1
|
Piccin A, Allameddine A, Spizzo G, Lappin KM, Prati D. Platelet Pathogen Reduction Technology-Should We Stay or Should We Go…? J Clin Med 2024; 13:5359. [PMID: 39336845 PMCID: PMC11432127 DOI: 10.3390/jcm13185359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The recent COVID-19 pandemic has significantly challenged blood transfusion services (BTS) for providing blood products and for keeping blood supplies available. The possibility that a similar pandemic event may occur again has induced researchers and transfusionists to investigate the adoption of new tools to prevent and reduce these risks. Similarly, increased donor travelling and globalization, with consequent donor deferral and donor pool reduction, have contributed to raising awareness on this topic. Although recent studies have validated the use of pathogen reduction technology (PRT) for the control of transfusion-transmitted infections (TTI) this method is not a standard of care despite increasing adoption. We present a critical commentary on the role of PRT for platelets and on associated problems for blood transfusion services (BTS). The balance of the cost effectiveness of adopting PRT is also discussed.
Collapse
Affiliation(s)
- Andrea Piccin
- Northern Ireland Blood Transfusion Service (NIBTS), Belfast BT9 7TS, UK
- Department of Internal Medicine V, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, 38122 Trento, Italy
| | | | - Gilbert Spizzo
- Department of Oncology, Brixen Hospital, 39042 Bolzano, Italy
| | - Katrina M Lappin
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Daniele Prati
- Servizio Trasfusionale, Ospedale Ca' Granda, 20122 Milano, Italy
| |
Collapse
|
2
|
Yafour N, Bekadja MA, El Bejjaj I, El-Cheikh J, El Kababri M, Magro L, Hamzy F. [Acquired severe aplastic anemia in emerging countries: Management from allogeneic hematopoietic cell transplantation indication until post-transplant follow-up SFGM-TC]. Bull Cancer 2024:S0007-4551(24)00283-2. [PMID: 39227199 DOI: 10.1016/j.bulcan.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Management of acquired aplastic anemia (AA) in emerging countries depends on the means of prognostic stratification, treatment and logistics available. During the 13th annual harmonization workshop of the francophone Society of bone marrow transplantation and cellular therapy (SFGM-TC), a designated working group reviewed the literature in order to elaborate unified guidelines for allogeneic hematopoietic cell transplantation (Allo-HCT) in this disease. In terms of practice, the conclusions are as follows; The use of anti-tymocyte globuline (ATG) is mainly from rabbit and very little from horse. Access to bone marrow graft, total body irradiation, and the international unrelated donor registries is limited, which justifies the use of peripheral blood stem cells, chemotherapy-based conditioning, and related alternative donor. The workshop recommends matched sibling allo-HCT in all patients aged less than 40 years with acquired severe or very severe AA. For patients aged over than 40 years, or who lack an HLA-identical donor, treatment with the combination of cyclosporin, horse ATG, eltrombopag or cyclosporine, eltrombopag is recommended. If horse ATG and eltrombopag are not available, matched sibling allo-HCT may be indicated as first-line therapy in patients aged between 40-60 years, and good performance status. Although, in patients who have failed immunosuppressive treatments and thrombopoietin agonists, and in the absence of HLA-matched donor, a haplo-identical allo-HCT with modified Baltimore conditioning is recommended.
Collapse
Affiliation(s)
- Nabil Yafour
- Service d'hématologie et de thérapie cellulaire, faculté de médecine, établissement hospitalier et universitaire 1(er)-novembre-1954, Ahmed-Ben-Bella, université d'Oran 1, BP 4166 Ibn-Rochd, 31000 Oran, Algérie.
| | - Mohamed Amine Bekadja
- Service d'hématologie et de thérapie cellulaire, faculté de médecine, établissement hospitalier et universitaire 1(er)-novembre-1954, Ahmed-Ben-Bella, université d'Oran 1, BP 4166 Ibn-Rochd, 31000 Oran, Algérie
| | - Ibtissam El Bejjaj
- Service d'hématologie et d'oncologie pédiatrique, hôpital du 20-août-1953, CHU Ibn-Rochd, Casablanca, Maroc
| | - Jean El-Cheikh
- Department of Internal Medicine, Bone Marrow Transplantation Program, American University of Beirut Medical Center, Beirut, Liban
| | - Maria El Kababri
- Service d'hématologie et oncologie pédiatrique, hôpital d'enfants de Rabat, université Mohammed V de Rabat, Rabat, Maroc
| | - Léonardo Magro
- LIRIC, Inserm U995, CHU de Lille, université de Lille, 59000 Lille, France
| | - Fati Hamzy
- Service d'hématologie et greffe, hôpital Cheikh-Zaïd universitaire international, cité Al-Irfane-Hay Ryad, avenue Allal-al-Fassi, 10000 Rabat, Maroc
| |
Collapse
|
3
|
Brouard N, Pissenem-Rudwill F, Mouriaux C, Haas D, Galvanin A, Kientz D, Mangin PH, Isola H, Hechler B. Biochemical and functional characteristics of stored (double-dose) buffy-coat platelet concentrates treated with amotosalen and a prototype UVA light-emitting diode illuminator. Transfusion 2023; 63:1937-1950. [PMID: 37615493 DOI: 10.1111/trf.17519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Pathogen reduction of platelet concentrates (PCs) using amotosalen and broad-spectrum UVA illumination contributes to the safety of platelet transfusion by reducing the risk of transfusion-transmitted infections. We evaluated the in vitro quality of stored buffy-coat (BC) PCs treated with amotosalen and a prototype light-emitting diode (LED) illuminator. METHODS Double-dose BC-PCs collected into PAS-III/plasma or SSP+ /plasma (55/45%) were treated with amotosalen in combination with either conventional UVA lamps (INT100 Illuminator 320-400 nm) or LED illuminators at 350 nm. Platelet quality and function were evaluated over 7 days. RESULTS Platelet counts were conserved during storage in all groups, as was platelet swirling without appearance of macroscopic aggregates. Integrin αIIbβ3 and glycoprotein (GP) VI expression remained stable, whereas GPIbα and GPV declined similarly in all groups. UV lamp- and LED-treated PCs displayed similar glucose consumption, lactate generation, and pH variation. Comparable spontaneous and residual P-selectin and phosphatidylserine exposure, activated αIIbβ3 exposure, mitochondrial membrane potential, lactate dehydrogenase release, and adhesive properties under flow conditions were observed during storage. The use of SSP+ /plasma compared with PAS-III/plasma better preserved most of these parameters, especially during late storage, irrespective of the type of illuminator. CONCLUSION Replacing the UVA lamp for photochemical treatment by LED illuminators had no impact on platelet metabolism, spontaneous activation, apoptosis or viability, or on the in vitro function of BC-PCs stored for 7 days in SSP+ or PAS-III/plasma. These findings support improved procedures for the pathogen reduction and storage of PCs, to ensure transfusion safety and retention of platelet functional properties.
