1
|
Piccin A, Allameddine A, Spizzo G, Lappin KM, Prati D. Platelet Pathogen Reduction Technology-Should We Stay or Should We Go…? J Clin Med 2024; 13:5359. [PMID: 39336845 PMCID: PMC11432127 DOI: 10.3390/jcm13185359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The recent COVID-19 pandemic has significantly challenged blood transfusion services (BTS) for providing blood products and for keeping blood supplies available. The possibility that a similar pandemic event may occur again has induced researchers and transfusionists to investigate the adoption of new tools to prevent and reduce these risks. Similarly, increased donor travelling and globalization, with consequent donor deferral and donor pool reduction, have contributed to raising awareness on this topic. Although recent studies have validated the use of pathogen reduction technology (PRT) for the control of transfusion-transmitted infections (TTI) this method is not a standard of care despite increasing adoption. We present a critical commentary on the role of PRT for platelets and on associated problems for blood transfusion services (BTS). The balance of the cost effectiveness of adopting PRT is also discussed.
Collapse
Affiliation(s)
- Andrea Piccin
- Northern Ireland Blood Transfusion Service (NIBTS), Belfast BT9 7TS, UK
- Department of Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, 38122 Trento, Italy
| | | | - Gilbert Spizzo
- Department of Oncology, Brixen Hospital, 39042 Bolzano, Italy
| | - Katrina M Lappin
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Daniele Prati
- Servizio Trasfusionale, Ospedale Ca' Granda, 20122 Milano, Italy
| |
Collapse
|
2
|
Farrugia A. The World Health Organisation's list of essential medicines and haemophilia treatment products. Haemophilia 2023; 29:1387-1389. [PMID: 37807613 DOI: 10.1111/hae.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Albert Farrugia
- School of Surgery, Faculty of Medicine and Medical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Preparation and Storage of Cryoprecipitate Derived from Amotosalen and UVA-Treated Apheresis Plasma and Assessment of In Vitro Quality Parameters. Pathogens 2022; 11:pathogens11070805. [PMID: 35890049 PMCID: PMC9317929 DOI: 10.3390/pathogens11070805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Cryoprecipitate is a plasma-derived blood product, enriched for fibrinogen, factor VIII, factor XIII, and von Willebrand factor. Due to infectious risk, the use of cryoprecipitate in Central Europe diminished over the last decades. However, after the introduction of various pathogen-reduction technologies for plasma, cryoprecipitate production in blood centers is a feasible alternative to pharmaceutical fibrinogen concentrate with a high safety profile. In our study, we evaluated the feasibility of the production of twenty-four cryoprecipitate units from pools of two units of apheresis plasma pathogen reduced using amotosalen and ultraviolet light A (UVA) (INTERCEPT® Blood System). The aim was to assess the compliance of the pathogen-reduced cryoprecipitate with the European Directorate for the Quality of Medicines (EDQM) guidelines and the stability of coagulation factors after frozen (≤−25 °C) storage and five-day liquid storage at ambient temperature post-thawing. All pathogen-reduced cryoprecipitate units fulfilled the European requirements for fibrinogen, factor VIII and von Willebrand factor content post-preparation. After five days of liquid storage, content of these factors exceeded the minimum values in the European requirements and the content of other factors was sufficient. Our method of production of cryoprecipitate using pathogen-reduced apheresis plasma in a jumbo bag is feasible and efficient.
