OM patient group, gene signatures exhibit significant changes relative to the OL patient group, including significantly decreased expression of S100, BRAF, CEACAM1, BCL2, ANXA1, and tumor suppressor genes (TP63). Relative to the OL tumors, the OM tumors had significantly increased expression of hypoxia-related genes (VEGFA expression), cell mobility genes (MCAM), and PTGS2 (COX2). The analysis of the immune landscape in the OM group indicates a shift from a possible "hot" tumor suppressed by immune checkpoints (PDL1) to significantly heightened expression not only of those checkpoints but also the inclusion of other immune blockades such as PD1 and IDO2. In addition, the OM group had significantly reduced expression of Toll-like receptors (TLR4) and IL-18 relative to the OL group, contributing to the tumor's immune escape. Additionally, signs of immune cell exhaustion are evident in both the OM and OL groups through significantly increased expression of TIGIT relative to normal tissue. Both the OM and OL groups had significantly increased expression of the immune cell marker CD4 expression relative to normal tissue. Further, CD4 expression significantly decreased in OM relative to OL; however, this study cannot determine the specific cell types expressing CD4 in OM and OL tumors. Discussion This preliminary study reports significant changes in gene expression for oral melanoma between canine patients with localized disease relative to those with metastatic disease. In the future, a more in-depth investigation involving immunohistochemistry analysis and single-cell RNA expression is necessary to confirm our findings.
Collapse
Affiliation(s)
- Isabelle F. Vanhaezebrouck
- Radiation Oncology, Small Animal Medicine, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States
| | - Kimaya M. Bakhle
- College of Veterinary Medicine, Cornell University, New York, NY, United States
| | - Carlos R. Mendez-Valenzuela
- Radiation Oncology, Small Animal Medicine, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States
| | - L. Tiffany Lyle
- Pathology Cook Research Inc., West Lafayette, IN, United States
| | - Kristoph Konradt
- Comparative Pathology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
8
|
AbdulJabbar K, Castillo SP, Hughes K, Davidson H, Boddy AM, Abegglen LM, Minoli L, Iussich S, Murchison EP, Graham TA, Spiro S, Maley CC, Aresu L, Palmieri C, Yuan Y. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nat Commun 2023; 14:2408. [PMID: 37100774 PMCID: PMC10133243 DOI: 10.1038/s41467-023-37879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Cancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.ai) and conduct a pan-species study of computational comparative pathology using a supervised convolutional neural network algorithm trained on human samples. The artificial intelligence algorithm achieves high accuracy in measuring immune response through single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 0.94; Tasmanian devil facial tumour disease, 0.88). In 18 other vertebrate species (mammalia = 11, reptilia = 4, aves = 2, and amphibia = 1), accuracy (range 0.57-0.94) is influenced by cell morphological similarity preserved across different taxonomic groups, tumour sites, and variations in the immune compartment. Furthermore, a spatial immune score based on artificial intelligence and spatial statistics is associated with prognosis in canine melanoma and prostate tumours. A metric, named morphospace overlap, is developed to guide veterinary pathologists towards rational deployment of this technology on new samples. This study provides the foundation and guidelines for transferring artificial intelligence technologies to veterinary pathology based on understanding of morphological conservation, which could vastly accelerate developments in veterinary medicine and comparative oncology.