Collapse
Affiliation(s)
- Nathalie Brouard
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | | | - Clarisse Mouriaux
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Delphine Haas
- Etablissement Français du Sang (EFS) Grand Est, Strasbourg, France
| | - Adeline Galvanin
- Etablissement Français du Sang (EFS) Grand Est, Strasbourg, France
| | - Daniel Kientz
- Etablissement Français du Sang (EFS) Grand Est, Strasbourg, France
| | - Pierre H Mangin
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Hervé Isola
- Etablissement Français du Sang (EFS) Grand Est, Strasbourg, France
| | - Béatrice Hechler
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS) Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
4
|
Bonn J, Baltin CT, Osterkamp V, Scheid C, Holtick U, Irsch J, Kron F. Health Economic Aspects of Platelet Concentrates: Comparing Cost and Reimbursement of Pathogen Inactivated and Conventional Platelet Concentrates in a German Comprehensive Cancer Center. Oncol Res Treat 2023; 46:362-369. [PMID: 37482056 PMCID: PMC10664333 DOI: 10.1159/000531742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Pathogen inactivation (PI) utilizing amotosalen and UVA light (INTERCEPT® Blood System) is a well-established method for the production of safer platelet concentrates (PCs). While many studies describe clinical and logistical benefits of PI, the implications and potential challenges from a hospital management perspective have not yet been analyzed - health economic analyses considering reimbursement of PI are lacking. The objective of this analysis was to examine the real-life inpatient treatment costs from a hospital perspective and to assess the economic impact of PI-PC versus conventional PC (CONV-PC) administration in Germany. METHODS Real-life cost data for inpatient cancer cases from 2020 of the University Hospital Cologne were identified by operating and procedure codes. The German diagnosis-related groups, extra fees, case mix index (CMI), length of stay (LOS), and average resource consumption of PC were evaluated from a micro-management perspective. The potential economic impact of implementing PI-treated PCs was modeled retrospectively. RESULTS In total, 951 inpatient cases were analyzed (CMI [median 4.7-9.9], LOS [median 26 days], number of cases in intensive care units [38%]). The median DRG fee was between EUR 13,800 and EUR 26,400. According to our model, the use of PI-PC compared to CONV-PC would result in savings between EUR 184 and EUR 306 per case. CONCLUSION From a hospital management perspective, oncological cases requiring PC transfusion are associated with a high CMI (reimbursement per DRG flat fee) and moderate costs with sufficient add-on payment for PI on a case level. Investment and process costs for PI implementation can be analyzed for site-specific scenarios.
Collapse
Affiliation(s)
| | - Christoph T. Baltin
- VITIS Healthcare Group, Cologne, Germany
- Clinic and Polyclinic for Orthopaedics and Trauma Surgery, University Hospital of Cologne, Cologne, Germany
- Competence Center for Medical Economics, FOM University of Applied Sciences, Essen, Germany
| | | | - Christof Scheid
- Department I of Internal Medicine, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Udo Holtick
- Department I of Internal Medicine, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | | | - Florian Kron
- VITIS Healthcare Group, Cologne, Germany
- Competence Center for Medical Economics, FOM University of Applied Sciences, Essen, Germany
- Department I of Internal Medicine, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Cancelas JA, Genthe JR, Stolla M, Rugg N, Bailey SL, Nestheide S, Shaz B, Mack S, Schroeder K, Anani W, Szczepiorkowski ZM, Dumont LJ, Yegneswaran S, Corash L, Mufti N, Benjamin RJ, Erickson AC. Evaluation of amotosalen and UVA pathogen-reduced apheresis platelets after 7-day storage. Transfusion 2022; 62:1619-1629. [PMID: 35808974 PMCID: PMC9546462 DOI: 10.1111/trf.17003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Amotosalen/UVA pathogen-reduced platelet components (PRPCs) with storage up to 7 days are standard of care in France, Switzerland, and Austria. PRPCs provide effective hemostasis with reduced risk of transfusion-transmitted infections and transfusion-associated graft versus host disease, reduced wastage and improved availability compared with 5-day-stored PCs. This study evaluated the potency of 7-day PRPCs by in vitro characterization and in vivo pharmacokinetic analysis of autologous PCs. STUDY DESIGN AND METHODS The in vitro characteristics of 7-day-stored apheresis PRPCs suspended in 100% plasma or 65% platelet additive solution (PAS-3)/35% plasma, thrombin generation, and in vivo radiolabeled post-transfusion recovery and survival of 7-day-stored PRPCs suspended in 100% plasma were compared with either 7-day-stored or fresh autologous conventional platelets. RESULTS PRPCs after 7 days of storage maintained pH, platelet dose, in vitro physiologic characteristics, and thrombin generation when compared to conventional 7-day PCs. In vivo, the mean post-transfusion survival was 151.4 ± 20.1 h for 7-day PRPCs in 100% plasma (Test) versus 209.6 ± 13.9 h for the fresh autologous platelets (Control), (T-ΔC: 72.3 ± 8.8%: 95% confidence interval [CI]: 68.5, 76.1) and mean 24-h post-transfusion recovery 37.6 ± 8.4% for Test versus 56.8 ± 9.2% for Control (T-ΔC: 66.2 ± 11.2%; 95% CI: 61.3, 71.1). DISCUSSION PRPCs collected in both 100% plasma as well as 65% PAS-3/35% plasma and stored for 7 days retained in vitro physiologic characteristics. PRPCs stored in 100% plasma for 7 days retained in vivo survival. Lower in vivo post-radiolabeled autologous platelet recovery is consistent with reported reduced count increments for allogenic transfusion.