Collapse
|
4
|
Comparison of Bacterial Risk in Cryo AHF and Pathogen Reduced Cryoprecipitated Fibrinogen Complex. Pathogens 2022; 11:pathogens11070744. [PMID: 35889990 PMCID: PMC9317717 DOI: 10.3390/pathogens11070744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Until November 2020, cryoprecipitated antihaemophilic factor (cryo AHF) was the only United States Food and Drug Administration (FDA)-approved fibrinogen source to treat acquired bleeding. The post-thaw shelf life of cryo AHF is limited, in part, by infectious disease risk. Concerns over product wastage demand that cryo AHF is thawed as needed, with thawing times delaying the treatment of coagulopathic patients. In November 2020, the FDA approved Pathogen Reduced Cryoprecipitated Fibrinogen Complex for the treatment and control of bleeding, including massive hemorrhage, associated with fibrinogen deficiency. Pathogen Reduced Cryoprecipitated Fibrinogen Complex (also known as INTERCEPT® Fibrinogen Complex, IFC) has a five-day post-thaw room-temperature shelf life. Unlike cryo AHF, manufacturing of IFC includes broad spectrum pathogen reduction (Amotosalen + UVA), enabling this extended post-thaw shelf life. In this study, we investigated the risk of bacterial contamination persisting through the cryoprecipitation manufacturing process of cryo AHF and IFC. Experiments were performed which included spiking plasma with bacteria prior to cryoprecipitation, and bacterial survival was analyzed at each step of the manufacturing process. The results show that while bacteria survive cryo AHF manufacturing, IFC remains sterile through to the end of shelf life and beyond. IFC, with a five-day post-thaw shelf life, allows the product to be sustainably thawed in advance, facilitating immediate access to concentrated fibrinogen and other key clotting factors for the treatment of bleeding patients.
Collapse
|
5
|
Wu T, Wang X, Ren K, Huang X, Liu J. The Alterations in Methylene Blue/Light-Treated Frozen Plasma Proteins Revealed by Proteomics. Transfus Med Hemother 2021; 48:298-305. [PMID: 34803573 DOI: 10.1159/000515119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction The aim of this study was to investigate the modified proteins in methylene blue/light-treated frozen plasma (MB-FP) compared with fresh frozen plasma (FFP) in order to gain a better application of MB/light-treated plasma in clinic transfusion. Methods MB-FP and FFP were collected from Changchun central blood station, and a trichloroacetic acid/acetone precipitation method was used to remove albumin for the enrichment of lower abundance proteins. The plasma protein in MB-FP and FFP were separated using two-dimensional gel electrophoresis (2-DE) and the differentially expressed protein spots were analyzed using mass spectrometry. Finally, the differentially expressed proteins were tested using Western blot and enzyme-linked immunosorbent assay (ELISA). Results Approximately 14 differentially expressed protein spots were detected in the MB-FP, and FFP was chosen as the control. After 2-DE comparison analysis and mass spectrometry, 8 significantly differentially expressed protein spots were identified, corresponding to 6 different proteins, including complement C1r subcomponent (C1R), inter-alpha-trypsin inhibitor heavy chain H4 (ITI-H4), keratin, type II cytoskeletal 1 (KRT1), hemopexin (HPX), fibrinogen gamma chain (FGG), and transthyretin (TTR). Western blot showed no significant difference in the expression level of KRT1 between MB-FP and FFP (p > 0.05). Both Western blot and ELISA indicated that the level of HPX was significantly higher in FFP than in MB-FP (p < 0.05). Conclusion This comparative proteomics study revealed that some significantly modified proteins occur in MB-FP, such as C1R, ITI-H4, KRT1, HPX, FGG, and TTR. Our findings provide more theoretical data for using MB-FP in transfusion medicine. However, the relevance of the data for the transfusion of methylene blue/light-treated plasma remains unclear. The exact modification of these proteins and the effects of these modified proteins on their functions and their effects in clinical plasma infusion need to be further studied.