Collapse
Affiliation(s)
- Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Simon P Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Hannah Davidson
- Zoological Society of London, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Lucia Minoli
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, 4343, Gatton, QLD, Australia
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Musi A, Bongiovanni L. Extracellular Vesicles in Cancer Drug Resistance: Implications on Melanoma Therapy. Cancers (Basel) 2023; 15:1074. [PMID: 36831417 PMCID: PMC9954626 DOI: 10.3390/cancers15041074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in the pathogenesis of neoplastic diseases. Their role in mediating drug resistance has been widely described in several types of cancers, including melanoma. EVs can mediate drug resistance through several different mechanisms, such as drug-sequestration, transfer of pro-survival proteins and RNA, induction of cancer stem cell-like features and interaction with cells of the tumor microenvironment and immune-system. Melanoma is a highly immunogenic tumor originating from the malignant transformation of melanocytes. Several therapeutic strategies currently used in the treatment of melanoma and the combination of BRAF and MEK-inhibitors, as well as immune check-point inhibitors (ICI), have consistently improved the overall survival time of melanoma patients. However, the development of resistance is one of the biggest problems leading to a poor clinical outcome, and EVs can contribute to this. EVs isolated from melanoma cells can contain "sequestered" chemotherapeutic drugs in order to eliminate them, or bioactive molecules (such as miRNA or proteins) that have been proven to play a crucial role in the transmission of resistance to sensitive neoplastic cells. This leads to the hypothesis that EVs could be considered as resistance-mediators in sensitive melanoma cells. These findings are a pivotal starting point for further investigations to better understand EVs' role in drug resistance mechanisms and how to target them. The purpose of this review is to summarize knowledge about EVs in order to develop a deeper understanding of their underlying mechanisms. This could lead to the development of new therapeutic strategies able to bypass EV-mediated drug-resistance in melanoma, such as by the use of combination therapy, including EV release inhibitors.
Collapse
Affiliation(s)
- Alice Musi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CT Utrecht, The Netherlands
| |
Collapse
|
10
|
Smedley RC, Bongiovanni L, Bacmeister C, Clifford CA, Christensen N, Dreyfus JM, Gary JM, Pavuk A, Rowland PH, Swanson C, Tripp C, Woods JP, Bergman PJ. Diagnosis and histopathologic prognostication of canine melanocytic neoplasms: A consensus of the Oncology-Pathology Working Group. Vet Comp Oncol 2022; 20:739-751. [PMID: 35522017 PMCID: PMC9796073 DOI: 10.1111/vco.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/30/2022]
Abstract
One of the primary objectives of the Oncology Pathology Working Group (OPWG) is for oncologists and pathologists to collaboratively generate consensus documents to standardize aspects of and provide guidelines for veterinary oncologic pathology. Consensus is established through review of relevant peer-reviewed literature relative to a subgroup's particular focus. In this article, the authors provide a critical review of the current literature for the diagnosis of, and histopathologic prognostication for, canine cutaneous and oral/lip melanocytic neoplasms, suggest guidelines for reporting, provide recommendations for clinical interpretation, and discuss future directions. This document represents the opinions of the working group and the authors and does not constitute a formal endorsement by the American College of Veterinary Pathologists, American College of Veterinary Internal Medicine or the Veterinary Cancer Society.
Collapse
Affiliation(s)
- Rebecca C. Smedley
- Veterinary Diagnostic LaboratoryMichigan State UniversityLansingMichiganUSA
| | - Laura Bongiovanni
- Faculty of Veterinary MedicineUniversity of TeramoTeramoItaly,Faculty of Veterinary Medicine, Department of Biomolecular SciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - Craig A. Clifford
- Oncology ServiceHope Veterinary Specialists/BluePearlMalvernPennsylvaniaUSA
| | - Neil Christensen
- Oncology ServiceVeterinary Specialty Hospital Hong KongWan ChaiHong Kong,Veterinary Medical Teaching HospitalUniversity of WisconsinMadisonWisconsinUSA
| | - Jennifer M. Dreyfus