Collapse
Affiliation(s)
| | | | - Moritz Stolla
- Bloodworks Northwest, Seattle, Washington, USA.,Division of Hematology, Department of Medicine, University of Washington Medical Center, Seattle, Washington, USA
| | - Neeta Rugg
- Hoxworth Blood Center, Cincinnati, Ohio, USA
| | | | | | - Beth Shaz
- Duke University, Durham, North Carolina, USA
| | | | | | | | - Zbigniew M Szczepiorkowski
- Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | | | - Nina Mufti
- Cerus Corporation, Concord, California, USA
| | | | | |
Collapse
|
6
|
Arcas Otero C, Pereira Saavedra A, Castrillo Fernández A, Vilariño López MD. Comparison of transfusion-outcome in patients with massive bleeding receiving pathogen-reduced platelets prepared with two different technologies. Transfus Apher Sci 2022; 61:103359. [DOI: 10.1016/j.transci.2022.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
7
|
Pham TD, Kadi W, Shu E, Pandey S, Sussmann H, Shan H, Virk MS. How do I implement pathogen-reduced platelets? Transfusion 2021; 61:3295-3302. [PMID: 34796968 DOI: 10.1111/trf.16744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Several risk mitigation steps have improved the safety of platelets in regard to bacterial contamination, but this continues to be a concern today. A Food and Drug Administration (FDA) Guidance issued in December 2018 aims to further limit this risk. The guidance offers multiple pathways for compliance, and hospital blood banks will have to collaborate with blood donor centers to assess various factors before deciding which method is most appropriate for them. METHODS AND MATERIALS Our institution considered several factors before moving forward with pathogen reduction technology. This included an assessment of platelet shelf-life, bacterial testing requirements, the efficacy of low-yield platelets, and managing a mixed platelet inventory. The decision to transition to pathogen-reduced platelets was associated with complex collection and processing limitations that resulted in either an increase in platelets that were over-concentrated or products with a low platelet yield. RESULTS Through trials of various collection settings with unique target volumes and target platelet yields, our blood donor center was able to optimize the production. At the hospital end, this transition required a thorough review of low-yield platelet products and their clinical efficacy. Additionally, this implementation necessitated collaboration with clinical colleagues, comprehensive education, and training. CONCLUSIONS Pathogen-reduced platelets would be the most efficient way for our institution to be compliant. This summary may serve as a roadmap for other institutions that are considering which FDA prescribed method to use and provide support for those that have decided on pathogen reduction technology but need to optimize their collections to best utilize low-yield products.
Collapse
Affiliation(s)
- Tho D Pham
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Stanford Blood Center, Stanford University, Stanford, California, USA
| | - Wendy Kadi
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Elaine Shu
- Stanford Blood Center, Stanford University, Stanford, California, USA
| | - Suchitra Pandey
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Stanford Blood Center, Stanford University, Stanford, California, USA
| | - Harry Sussmann
- Stanford Blood Center, Stanford University, Stanford, California, USA
| | - Hua Shan
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mrigender S Virk
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
McCullough J. Pathogen Reduced Blood Products. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Contemporary resuscitation of hemorrhagic shock: What will the future hold? Am J Surg 2020; 220:580-588. [PMID: 32409009 PMCID: PMC7211588 DOI: 10.1016/j.amjsurg.2020.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Resuscitation of the critically ill patient with fluid and blood products is one of the most widespread interventions in medicine. This is especially relevant for trauma patients, as hemorrhagic shock remains the most common cause of preventable death after injury. Consequently, the study of the ideal resuscitative product for patients in shock has become an area of great scientific interest and investigation. Recently, the pendulum has swung towards increased utilization of blood products for resuscitation. However, pathogens, immune reactions and the limited availability of this resource remain a challenge for clinicians. Technologic advances in pathogen reduction and innovations in blood product processing will allow us to increase the safety profile and efficacy of blood products, ultimately to the benefit of patients. The purpose of this article is to review the current state of blood product based resuscitative strategies as well as technologic advancements that may lead to safer resuscitation.
Collapse
|
10
|
The effect of platelet storage temperature on haemostatic, immune, and endothelial function: potential for personalised medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 17:321-330. [PMID: 31385802 DOI: 10.2450/2019.0095-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Reports from both adult and paediatric populations indicate that approximately two-thirds of platelet transfusions are used prophylactically to prevent bleeding, while the remaining one-third are used therapeutically to manage active bleeding. These two indications, prophylactic and therapeutic, serve two very distinct purposes and therefore will have two different functional requirements. In addition, disease aetiology in a given patient may require platelets with different functional characteristics. These characteristics can be derived from the various manufacturing methods used in platelet product production, including collection methods, processing methods, and storage options. The iterative combinations of manufacturing methods can result in a number of unique platelet products with different efficacy and safety profiles, which could potentially be used to benefit patient populations by meeting diverse clinical needs. In particular, cold storage of platelet products causes many biochemical and functional changes, of which the most notable characterised to date include increased haemostatic activity and altered expression of molecules inherent to platelet:leucocyte interactions. The in vivo consequences, both short- and long-term, of these molecular and cellular cold-storage-induced changes have yet to be clearly defined. Elucidation of these mechanisms would potentially reveal unique biologies that could be harnessed to provide more targeted therapies. To this end, in this new era of personalised medicine, perhaps there is an opportunity to provide individual patients with platelet products that are tailored to their clinical condition and the specific indication for transfusion.
Collapse
|
11
|
Abstract
Allogeneic platelets collected for transfusion treated with pathogen reduction technology (PRT), which has been available in some countries for more than a decade, are now increasingly available in the United States (US). The implementation of PRT-treated platelets, also known as pathogen-reduced platelets (PRPs), has been spurred by the need to further decrease the risk of sepsis associated with bacterial contamination coupled with the potential of this technology to reduce the risk of infections due to already recognized, new, and emerging infectious agents. This article will review available PRP products, examine their benefits, highlight unresolved questions surrounding this technology, and summarize pivotal research studies that have compared transfusion outcomes (largely in adult patients) for PRPs with non-PRT-treated conventional platelets (CPs). In addition, studies describing the use of PRPs in pediatric patients and work done on the association between PRPs and HLA alloimmunization are discussed. As new data emerge, it is critical to re-evaluate the risks and benefits of existing PRPs and newer technologies and reassess the financial implications of adopting PRPs to guide our decision-making process for the implementation of transfusing PRPs.