Collapse
Affiliation(s)
- Tiange Wu
- Blood Transfusion Department, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoning Wang
- Blood Transfusion Department, The First Hospital of Jilin University, Changchun, China
| | - Kai Ren
- Blood Transfusion Department, The Second Hospital of Jilin University, Changchun, China
| | - Xiaochen Huang
- Anesthesiology, Changchun University of Chinese Medicine, Changchun, China
| | - Jiankai Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Rapaille A, Lotens A, de Valensart N, Najdovski T, Green L. Evaluation of the hemostatic capacity of methylene blue-treated liquid (not frozen) plasma stored up 14 days at 2° to 6°C. Transfusion 2021; 61:2450-2457. [PMID: 33913163 DOI: 10.1111/trf.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Early plasma transfusion for management of bleeding, particularly trauma, is associated with better outcomes. Improving the availability/safety of plasma transfusion for patients is essential for transfusion services. The aim of this study is to evaluate the hemostatic capacity of methylene-blue (MB) liquid (not frozen) plasma over time. MATERIALS AND METHODS Twenty whole blood-derived plasma units collected from male donors were separated and processed within 18 h of collection. Individual plasmas were treated with MB and stored in liquid status at 2-6°C for 14 days. A range of coagulation assays, including thrombin generation, rotational thromboelastometry (ROTEM), and Thrombodynamics were tested at different time-points, together with bacterial growth. RESULTS Apart from Factor (F)XII, other coagulation factors (fibrinogen, FV, FVIII, FXI) reduced significantly after MB treatment, with levels remaining stable except for FVIII afterward. By day 14, most clotting factors were >0.7 IU/ml, apart from FVIII. There was a disproportionate decrease in Protein S (PS) activity compared to free PS antigen and by day 14 its value was ~50%. There was no significant difference in maximum clot formation (ROTEM) and clot-density (Thrombodynamics) over time. Endogenous thrombin potential (Thrombin-Generation), clot-size, and velocity index (Thrombodynamics) decreased significantly over time consistent with clotting factor reduction. There was no bacterial growth. CONCLUSIONS MB-treated liquid plasma stored at 2-6°C can be used for up to 14 days: the long shelf-life, the liquid status, and the MB treatment will improve its availability for management of bleeding as well as providing a safe component from pathogens.
Collapse
Affiliation(s)
| | - Anaïs Lotens
- Service du Sang, Belgian Red Cross, Suarlée, Belgium
| | | | | | - Laura Green
- NHS Blood and Transplant and Barts Health NHS Trust, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Wasiluk T, Rogowska A, Boczkowska-Radziwon B, Zebrowska A, Bolkun L, Piszcz J, Radziwon P. Maintaining plasma quality and safety in the state of ongoing epidemic - The role of pathogen reduction. Transfus Apher Sci 2021; 60:102953. [PMID: 33023853 PMCID: PMC7832281 DOI: 10.1016/j.transci.2020.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/22/2023]
Abstract
In the field of transfusion medicine, many pathogen reduction techniques (PRTs) are currently available, including those based on photochemical (PI) and photodynamic inactivation (PDI). This is particularly important in the face of emerging viral pathogens that may pose a threat to blood recipients, as in the case of the COVID-19 pandemic. However, PRTs have some limitations, primarily related to their adverse effects on coagulation factors, which should be considered before their intended use. A comprehensive search of PubMed, Wiley Online Library and Science Direct databases was conducted to identify original papers. As a result, ten studies evaluating fresh plasma and frozen-thawed plasma treated with different PI/ PDI methods and evaluating concentrations of coagulation factors and natural anticoagulants both before and after photochemical treatment were included in the review. The use of PI and PDI is associated with a significant decrease in the activity of all analysed coagulation factors, while the recovery of natural anticoagulants remains at a satisfactory level, variable for individual inactivation methods. In addition, the published evidence reviewed above does not unequivocally favour the implementation of PI/PDI either before freezing or after thawing as plasma products obtained with these two approaches seem to satisfy the existing quality criteria. Based on current evidence, if implemented responsibly and in accordance with the current guidelines, both PI and PDI can ensure satisfactory plasma quality and improve its safety.