- Anatomic PathologyDreyfus Veterinary Pathology ConsultingMadisonWisconsinUSA,School of Veterinary MedicineUniversity of WisconsinMadisonWisconsinUSA
| | - Joy M. Gary
- NeuropathologyStageBioFrederickMarylandUSA,Comparative Biomedical Training Program, Molecular Pathology UnitNCI, NIHBethesdaMarylandUSA
| | - Alana Pavuk
- Anatomic PathologyAntech DiagnosticsDurhamNorth CarolinaUSA
| | | | - Christine Swanson
- Oncology ServiceBluePearl Specialty and Emergency Pet HospitalGrand RapidsMichiganUSA
| | - Chelsea Tripp
- Oncology ServiceBridge Animal Referral CenterEdmondsWashingtonUSA
| | - J. Paul Woods
- Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | | |
Collapse
|
11
|
Pinard CJ, Lagree A, Lu FI, Klein J, Oblak ML, Salgado R, Cardenas JCP, Brunetti B, Muscatello LV, Sarli G, Foschini MP, Hardas A, Castillo SP, AbdulJabbar K, Yuan Y, Moore DA, Tran WT. Comparative Evaluation of Tumor-Infiltrating Lymphocytes in Companion Animals: Immuno-Oncology as a Relevant Translational Model for Cancer Therapy. Cancers (Basel) 2022; 14:5008. [PMID: 36291791 PMCID: PMC9599753 DOI: 10.3390/cancers14205008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the important role of preclinical experiments to characterize tumor biology and molecular pathways, there are ongoing challenges to model the tumor microenvironment, specifically the dynamic interactions between tumor cells and immune infiltrates. Comprehensive models of host-tumor immune interactions will enhance the development of emerging treatment strategies, such as immunotherapies. Although in vitro and murine models are important for the early modelling of cancer and treatment-response mechanisms, comparative research studies involving veterinary oncology may bridge the translational pathway to human studies. The natural progression of several malignancies in animals exhibits similar pathogenesis to human cancers, and previous studies have shown a relevant and evaluable immune system. Veterinary oncologists working alongside oncologists and cancer researchers have the potential to advance discovery. Understanding the host-tumor-immune interactions can accelerate drug and biomarker discovery in a clinically relevant setting. This review presents discoveries in comparative immuno-oncology and implications to cancer therapy.
Collapse
Affiliation(s)
- Christopher J. Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Andrew Lagree
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Fang-I Lu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Klein
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michelle L. Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
| | | | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Simon P. Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - David A. Moore
- Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- University College Hospitals NHS Trust, London NW1 2PG, UK
| | - William T. Tran
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Diagnosis and Prognosis of Canine Melanocytic Neoplasms. Vet Sci 2022; 9:vetsci9040175. [PMID: 35448673 PMCID: PMC9030435 DOI: 10.3390/vetsci9040175] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Canine melanocytic neoplasms have a highly variable biological behavior ranging from benign cutaneous melanocytomas to malignant oral melanomas that readily metastasize to lymph nodes and internal organs. This review focuses on the diagnosis and prognosis of canine melanocytic neoplasms. While pigmented melanocytic neoplasms can be diagnosed with fine-needle aspirates, an accurate prognosis requires surgical biopsy. However, differentiating amelanotic spindloid melanomas from soft tissue sarcomas is challenging and often requires immunohistochemical labeling with a diagnostic cocktail that contains antibodies against Melan-A, PNL-2, TRP-1, and TRP-2 as the current gold standard. For questionable cases, RNA expression analysis for TYR, CD34, and CALD can further differentiate these two entities. The diagnosis of amelanotic melanomas will be aided by submitting overlying and/or lateral flanking epithelium to identify junctional activity. Wide excision of lateral flanking epithelium is essential, as lentiginous spread is common for malignant mucosal melanomas. Combining histologic features (nuclear atypia, mitotic count, degree of pigmentation, level of infiltration, vascular invasion; tumor thickness and ulceration) with the Ki67 index provides the most detailed prognostic assessment. Sentinel lymph nodes should be evaluated in cases of suspected malignant melanomas using serial sectioning of the node combined with immunohistochemical labeling for Melan-A and PNL-2.