Collapse
Affiliation(s)
- Wen Lu
- Section of Transfusion Medicine, Robert Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark Fung
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT, USA
| |
Collapse
|
12
|
Infanti L, Holbro A, Passweg J, Bolliger D, Tsakiris DA, Merki R, Plattner A, Tappe D, Irsch J, Lin J, Corash L, Benjamin RJ, Buser A. Clinical impact of amotosalen-ultraviolet A pathogen-inactivated platelets stored for up to 7 days. Transfusion 2019; 59:3350-3361. [PMID: 31574181 PMCID: PMC6900102 DOI: 10.1111/trf.15511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Universal pathogen inactivation of platelet concentrates (PCs) using amotosalen/ultraviolet A with 7-day storage was implemented in Switzerland in 2011. Routine-use data were analyzed at the University Hospital Basel, Switzerland. STUDY DESIGN A retrospective two-cohort study of patient and PC characteristics, component usage, patient outcomes, count increments (CIs), and adverse events were analyzed for two consecutive 5-year periods with either 0- to 5-day-old conventional PC (C-PC) (n = 14,181) or 0- to 7-day-old pathogen-inactivated PC (PI-PC) (n = 22,579). RESULTS In both periods, PCs were issued for transfusion on a "first in, first out" basis. With 7-day PI-PC, wastage was reduced from 8.7% to 1.5%; 16.6% of transfused PI-PCs were more than 5 days old. Transfusion of PI-PC more than 5 days old compared with 5 days old or less did not increase platelet and RBC use on the same or next day as an indirect measure of hemostasis and did not increase transfusion reactions. Mean corrected count increments (CCIs) for PI-PC stored for 5 days or less were 22.6% lower than for C-PC (p < 0.001), and declined with increasing storage duration for both, although the correlation was weak (r2 = 0.005-0.014). Mean number of PCs used per patient and duration of PC support were not different for hematology/oncology, allogeneic and autologous hematopoietic stem cell transplant (HSCT), and general medical/surgical patients, who used the majority (~92.0%) of PI-PCs. Five-year treatment-related mortality in allogeneic HSCT was unchanged in the PI-PC period. CONCLUSIONS PI-PCs with 7-day storage reduced wastage and did not increase PC or red blood cell utilization or adverse reactions compared with fresh PI-PC or a historical control group, demonstrating preserved efficacy and safety.
Collapse
Affiliation(s)
- Laura Infanti
- Regional Blood Transfusion ServiceSwiss Red CrossBaselSwitzerland
| | - Andreas Holbro
- Regional Blood Transfusion ServiceSwiss Red CrossBaselSwitzerland
- HematologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Jakob Passweg
- HematologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Daniel Bolliger
- Department for Anesthesia, Prehospital Emergency Medicine, and Pain TherapyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | | | - Ramona Merki
- HematologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | | | | | | | | | | | | | - Andreas Buser
- Regional Blood Transfusion ServiceSwiss Red CrossBaselSwitzerland
- HematologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| |
Collapse
|
13
|
Arnason NA, Johannson F, Landrö R, Hardarsson B, Irsch J, Gudmundsson S, Rolfsson O, Sigurjonsson OE. Pathogen inactivation with amotosalen plus UVA illumination minimally impacts microRNA expression in platelets during storage under standard blood banking conditions. Transfusion 2019; 59:3727-3735. [PMID: 31674051 DOI: 10.1111/trf.15575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/15/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND To reduce the risk of transfusion transmission infection, nucleic acid targeted methods have been developed to inactivate pathogens in PCs. miRNAs have been shown to play an important role in platelet function, and changes in the abundance of specific miRNAs during storage have been observed, as have perturbation effects related to pathogen inactivation (PI) methods. The aim of this work was to investigate the effects of PI on selected miRNAs during storage. STUDY DESIGN AND METHODS Using a pool and split strategy, 3 identical buffy coat PC units were generated from a pool of 24 whole blood donors. Each unit received a different treatment: 1) Untreated platelet control in platelet additive solution (C-PAS); 2) Amotosalen-UVA-treated platelets in PAS (PI-PAS); and 3) untreated platelets in donor plasma (U-PL). PCs were stored for 7 days under standard blood banking conditions. Standard platelet quality control (QC) parameters and 25 selected miRNAs were analyzed. RESULTS During the 7-day storage period, differences were found in several QC parameters relating to PI treatment and storage in plasma, but overall the three treatments were comparable. Out of 25 miRNA tested changes in regulation of 5 miRNA in PI-PAS and 3 miRNA U-PL where detected compared to C-PAS. A statistically significant difference was observed in down regulations miR-96-5p on Days 2 and 4, 61.9% and 61.8%, respectively, in the PI-PAS treatment. CONCLUSION Amotosalen-UVA treatment does not significantly alter the miRNA profile of platelet concentrates generated and stored using standard blood banking conditions.