Collapse
Affiliation(s)
- Tomasz Wasiluk
- Regional Centre for Transfusion Medicine, Bialystok, Poland.
| | - Anna Rogowska
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | | | | | - Lukasz Bolkun
- Department of Haematology, Medical University of Bialystok, Bialystok, Poland
| | - Jaroslaw Piszcz
- Department of Haematology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland; Department of Haematology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
The effect of pathogen inactivation on cryoprecipitate: a functional and quantitative evaluation. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 18:454-464. [PMID: 33000752 DOI: 10.2450/2020.0077-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND As a pooled donor blood product, cryoprecipitate (cryo) carries risks of pathogen transmission. Pathogen inactivation (PI) improves the safety of cryoprecipitate, but its effects on haemostatic properties remain unclear. This study investigated protein expression in samples of pathogen inactivated cryoprecipitate (PI-cryo) using non-targeted quantitative proteomics and in vitro haemostatic capacity of PI-cryo. MATERIALS AND METHODS Whole blood (WB)- and apheresis (APH)-derived plasma was subject to PI with INTERCEPT® Blood System (Cerus Corporation, Concord, CA, USA) and cryo was prepared from treated plasma. Protein levels in PI-cryo and paired controls were quantified using liquid chromatography-tandem mass spectrometry. Functional haemostatic properties of PI-cryo were assessed using a microparticle (MP) prothrombinase assay, thrombin generation assay, and an in vitro coagulopathy model subjected to thromboelastometry. RESULTS Over 300 proteins were quantified across paired PI-cryo and controls. PI did not alter the expression of coagulation factors, but levels of platelet-derived proteins and platelet-derived MPs were markedly lower in the WB PI-cryo group. Compared to controls, WB (but not APH) cryo samples demonstrated significantly lower MP prothrombinase activity, prolonged clotting time, and lower clot firmness on thromboelastometry after PI. However, PI did not affect overall thrombin generation variables in either group. DISCUSSION Data from this study suggest that PI via INTERCEPT® Blood System does not significantly impact the coagulation factor content or function of cryo but reduces the higher MP content in WB-derived cryo. PI-cryo products may confer benefits in reducing pathogen transmission without affecting haemostatic function, but further in vivo assessment is warranted.
Collapse
|
9
|
|
10
|
Bontekoe IJ, van der Meer PF, Korte D. Thromboelastography as a tool to evaluate blood of healthy volunteers and blood component quality: a review. Vox Sang 2019; 114:643-657. [DOI: 10.1111/vox.12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Dirk Korte
- Sanquin Blood Supply Amsterdam The Netherlands
| |
Collapse
|
11
|
Cushing MM, Asmis LM, Harris RM, DeSimone RA, Hill S, Ivascu N, Haas T. Efficacy of a new pathogen-reduced cryoprecipitate stored 5 days after thawing to correct dilutional coagulopathy in vitro. Transfusion 2019; 59:1818-1826. [PMID: 30719724 DOI: 10.1111/trf.15157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Fibrinogen supplementation during bleeding restores clot strength and hemostasis. Cryoprecipitate, a concentrated source of fibrinogen, has prolonged preparation time for thawing, a short shelf life resulting in frequent wastage, and infectious disease risk. This in vitro study investigated the efficacy of a new pathogen-reduced cryoprecipitate thawed and stored at room temperature for 5 days (PR Cryo) to treat dilutional hypofibrinogenemia, compared to immediately thawed standard cryoprecipitate (Cryo) or fibrinogen concentrate (FC). STUDY DESIGN AND METHODS Ten phlebotomy specimens from healthy volunteers were diluted 1:1 with crystalloid and supplemented with PR Cryo and Cryo (at a dose replicating transfusion of two pooled doses [10 units]) and FC at a dose replicating 50 mg/kg. Changes in clot firmness (thromboelastometry) and in coagulation factor activity were assessed at baseline, after dilution, and after supplementation. RESULTS Clinical dosing was used, as described above, and consequently the FC dose contained 24% and 36% more fibrinogen versus PR Cryo and Cryo, respectively. At baseline, subjects had a median FIBTEM maximum clot firmness of 13.5 mm, versus 6.5 mm after 50% dilution (p = 0.005). After supplementation with PR Cryo, a median FIBTEM maximum clot firmness of 13 mm was observed versus 9.0 mm for Cryo (p = 0.005) or 16.5 mm for FC (p = 0.005). Median factor XIII was higher after PR Cryo (64.8%) versus Cryo (48.3%) (p = 0.005). Fibrinogen activity was higher after FC (269.0 mg/dL) versus PR Cryo (187.0 mg/dL; p = 0.005) or Cryo (193.5 mg/dL; p = 0.005); the difference between PR Cryo and Cryo supplementation (p = 0.445) was not significant. CONCLUSION PR Cryo used 5 days after thawing effectively restores clot strength after in vitro dilution.