Collapse
|
13
|
Tarone L, Giacobino D, Camerino M, Ferrone S, Buracco P, Cavallo F, Riccardo F. Canine Melanoma Immunology and Immunotherapy: Relevance of Translational Research. Front Vet Sci 2022; 9:803093. [PMID: 35224082 PMCID: PMC8873926 DOI: 10.3389/fvets.2022.803093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
In veterinary oncology, canine melanoma is still a fatal disease for which innovative and long-lasting curative treatments are urgently required. Considering the similarities between canine and human melanoma and the clinical revolution that immunotherapy has instigated in the treatment of human melanoma patients, special attention must be paid to advancements in tumor immunology research in the veterinary field. Herein, we aim to discuss the most relevant knowledge on the immune landscape of canine melanoma and the most promising immunotherapeutic approaches under investigation. Particular attention will be dedicated to anti-cancer vaccination, and, especially, to the encouraging clinical results that we have obtained with DNA vaccines directed against chondroitin sulfate proteoglycan 4 (CSPG4), which is an appealing tumor-associated antigen with a key oncogenic role in both canine and human melanoma. In parallel with advances in therapeutic options, progress in the identification of easily accessible biomarkers to improve the diagnosis and the prognosis of melanoma should be sought, with circulating small extracellular vesicles emerging as strategically relevant players. Translational advances in melanoma management, whether achieved in the human or veterinary fields, may drive improvements with mutual clinical benefits for both human and canine patients; this is where the strength of comparative oncology lies.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Sparger EE, Chang H, Chin N, Rebhun RB, Withers SS, Kieu H, Canter RJ, Monjazeb AM, Kent MS. T Cell Immune Profiles of Blood and Tumor in Dogs Diagnosed With Malignant Melanoma. Front Vet Sci 2021; 8:772932. [PMID: 34926643 PMCID: PMC8674490 DOI: 10.3389/fvets.2021.772932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Investigation of canine T cell immunophenotypes in canine melanomas as prognostic biomarkers for disease progression or predictive biomarkers for targeted immunotherapeutics remains in preliminary stages. We aimed to examine T cell phenotypes and function in peripheral blood mononuclear cells (PBMC) and baseline tumor samples by flow cytometry, and to compare patient (n = 11–20) T cell phenotypes with healthy controls dogs (n = 10–20). CD3, CD4, CD8, CD25, FoxP3, Ki67, granzyme B, and interferon-γ (IFN-γ) were used to classify T cell subsets in resting and mitogen stimulated PBMCs. In a separate patient cohort (n = 11), T cells were classified using CD3, CD4, CD8, FoxP3, and granzyme B in paired PBMC and single cell suspensions of tumor samples. Analysis of flow cytometric data of individual T cell phenotypes in PBMC revealed specific T cell phenotypes including FoxP3+ and CD25+FoxP3- populations that distinguished patients from healthy controls. Frequencies of IFN-γ+ cells after ConA stimulation identified two different patient phenotypic responses, including a normal/exaggerated IFN-γ response and a lower response suggesting dysfunction. Principle component analysis of selected T cell immunophenotypes also distinguished patients and controls for T cell phenotype and revealed a clustering of patients based on metastasis detected at diagnosis. Findings supported the overall hypothesis that canine melanoma patients display a T cell immunophenotype profile that is unique from healthy pet dogs and will guide future studies designed with larger patient cohorts necessary to further characterize prognostic T cell immunophenotypes.
Collapse
Affiliation(s)
- Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ning Chin
- California National Primate Research Center, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Hung Kieu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert J Canter
- Surgical Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Arta M Monjazeb
- Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Michael S Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Von Rueden SK, Fan TM. Cancer-Immunity Cycle and Therapeutic Interventions- Opportunities for Including Pet Dogs With Cancer. Front Oncol 2021; 11:773420. [PMID: 34869014 PMCID: PMC8639699 DOI: 10.3389/fonc.2021.773420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor-immune interplay represents a dynamic series of events executed by cellular and soluble participants that either promote or inhibit successful tumor formation and growth. Throughout a tumor’s development and progression, the host organism’s immune system reacts by generating anti-cancer defenses through various incremental and combinatorial mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or loser. Insights into how the tumor and host immune system continuously adapt to each other throughout the lifecycle of the tumor is necessary to rationally develop new effective immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic markers that permits tailoring of therapies to the everchanging tumor immune microenvironment. In order to accelerate advances in the field of immuno-oncology, this review summarizes the steps comprising the cancer-immunity cycle, and underscores key breakpoints in the cycle that either favor cancer regression or progression, as well as shaping of the tumor microenvironment and associated immune phenotypes. Furthermore, specific large animal models of spontaneous cancers that are deemed immunogenic will be reviewed and proposed as unique resources for validating investigational immunotherapeutic protocols that are informed by the cancer-immunity cycle. Collectively, this review will provide a progressive look into the dynamic interplay between tumor and host immune responses and raise awareness for how large animal models can be included for developing combinatorial and sequenced immunotherapies to maximizing favorable treatment outcomes.