Collapse
Affiliation(s)
- Niels Arni Arnason
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Freyr Johannson
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ragna Landrö
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Björn Hardarsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Sveinn Gudmundsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ottar Rolfsson
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Olafur E Sigurjonsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
14
|
Atreya C, Glynn S, Busch M, Kleinman S, Snyder E, Rutter S, AuBuchon J, Flegel W, Reeve D, Devine D, Cohn C, Custer B, Goodrich R, Benjamin RJ, Razatos A, Cancelas J, Wagner S, Maclean M, Gelderman M, Cap A, Ness P. Proceedings of the Food and Drug Administration public workshop on pathogen reduction technologies for blood safety 2018 (Commentary, p. 3026). Transfusion 2019; 59:3002-3025. [PMID: 31144334 PMCID: PMC6726584 DOI: 10.1111/trf.15344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Chintamani Atreya
- US Food and Drug Administration, Center for Biologics Evaluation and ResearchOffice of Blood Research and ReviewSilver SpringMaryland
| | - Simone Glynn
- National Heart Lung and Blood InstituteBethesdaMarylandUSA
| | | | | | - Edward Snyder
- Blood BankYale‐New Haven HospitalNew HavenConnecticut
| | - Sara Rutter
- Department of Pathology and Laboratory MedicineYale School of MedicineNew HavenConnecticut
| | - James AuBuchon
- Department of PathologyDartmouth‐Hitchcock Medical CenterLebanonNew Hampshire
| | - Willy Flegel
- Department of Transfusion MedicineNIH Clinical CenterBethesdaMaryland
| | - David Reeve
- Blood ComponentsAmerican Red CrossRockvilleMaryland
| | - Dana Devine
- Department of Lab Medicine and PathologyUniversity of Minnesota Medical CenterMinneapolisMinnesota
| | - Claudia Cohn
- Department of Lab Medicine and PathologyUniversity of Minnesota Medical CenterMinneapolisMinnesota
| | - Brian Custer
- Vitalant Research InstituteSan FranciscoCalifornia
| | - Raymond Goodrich
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColorado
| | | | | | - Jose Cancelas
- Hoxworth Blood CenterUniversity of Cincinnati HealthCincinnatiOhio
| | | | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies (ROLEST)University of StrathclydeGlasgowScotland
| | - Monique Gelderman
- Department of HematologyCenter for Biologics Evaluation and Research, US Food and Drug AdministrationSilver SpringMaryland
| | - Andrew Cap
- U.S. Army Institute of Surgical ResearchSan AntonioTexas
| | - Paul Ness
- Blood BankJohns Hopkins HospitalBaltimoreMaryland
| |
Collapse
|
15
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
16
|
Rebulla P. The long and winding road to pathogen reduction of platelets, red blood cells and whole blood. Br J Haematol 2019; 186:655-667. [PMID: 31304588 DOI: 10.1111/bjh.16093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
Abstract
Pathogen reduction technologies (PRTs) have been developed to further reduce the current very low risks of acquiring transfusion-transmitted infections and promptly respond to emerging infectious threats. An entire portfolio of PRTs suitable for all blood components is not available, but the field is steadily progressing. While PRTs for plasma have been used for many years, PRTs for platelets, red blood cells (RBC) and whole blood (WB) were developed more slowly, due to difficulties in preserving cell functions during storage. Two commercial platelet PRTs use ultra violet (UV) A and UVB light in the presence of amotosalen or riboflavin to inactivate pathogens' nucleic acids, while a third experimental PRT uses UVC light only. Two PRTs for WB and RBC have been tested in experimental clinical trials with storage limited to 21 or 35 days, due to unacceptably high RBC storage lesion beyond these time limits. This review summarizes pre-clinical investigations and selected outcomes from clinical trials using the above PRTs. Further studies are warranted to decrease cell storage lesions after PRT treatment and to test PRTs in different medical and surgical conditions. Affordability remains a major administrative obstacle to PRT use, particularly so in geographical regions with higher risks of transfusion-transmissible infections.
Collapse
Affiliation(s)
- Paolo Rebulla
- Department of Transfusion Medicine and Haematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
17
|
Scorer TG, Reddoch-Cardenas KM, Thomas KA, Cap AP, Spinella PC. Therapeutic Utility of Cold-Stored Platelets or Cold-Stored Whole Blood for the Bleeding Hematology-Oncology Patient. Hematol Oncol Clin North Am 2019; 33:873-885. [PMID: 31466610 DOI: 10.1016/j.hoc.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bleeding related to thrombocytopenia is common in hematology-oncology patients. Platelets stored at room temperature (RTPs) are the current standard of care. Platelets stored in the cold (CSPs) have enhanced hemostatic function relative to RTPs. CSPs were reported to reduce bleeding in hematology-oncology patients. Recent studies have confirmed the enhanced hemostatic properties of CSPs. CSPs may be the better therapeutic option for this population. CSPs may also offer a preferable immune profile, reduced thrombotic risk, and reduced transfusion-transmitted infection risk. The logistical advantages of CSPs would improve outcomes for many patients who currently cannot access platelet transfusions.
Collapse
Affiliation(s)
- Thomas G Scorer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol Royal Infirmary, Research Floor 7, Queens Building, Bristol, BS2 8HW, UK; Centre of Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK.
| | - Kristin M Reddoch-Cardenas
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BLDG 3610, JBSA-Fort Sam Houston, San Antonio, TX 78234, USA
| | - Kimberly A Thomas
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Andrew P Cap
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BLDG 3610, JBSA-Fort Sam Houston, San Antonio, TX 78234, USA
| | - Philip C Spinella
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Six KR, Devloo R, Compernolle V, Feys HB. Impact of cold storage on platelets treated with Intercept pathogen inactivation. Transfusion 2019; 59:2662-2671. [PMID: 31187889 PMCID: PMC6851707 DOI: 10.1111/trf.15398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pathogen inactivation and cold or cryopreservation of platelets (PLTs) both significantly affect PLT function. It is not known how PLTs function when both are combined. STUDY DESIGN AND METHODS Standard PLT concentrates (PCs) were compared to pathogen‐inactivated PCs treated with amotosalen photochemical treatment (AS‐PCT) when stored at room (RT, 22°C), cold (4°C, n = 6), or cryopreservation (−80°C, n = 8) temperatures. The impact of alternative storage methods on both arms was studied in flow cytometry, light transmittance aggregometry, and hemostasis in collagen‐coated microfluidic flow chambers. RESULTS Platelet aggregation of cold‐stored AS‐PCT PLTs was 44% ± 11% compared to 57% ± 14% for cold‐stored standard PLTs and 58% ± 21% for RT‐stored AS‐PCT PLTs. Integrin activation of cold‐stored AS‐PCT PLTs was 53% ± 9% compared to 77% ± 6% for cold‐stored standard PLTs and 69% ± 13% for RT‐stored AS‐PCT PLTs. Coagulation of cold‐stored AS‐PCT PLTs started faster under flow (836 ± 140 sec) compared to cold‐stored standard PLTs (960 ± 192 sec) and RT‐stored AS‐PCT PLTs (1134 ± 220 sec). Fibrin formation rate under flow was also highest for cold‐stored AS‐PCT PLTs. This was in line with thrombin generation in static conditions because cold‐stored AS‐PCT PLTs generated 297 ± 47 nmol/L thrombin compared to 159 ± 33 nmol/L for cold‐stored standard PLTs and 83 ± 25 nmol/L for RT‐stored AS‐PCT PLTs. So despite decreased PLT activation and aggregation, cold storage of AS‐PCT PLTs promoted coagulation. PLT aggregation of cryopreserved AS‐PCT PLTs (23% ± 10%) was not significantly different from cryopreserved standard PLTs (25% ± 8%). CONCLUSION This study shows that cold storage of AS‐PCT PLTs further affects PLT activation and aggregation but promotes (pro)coagulation. Increased procoagulation was not observed after cryopreservation.