Collapse
Affiliation(s)
- Melissa M Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.,Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Lars M Asmis
- Centre for Perioperative Thrombosis and Haemostasis, Zurich, Switzerland
| | - Rebecca M Harris
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Robert A DeSimone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Shanna Hill
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Natalia Ivascu
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
| | - Thorsten Haas
- Department of Anaesthesia, Zurich University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
12
|
Ravanat C, Dupuis A, Marpaux N, Naegelen C, Mourey G, Isola H, Laforêt M, Morel P, Gachet C. In vitro
quality of amotosalen‐
UVA
pathogen‐inactivated mini‐pool plasma prepared from whole blood stored overnight. Vox Sang 2018; 113:622-631. [DOI: 10.1111/vox.12697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Catherine Ravanat
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| | - Arnaud Dupuis
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| | | | | | - Guillaume Mourey
- EFS Bourgogne‐Franche‐Comté UMR1098 Besançon France
- Université Bourgogne Franche Comté INSERM EFS Bourgogne‐Franche‐Comté UMR1098 Besançon France
| | - Herve Isola
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| | - Michel Laforêt
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| | - Pascal Morel
- EFS Bourgogne‐Franche‐Comté UMR1098 Besançon France
- Université Bourgogne Franche Comté INSERM EFS Bourgogne‐Franche‐Comté UMR1098 Besançon France
| | - Christian Gachet
- Université de Strasbourg INSERM EFS Grand‐Est BPPS UMR‐S1255 FMTS Strasbourg France
| |
Collapse
|
13
|
Burnouf T. Principles of haemophilia care: The Asia-Pacific perspective. Haemophilia 2018; 24:e245-e246. [PMID: 29790630 DOI: 10.1111/hae.13523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2018] [Indexed: 01/04/2023]
Affiliation(s)
- T Burnouf
- Taipei Medical University, College of Biomedical Engineering, Taipei, Taiwan
| |
Collapse
|
14
|
Green L, Bolton-Maggs P, Beattie C, Cardigan R, Kallis Y, Stanworth SJ, Thachil J, Zahra S. British Society of Haematology Guidelines on the spectrum of fresh frozen plasma and cryoprecipitate products: their handling and use in various patient groups in the absence of major bleeding. Br J Haematol 2018; 181:54-67. [PMID: 29527654 DOI: 10.1111/bjh.15167] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laura Green
- NHS Blood and Transplant, London, UK
- Barts Health NHS Trust, London, UK
- Blizard Institute, Queen Mary University of London, London, UK
| | - Paula Bolton-Maggs
- Serious Hazards of Transfusion Office, Manchester Blood Centre, Manchester, UK
| | - Craig Beattie
- Dept of Anaesthesia, Critical Care and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Rebecca Cardigan
- NHS Blood and Transplant/Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Yiannis Kallis
- Blizard Institute, Queen Mary University of London, London, UK
- Department of Hepatology, Barts Health NHS Trust, London, UK
| | - Simon J Stanworth
- Oxford University Hospitals NHS Trust/NHS Blood and Transplant, University of Oxford, Oxford, UK
| | - Jecko Thachil
- Haematology Department, Manchester Royal Infirmary, Manchester, UK
| | - Sharon Zahra
- Scottish National Blood Transfusion Service, Edinburgh, UK
| |
Collapse
|
15
|