Collapse
Affiliation(s)
- Samantha K Von Rueden
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma. Vet Sci 2021; 8:vetsci8110286. [PMID: 34822659 PMCID: PMC8619620 DOI: 10.3390/vetsci8110286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.
Collapse
|
17
|
The Dog as a Model to Study the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:123-152. [PMID: 34664237 DOI: 10.1007/978-3-030-73119-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer is a complex and dynamic disease with an outcome that depends on a strict crosstalk between tumor cells and other components in tumor microenvironment, namely, tumor-infiltrating immune cells, fibroblasts, cancer stem cells, adipocytes, and endothelial cells. Within the tumor microenvironment, macrophages and T-lymphocytes appear to be key effectors during the several steps of tumor initiation and progression. Tumor cells, through the release of a plethora of signaling molecules, can induce immune tolerance, by avoiding immune surveillance, and inhibit immune cells cytotoxic functions. Furthermore, as the tumor grows, tumor microenvironment reveals a series of dysfunctional conditions that potentiate a polarization of harmful humoral Th2 and Th17, an upregulation of Treg cells, and a differentiation of macrophages into the M2 subtype, which contribute to the activation of several signaling pathways involving important tissue biomarkers (COX-2, EGFR, VEGF) implicated in cancer aggressiveness and poor clinical outcomes. In order to maintain the tumor growth, cancer cells acquire several adaptations such as neovascularization and metabolic reprogramming. An extensive intracellular production of lactate and protons is observed in tumor cells as a result of their high glycolytic metabolism. This contributes not only for the microenvironment pH alteration but also to shape the immune response that ultimately impairs immune cells capabilities and effector functions.In this chapter, the complexity of tumor microenvironment, with special focus on macrophages, T-lymphocytes, and the impact of lactate efflux, was reviewed, always trying to demonstrate the strong similarities between data from studies of humans and dogs, a widely proposed model for comparative oncology studies.
Collapse
|
18
|
Stevenson VB, Perry SN, Todd M, Huckle WR, LeRoith T. PD-1, PD-L1, and PD-L2 Gene Expression and Tumor Infiltrating Lymphocytes in Canine Melanoma. Vet Pathol 2021; 58:692-698. [PMID: 34169800 DOI: 10.1177/03009858211011939] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Melanoma in humans and dogs is considered highly immunogenic; however, the function of tumor-infiltrating lymphocytes (TILs) is often suppressed in the tumor microenvironment. In humans, current immunotherapies target checkpoint molecules (such as PD-L1, expressed by tumor cells), inhibiting their suppressive effect over TILs. The role of PD-L2, an alternative PD-1 ligand also overexpressed in malignant tumors and in patients with anti-PD-L1 resistance, remains poorly understood. In the current study, we evaluated the expression of checkpoint molecule mRNAs in canine melanoma and TILs. Analysis of checkpoint molecule gene expression was performed by RT-qPCR (real-time quantitative polymerase chain reaction) using total RNA isolated from formalin-fixed and paraffin-embedded melanomas (n = 22) and melanocytomas (n = 9) from the Virginia Tech Animal Laboratory Services archives. Analysis of checkpoint molecule expression revealed significantly higher levels of PDCD1 (PD-1) and CD274 (PD-L1) mRNAs and an upward trend in PDCD1LG2 (PD-L2) mRNA in melanomas relative to melanocytomas. Immunohistochemistry revealed markedly increased numbers of CD3+ T cells in the highest PD-1-expressing subgroup of melanomas compared to the lowest PD-1 expressors, whereas densities of IBA1+ cells (macrophages) were similar in both groups. CD79a+ cell numbers were low for both groups. As in human melanoma, overexpression of the PD-1/PD-L1/PD-L2 axis is a common feature of canine melanoma. High expression of PD-1 and PD-L1 correlates with increased numbers of CD3+ cells. Additionally, the high level of IBA1+ cells in melanomas with low PD-1 expression and low CD3+ cells levels suggest that the expression of checkpoint molecules is modulated by interactions between T cells and cancer cells rather than histiocytes.