Collapse
Affiliation(s)
- Katrijn R Six
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Rutter S, Snyder EL. How do we … integrate pathogen reduced platelets into our hospital blood bank inventory? Transfusion 2019; 59:1628-1636. [PMID: 30883807 PMCID: PMC6850142 DOI: 10.1111/trf.15241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
For more than 50 years there has been an ongoing effort to combat transfusion-transmitted infections and provide patients with the safest possible blood. This initiative has driven much of the research within the transfusion community. Initial methods included screening donors for travel histories to banned areas and for high-risk behaviors, but pathogen-specific assays performed at the collection and manufacturing sites also have become key factors in assuring blood safety. Many of these have focused on donor and laboratory-based screening for transfusion-transmitted diseases, as evidenced by the hepatitis and human immunodeficiency virus screening in the 1970s, 1980s, and 1990s. More recently, this effort has expanded to develop donor screening assays to identify other blood-borne pathogens, such as Zika and West Nile viruses and Babesia. Bacterial contamination of units of platelets (PLTs), however, remains a significant concern. In recent years, the Food and Drug Administration has approved rapid tests to identify bacterially contaminated PLT units in the blood bank before transfusion. Other supplemental methods have been developed, however, that aim to inactivate blood-borne pathogen(s) present in the blood product, rather than to rely on our ability to identify and interdict contaminated and infected components. Pathogen reduction technology, as this is referred to, provides a proactive way to further reduce the risk posed by transfusion-transmitted infections.
Collapse
Affiliation(s)
- Sara Rutter
- Department of Laboratory Medicine, Division of Transfusion MedicineYale University School of MedicineNew HavenConnecticut
| | - Edward L. Snyder
- Department of Laboratory Medicine, Division of Transfusion MedicineYale University School of MedicineNew HavenConnecticut
| |
Collapse
|
20
|
Sim J, Tsoi WC, Lee CK, Leung R, Lam CCK, Koontz C, Liu AY, Huang N, Benjamin RJ, Vermeij HJ, Stassinopoulos A, Corash L, Lie AKW. Transfusion of pathogen-reduced platelet components without leukoreduction. Transfusion 2019; 59:1953-1961. [PMID: 30919465 PMCID: PMC6850058 DOI: 10.1111/trf.15269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Leukoreduction (LR) of platelet concentrate (PC) has evolved as the standard to mitigate risks of alloimmunization, clinical refractoriness, acute transfusion reactions (ATRs), and cytomegalovirus infection, but does not prevent transfusion-associated graft-versus-host disease (TA-GVHD). Amotosalen-ultraviolet A pathogen reduction (A-PR) of PC reduces risk of transfusion-transmitted infection and TA-GVHD. In vitro data indicate that A-PR effectively inactivates WBCs and infectious pathogens. STUDY DESIGN AND METHODS A sequential cohort study evaluated A-PR without LR, gamma irradiation, and bacterial screening in hematopoietic stem cell transplant (HSCT) recipients. The first cohort received conventional PC (control) processed without LR, but with gamma irradiation and bacterial screening. The second cohort received A-PR PC (test) processed without: LR, bacterial screening, or gamma irradiation. The primary efficacy outcome was the 1-hour corrected count increment. The primary safety outcome was treatment-emergent ATR. Secondary outcomes included clinical refractoriness, and 100-day status for engraftment, TA-GVHD, HSCT-GVHD, infections, and mortality. RESULTS Mean corrected count increment (× 103 ) of 33 test PC recipients was similar (18.9 ± 8.8 vs. 16.6 ± 8.4; p = 0.296) to that of 31 control PC recipients. Test recipients had a reduced, but nonsignificant, incidence of ATR (test = 9.1%, Control = 19.4%; p = 0.296). The frequencies of clinical refractoriness (0 of 33 vs. 4 of 31 patients) and refractory transfusions (6.6% vs. 19.3%) were lower in the test cohort (p = 0.05 and 0.02), respectively. No patient in either cohort had TA-GVHD. Day 100 engraftment, HSCT-GVHD, mortality, and infectious disease complications were similar between cohorts. CONCLUSIONS This study indicated that A-PR PC without LR, gamma irradiation, or bacterial screening is feasible for support of HSCT.
Collapse
Affiliation(s)
- Joycelyn Sim
- Queen Mary Hospital and University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai Chiu Tsoi
- Hong Kong Red Cross Blood Transfusion Service, Yau Ma Tei, Hong Kong
| | - Cheuk Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Yau Ma Tei, Hong Kong
| | - Rock Leung
- Queen Mary Hospital and University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Clarence C K Lam
- Queen Mary Hospital and University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | | | | | | | | | | | - Albert K W Lie
- Queen Mary Hospital and University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
21
|
Giraud C, Thibert JB, Desbrosses Y, Debiol B, Alsuliman T, Bardiaux L, Garban F, Huynh TNP, Samsonova O, Yakoub-Agha I, Bruno B. Transfusion dans l’autogreffe et l’allogreffe de cellules souches hématopoïétiques chez l’adulte et l’enfant : recommandations de la Société francophone de greffe de moelle et de thérapie cellulaire (SFGM-TC). Bull Cancer 2019; 106:S52-S58. [DOI: 10.1016/j.bulcan.2018.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 01/07/2023]
|
22
|
Siddon AJ, Tormey CA, Snyder EL. Platelet Transfusion Medicine. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Hegde S, Akbar H, Zheng Y, Cancelas JA. Towards increasing shelf life and haemostatic potency of stored platelet concentrates. Curr Opin Hematol 2018; 25:500-508. [PMID: 30281037 PMCID: PMC6532779 DOI: 10.1097/moh.0000000000000456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Platelet transfusion is a widely used therapy in treating or preventing bleeding and haemorrhage in patients with thrombocytopenia or trauma. Compared with the relative ease of platelet transfusion, current practice for the storage of platelets is inefficient, costly and relatively unsafe, with platelets stored at room temperature (RT) for upto 5-7 days. RECENT FINDINGS During storage, especially at cold temperatures, platelets undergo progressive and deleterious changes, collectively termed the 'platelet storage lesion', which decrease their haemostatic function and posttransfusion survival. Recent progress in understanding platelet activation and host clearance mechanisms is leading to the consideration of both old and novel storage conditions that use refrigeration and/or cryopreservation to overcome various storage lesions and significantly extend platelet shelf-life with a reduced risk of pathogen contamination. SUMMARY A review of the advantages and disadvantages of alternative methods for platelet storage is presented from both a clinical and biological perspective. It is anticipated that future platelet preservation involving cold, frozen and/or pathogen reduction strategies in a proper platelet additive solution will enable longer term and safer platelet storage.