Cushing MM, Kelley J, Klapper E, Friedman DF, Goel R, Heddle NM, Hopkins CK, Karp JK, Pagano MB, Perumbeti A, Ramsey G, Roback JD, Schwartz J, Shaz BH, Spinella PC, Cohn CS, Cohn CS, Cushing MM, Kelley J, Klapper E. Critical developments of 2017: a review of the literature from selected topics in transfusion. A committee report from the AABB Clinical Transfusion Medicine Committee. Transfusion 2018. [PMID: 29520794 DOI: 10.1111/trf.14520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The AABB compiles an annual synopsis of the published literature covering important developments in the field of Transfusion Medicine. For the first time, an abridged version of this work is being made available in TRANSFUSION, with the full-length report available as an Appendix S1 (available as supporting information in the online version of this paper). STUDY DESIGN AND METHODS Papers published in 2016 and early 2017 are included, as well as earlier papers cited for background. Although this synopsis is comprehensive, it is not exhaustive, and some papers may have been excluded or missed. RESULTS The following topics are covered: duration of red blood cell storage and clinical outcomes, blood donor characteristics and patient outcomes, reversal of bleeding in hemophilia and for patients on direct oral anticoagulants, transfusion approach to hemorrhagic shock, pathogen inactivation, pediatric transfusion medicine, therapeutic apheresis, and extracorporeal support. CONCLUSION This synopsis may be a useful educational tool.
Collapse
Affiliation(s)
| | - James Kelley
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ellen Klapper
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - David F Friedman
- Blood Bank and Transfusion Medicine Department, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruchika Goel
- Department of Pathology, Weill Cornell Medicine, New York, New York
| | - Nancy M Heddle
- McMaster Center for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Julie Katz Karp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Monica B Pagano
- Transfusion Medicine Division, Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Ajay Perumbeti
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Glenn Ramsey
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Joseph Schwartz
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York-Presbyterian Hospital
| | | | - Philip C Spinella
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | | | - James Kelley
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ellen Klapper
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
16
|
Ghadimi K, Welsby IJ. Pro: Factor Concentrates are Essential for Hemostasis in Complex Cardiac Surgery. J Cardiothorac Vasc Anesth 2018; 32:558-564. [DOI: 10.1053/j.jvca.2017.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 02/07/2023]
|
17
|
Acker JP, Marks DC, Sheffield WP. Quality Assessment of Established and Emerging Blood Components for Transfusion. JOURNAL OF BLOOD TRANSFUSION 2016; 2016:4860284. [PMID: 28070448 PMCID: PMC5192317 DOI: 10.1155/2016/4860284] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
Abstract
Blood is donated either as whole blood, with subsequent component processing, or through the use of apheresis devices that extract one or more components and return the rest of the donation to the donor. Blood component therapy supplanted whole blood transfusion in industrialized countries in the middle of the twentieth century and remains the standard of care for the majority of patients receiving a transfusion. Traditionally, blood has been processed into three main blood products: red blood cell concentrates; platelet concentrates; and transfusable plasma. Ensuring that these products are of high quality and that they deliver their intended benefits to patients throughout their shelf-life is a complex task. Further complexity has been added with the development of products stored under nonstandard conditions or subjected to additional manufacturing steps (e.g., cryopreserved platelets, irradiated red cells, and lyophilized plasma). Here we review established and emerging methodologies for assessing blood product quality and address controversies and uncertainties in this thriving and active field of investigation.
Collapse
Affiliation(s)
- Jason P. Acker
- Centre for Innovation, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Denese C. Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, NSW, Australia
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|