Collapse
|
19
|
Camerino M, Giacobino D, Iussich S, Ala U, Riccardo F, Cavallo F, Martano M, Morello E, Buracco P. Evaluation of prognostic impact of pre-treatment neutrophil to lymphocyte and lymphocyte to monocyte ratios in dogs with oral malignant melanoma treated with surgery and adjuvant CSPG4-antigen electrovaccination: an explorative study. Vet Comp Oncol 2021; 19:353-361. [PMID: 33443307 DOI: 10.1111/vco.12679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022]
Abstract
The role of systemic inflammation in cancer's progression has been widely investigated, especially in melanoma in humans. Pre-treatment leukocyte counts and ratios play a recognized prognostic role in several types of malignancies, but no information is available regarding canine oral malignant melanoma (COMM). The purpose of this explorative retrospective study was to investigate the prognostic impact of pre-treatment neutrophil to lymphocyte (NLR) and lymphocyte to monocyte (LMR) ratios in dogs with oral malignant melanoma that underwent surgical resection and immunotherapy with adjuvant CSPG4-antigen electrovaccination. Thirty-nine dogs with histologically confirmed oral melanoma and with available pre-treatment haematological analyses, performed at maximum 60 days before the first treatment, were retrospectively enrolled. Statistical analysis was performed to explore possible correlations among NLR and LMR with age, clinical stage, tumour pigmentation, tumour size, nuclear atypia, mitotic index, Ki67, CSPG4 expression, ulceration, bone invasion and excision margins status. The impact of NLR and LMR on overall survival time (OST) was explored among various ratio cut off and across different time points with Kaplan-Meier method. No significant relationship was identified between leukocytes ratios and histological parameters, CSPG4 expression, excision margin status, age, tumour size and clinical stage. NLR and LMR did not display a prognostic impact on the survival time of the entire population. Pre-treatment leukocyte ratios may not represent a useful prognostic factor in dogs with oral melanoma, especially in absence of distant metastatic disease.
Collapse
Affiliation(s)
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, 10 University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, 10 University of Torino, Torino, Italy
| | - Marina Martano
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
20
|
Automated digital TIL analysis (ADTA) adds prognostic value to standard assessment of depth and ulceration in primary melanoma. Sci Rep 2021; 11:2809. [PMID: 33531581 PMCID: PMC7854647 DOI: 10.1038/s41598-021-82305-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
Accurate prognostic biomarkers in early-stage melanoma are urgently needed to stratify patients for clinical trials of adjuvant therapy. We applied a previously developed open source deep learning algorithm to detect tumor-infiltrating lymphocytes (TILs) in hematoxylin and eosin (H&E) images of early-stage melanomas. We tested whether automated digital (TIL) analysis (ADTA) improved accuracy of prediction of disease specific survival (DSS) based on current pathology standards. ADTA was applied to a training cohort (n = 80) and a cutoff value was defined based on a Receiver Operating Curve. ADTA was then applied to a validation cohort (n = 145) and the previously determined cutoff value was used to stratify high and low risk patients, as demonstrated by Kaplan–Meier analysis (p ≤ 0.001). Multivariable Cox proportional hazards analysis was performed using ADTA, depth, and ulceration as co-variables and showed that ADTA contributed to DSS prediction (HR: 4.18, CI 1.51–11.58, p = 0.006). ADTA provides an effective and attainable assessment of TILs and should be further evaluated in larger studies for inclusion in staging algorithms.