Collapse
Affiliation(s)
- Shailaja Hegde
- Hoxworth Blood Center, University of Cincinnati Academic Health Center
| | - Huzoor Akbar
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati
| | - Jose A. Cancelas
- Hoxworth Blood Center, University of Cincinnati Academic Health Center
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati
| |
Collapse
|
24
|
Budget impact of implementing platelet pathogen reduction into the Italian blood transfusion system. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 16:483-489. [PMID: 30201081 DOI: 10.2450/2018.0115-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/26/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Despite improvements in blood donor selection and screening procedures, transfusion recipients can still develop complications related to infections by known and emerging pathogens. Pathogen reduction technologies (PRT) have been developed to reduce such risks. The present study, developed whithin a wider health technology assessment (HTA) process, was undertaken to estimate the costs of the continuing increase in the use of platelet PRT in Italy. MATERIALS AND METHODS A multidisciplinary team was established to perform the HTA and conduct a budget impact analysis. Quantitative data on platelet use were derived from the 2015 national blood transfusion report and from the Italian Platelets Transfusion Assessment Study (IPTAS). The current national fee of 60 Euro per platelet PRT procedure was used to quantify the costs to the Italian National Health Service (INHS). The analysis adopts a 3-year time-frame. In order to identify the impact on budget we compared a scenario representing an increased use of PRT platelets over time with a control scenario in which standard platelets are used. RESULTS Progressive implementation of PRT for 20%, 40% and 66% of annual adult platelet doses could generate an increase in annual costs for the INHS amounting to approximately 7, 14 and 23 million Euros, respectively. Use of kits and devices suitable for the treatment of multiple adult platelet doses in one PRT procedure could lower costs. DISCUSSION In order to fully evaluate the societal perspective of implementing platelet PRT, the increase in costs must be balanced against the expected benefits (prevention of transfusion-transmissible infections, white cell inactivation, extension of platelet storage, discontinuation of pathogen detection testing). Further studies based on actual numbers of platelet transfusion complications and their societal cost at a local level are needed to see the full cost to benefit ratio of platelet PRT implementation in Italy, and to promote equal treatment for all citizens.
Collapse
|
25
|
Garraud O, Lozano M. Pathogen inactivation/reduction technologies for platelet transfusion: Where do we stand? Transfus Clin Biol 2018; 25:165-171. [DOI: 10.1016/j.tracli.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Humbrecht C, Kientz D, Gachet C. Platelet transfusion: Current challenges. Transfus Clin Biol 2018; 25:151-164. [PMID: 30037501 DOI: 10.1016/j.tracli.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022]
Abstract
Since the late sixties, platelet concentrates are transfused to patients presenting with severe thrombocytopenia, platelet function defects, injuries, or undergoing surgery, to prevent the risk of bleeding or to treat actual hemorrhage. Current practices differ according to the country or even in different hospitals and teams. Although crucial advances have been made during the last decades, questions and debates still arise about the right doses to transfuse, the use of prophylactic or therapeutic strategies, the nature and quality of PC, the storage conditions, the monitoring of transfusion efficacy and the microbiological and immunological safety of platelet transfusion. Finally, new challenges are emerging with potential new platelet products, including cold stored or in vitro produced platelets. The most debated of these points are reviewed.
Collapse
Affiliation(s)
- C Humbrecht
- Établissement français du sang grand est, 85-87, boulevard Lobau, 54064 Nancy cedex, France.
| | - D Kientz
- Établissement français du sang grand est, 85-87, boulevard Lobau, 54064 Nancy cedex, France
| | - C Gachet
- Établissement français du sang grand est, 85-87, boulevard Lobau, 54064 Nancy cedex, France.
| |
Collapse
|
27
|
Garban F, Guyard A, Labussière H, Bulabois CE, Marchand T, Mounier C, Caillot D, Bay JO, Coiteux V, Schmidt-Tanguy A, Le Niger C, Robin C, Ladaique P, Lapusan S, Deconinck E, Rolland C, Foote AM, François A, Jacquot C, Tardivel R, Tiberghien P, Bosson JL. Comparison of the Hemostatic Efficacy of Pathogen-Reduced Platelets vs Untreated Platelets in Patients With Thrombocytopenia and Malignant Hematologic Diseases: A Randomized Clinical Trial. JAMA Oncol 2018; 4:468-475. [PMID: 29392283 PMCID: PMC5885167 DOI: 10.1001/jamaoncol.2017.5123] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 01/10/2023]
Abstract
IMPORTANCE Pathogen reduction of platelet concentrates may reduce transfusion-transmitted infections but is associated with qualitative impairment, which could have clinical significance with regard to platelet hemostatic capacity. OBJECTIVE To compare the effectiveness of platelets in additive solution treated with amotosalen-UV-A vs untreated platelets in plasma or in additive solution in patients with thrombocytopenia and hematologic malignancies. DESIGN, SETTING, AND PARTICIPANTS The Evaluation of the Efficacy of Platelets Treated With Pathogen Reduction Process (EFFIPAP) study was a randomized, noninferiority, 3-arm clinical trial performed from May 16, 2013, through January 21, 2016, at 13 French tertiary university hospitals. Clinical signs of bleeding were assessed daily until the end of aplasia, transfer to another department, need for a specific platelet product, or 30 days after enrollment. Consecutive adult patients with bone marrow aplasia, expected hospital stay of more than 10 days, and expected need of platelet transfusions were included. INTERVENTIONS At least 1 transfusion of platelets in additive solution with amotosalen-UV-A treatment, in plasma, or in additive solution. MAIN OUTCOMES AND MEASURES The proportion of patients with grade 2 or higher bleeding as defined by World Health Organization criteria. RESULTS Among 790 evaluable patients (mean [SD] age, 55 [13.4] years; 458 men [58.0%]), the primary end point was observed in 126 receiving pathogen-reduced platelets in additive solution (47.9%; 95% CI, 41.9%-54.0%), 114 receiving platelets in plasma (43.5%; 95% CI, 37.5%-49.5%), and 120 receiving platelets in additive solution (45.3%; 95% CI, 39.3%-51.3%). With a per-protocol population with a prespecified margin of 12.5%, noninferiority was not achieved when pathogen-reduced platelets in additive solution were compared with platelets in plasma (4.4%; 95% CI, -4.1% to 12.9%) but was achieved when the pathogen-reduced platelets were compared with platelets in additive solution (2.6%; 95% CI, -5.9% to 11.1%). The proportion of patients with grade 3 or 4 bleeding was not different among treatment arms. CONCLUSIONS AND RELEVANCE Although the hemostatic efficacy of pathogen-reduced platelets in thrombopenic patients with hematologic malignancies was noninferior to platelets in additive solution, such noninferiority was not achieved when comparing pathogen-reduced platelets with platelets in plasma. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01789762.