Collapse
|
21
|
Maranesi M, Di Loria A, Dall’Aglio C, Piantedosi D, Lepri E, Ciaramella P, Mercati F. Leptin System in Obese Dog Skin: A Pilot Study. Animals (Basel) 2020; 10:ani10122338. [PMID: 33316917 PMCID: PMC7764193 DOI: 10.3390/ani10122338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Obesity is a widespread phenomenon in pets and its growing trend is similar to the human one. It can be associated with skin pathologies but there is little information on this field in domestic animals. Since in obesity adipokine plasmatic levels changes, in this study leptin (LEP) system was evaluated in the skin of obese dogs to observe changes in peripheral tissue. LEP is a hormone produced mainly by the adipose tissue and its serum level may reflect body mass index and BCS. LEP is also expressed in the skin and it has a prominent role in the biology of this tissue promoting cell proliferation and regulating the wound healing process. Investigation performed in obese and normal-weight dogs evidenced LEP and leptin receptor (LEPR) immunostaining in several skin structures. As LEP expression regards, differences were non-significant, while the LEPR transcripts appeared 10 fold higher in obesedogs. No differences were observed in the composition of skin associated immune system. The obese group-increased LEPR expression suggests that the receptor modulates the system control. The LEP system changes in the skin under obesity conditions however, the exact role of LEP in obese dog skin needs further insights. Abstract Obesity predisposes to several health problems including skin diseases. However, information on the relationship between obesity and skin disorders in pets is very scarce. Leptin (LEP) is mainly produced by adipose tissue and has a prominent role in skin biology. This study evaluated the LEP system in the skin of obese dogs compared to normal-weight animals. The investigation was carried out on 10 obese (Obese group) and 10 normal-weight (Normal-weight group) dogs through Real-time PCR and immunohistochemistry. Cells of skin associated immune system were also evaluated. No differences were evidenced between the two groups as well as skin inflammation. LEP differences were no significant, while LEPR transcript appeared 10-fold higher in obesedogs than in normal-weight ones. Immunostaining for both molecules was observed in several skin structures such as the epidermis, hair follicles, and glands. No differences appeared in the skin associated immune system composition. This study is a preliminary report showing that LEP system changes in obese dog skin. The increased LEPR expression observed in the obese group suggests that the receptor plays a modulating role in the system control. However, the exact role of LEPin the skin under obesity conditions needs further elucidation.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (F.M.)
| | - Antonio Di Loria
- Department of Veterinary Medicine and Animal Productions, University Federico II of Napoli, via F. Delpino 1, 080137 Napoli, Italy; (A.D.L.); (D.P.); (P.C.)
| | - Cecilia Dall’Aglio
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (F.M.)
- Correspondence: (C.D.); (E.L.); Tel.: +39-075-585-7633 (C.D.); +39-075-585-7733 (E.L.)
| | - Diego Piantedosi
- Department of Veterinary Medicine and Animal Productions, University Federico II of Napoli, via F. Delpino 1, 080137 Napoli, Italy; (A.D.L.); (D.P.); (P.C.)
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (F.M.)
- Correspondence: (C.D.); (E.L.); Tel.: +39-075-585-7633 (C.D.); +39-075-585-7733 (E.L.)
| | - Paolo Ciaramella
- Department of Veterinary Medicine and Animal Productions, University Federico II of Napoli, via F. Delpino 1, 080137 Napoli, Italy; (A.D.L.); (D.P.); (P.C.)
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (F.M.)
| |
Collapse
|
22
|
Porcellato I, Brachelente C, Cappelli K, Menchetti L, Silvestri S, Sforna M, Mecocci S, Iussich S, Leonardi L, Mechelli L. FoxP3, CTLA-4, and IDO in Canine Melanocytic Tumors. Vet Pathol 2020; 58:42-52. [PMID: 33021155 DOI: 10.1177/0300985820960131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite promising immunotherapy strategies in human melanoma, there are few studies on the immune environment of canine melanocytic tumors. In humans, the activation of immunosuppressive cell subpopulations, such as regulatory T cells (Tregs) that express forkhead box protein P3 (FoxP3), the engagement of immunosuppressive surface receptors like cytotoxic T lymphocyte antigen (CTLA-4), and the secretion of molecules inhibiting lymphocyte activation, such as indoleamine-pyrrole 2,3-dioxygenase (IDO), are recognized as immunoescape mechanisms that allow tumor growth and progression. The aim of our study was to investigate the expression of these immunosuppression markers in canine melanocytic tumors and to postulate their possible role in melanoma biology and progression. Fifty-five formalin-fixed, paraffin-embedded canine melanocytic tumors (25 oral melanomas; 20 cutaneous melanomas; 10 cutaneous melanocytomas) were selected to investigate the expression of FoxP3, CTLA-4, and IDO by immunohistochemistry and RT-qPCR (real-time quantitative polymerase chain reaction). All of the tested markers showed high gene and protein expression in oral melanomas and were differently expressed in cutaneous melanomas when compared to their benign counterpart. IDO expression was associated with an increased hazard of death both in univariable and multivariable analyses (P < .05). FoxP3 protein expression >6.9 cells/HPF (high-power field) was an independent predictor of death (P < .05). CTLA-4 gene and protein expressions were associated with a worse prognosis, but only in the univariable analysis (P < .05). FoxP3, CTLA-4, and IDO likely play a role in canine melanoma immunoescape. Their expression, if supported by future studies, could represent a prognostic tool in canine melanoma and pave the way to future immunotherapeutic approaches in dogs.