Collapse
Affiliation(s)
- Frédéric Garban
- University Grenoble Alpes, Centre National de Recherche Scientifique, Techniques de l'Ingénierie Médicale et de la Complexité–Institut Mathématiques Appliquées de Grenoble 38000, Grenoble, France
- Service d’Hématologie, Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang, Grenoble, France
| | - Audrey Guyard
- Centre d’Investigation Clinique 1406–Innovation Technologique, Institut national de la santé et de la recherche médicale, Grenoble, France
- Service de Biostatistiques, Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Helene Labussière
- Service d’Hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Claude-Eric Bulabois
- University Grenoble Alpes, Centre National de Recherche Scientifique, Techniques de l'Ingénierie Médicale et de la Complexité–Institut Mathématiques Appliquées de Grenoble 38000, Grenoble, France
- Service d’Hématologie, Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Tony Marchand
- Service d’Hématologie, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Christiane Mounier
- Service d’Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Denis Caillot
- Service d’Hématologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Jacques-Olivier Bay
- Service d’Hématologie, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Valérie Coiteux
- Service d’Hématologie, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Aline Schmidt-Tanguy
- Service d’Hématologie, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - Catherine Le Niger
- Service d’Hématologie, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Christine Robin
- Service d’Hématologie, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Patrick Ladaique
- Service d’Hématologie, Institut Paoli Calmettes, Marseille, France
| | - Simona Lapusan
- Service d’Hématologie, Hôpital Saint-Antoine, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Eric Deconinck
- Service d’Hématologie, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Carole Rolland
- University Grenoble Alpes, Centre National de Recherche Scientifique, Techniques de l'Ingénierie Médicale et de la Complexité–Institut Mathématiques Appliquées de Grenoble 38000, Grenoble, France
| | - Alison M. Foote
- Cellule Publication, Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Anne François
- Etablissement Français du Sang, La Plaine Saint-Denis, France
| | - Chantal Jacquot
- Etablissement Français du Sang, La Plaine Saint-Denis, France
| | - René Tardivel
- Etablissement Français du Sang, La Plaine Saint-Denis, France
- Etablissement Français du Sang, Rennes, France
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine Saint-Denis, France
- Unité mixte de recherche 1098, Institut national de la santé et de la recherche médicale, Université de Franche-Comté, Etablissement Français du Sang, Besançon, France
| | - Jean-Luc Bosson
- University Grenoble Alpes, Centre National de Recherche Scientifique, Techniques de l'Ingénierie Médicale et de la Complexité–Institut Mathématiques Appliquées de Grenoble 38000, Grenoble, France
- Centre d’Investigation Clinique 1406–Innovation Technologique, Institut national de la santé et de la recherche médicale, Grenoble, France
- Service de Biostatistiques, Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| |
Collapse
|
28
|
Makroo RN, Sardana R, Mediratta L, Butta H, Thakur UK, Agrawal S, Chowdhry M, Kumar S, Chokroborty S. Evaluation of bacterial inactivation in random donor platelets and single-donor apheresis platelets by the INTERCEPT blood system. Asian J Transfus Sci 2018; 12:146-153. [PMID: 30692800 PMCID: PMC6327773 DOI: 10.4103/ajts.ajts_87_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND: Blood transfusion of contaminated components is a potential source of sepsis by a wide range of known and unknown pathogens. Collection mechanism and storage conditions of platelets make them vulnerable for bacterial contamination. Several interventions aim to reduce the transfusion of contaminated platelet units; however, data suggest that contaminated platelet transfusion remains very common. AIM: A pathogen inactivation system, “INTERCEPT”, to inactivate bacteria in deliberately contaminated platelet units was implemented and evaluated. MATERIALS AND METHODS: Five single-donor platelets (SDP) and five random donor platelets (RDP) were prepared after prior consent of donors. Both SDP and RDP units were deliberately contaminated by stable stock ATCC Staphylococcus aureus and Escherichia coli, respectively, with a known concentration of stock culture. Control samples were taken from the infected units and bacterial concentrations were quantified. The units were treated for pathogen inactivation with the INTERCEPT (Cerus Corporation, Concord, CA) Blood system for platelets (Amotosalen/UVA), as per the manufacturer's instructions for use. Post illumination, test samples were analyzed for any bacterial growth. RESULTS: Post-illumination test samples did not result in any bacterial growth. A complete reduction of >6 log10S. aureus in SDP units and >6 log10Escherichia coli in RDP units was achieved. CONCLUSION: The INTERCEPT system has been shown to be very effective in our study for bacterial inactivation. Implementation of INTERCEPT may be used as a mitigation against any potential bacterial contamination in platelet components.
Collapse
Affiliation(s)
- Raj Nath Makroo
- Department of Transfusion Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Raman Sardana
- Department of Microbiology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Leena Mediratta
- Department of Microbiology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Hena Butta
- Department of Microbiology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Uday Kumar Thakur
- Department of Transfusion Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Soma Agrawal
- Department of Transfusion Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Mohit Chowdhry
- Department of Transfusion Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | | | | |
Collapse
|
29
|
Benjamin RJ, Lin JS, Corash L. An unbalanced study that lacks power: a caution about IPTAS. Transfusion 2017; 57:2284. [PMID: 28868740 DOI: 10.1111/trf.14199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022]
|
30
|
Implications of the US Food and Drug Administration draft guidance for mitigating septic reactions from platelet transfusions. Blood Adv 2017; 1:1142-1147. [PMID: 29296756 DOI: 10.1182/bloodadvances.2017008334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/02/2017] [Indexed: 01/19/2023] Open
|