Collapse
Affiliation(s)
| | | | | | - Laura Menchetti
- 9309University of Perugia, Perugia, Italy.,Department of Agricultural and Food Sciences (DISTAL), University of Bologna
| | | | | | | | | | | | | |
Collapse
|
23
|
Aydemir I, Özbey C, Özkan O, Kum Ş, Tuğlu Mİ. Investigation of the effects of bisphenol-A exposure on lymphoid system in prenatal stage. Toxicol Ind Health 2020; 36:502-513. [PMID: 32696725 DOI: 10.1177/0748233720941759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bisphenol-A (BPA) used in the production of plastic materials is a temperature-soluble agent. It also has a steroid hormone-like activity; therefore, it poses a danger to human health. In our study, we aimed to investigate the effects of BPA on lymph node and spleen in male rats exposed to this agent during prenatal stage. The pregnant female rats were divided into four groups: control, sham, low dose (300 µg/kg BPA), and high dose (900 µg/kg BPA). BPA was dissolved in 1 mL of corn oil and administered to the pregnant rats every day during pregnancy. On the 21st and 45th day after the birth, male rats' lymph node and spleen samples were taken and histopathological examination was performed. Samples were stained with hematoxylin and eosin to determine the general histological appearance, and with CD3 and CD20 immunohistochemically. The results of staining were evaluated by H-score, and statistical analysis was performed. In the samples, BPA applications were not found to cause significant tissue damage. But there was a significant decrease in the immunoreactivities of CD3 and CD20 after BPA applications in both 21st and 45th day samples. After high dose BPA administration, decreased CD3 immunoreactivity was statistically significant. It is thought that BPA does not cause histologically significant tissue damage, but it may impair organ function at cellular level. The investigation of molecules involved in organ function will be useful in revealing the mechanisms that will cause dysfunction.
Collapse
Affiliation(s)
- Işil Aydemir
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Caner Özbey
- Department of Pathology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Oktay Özkan
- Department of Medicinal Pharmacology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Şadiye Kum
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mehmet İbrahim Tuğlu
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
24
|
Sakai O, Ii T, Uchida K, Igase M, Mizuno T. Establishment and Characterization of Monoclonal Antibody Against Canine CD8 Alpha. Monoclon Antib Immunodiagn Immunother 2020; 39:129-134. [PMID: 32822285 DOI: 10.1089/mab.2020.0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding of the microenvironment of cancer plays a crucial role in cancer research. A tool is needed to evaluate the immune cells surrounding the cancer cells. This study establishes and evaluates a novel monoclonal antibody against canine CD8α (cCD8α). The antibody was produced by immunization of rats with cCD8α-expressing cells. After establishment and selection of hybridoma cells, the clone F3-B2 was established. The reactivity of F3-B2 was confirmed using cCD8α-overexpressing murine cells. Flow cytometric analysis also demonstrated that F3-B2 reacts with cCD8α naturally expressed in canine peripheral blood mononuclear cells and a canine T cell lymphoma cell line. The specimens of lymphoid tissue showed immunohistochemical staining for F3-B2. Moreover, we also found that F3-B2 exhibited reactivity against feline CD8. Thus, this antibody provides a good research tool to analyze CD8-positive cytotoxic lymphocytes in canine and feline tumors.
Collapse
Affiliation(s)
- Osamu Sakai
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Tatsuhito Ii
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|